Search for resonant WZ production in the $WZ \rightarrow l\nu l'l'$ channel in $\sqrt{s} = 7$ TeV pp collisions with the ATLAS detector

DOI
10.1103/PhysRevD.85.112012

Publication date
2012

Document Version
Final published version

Published in
Physical Review D. Particles, Fields, Gravitation, and Cosmology

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Search for resonant WZ production in the $WZ \rightarrow l\nu l' l'$ channel in $\sqrt{s} = 7$ TeV pp collisions with the ATLAS detector

G. Aad et al.*
(ATLAS Collaboration)

(Received 7 April 2012; published 25 June 2012)

A generic search is presented for a heavy particle decaying to $WZ \rightarrow \ell \nu l' l'$ ($\ell, \ell' = e, \mu$) final states. The data were recorded by the ATLAS detector in $\sqrt{s} = 7$ TeV pp collisions at the Large Hadron Collider and correspond to an integrated luminosity of 1.02 fb$^{-1}$. The transverse mass distribution of the selected WZ candidates is found to be consistent with the standard model expectation. Upper limits on the production cross section times branching ratio are derived using two benchmark models predicting a heavy particle decaying to a WZ pair.

I. INTRODUCTION

The study of electroweak boson pair production is a powerful test of the spontaneously broken gauge symmetry of the standard model (SM) and can be used as a probe for new phenomena beyond the SM. Heavy particles that can decay to gauge boson pairs are predicted by many scenarios of new physics, including the extended gauge model (EGM) [1], extra dimensions [2,3], and technicolor models [4–6].

This paper describes the search for a resonant structure in $WZ \rightarrow \ell \nu l' l'$ ($\ell, \ell' = e, \mu$) production above 200 GeV. The data set used corresponds to an integrated luminosity of 1.02 fb$^{-1}$, collected by the ATLAS detector at the Large Hadron Collider in pp collisions at a center-of-mass energy of $\sqrt{s} = 7$ TeV during the 2011 data taking. Events are selected with three charged leptons (electrons or muons) and large missing transverse momentum (E_T^{miss}) due to the presence of a neutrino in the final state. Two benchmark models, which predict the existence of narrow heavy particles decaying into WZ, are used to interpret the results: the EGM, through heavy vector boson W' production, and the low scale technicolor model (LSTC) [4], through technimeson production.

The couplings of the EGM W' boson to the SM particles are the same as those of the W boson, except for the coupling to WZ, whose strength is $g_{W'WZ} = g_{WWZ} \times m_W^2 m_Z^2 / m_{W'}^2$, where g_{WWZ} is the SM WWZ coupling strength, and m_W, m_Z, and $m_{W'}$ are the masses of the W, Z, and W' particles, respectively. Strong bounds exist on $m_{W'}$ from $W' \rightarrow \ell \nu$ searches [7–10] assuming the sequential standard model (SSM) as the benchmark model, in which the W' coupling to WZ is strongly suppressed. The $W' \rightarrow WZ$ search presented in this paper is thus independent of, and complementary to, $W' \rightarrow \ell \nu$ searches. Searches for the EGM W' boson in the WZ channel have been performed at the Tevatron, and W' bosons with a mass between 180 GeV and 690 GeV are excluded at 95% confidence level (CL) [11,12].

In the LSTC model, technimesons with narrow widths are predicted which decay to WZ. Examples are the lightest vector technirho ρ_T and its axial-vector partner techni- a_T. A previous search in the WZ decay channel has been performed by the D0 experiment, and ρ_T technimesons with a mass between 208 GeV and 408 GeV are excluded at 95% CL under the specific mass hierarchy assumption $m_{\rho_T} < m_{\pi_T} + m_W$, where m_{ρ_T}, m_{π_T}, are the masses of the technirho and technipion, respectively [13].

II. THE ATLAS DETECTOR

The ATLAS detector [14] is a general-purpose particle detector with an approximately forward-backward symmetric cylindrical geometry, and almost 4π coverage in solid angle [15]. The inner tracking detector (ID) covers the pseudorapidity range of $|\eta| < 2.5$ and consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field, and by a calorimeter system covering an η range up to 4.9, which provides three-dimensional reconstruction of particle showers. For $|\eta| < 2.5$, the electromagnetic calorimeter is finely segmented and uses lead as an absorber and liquid argon (LAr) as active material. The hadronic calorimeter uses steel and scintillating tiles in the barrel region, while the end caps use LAr as the active material and copper as an absorber. The forward calorimeter also uses LAr as an active medium with copper and tungsten as an absorber. The muon spectrometer (MS) is based on one barrel and two end-cap air-core toroids, each consisting of eight superconducting coils arranged symmetrically in azimuth, and surrounding the calorimeter. Three layers of precision tracking stations, consisting of drift tubes and

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
cathode strip chambers, allow a precise muon momentum measurement up to $|\eta| < 2.7$. Resistive plate and thin-gap chambers provide muon triggering capability up to $|\eta| < 2.4$.

III. MONTE CARLO SIMULATION

Monte Carlo (MC) simulated samples are used to model signal and background processes. Events are generated at $\sqrt{s} = 7$ TeV, and the detector response simulation [16] is based on the GEANT4 program [17].

The simulation of the signals, both for the EGM W' and the LSTC ρ_T production, is based on the LO PYTHIA [18] event generator, with the modified leading-order (LO') [19] parton distribution function (PDF) set MRST2007 LO' [20]. By default, PYTHIA also includes a_T production, as discussed below. A mass-dependent k factor is used to rescale the LO' PYTHIA prediction to the next-to-next-to-leading-order (NNLO) cross section. The k factor is computed using the ZWPROD program [21] in the approximation of zero width for the resonance; its value decreases with the resonance mass from 1.17 at $m_{W'} = 200$ GeV to 1.08 at $m_{W'} = 1$ TeV.

The LSTC simulated samples correspond to the following set of parameters: number of technicolors $N_{TC} = 4$, charges of up-type and down-type technifermions $Q_T = 1$, $Q_D = 0$, mixing angle between technipions, and electroweak gauge boson longitudinal component $\sin \chi = 1/3$. The ρ_T can decay both to WZ and $\pi_T W$; if the ρ_T and π_T masses are degenerate, the branching ratio $BR(\rho_T \rightarrow WZ)$ is 100%. Two-dimensional exclusion regions are set on the technicolor production in the (m_{ρ_T}, m_{π_T}) plane. In addition, for comparison purpose with previous results [13], the relation $m_{\rho_T} = m_{\pi_T} + m_W$ is used when extracting one-dimensional limits on the ρ_T mass, which entails a value of $BR(\rho_T \rightarrow WZ) = 98\%$. The axial-vector partner of the ρ_T, the a_T, also decays to WZ and, depending on its mass, contributes to the WZ production cross section. Two scenarios for the value of the mass of the a_T technimeson are considered: $m_{a_T} = 1.1 \times m_{\rho_T}$, which is the standard value implemented in PYTHIA, and $m_{a_T} \gg m_{\rho_T}$, which is simulated by removing the a_T contribution at the generator level.

The SM WZ production, which is an irreducible background for this search, is modeled by the MC@NLO event generator [22], which incorporates the next-to-leading-order (NLO) matrix elements into the parton shower by interfacing to the HERWIG program [23]. The underlying event is modeled with JIMMY [24]. Other SM processes that can mimic the same final state include the following: $ZZ \rightarrow \ell\ell\ell'\ell'$, where one of the leptons is not detected or fails the selection requirements; $Z(\rightarrow \ell\ell) + \gamma$, where the photon is misidentified as an electron; and processes with two identified leptons and jets, namely Z production in association with jets ($Z +$ jets), $t\bar{t}$ and single top processes, where leptons are present from b- or c-hadron decays or one jet is misidentified as a lepton. SM ZZ events are simulated at LO using HERWIG, and $W/Z + \gamma$ production is modeled with SHERPA [25]. The cross sections for these two processes are corrected to the NLO calculation computed with MCFM [26,27]. The $W/Z +$ jets process is modeled at LO using ALPGEN [28], and then corrected to the NNLO cross section computed with FEWZ [29]. Single top and $t\bar{t}$ events are simulated at NLO using MC@NLO. The backgrounds due to the $Z +$ jets, $t\bar{t}$ and single top processes (called the “$\ell\ell\ell'\ell'$ + jets” background in this paper) are estimated using data-driven methods, and the corresponding MC samples mentioned above are used only for cross-checks.

IV. EVENT SELECTION

The data analyzed are required to have been selected online by a single-lepton (e or μ) trigger with a threshold of 20 GeV on the transverse energy (E_T) in the electron case and 18 GeV on the transverse momentum (p_T) in the muon case. After applying data quality requirements, the total integrated luminosity of the data set used in this analysis is 1.02 ± 0.04 fb$^{-1}$ [30,31].

Because of the presence of multiple collisions in a single bunch-crossing, about six on average, each event can have multiple reconstructed primary vertices. The vertex having the largest sum of squared transverse momenta of associated tracks is selected as the primary vertex of the hard collision, and it is used to compute any reconstructed quantity. To reduce the contamination due to cosmic rays, only events where the primary vertex of the hard collision has at least three associated tracks with $p_T > 0.5$ GeV are considered.

Electrons are reconstructed from a combination of an ID track and a calorimeter energy cluster, with $E_T > 25$ GeV and $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$, avoiding the transition region between the barrel and the end-cap electromagnetic calorimeters. Candidate electrons must satisfy the medium [32] quality definition, which is based on the calorimeter shower shape, track quality, and track matching with the calorimeter cluster. To make sure candidate electrons originate from the primary interaction vertex, they are also required to have a longitudinal impact parameter (d_0) smaller than 10 mm and a transverse impact parameter (d_0') with significance ($|d_0'|/\sigma_{d_0}$) smaller than 10, both with respect to the selected primary vertex. In addition, the electron is required to be isolated in the calorimeter such that the sum of the E_T of the clusters around the electron within a cone of $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.3$ is less than 4 GeV. Corrections are applied to account for the energy deposition inside the isolation cone due to electron energy leakage and additionalpileup collisions.

Muon candidates must be reconstructed in both the ID and the MS, and the combined track is required to have $p_T > 25$ GeV and $|\eta| < 2.4$. Good quality is ensured by
requiring a minimum number of silicon strip and pixel hits associated to the track. To suppress the contribution of muons coming from hadronic jets, the p_T sum of other tracks with $p_T > 1$ GeV, within a cone of $\Delta R = 0.2$ around the muon track, is required to be less than 10% of the muon p_T. The muon candidate is required to be compatible with the selected primary vertex, with $|z_0| < 10$ mm and $|d_0|/\sigma_{d_0} < 10$.

The missing transverse momentum E_T^{miss} is reconstructed, in the range $|\eta| < 4.5$, as the negative vector sum of calorimeter cell transverse energies, calibrated to the electromagnetic scale [33], to which the transverse momenta of identified muons are added.

The $WZ \rightarrow \ell \nu \ell' \ell'$ candidate events are selected by requiring two oppositely charged same-flavor leptons with an invariant mass within 20 GeV of the Z boson mass, plus a third lepton and $E_T^{\text{miss}} > 25$ GeV. The transverse mass of the reconstructed W boson, i.e., $m_T^W = \sqrt{2p_T^l E_T^{\text{miss}} (1 - \cos \Delta \phi)}$, where p_T^l is the transverse momentum of the charged lepton and $\Delta \phi$ is the opening angle between the lepton and the E_T^{miss} direction in the plane transverse to the beam, is required to be greater than 15 GeV to suppress multijet background. Selected events are also required to have exactly three charged leptons to suppress the $ZZ \rightarrow \ell \ell' \ell' \ell$ background. These selection criteria define the signal region. Four decay channels $eeee, e\mu\mu, \mu eee$, and $\mu\mu\mu$ are analyzed separately and then combined. The measurement of the inclusive $pp \to WZ \to \ell \nu \ell' \ell'$ cross section has previously been reported by ATLAS [34]. This analysis goes further by using the reconstructed event properties to probe for new phenomena.

After the final selection, the transverse mass of the WZ candidates (m_T^{WZ}) is examined for any resonant structure. Here m_T^{WZ} is calculated as $m_T^{WZ} = \sqrt{(E_T^W + E_T^W)^2 - (p_T^\nu + p_T^\nu)^2 - (p_T^l + p_T^l)^2}$, where E_T^W and E_T^{ν} are the scalar sums of the transverse energies of the decay products of the Z and W candidates, respectively. The E_T^{miss} vector is used as the estimator of the transverse momentum of the neutrino arising from the W boson decay.

V. BACKGROUND ESTIMATION

The dominant background for the WZ resonance search comes from SM WZ production. Its contribution is estimated using MC simulation. Simulated events are required to pass the event selection criteria, and the final yield is normalized to the integrated luminosity. Lepton reconstruction and identification efficiencies, energy scale, and resolution in the MC simulation are corrected to the corresponding values measured in the data in order to improve the overall modeling. Other diboson processes such as ZZ and $Z\gamma$ are also estimated using MC simulation.

A data-driven approach is used to estimate the contribution of the $\ell \ell' + \text{jets}$ background in the signal region. It is estimated by selecting a data sample containing two leptons that pass all the quality criteria requested in the lepton selection, and a leptonlike jet, which is defined as a reconstructed object that satisfies all quality criteria but fails the electron medium quality or the muon isolation requirement. The overall contribution is obtained by scaling each event by a correction factor f. The factor f is the ratio of the probability for a jet to satisfy the full lepton identification criteria to the probability to satisfy the leptonlike jet criteria. The factor f is measured both for muons and electrons in a dijet-enriched data sample as a function of the lepton p_T, and corrected for the small contribution of leptons coming from W and Z bosons decays using MC simulation.

Data and SM predictions are compared in two dedicated signal-free control regions, selected by requiring the same
VI. SYSTEMATIC UNCERTAINTIES

Different sources of systematic uncertainties have been considered. The first source is related to the lepton trigger, reconstruction, and identification efficiencies. These efficiencies are evaluated with tag-and-probe methods using $Z \rightarrow \ell\ell$, $W \rightarrow \ell\nu$, and $J/\psi \rightarrow \ell\ell$ events [35]. Scale factors are used to correct for differences between data and MC simulation. The lepton trigger efficiency scale factors are compatible with unity, and a systematic uncertainty of 1% is considered. The lepton reconstruction and identification scale factors are close to 1 and have a systematic uncertainty of 1.2% for the electrons and 0.5% for muons [35]. The lepton isolation efficiency uncertainties are estimated to be 2% for electrons and 1% for muons.

The second source of uncertainty is related to the lepton energy, momentum, and E_{miss} reconstruction. Additional smearing is applied to the muon p_T and to the electron cluster energy in the simulation, so that they replicate the $Z \rightarrow \ell\ell$ invariant mass distributions in data. The uncertainty due to the lepton resolution smearing is of the order of 0.1% [35]. The uncertainty on the E_{miss} reconstruction receives contributions from different sources: energy deposits due to additional pp collisions which are in time and out of time with respect to the bunch-crossing; energy deposits around clusters associated to reconstructed jets and electrons; energy deposits not associated to any reconstructed objects; and muon momentum uncertainties. The total systematic uncertainty on the dominant SM WZ background estimation due to the E_{miss} uncertainties lies between 2% and 3%, depending on the channel considered.

The third source of uncertainty is due to the limited knowledge of the theoretical cross sections of SM processes, used both to evaluate WZ, ZZ, and $Z\gamma$ background contributions, and for subtracting contributions of W and Z leptonic decays from the dijet sample used for the measurement of the correction factor f. An uncertainty of 7% is assigned for the WZ process, 5% for the ZZ process, and 8% for the $Z\gamma$ process [27], to which the MC statistical uncertainty is added in quadrature.

The fourth source of uncertainty is related to the uncertainty on the $\ell\ell' +$ jets background estimation. The systematic uncertainty comes mainly from the uncertainty on f due to differences in the kinematics and flavor composition of the QCD dijet events with respect to the $\ell\ell' +$ jets processes, and differences in event selection criteria for QCD dijet events and WZ candidates. The factor f is around 0.15 for muons and 0.07 for electrons over the full range of p_T and η, with a relative uncertainty between 5% and 20%. The estimated number of events from the $\ell\ell' +$ jets background in the signal region using the data-driven method is $6.4 \pm 1.0(\text{stat})^{+0.3}_{-0.5}(\text{syst})$ events. A MC-based cross-check gives a consistent estimation of $4.3 \pm 1.1(\text{syst})$ events.

The fifth source of uncertainty is related to the estimation of the signal acceptance based on MC simulation. The systematic uncertainty is mainly due to the choice of PDF and is found to be 0.6% when comparing the differences between the predictions of the nominal PDF set MRST2007 LO and the ones given by MSTW2008 LO [36], using the standard LHAPDF framework [37]. A cross-check has been done using the NNPDF LO+CT09MC1, and CT09MC2 [39] PDF sets, leading to a compatible uncertainty.

Finally, the luminosity uncertainty is 3.7% [30,31].

VII. RESULTS AND INTERPRETATION

The numbers of events expected and observed after the final selection are reported in Table I. A total of 48 $WZ \rightarrow \ell\nu\ell'\nu'$ candidate events are observed in data, to be compared to the SM prediction of $45.0 \pm 1.0(\text{stat})^{+4.6}_{-5.2}(\text{syst})$ events. The expected numbers of events for a W' with a mass of 750 GeV and a p_T with a mass of 500 GeV are also reported.

The overall acceptance times trigger, reconstruction, and selection efficiencies $(A \times \epsilon)$ for EGM $W' \rightarrow WZ \rightarrow \ell\nu\ell'\nu'$ and the LSTC $\rho_\tau \rightarrow WZ \rightarrow \ell\nu\ell'\nu'$ events as implemented in PYTHIA is shown in Table II for various WZ resonance masses. The value of $A \times \epsilon$ is 6.2% for $m_{W'} = 200$ GeV and increases to 20.5% for $m_{W'} = 1$ TeV. The corresponding $A \times \epsilon$ for the LSTC ρ_τ is found to be slightly lower than that of the EGM W' due to the fact that the PYTHIA implementation of the $\rho_\tau \rightarrow WZ$ process does not account for the polarizations of vector bosons in their decay. A massive W' boson is expected to decay predominantly to longitudinally polarized W and Z bosons, as is the ρ_τ technimeson. While the production and decay with spin correlations is fully implemented in PYTHIA for W', spin correlation information is not considered in the decay of the W and Z bosons in the ρ_τ case; hence, they each decay isotropically in their respective rest frames. This leads to a softer lepton p_T spectrum and consequently lower $A \times \epsilon$. The interpretation of the data in terms of ρ_τ production is performed in two different manners: the first uses the PYTHIA implementation of ρ_τ production and decay, and the second assumes that $A \times \epsilon$ for the ρ_τ is equal to that of the W'.
The transverse mass distribution of the WZ candidates is presented in Fig. 2 for data and background expectations together with possible contributions from W' and p_T using PYTHIA. The $\ell\nu\ell' +$ jets and $Z\gamma$ background contributions to the $m_{T,WZ}^{W'}$ distribution are extrapolated using exponential functions to extend over the full $m_{T,WZ}^{W'}$ signal region. The transverse mass distribution is used to build a log-likelihood ratio test statistic \cite{40}, which allows the compatibility of the data with the presence of a signal in addition to the background to be assessed, in a modified frequentist approach \cite{41}. Confidence levels for the signal plus background hypothesis, CL_{s+b}, and background-only hypothesis, CL_b, are computed by integrating the log-likelihood ratio distributions obtained from simulated pseudoexperiments using Poisson statistics. The confidence level for the signal hypothesis CL_s, defined as the ratio $\mathrm{CL}_{s+b}/\mathrm{CL}_b$, is used to determine the exclusion limits.

The probability that the background fluctuations give rise to an excess at least as large as that observed in data has been computed as p-value = 1 - CL_s and is reported in Table III for the signal hypothesis of a W' particle with mass from 200 GeV to 1 TeV. Since no statistically significant excess is observed for any value of the W' mass, limits are derived on the production cross section times branching ratio [$\sigma \times \mathrm{BR}(W' \rightarrow WZ)$] for a W' decaying to WZ, already corrected for the $A \times \epsilon$ of the leptonically decaying $WZ \rightarrow \ell\nu\ell'\ell'$ decay. The 95\% CL limit on $\sigma \times \mathrm{BR}(W' \rightarrow WZ)$ is defined as the value giving $\mathrm{CL}_s = 0.05$. The upper limit on $\sigma \times \mathrm{BR}(W' \rightarrow WZ)$ for $pp \rightarrow W' \rightarrow WZ$ as a function of the W' mass is shown in Fig. 3(a), and the values are reported in Table III. Simulation of W' bosons is performed for $m_{W'}$ between 200 GeV and 1 TeV with a 150 to 250 GeV mass spacing, and an interpolation procedure provides $m_{W'}^{WZ}$ limits.
shape templates with a 50 GeV spacing. The \(m_W^{WZ} \) shapes from the fully simulated signal samples have been fitted with a Crystal Ball function using ROOFIT [42]. The obtained Crystal Ball parameters are fitted as a function of the \(W' \) mass, and the functional value for these parameters is then used to build the \(m_W^{WZ} \) templates for the intermediate \(W' \) mass points. The observed (expected) exclusion limit on the \(W' \) mass is found to be 760 (776) GeV.

The observed (expected) limits on \(\sigma \times \text{BR}(\rho_T \to WZ) \) for the \(\rho_T \) technimeson are presented in Fig. 3(b) assuming \(m_{\rho_T} = 1.1 m_{\rho_T} \) and unpolarized \(W \) and \(Z \) decays. This corresponds to an observed (expected) limit on the \(\rho_T \) mass of 467 (506) GeV. A limit on the \(\rho_T \) mass of 456 (482) GeV is obtained if \(m_{\rho_T} \gg m_{\rho_T} \). Assuming \(A \times \varepsilon \) for the \(\rho_T \) signal to be equal to that of the \(W' \) signal, which is estimated by accounting for predominantly longitudinal \(W \) and \(Z \) polarization, the observed (expected) limit on the \(\rho_T \) mass is 483 (553) GeV for \(m_{\rho_T} = 1.1 m_{\rho_T} \) and 469 (507) GeV for \(m_{\rho_T} \gg m_{\rho_T} \). Table IV summarizes these limits, which all assume the relation \(m_{\rho_T} = m_{\rho_T} + m_W \).

Figure 4 shows the 95% CL expected and observed excluded regions in the \(m_{\rho_T}, m_{\rho_T} \) plane for \(m_{\rho_T} = 1.1 m_{\rho_T} \) and \(m_{\rho_T} \gg m_{\rho_T} \), respectively. Results are shown under the two assumptions on \(A \times \varepsilon \) for the \(\rho_T \) signal.

VIII. CONCLUSION

A search for resonant production of a pair of \(WZ \) bosons with three charged leptons in the final state has been performed using 1.02 fb\(^{-1}\) of data collected with the ATLAS detector in pp collisions at \(\sqrt{s} = 7 \) TeV at the Large Hadron Collider. No significant excess of events is observed, and upper limits are derived on the production cross section times branching ratio of new physics using the transverse mass of the \(WZ \) system. EGM \(W' \) bosons with masses up to 760 GeV are excluded at 95% CL. Using

TABLE III. Expected and observed limits on \(\sigma \times \text{BR}(W' \to WZ) \) (pb) for \(W' \) production decaying to \(WZ \), as a function of the \(W' \) mass. The \(p \) values are also reported.

<table>
<thead>
<tr>
<th>(W') mass (GeV)</th>
<th>Expected</th>
<th>Observed</th>
<th>(p) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>7.31</td>
<td>7.62</td>
<td>0.43</td>
</tr>
<tr>
<td>250</td>
<td>5.26</td>
<td>6.55</td>
<td>0.34</td>
</tr>
<tr>
<td>300</td>
<td>2.74</td>
<td>3.38</td>
<td>0.28</td>
</tr>
<tr>
<td>350</td>
<td>1.72</td>
<td>2.06</td>
<td>0.25</td>
</tr>
<tr>
<td>400</td>
<td>1.18</td>
<td>1.48</td>
<td>0.25</td>
</tr>
<tr>
<td>450</td>
<td>0.92</td>
<td>1.07</td>
<td>0.23</td>
</tr>
<tr>
<td>500</td>
<td>0.76</td>
<td>0.93</td>
<td>0.21</td>
</tr>
<tr>
<td>550</td>
<td>0.61</td>
<td>0.79</td>
<td>0.19</td>
</tr>
<tr>
<td>600</td>
<td>0.54</td>
<td>0.63</td>
<td>0.26</td>
</tr>
<tr>
<td>650</td>
<td>0.51</td>
<td>0.56</td>
<td>0.33</td>
</tr>
<tr>
<td>700</td>
<td>0.48</td>
<td>0.53</td>
<td>0.34</td>
</tr>
<tr>
<td>750</td>
<td>0.49</td>
<td>0.52</td>
<td>0.34</td>
</tr>
<tr>
<td>800</td>
<td>0.45</td>
<td>0.50</td>
<td>0.37</td>
</tr>
<tr>
<td>850</td>
<td>0.46</td>
<td>0.47</td>
<td>0.38</td>
</tr>
<tr>
<td>900</td>
<td>0.50</td>
<td>0.50</td>
<td>0.39</td>
</tr>
<tr>
<td>950</td>
<td>0.44</td>
<td>0.44</td>
<td>0.40</td>
</tr>
<tr>
<td>1000</td>
<td>0.48</td>
<td>0.46</td>
<td>0.35</td>
</tr>
</tbody>
</table>

TABLE IV. Observed (expected) limit on the \(\rho_T \) mass with two different assumptions about \(A \times \varepsilon \) for \(\rho_T \) and two mass hierarchy assumptions between \(\rho_T \) and \(\rho_T \).

<table>
<thead>
<tr>
<th>(\rho_T) mass (GeV)</th>
<th>(m_{\rho_T} = 1.1 m_{\rho_T})</th>
<th>(m_{\rho_T} \gg m_{\rho_T})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected</td>
<td>483 (553)</td>
<td>469 (507)</td>
</tr>
<tr>
<td>Observed</td>
<td>467 (506)</td>
<td>456 (482)</td>
</tr>
</tbody>
</table>

FIG. 3 (color online). The observed and expected limits on \(\sigma \times \text{BR}(W' \to WZ) \) for \(W' \to WZ \) (a) and \(pp \to \rho_T, \omega_T \to WZ \) (b). The theoretical prediction is shown with a systematic uncertainty of 5% due to the choice of PDF and is estimated by comparing the differences between the predictions of the nominal PDF set MRST2007 LO' and the ones given by MSTW2008 LO PDF using the LHAPDF framework. The green and yellow bands represent, respectively, the 1\(\sigma \) and 2\(\sigma \) uncertainties on the expected limit.
FIG. 4 (color online). The 95% CL expected and observed excluded mass regions in the \((m_{\rho_T}, m_{\pi_T})\) plane for \(m_{\rho_T} = 1.1 m_{\pi_T}\) (a) and \(m_{\rho_T} \gg m_{\pi_T}\) (b), above the curves. Two different assumptions about the \(p_T\) signal \(A \times \epsilon\) are used: assuming a \(p_T\) signal where \(A \times \epsilon\) is equal to that of the \(W\) signal, and assuming a \(p_T\) signal where \(A \times \epsilon\) is obtained through its implementation in PYTHIA.

the mass hierarchy assumption \(m_{\rho_T} = m_{\pi_T} + m_W\), LSTC \(p_T\) technimesons with masses from 200 GeV up to 467 GeV and 456 GeV are excluded at 95% CL for \(m_{\rho_T} = 1.1 m_{\pi_T}\) and \(m_{\rho_T} \gg m_{\pi_T}\), respectively, using the PYTHIA implementation of \(p_T\) production. Assuming the kinematics of the \(W\) production and decay are valid for the \(p_T\) technimeson, \(p_T\) with masses from 200 GeV up to 483 GeV and 469 GeV are excluded for \(m_{\rho_T} = 1.1 m_{\pi_T}\) and \(m_{\rho_T} \gg m_{\pi_T}\), respectively.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSc, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), and in the Tier-2 facilities worldwide.

SEARCH FOR RESONANT WZ PRODUCTION IN THE \ldots PHYSICAL REVIEW D 85, 112012 (2012)

(TATLAS Collaboration)

1University at Albany, Albany, New York, USA
2Department of Physics, University of Alberta, Edmonton, Alberta, Canada
3Department of Physics, Ankara University, Ankara, Turkey
4Department of Physics, Dumlupınar University, Kütahya, Turkey
5Department of Physics, Gazi University, Ankara, Turkey
6Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
7Turkish Atomic Energy Authority, Ankara, Turkey
8LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
9High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
10Department of Physics, University of Arizona, Tucson, Arizona, USA
11Department of Physics, The University of Texas at Arlington, Arlington Texas, USA
12Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
13Institute of Physics, University of Belgrade, Belgrade, Serbia
14Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
15Department for Physics and Technology, University of Bergen, Bergen, Norway
16Physikalisches Institut, University of Bonn, Bonn, Germany
17School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18Department of Physics, Bogazici University, Istanbul, Turkey
19Division of Physics, Dogus University, Istanbul, Turkey
20Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
21Department of Physics, Istanbul Technical University, Istanbul, Turkey
22INFN Sezione di Bologna, Italy
23Dipartimento di Fisica, Università di Bologna, Bologna, Italy
24Physikalisches Institut, University of Bonn, Bonn, Germany
25Department of Physics, Boston University, Boston, Massachusetts, USA
26Department of Physics, Brandeis University, Waltham, Massachusetts, USA
27Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
28Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
29Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
30Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
31Universidade Federal de Santa Catarina, Florianópolis, Brazil
32Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
33Physics Department, Brookhaven National Laboratory, Upton, New York, USA
34Department of Physics, Universidad de Buenos Aires, Buenos Aires, Argentina
35Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
36Department of Physics, Carleton University, Ottawa, Ontario, Canada
37Department of Physics, Nanjing University, Jiangsu, China
38Department of Physics, Pontificia Universidad Católica de Chile, Santiago, Chile
39Department of Physics, Universidad Técnica Federico Santa María, Valparaíso, Chile
40Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
41Department of Modern Physics, University of Science and Technology of China, Anhui, China
42Department of Physics, Nanjing University, Jiangsu, China
32d School of Physics, Shandong University, Shandong, China
33 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubière Cedex, France
34 Nevis Laboratory, Columbia University, Irvington, New York, USA
35 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
36 INFN Gruppo Collegato di Cosenza, Italy
36b Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
37 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas, Texas, USA
40 DESY, Hamburg and Zeuthen, Germany
41 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
42 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
43 Department of Physics, Duke University, Durham, North Carolina, USA
44 SUPA—School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
45 INFN Laboratori Nazionali di Frascati, Frascati, Italy
46 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
47 Section de Physique, Université de Genève, Geneva, Switzerland
48 INFN Sezione di Genova, Italy
49 High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
50 E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi, Georgia
51 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
52 SUPA—School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
53 INFN Sezione di Lecce, Italy
54 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
55 Department of Physics, Hampton University, Hampton, Virginia, USA
56 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
57 Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
58 Physical Institute, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
59 Department of Physics, Indiana University, Bloomington, Indiana, USA
60 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
61 University of Iowa, Iowa City, Iowa, USA
62 Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA
63 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
64 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
65 Graduate School of Science, Kobe University, Kobe, Japan
66 Department of Physics, Kyoto University, Kyoto, Japan
67 Kyushu University, Fukuoka, Japan
68 Department of Physics, Kyushu University, Fukuoka, Japan
69 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
70 Physics Department, Lancaster University, Lancaster, United Kingdom
71 INFN Sezione di Lecce, Italy
72 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
73 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
74 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
75 Department of Physics, Royal Holloway University of London, London, United Kingdom
76 Department of Physics and Astronomy, University College London, London, United Kingdom
77 Laboratoire de Physique Nucléaire et de Hautes Énergies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
78 Fysiksk institutionen, Lunds universitet, Lund, Sweden
79 Departamento de Física Teórica C-15, Universidad Autonoma de Madrid, Madrid, Spain
80 Institut für Physik, Universität Mainz, Mainz, Germany
81 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
82 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
83 Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA
84 Department of Physics, McGill University, Montreal, Quebec, Canada