Search for resonant WZ production in the WZ →lνl'l' channel in √(s) = 7 TeV pp collisions with the ATLAS detector

Published in:
Physical Review D. Particles, Fields, Gravitation, and Cosmology

DOI:
10.1103/PhysRevD.85.112012

Citation for published version (APA):

Download date: 07 Feb 2019
Search for resonant WZ production in the \(WZ \to l\nu l'\ell' \) channel in \(\sqrt{s} = 7 \) TeV \(pp \) collisions with the ATLAS detector

G. Aad et al.*
(ATLAS Collaboration)

(Received 7 April 2012; published 25 June 2012)

A generic search is presented for a heavy particle decaying to \(WZ \to l\nu l'\ell' \) (\(\ell, \ell' = e, \mu \)) final states. The data were recorded by the ATLAS detector in \(\sqrt{s} = 7 \) TeV \(pp \) collisions at the Large Hadron Collider and correspond to an integrated luminosity of 1.02 fb\(^{-1}\). The transverse mass distribution of the selected WZ candidates is found to be consistent with the standard model expectation. Upper limits on the production cross section times branching ratio are derived using two benchmark models predicting a heavy particle decaying to a WZ pair.

DOI: 10.1103/PhysRevD.85.112012 PACS numbers: 12.60.Nz, 12.60.Cn

I. INTRODUCTION

The study of electroweak boson pair production is a powerful test of the spontaneously broken gauge symmetry of the standard model (SM) and can be used as a probe for new phenomena beyond the SM. Heavy particles that can decay to gauge boson pairs are predicted by many scenarios of new physics, including the extended gauge model (EGM) [1], extra dimensions [2,3], and technicolor models [4–6].

This paper describes the search for a resonant structure in \(WZ \to l\nu l'\ell' \) (\(\ell, \ell' = e, \mu \)) production above 200 GeV. The data set used corresponds to an integrated luminosity of 1.02 fb\(^{-1}\), collected by the ATLAS detector at the Large Hadron Collider in \(pp \) collisions at a center-of-mass energy of \(\sqrt{s} = 7 \) TeV during the 2011 data taking. Events are selected with three charged leptons (electrons or muons) and large missing transverse momentum (\(E_T^{\text{miss}} \)) due to the presence of a neutrino in the final state. Two benchmark models, which predict the existence of narrow heavy particles decaying into WZ, are used to interpret the results: the EGM, through heavy vector boson \(W' \) production, and the low scale technicolor model (LSTC) [4], through technimeson production.

The couplings of the EGM \(W' \) boson to the SM particles are the same as those of the \(W \) boson, except for the coupling to WZ, whose strength is \(g_{W'WZ} = g_{WWZ} \times m_W m_Z / m_{W'^*} \), where \(g_{WWZ} \) is the SM WZ coupling strength, and \(m_W, m_Z, \) and \(m_{W'} \) are the masses of the \(W, Z, \) and \(W' \) particles, respectively. Strong bounds exist on \(m_{W'} \) from \(W' \to \ell\nu \) searches [7–10] assuming the sequential standard model (SSM) as the benchmark model, in which the \(W' \) coupling to WZ is strongly suppressed. The \(W' \to WZ \) search presented in this paper is thus independent of, and complementary to, \(W' \to \ell\nu \) searches.

In the LSTC model, technimesons with narrow widths are predicted which decay to WZ. Examples are the lightest vector technirho \(\rho_T \) and its axial-vector partner techni-a \(a_T \). A previous search in the WZ decay channel has been performed by the D0 experiment, and \(\rho_T \) technimesons with a mass between 208 GeV and 408 GeV are excluded at 95% confidence level (CL) [11,12].

In the LSTC model, technimesons with narrow widths are predicted which decay to WZ. Examples are the lightest vector technirho \(\rho_T \) and its axial-vector partner techni-a \(a_T \). A previous search in the WZ decay channel has been performed by the D0 experiment, and \(\rho_T \) technimesons with a mass between 208 GeV and 408 GeV are excluded at 95% CL under the specific mass hierarchy assumption \(m_{\rho_T} < m_{\pi_T} + m_W \), where \(m_{\rho_T}, m_{\pi_T} \) are the masses of the technirho and technipion, respectively [13].

II. THE ATLAS DETECTOR

The ATLAS detector [14] is a general-purpose particle detector with an approximately forward-backward symmetric cylindrical geometry, and almost 4\(\pi \) coverage in solid angle [15]. The inner tracking detector (ID) covers the pseudorapidity range of |\(\eta \)| < 2.5 and consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field, and by a calorimeter system covering an \(\eta \) range up to 4.9, which provides three-dimensional reconstruction of particle showers. For |\(\eta \)| < 2.5, the electromagnetic calorimeter is finely segmented and uses lead as an absorber and liquid argon (LAr) as active material. The hadronic calorimeter uses steel and scintillating tiles in the barrel region, while the end caps use LAr as the active material and copper as an absorber. The forward calorimeter also uses LAr as an active medium with copper and tungsten as an absorber. The muon spectrometer (MS) is based on one barrel and two end-cap air-core toroids, each consisting of eight superconducting coils arranged symmetrically in azimuth, and surrounding the calorimeter. Three layers of precision tracking stations, consisting of drift tubes and...
cathode strip chambers, allow a precise muon momentum measurement up to $|\eta| < 2.7$. Resistive plate and thin-gap chambers provide muon triggering capability up to $|\eta| < 2.4$.

III. MONTE CARLO SIMULATION

Monte Carlo (MC) simulated samples are used to model signal and background processes. Events are generated at $\sqrt{s} = 7$ TeV, and the detector response simulation [16] is based on the GEANT4 program [17].

The simulation of the signals, both for the EGM W' and the LSTC ρ_T production, is based on the LO PYTHIA [18] event generator, with the modified leading-order (LO') [19] parton distribution function (PDF) set MRST2007 LO' [20]. By default, PYTHIA also includes a_T production, as discussed below. A mass-dependent k factor is used to rescale the LO' PYTHIA prediction to the next-to-next-to-leading-order (NNLO) cross section. The k factor is computed using the ZWPROD program [21] in the approximation of zero width for the resonance; its value decreases with the resonance mass from 1.17 at $m_W = 200$ GeV to 1.08 at $m_W = 1$ TeV.

The LSTC simulated samples correspond to the following set of parameters: number of technicolors $N_{TC} = 4$, charges of up-type and down-type technifermions $Q_L = Q_U = 1$, $Q_D = 0$, mixing angle between technipions, and electro-weak gauge boson longitudinal component $\sin \chi = 1/3$. The ρ_T can decay both to WZ and $\pi_T W$; if the ρ_T and π_T masses are degenerate, the branching ratio $BR(\rho_T \rightarrow WZ)$ is 100%. Two-dimensional exclusion regions are set on the technicolor production in the (m_{ρ_T}, m_{π_T}) plane. In addition, for comparison purpose with previous results [13], the relation $m_{\rho_T} = m_{\pi_T} + m_W$ is used when extracting one-dimensional limits on the ρ_T mass, which entails a value of $BR(\rho_T \rightarrow WZ) = 98\%$. The axial-vector partner of the ρ_T, the a_T, also decays to WZ and, depending on its mass, contributes to the WZ production cross section. Two scenarios for the value of the mass of the a_T technimeson are considered: $m_{a_T} = 1.1 \times m_{\rho_T}$, which is the standard value implemented in PYTHIA, and $m_{a_T} \gg m_{\rho_T}$, which is simulated by removing the a_T contribution at the generator level.

The SM WZ production, which is an irreducible background for this search, is modeled by the MC@NLO event generator [22], which incorporates the next-to-leading-order (NLO) matrix elements into the parton shower by interfacing to the HERWIG program [23]. The underlying event is modeled with JIMMY [24]. Other SM processes that can mimic the same final state include the following: $ZZ \rightarrow \ell\ell'\ell\ell'$, where one of the leptons is not detected or fails the selection requirements; $Z(\rightarrow \ell\ell) + \gamma$, where the photon is misidentified as an electron; and processes with two identified leptons and jets, namely Z production in association with jets ($Z + jets$), $t\bar{t}$ and single top events, where leptons are present from b- or c-hadron decays or one jet is misidentified as a lepton. SM ZZ events are simulated at LO using HERWIG, and $W/Z + \gamma$ production is modeled with SHERPA [25]. The cross sections for these two processes are corrected to the NLO calculation computed with MCFM [26,27]. The $W/Z + jets$ process is modeled at LO using ALPGEN [28], and then corrected to the NNLO cross section computed with FEWZ [29]. Single top and $t\bar{t}$ events are simulated at NLO using MC@NLO. The backgrounds due to the $Z + jets$, $t\bar{t}$ and single top processes (called the “$\ell\ell' + jets$” background in this paper) are estimated using data-driven methods, and the corresponding MC samples mentioned above are used only for cross-checks.

IV. EVENT SELECTION

The data analyzed are required to have been selected online by a single-lepton (e or μ) trigger with a threshold of 20 GeV on the transverse energy (E_T) in the electron case and 18 GeV on the transverse momentum (p_T) in the muon case. After applying data quality requirements, the total integrated luminosity of the data set used in this analysis is 1.02 ± 0.04 fb$^{-1}$ [30,31].

Because of the presence of multiple collisions in a single bunch-crossing, about six on average, each event can have multiple reconstructed primary vertices. The vertex having the largest sum of squared transverse momenta of associated tracks is selected as the primary vertex of the hard collision, and it is used to compute any reconstructed quantity. To reduce the contamination due to cosmic rays, only events where the primary vertex of the hard collision has at least three associated tracks with $p_T > 0.5$ GeV are considered.

Electrons are reconstructed from a combination of an ID track and a calorimeter energy cluster, with $E_T > 25$ GeV and $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$, avoiding the transition region between the barrel and the end-cap electromagnetic calorimeters. Candidate electrons must satisfy the medium [32] quality definition, which is based on the calorimeter shower shape, track quality, and track matching with the calorimeter cluster. To make sure candidate electrons originate from the primary interaction vertex, they are also required to have a longitudinal impact parameter ($|z_0|$) smaller than 10 mm and a transverse impact parameter (d_0) with significance $(|d_0|/\sigma_{d_0})$ smaller than 10, both with respect to the selected primary vertex.

In addition, the electron is required to be isolated in the calorimeter such that the sum of the E_T of the clusters around the electron within a cone of $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.3$ is less than 4 GeV. Corrections are applied to account for the energy deposition inside the isolation cone due to electron energy leakage and additional pileup collisions.

Muon candidates must be reconstructed in both the ID and the MS, and the combined track is required to have $p_T > 25$ GeV and $|\eta| < 2.4$. Good quality is ensured by
requiring a minimum number of silicon strip and pixel hits associated to the track. To suppress the contribution of muons coming from hadronic jets, the p_T sum of other tracks with $p_T > 1$ GeV, within a cone of $\Delta R = 0.2$ around the muon track, is required to be less than 10% of the muon p_T. The muon candidate is required to be compatible with the selected primary vertex, with $|z_0| < 10$ mm and $|d_0|/\sigma_{d_0} < 10$.

The missing transverse momentum E_T^{miss} is reconstructed, in the range $|\eta| < 4.5$, as the negative vector sum of calorimeter cell transverse energies, calibrated to the electromagnetic scale [33], to which the transverse momenta of identified muons are added.

The $WZ \to \ell \nu \ell' \ell'$ candidate events are selected by requiring two oppositely charged same-flavor leptons with an invariant mass within 20 GeV of the Z boson mass, plus a third lepton and $E_T^{\text{miss}} > 25$ GeV. The transverse mass of the reconstructed W boson, i.e. $m_T^W = \sqrt{2 p_T^\ell E_T^{\text{miss}} (1 - \cos \Delta \phi)}$, where p_T^ℓ is the transverse momentum of the charged lepton and $\Delta \phi$ is the opening angle between the lepton and the E_T^{miss} direction in the plane transverse to the beam, is required to be greater than 15 GeV to suppress multijet background. Selected events are also required to have exactly three charged leptons to suppress the $ZZ \to \ell \ell' \ell'$ background. These selection criteria define the signal region. Four decay channels $e\ell e\ell$, $\mu \ell \mu \ell$, $e\mu \ell e$, and $\mu \mu \ell \mu$ are analyzed separately and then combined. The measurement of the inclusive $pp \to WZ \to \ell \nu \ell' \ell'$ cross section has previously been reported by ATLAS [34]. This analysis goes further by using the reconstructed event properties to probe for new phenomena.

After the final selection, the transverse mass of the WZ candidates (m_T^{WZ}) is examined for any resonant structure. Here m_T^{WZ} is calculated as $m_T^{WZ} = \sqrt{(E_T^W + E_T^W)^2 - (p_T^\ell + p_T^\ell)^2 - (p_T^\nu + p_T^\nu)^2}$, where E_T^W and E_T^ν are the scalar sums of the transverse energies of the decay products of the Z and W candidates, respectively. The E_T^{miss} vector is used as the estimator of the transverse momentum of the neutrino arising from the W boson decay.

V. BACKGROUND ESTIMATION

The dominant background for the WZ resonance search comes from SM WZ production. Its contribution is estimated using MC simulation. Simulated events are required to pass the event selection criteria, and the final yield is normalized to the integrated luminosity. Lepton reconstruction and identification efficiencies, energy scale, and resolution in the MC simulation are corrected to the corresponding values measured in the data in order to improve the overall modeling. Other diboson processes such as ZZ and $Z\gamma$ are also estimated using MC simulation.

A data-driven approach is used to estimate the contribution of the $\ell \ell' +$ jets background in the signal region. It is estimated by selecting a data sample containing two leptons that pass all the quality criteria requested in the lepton selection, and a leptonlike jet, which is defined as a reconstructed object that satisfies all quality criteria but fails the electron medium quality or the muon isolation requirement. The overall contribution is obtained by scaling each event by a correction factor f. The factor f is the ratio of the probability for a jet to satisfy the full lepton identification criteria to the probability to satisfy the leptonlike jet criteria. The factor f is measured both for muons and electrons in a dijet-enriched data sample as a function of the lepton p_T, and corrected for the small contribution of leptons coming from W and Z bosons decays using MC simulation.

Data and SM predictions are compared in two dedicated signal-free control regions, selected by requiring the same
VI. SYSTEMATIC UNCERTAINTIES

Different sources of systematic uncertainties have been considered. The first source is related to the lepton trigger, reconstruction, and identification efficiencies. These efficiencies are evaluated with tag-and-probe methods using $Z \rightarrow \ell\ell$, $W \rightarrow \ell\nu$, and $f'/\psi \rightarrow \ell\ell$ events [35]. Scale factors are used to correct for differences between data and MC simulation. The lepton trigger efficiency scale factors are compatible with unity, and a systematic uncertainty of 1% is considered. The lepton reconstruction and identification scale factors are close to 1 and have a systematic uncertainty of 1.2% for the electrons and 0.5% for muons [35]. The lepton isolation efficiency uncertainties are estimated to be 2% for electrons and 1% for muons.

The second source of uncertainty is related to the lepton energy, momentum, and E_{T}^{miss} reconstruction. Additional smearing is applied to the muon p_T and to the electron cluster energy in the simulation, so that they replicate the $Z \rightarrow \ell\ell$ invariant mass distributions in data. The uncertainty due to the lepton resolution smearing is of the order of 0.1% [35]. The uncertainty on the E_{T}^{miss} reconstruction receives contributions from different sources: energy deposits due to additional pp collisions which are in time and out of time with respect to the bunch-crossing; energy deposits around clusters associated to reconstructed jets and electrons; energy deposits not associated to any reconstructed objects; and muon momentum uncertainties. The total systematic uncertainty on the dominant SM WZ background estimation due to the E_{T}^{miss} uncertainties lies between 2% and 3%, depending on the channel considered.

The third source of uncertainty is due to the limited knowledge of the theoretical cross sections of SM processes, used both to evaluate WZ, ZZ, and Zγ background contributions, and for subtracting contributions of W and Z leptonic decays from the dijet sample used for the measurement of the correction factor f. An uncertainty of 7% is assigned for the WZ process, 5% for the ZZ process, and 8% for the Zγ process [27], to which the MC statistical uncertainty is added in quadrature.

The fourth source of uncertainty is related to the uncertainty on the $\ell\ell +$ jets background estimation. The systematic uncertainty comes mainly from the uncertainty on f due to differences in the kinematics and flavor composition of the QCD dijet events with respect to the $\ell\ell +$ jets processes, and differences in event selection criteria for QCD dijet events and WZ candidates. The factor f is around 0.15 for muons and 0.07 for electrons over the full range of p_T and η, with a relative uncertainty between 5% and 20%. The estimated number of events from the $\ell\ell +$ jets background in the signal region using the data-driven method is $6.4 \pm 1.0{(stat)}^{+1.5}_{-1.2}$(syst) events.

A MC-based cross-check gives a consistent estimation of 4.3 ± 1.1(syst) events.

Finally, the luminosity uncertainty is 3.7% [30,31].

VII. RESULTS AND INTERPRETATION

The numbers of events expected and observed after the final selection are reported in Table I. A total of 48 WZ $\rightarrow \ell\nu\ell\ell$ candidate events are observed in data, to be compared to the SM prediction of 45.0 $\pm 1.0{(stat)}^{+4.6}_{-5.2}$(syst) events. The expected numbers of events for a W' with a mass of 750 GeV and a p_T with a mass of 500 GeV are also reported.

The overall acceptance times trigger, reconstruction, and selection efficiencies $(A \times \epsilon)$ for EGM $W' \rightarrow \ell\nu\ell\ell'$ and the LSTC $\rho_T \rightarrow WZ \rightarrow \ell\nu\ell\ell'$ events as implemented in PYTHIA is shown in Table II for various WZ resonance masses. The value of $A \times \epsilon$ is 6.2% for $m_{W'} = 200$ GeV and increases to 20.5% for $m_{W'} = 1$ TeV. The corresponding $A \times \epsilon$ for the LSTC ρ_T is found to be slightly lower than that of the EGM W' due to the fact that the PYTHIA implementation of the $\rho_T \rightarrow WZ$ process does not account for the polarizations of vector bosons in their decay. A massive W' boson is expected to decay predominantly to longitudinally polarized W and Z bosons, as is the ρ_T technimeson. While the production and decay with spin correlations is fully implemented in PYTHIA for W', spin correlation information is not considered in the decay of the W and Z bosons in the ρ_T case; hence, they each decay isotropically in their respective rest frames. This leads to a softer lepton p_T spectrum and consequently lower $A \times \epsilon$. The interpretation of the data in terms of ρ_T production is performed in two different manners: the first uses the PYTHIA implementation of ρ_T production and decay, and the second assumes that $A \times \epsilon$ for the ρ_T is equal to that of the W'.
The transverse mass distribution of the WZ candidates is presented in Fig. 2 for data and background expectations together with possible contributions from W and p_T using PYTHIA. The $\ell\ell' +$ jets and Zγ background contributions to the m_{T}^{WZ} distribution are extrapolated using exponential functions to extend over the full m_{T}^{WZ} signal region. The transverse mass distribution is used to build a log-likelihood ratio test statistic [40], which allows the compatibility of the data with the presence of a signal in addition to the background to be assessed, in a modified frequentist approach [41]. Confidence levels for the signal plus background hypothesis, CL$_{s+b}$, and background-only hypothesis, CL$_{b}$, are computed by integrating the log-likelihood ratio distributions obtained from simulated pseudoexperiments using Poisson statistics. The confidence level for the signal hypothesis CL$_{s}$, defined as the ratio CL$_{s+b}$/CL$_{b}$, is used to determine the exclusion limits.

The probability that the background fluctuations give rise to an excess at least as large as that observed in data has been computed as p-value $= 1 - CL_{b}$, and is reported in Table III for the signal hypothesis of a W' particle with mass from 200 GeV to 1 TeV. Since no statistically significant excess is observed for any value of the W' mass, limits are derived on the production cross section times branching ratio $[\sigma \times BR(W' \rightarrow WZ)]$ for a W' decaying to WZ, already corrected for the $\lambda \times \varepsilon$ of the leptonic decay WZ $\rightarrow \ell\ell'\ell'\ell'$. The 95% CL limit on $\sigma \times BR(W' \rightarrow WZ)$ is defined as the value giving CL$_{s}$ = 0.05. The upper limit on $\sigma \times BR(W' \rightarrow WZ)$ for $pp \rightarrow W' \rightarrow WZ$ as a function of the W' mass is shown in Fig. 3(a), and the values are reported in Table III. Simulation of W' bosons is performed for $m_{W'}$ between 200 GeV and 1 TeV with a 150 to 250 GeV mass spacing, and an interpolation procedure provides m_{T}^{WZ} values.

Table I. The estimated background yields, the observed number of data events, and the predicted signal yield predicted by PYTHIA for a W' boson with a mass of 750 GeV and a p_T technimeson with a mass of 500 GeV are shown after applying all signal selection cuts, for each of the four channels considered and for their combination. For the p_T production, the relation $m_{W'} = 1.1 \times m_{p_T}$ is used. Where one error is quoted, it includes all sources of systematic uncertainty. Where two errors are given, the first comes from the limited statistics of the data and the second includes systematic uncertainties.

<table>
<thead>
<tr>
<th>Channel</th>
<th>ee</th>
<th>$\mu e e$</th>
<th>$e\nu\mu$</th>
<th>$\mu\nu\mu$</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>WZ</td>
<td>6.2 ± 0.7</td>
<td>7.6 ± 0.7</td>
<td>9.2 ± 0.8</td>
<td>11.6 ± 1.0</td>
<td>34.6 ± 3.1</td>
</tr>
<tr>
<td>ZZ</td>
<td>0.25$^{+0.07}_{-0.11}$</td>
<td>0.48$^{+0.14}_{-0.11}$</td>
<td>0.37$^{+0.15}_{-0.11}$</td>
<td>0.63$^{+0.16}_{-0.11}$</td>
<td>1.75$^{+0.21}_{-0.13}$</td>
</tr>
<tr>
<td>Zγ</td>
<td>1.3 ± 0.7</td>
<td>-</td>
<td>1.0 ± 0.9</td>
<td>-</td>
<td>2.3 ± 1.1</td>
</tr>
<tr>
<td>$\ell\ell' +$ jets</td>
<td>1.1 ± 0.4 ± 0.7</td>
<td>1.3 ± 0.5$^{+0.6}_{-0.8}$</td>
<td>3.0 ± 0.7$^{+1.6}_{-1.9}$</td>
<td>1.0 ± 0.4$^{+0.5}_{-0.6}$</td>
<td>2.3 ± 1.1</td>
</tr>
<tr>
<td>Overall backgrounds</td>
<td>8.9 ± 0.4 ± 1.2</td>
<td>9.4 ± 0.5$^{+0.6}_{-0.8}$</td>
<td>13.6 ± 0.7$^{+2.0}_{-2.3}$</td>
<td>13.6 ± 0.7$^{+2.0}_{-2.3}$</td>
<td>6.4 ± 1.0$^{+4.6}_{-4.0}$</td>
</tr>
</tbody>
</table>

Data: W$\rightarrow WZ$ ($m_{W'} = 750$ GeV) | 0.74 ± 0.07 | 0.82 ± 0.06 | 0.97 ± 0.06 | 1.10 ± 0.08 | 3.64 ± 0.21 |

ρ_T → WZ ($m_{p_T} = 500$ GeV) | 0.68 ± 0.08 | 0.79 ± 0.08 | 0.97 ± 0.09 | 1.11 ± 0.10 | 3.55 ± 0.24 |

Table II. Signal $A \times \varepsilon$ for W$\rightarrow WZ \rightarrow \ell\ell'\ell'\ell'$ and p_T → WZ → $\ell\nu\ell'\ell'$ samples as implemented in PYTHIA, with statistical uncertainties. Missing values for p_T correspond to signal samples not considered.

<table>
<thead>
<tr>
<th>Mass (GeV)</th>
<th>$A \times \varepsilon$ for W' (%)</th>
<th>$A \times \varepsilon$ for p_T (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>6.2 ± 0.2</td>
<td>5.7 ± 0.2</td>
</tr>
<tr>
<td>250</td>
<td>8.2 ± 0.4</td>
<td>6.1 ± 0.2</td>
</tr>
<tr>
<td>300</td>
<td>10.0 ± 0.5</td>
<td>7.6 ± 0.3</td>
</tr>
<tr>
<td>350</td>
<td>11.6 ± 0.3</td>
<td>9.4 ± 0.3</td>
</tr>
<tr>
<td>400</td>
<td>13.2 ± 0.5</td>
<td>10.8 ± 0.3</td>
</tr>
<tr>
<td>450</td>
<td>14.5 ± 0.6</td>
<td>11.8 ± 0.3</td>
</tr>
<tr>
<td>500</td>
<td>15.9 ± 0.3</td>
<td>12.6 ± 0.3</td>
</tr>
<tr>
<td>550</td>
<td>16.9 ± 0.6</td>
<td>...</td>
</tr>
<tr>
<td>600</td>
<td>17.9 ± 0.6</td>
<td>13.8 ± 0.3</td>
</tr>
<tr>
<td>650</td>
<td>18.7 ± 0.6</td>
<td>...</td>
</tr>
<tr>
<td>700</td>
<td>19.4 ± 0.7</td>
<td>15.6 ± 0.4</td>
</tr>
<tr>
<td>750</td>
<td>19.9 ± 0.3</td>
<td>...</td>
</tr>
<tr>
<td>800</td>
<td>20.3 ± 0.7</td>
<td>16.1 ± 0.4</td>
</tr>
<tr>
<td>850</td>
<td>20.6 ± 0.7</td>
<td>...</td>
</tr>
<tr>
<td>900</td>
<td>20.6 ± 0.7</td>
<td>...</td>
</tr>
<tr>
<td>950</td>
<td>20.6 ± 0.7</td>
<td>...</td>
</tr>
<tr>
<td>1000</td>
<td>20.5 ± 0.3</td>
<td>...</td>
</tr>
</tbody>
</table>
TABLE III. Expected and observed limits on the $\sigma \times \text{BR}(W' \rightarrow WZ)$ (pb) for W' production decaying to WZ, as a function of the W' mass. The p values are also reported.

<table>
<thead>
<tr>
<th>W' mass (GeV)</th>
<th>Expected</th>
<th>Observed</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>7.31</td>
<td>7.62</td>
<td>0.43</td>
</tr>
<tr>
<td>250</td>
<td>5.26</td>
<td>6.55</td>
<td>0.34</td>
</tr>
<tr>
<td>300</td>
<td>2.74</td>
<td>3.38</td>
<td>0.28</td>
</tr>
<tr>
<td>350</td>
<td>1.72</td>
<td>2.06</td>
<td>0.25</td>
</tr>
<tr>
<td>400</td>
<td>1.18</td>
<td>1.48</td>
<td>0.25</td>
</tr>
<tr>
<td>450</td>
<td>0.92</td>
<td>1.07</td>
<td>0.23</td>
</tr>
<tr>
<td>500</td>
<td>0.76</td>
<td>0.93</td>
<td>0.21</td>
</tr>
<tr>
<td>550</td>
<td>0.61</td>
<td>0.79</td>
<td>0.19</td>
</tr>
<tr>
<td>600</td>
<td>0.54</td>
<td>0.63</td>
<td>0.26</td>
</tr>
<tr>
<td>650</td>
<td>0.51</td>
<td>0.56</td>
<td>0.33</td>
</tr>
<tr>
<td>700</td>
<td>0.48</td>
<td>0.53</td>
<td>0.34</td>
</tr>
<tr>
<td>750</td>
<td>0.49</td>
<td>0.52</td>
<td>0.34</td>
</tr>
<tr>
<td>800</td>
<td>0.45</td>
<td>0.50</td>
<td>0.37</td>
</tr>
<tr>
<td>850</td>
<td>0.46</td>
<td>0.47</td>
<td>0.38</td>
</tr>
<tr>
<td>900</td>
<td>0.50</td>
<td>0.50</td>
<td>0.39</td>
</tr>
<tr>
<td>950</td>
<td>0.44</td>
<td>0.44</td>
<td>0.40</td>
</tr>
<tr>
<td>1000</td>
<td>0.48</td>
<td>0.46</td>
<td>0.35</td>
</tr>
</tbody>
</table>

shape templates with a 50 GeV spacing. The m_{T}^{WZ} shapes from the fully simulated signal samples have been fitted with a Crystal Ball function using ROOFIT [42]. The obtained Crystal Ball parameters are fitted as a function of the W' mass, and the functional value for these parameters is then used to build the m_{T}^{WZ} templates for the intermediate W' mass points. The observed (expected) exclusion limit on the W' mass is found to be 760 (776) GeV.

The observed (expected) limits on $\sigma \times \text{BR}(\rho_{T} \rightarrow WZ)$ for the ρ_{T} technimeson are presented in Fig. 3(b) assuming $m_{a_{T}} = 1.1m_{p_{T}}$ and unpolarized W and Z decays. This corresponds to an observed (expected) limit on the ρ_{T} mass of 467 (506) GeV. A limit on the p_{T} mass of 456 (482) GeV is obtained if $m_{a_{T}} \gg m_{p_{T}}$. Assuming $A \times \epsilon$ for the ρ_{T} signal to be equal to that of the W' signal, which is estimated by accounting for predominantly longitudinal W and Z polarization, the observed (expected) limit on the p_{T} mass is 483 (553) GeV for $m_{a_{T}} = 1.1m_{p_{T}}$ and 469 (507) GeV for $m_{a_{T}} \gg m_{p_{T}}$. Table IV summarizes these limits, which all assume the relation $m_{a_{T}} = m_{p_{T}} + m_{W}$. Figure 4 shows the 95% CL expected and observed excluded regions in the $(m_{p_{T}}, m_{a_{T}})$ plane for $m_{a_{T}} = 1.1m_{p_{T}}$ and $m_{a_{T}} \gg m_{p_{T}}$, respectively. Results are shown under the two assumptions on $A \times \epsilon$ for the p_{T} signal.

VIII. CONCLUSION

A search for resonant production of a pair of WZ bosons with three charged leptons in the final state has been performed using 1.02 fb$^{-1}$ of data collected with the ATLAS detector in pp collisions at $\sqrt{s} = 7$ TeV at the Large Hadron Collider. No significant excess of events is observed, and upper limits are derived on the production cross section times branching ratio of new physics using the transverse mass of the WZ system. EGM W' bosons with masses up to 760 GeV are excluded at 95% CL. Using

![FIG. 3 (color online). The observed and expected limits on $\sigma \times \text{BR}(W' \rightarrow WZ)$ for $W' \rightarrow WZ$ (a) and $pp \rightarrow \rho_{T}, a_{T} \rightarrow WZ$ (b). The theoretical prediction is shown with a systematic uncertainty of 5% due to the choice of PDF and is estimated by comparing the differences between the predictions of the nominal PDF set MRST2007 LO and the ones given by MSTW2008 LO PDF using the LHAPDF framework. The green and yellow bands represent, respectively, the 1σ and 2σ uncertainties on the expected limit.](image-url)

TABLE IV. Observed (expected) limit on the ρ_{T} mass with two different assumptions about $A \times \epsilon$ for p_{T} and two mass hierarchy assumptions between a_{T} and p_{T}.

<table>
<thead>
<tr>
<th>ρ_{T} mass (GeV)</th>
<th>$m_{a_{T}} = 1.1m_{p_{T}}$</th>
<th>$m_{a_{T}} \gg m_{p_{T}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$A \times \epsilon$ from W' sample</td>
<td>483 (553)</td>
</tr>
<tr>
<td></td>
<td>$A \times \epsilon$ from p_{T} sample</td>
<td>467 (506)</td>
</tr>
</tbody>
</table>
The mass hierarchy assumption $m_{\rho_T} = m_{\rho_T} + m_W$, LSTC ρ_T technimesons with masses from 200 GeV up to 467 GeV and 456 GeV are excluded at 95% CL for $m_{\pi_T} = 1.1 m_{\rho_T}$ and $m_{\pi_T} \gg m_{\rho_T}$, respectively, using the PYTHIA implementation of the mass hierarchy assumption.

FIG. 4 (color online). The 95% CL expected and observed excluded mass regions in the (m_{π_T}, m_{ρ_T}) plane for $m_{\pi_T} = 1.1 m_{\rho_T}$ (a) and $m_{\pi_T} \gg m_{\rho_T}$ (b), above the curves. Two different assumptions about the ρ_T signal $A \times \epsilon$ are used: assuming a ρ_T signal where $A \times \epsilon$ is equal to that of the W signal, and assuming a ρ_T signal where $A \times \epsilon$ is obtained through its implementation in PYTHIA.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DSNRC and Lundbeck Foundation, Denmark; ARTEMIS and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSY (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), and in the Tier-2 facilities worldwide.

REFERENCES

G. AAD et al.

[15] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, \phi) are used in the transverse plane, \phi being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle \eta as \eta = -\ln(\tan(\theta/2)). The transverse energy \text{ET} is defined as E \sin \theta, where E is the energy associated to the calorimeter cell or energy cluster. Similarly, pT is the momentum component transverse to the beam line.

SEARCH FOR RESONANT WZ PRODUCTION IN THE ... PHYSICAL REVIEW D 85, 112012 (2012)

112012-15
SEARCH FOR RESONANT WZ PRODUCTION IN THE...

PHYSICAL REVIEW D 85, 112012 (2012)

(TATLAS Collaboration)

1University at Albany, Albany, New York, USA
2Department of Physics, University of Alberta, Edmonton, Alberta, Canada
3aDepartment of Physics, Ankara University, Ankara, Turkey
3bDepartment of Physics, Dumlupinar University, Kula, Turkey
3cDepartment of Physics, Gazi University, Ankara, Turkey
3dDivision of Physics, TOBB University of Economics and Technology, Ankara, Turkey
3eTurkish Atomic Energy Authority, Ankara, Turkey
4LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
6Department of Physics, University of Arizona, Tucson, Arizona, USA
7Department of Physics, The University of Texas at Arlington, Arlington Texas, USA
8Physics Department, University of Athens, Athens, Greece
9Physics Department, National Technical University of Athens, Zografou, Greece
10Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
10aInstitut de Física d’Altes Energies, Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
11Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
11aInstitut de Física d’Altes Energies, Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12aInstitute of Physics, University of Belgrade, Belgrade, Serbia
12bVinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
12cDepartment for Physics and Technology, University of Bergen, Bergen, Norway
13Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
14Department of Physics, Humboldt University, Berlin, Germany
15Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
16School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
17Department of Physics, Bogazici University, Istanbul, Turkey
18aDepartment of Physics, Istanbul University, Istanbul, Turkey
18bDivision of Physics, Dogus University, Istanbul, Turkey
18cDepartment of Physics Engineering, Gaziantep University, Gaziantep, Turkey
18dDepartment of Physics, Istanbul Technical University, Istanbul, Turkey
19aINFN Sezione di Bologna, Italy
19bDipartimento di Fisica, Università di Bologna, Bologna, Italy
20Physikalisches Institut, University of Bonn, Bonn, Germany
21Department of Physics, Boston University, Boston, Massachusetts, USA
22Department of Physics, Brandeis University, Waltham, Massachusetts, USA
23aUniversidade Federal do Rio De Janeiro COPPE/EE/IF, Rio De Janeiro, Brazil
23bFederal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
23cFederal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
23dInstituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
24Physics Department, Brookhaven National Laboratory, Upton, New York, USA
25aNational Institute of Physics and Nuclear Engineering, Bucharest, Romania
25bUniversity Politehnica Bucharest, Bucharest, Romania
25cWest University in Timisoara, Timisoara, Romania
26Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28Department of Physics, Carleton University, Ottawa, Ontario, Canada
29CERN, Geneva, Switzerland
30Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
31aDepartamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
31bDepartamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32aInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
32bDepartment of Modern Physics, University of Science and Technology of China, Anhui, China
32cDepartment of Physics, Nanjing University, Jiangsu, China
SEARCH FOR RESONANT WZ PRODUCTION IN THE …

PHYSICAL REVIEW D 85, 112012 (2012)

h Also at Fermilab, Batavia, IL, USA.
 Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
 Also at Universidad di Napoli Parthenope, Napoli, Italy.
 Also at Institute of Particle Physics (IPP), Canada.
 Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
 Also at Louisiana Tech University, Ruston, LA, USA.
 Also at Department of Physics and Astronomy, University College London, London, United Kingdom.
 Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada.
 Also at Department of Physics, University of Cape Town, Cape Town, South Africa.
 Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
 Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
 Also at Manhattan College, NY, NY, USA.
 Also at School of Physics, Shandong University, Shandong, China.
 Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
 Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
 Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
 Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.
 Also at Section de Physique, Université de Genève, Geneva, Switzerland.
 Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
 Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA.
 Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
 Also at California Institute of Technology, Pasadena, CA, USA.
 Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France, USA.
 Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
 Also at Department of Physics, Oxford University, Oxford, United Kingdom.
 Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
 Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA.
 Also at Institute of Physics, Jagiellonian University, Krakow, Poland.