Information processing in the outer retina of fish
Endeman, D.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 5

Chloride currents in cones modify feedback from horizontal cells to cones in goldfish retina

Duco Endeman*, Iris Fahrenfort*, Trijntje Sjoerdsma, Marvin Steijaert, Huub ten Eikelder, and Maarten Kamermans

* These authors contributed equally to this study

Abstract

In neuronal systems, excitation and inhibition must be well balanced to ensure reliable information transfer. The cone/horizontal cell interaction in the retina is an example of this. Because natural scenes encompass an enormous intensity range both in temporal and spatial domains, the balance between excitation and inhibition in the outer retina needs to be adaptable. How this is achieved is unknown.

Using electrophysiological techniques in the isolated retina of the goldfish it was found that opening Ca\(^{2+}\)-dependent Cl\(^{-}\)-channels in recorded cones reduced the size of feedback responses measured in both cones and horizontal cells. Furthermore, we show that cones express Cl\(^{-}\)-channels that are gated by GABA released from horizontal cells. Similar to activation of \(I_{\text{Cl}(\text{Ca})}\), opening of these GABA-gated Cl\(^{-}\)-channels reduced the size of light-induced feedback responses both in cones and horizontal cells. Conversely application of picrotoxin, a blocker of GABA\(_A\) and GABA\(_C\) receptors, had the opposite effect. In addition, reducing GABA release from horizontal cells by blocking GABA-transporters also led to an increase in the size of feedback. Since the independent manipulation of Ca\(^{2+}\)-dependent Cl\(^{-}\)-currents in individual cones yielded results comparable to bath-applied GABA, it was concluded that activation of either Cl\(^{-}\)-current by itself is sufficient to reduce the size of horizontal cell feedback. However, additional effects of GABA on outer retinal processing cannot be excluded.

These results can be accounted for by an ephaptic feedback model in which a cone Cl\(^{-}\)-current shunts the current flow in the synaptic cleft.
Cone chloride currents and horizontal cell feedback

The Ca^{2+}-dependent Cl^{-}-current might be essential to set the initial balance between the feedforward and the feedback signals active in the cone horizontal cell synapse. It prevents that strong feedback from horizontal cells to cones floods the cone with Ca^{2+}. Modulation of the feedback strength by GABA might play a role during light/dark adaptation, adjusting the amount of negative feedback to the signal to noise ratio of the cone output.

Introduction

Reliable information transfer in neuronal systems depends on well balanced excitatory and inhibitory inputs. Cone photoreceptors are excited by light and receive inhibitory feedback from horizontal cells (HCs). For these neurons, the balance between excitation and inhibition seems particular important since they respond with graded potential changes and their synaptic output can both increase and decrease depending on the stimulus configuration. If inhibition would be too large or too small, modulation of the cone membrane potential would not be effectively transformed into changes in glutamate release (Fahrenfort et al., 1999). How the strength of the feedback signal from HCs to cones can be tuned to maintain the balance between excitation and inhibition is unknown.

Feedback from HCs modulates the cone Ca^{2+}-current (I_{Ca}), which regulates cone glutamate release (Verweij et al., 1996). Although, GABA has been suggested as feedback neurotransmitter (Wu & Dowling, 1980; Tachibana & Kaneko, 1984; Tatsukawa et al., 2005), surround-induced feedback responses in cones do not seem to be mediated by GABA (Verweij et al., 1996, 2003; Kamermans et al., 2001; Crook et al., 2011). The negative feedback mechanism from HCs to cones is, at least in fish, mediated by connexin hemichannels most likely via an ephaptic interaction (Kamermans et al., 2001; Kamermans & Fahrenfort, 2004; Fahrenfort et al., 2009; Klaassen et al., 2011). Feedback is strongly pH dependent (Hirasawa & Kaneko, 2003; Vessey et al., 2005; Fahrenfort et al., 2009). The pH dependence might be due to the strong pH sensitivity of connexin hemichannels (Malchow et al., 1993; Trexler et al., 1999; González-Nieto et al., 2008; Huckstepp et al., 2010), or it might indicate that protons are mediating feedback (Hirasawa & Kaneko, 2003; Vessey et al., 2005; Fahrenfort et al., 2009). This leaves the role of GABA-gated Cl^{-}-currents ($I_{\text{Cl(GABA)}}$) in cones unexplained (Tachibana & Kaneko, 1984) and thus a possible candidate for the modulation of feedback.
Apart from a $I_{\text{Cl(GABA)}}$ (Tachibana & Kaneko, 1984; Picaud et al., 1998; Klooster et al., 2004), cones have a large Ca$^{2+}$-dependent Cl$^-$-current ($I_{\text{Cl(Ca)}}$) (Bader et al., 1982; Corey et al., 1984; Barnes & Bui, 1991; Barnes & Deschênes, 1992; Kraaij et al., 2000a), which is located in the synaptic terminal of photoreceptors (Stöhr et al., 2009; Mercer et al., 2011). The activation of $I_{\text{Ca(Cl)}}$ depends on the intracellular Ca$^{2+}$-concentration ([Ca$^{2+}]_i$), which is mainly determined by the influx of Ca$^{2+}$ through voltage-gated Ca$^{2+}$-channels (Barnes & Bui, 1991; Kraaij et al., 2000a; Lalonde et al., 2008), uptake of Ca$^{2+}$ in Ca$^{2+}$-stores and the extrusion of Ca$^{2+}$ via Ca$^{2+}$-pumps (Krizaj et al., 2004). The activation and inactivation time constants of this current range from a few 100 ms to seconds (Kraaij et al., 2000a) due to the slow kinetics of the Ca$^{2+}$-dependent Cl$^-$-channel (Scudieri et al., 2012) and the slow extrusion of Ca$^{2+}$ by Ca$^{2+}$-pumps (Krizaj et al., 2004). It has been suggested that this current plays a role in controlling the intracellular chloride concentration ([Cl$^-$]i), which might modulate the amplitude of I_{Ca} in photoreceptors (Rabl & Thoreson, 2002; Thoreson et al., 2003). Therefore, this current is a potential candidate for the modulation of the communication between cones and horizontal cells.

In this paper, the role of these two cone Cl$^-$-currents (I_{Cl}) on the strength of feedback from HCs to cones was studied in the goldfish retina. Activation of either I_{Cl} led to a reduction of the amplitude of the feedback signal from HCs to cones. Although, both currents are carried by Cl$^-$, they function on different timescales. The GABAergic system functions on a time scale of seconds whereas the $I_{\text{Cl(Ca)}}$ functions on a time scale of hundreds of milliseconds. Simulations with an extended version of an ephaptic feedback model, originally formulated by Fahrenfort et al. (2009), showed that a cone I_{Cl} can inhibit feedback from HCs to cones by interfering with the current flow in the synaptic terminal. Together, these data suggest that the GABAergic pathway from HCs to cones modulates the strength of feedback globally on a slow time scale, possibly during light/dark adaptation. By contrast, $I_{\text{Cl(Ca)}}$ modulates feedback strength locally on a much faster time scale depending on cone polarization.

Materials and Methods

Experimental Animals

Goldfish, *Carassius auratus* (12 - 16 cm standard body length), were kept at 16 °C under a 12-hour dark, 12-hour light cycle. Experiments were
Cone chloride currents and horizontal cell feedback

performed with fish that were between 6 and 9 hours into their light phase. All recordings from cones and HCs were made in flat mounted isolated retinal preparations.

All experimental procedures adhered to the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research, and conformed to the guidelines for the Care and Use of Laboratory Animals of The Netherlands Institute for Neuroscience acting in accordance with the European Communities Council Directive of 24 November 1986 (86/609/EEC).

Experimental Procedures

Isolated retina preparation for cone and HC recordings: Fish were dark-adapted for at least 3 minutes and all further preparation steps were performed under dim deep red light illumination. After decapitation, an eye was enucleated and hemisected and most of the vitreous was removed with filter paper. The retina was isolated, placed receptor side up in a superfusion chamber (volume 0.75 ml) mounted on a Nikon Eclipse 600FN microscope (Nikon, Tokyo, Japan) or an Olympus IMT2 inverted microscope (Olympus, Tokyo, Japan), and superfused continuously (1.5 ml/min) with a Ringer's solution of which the pH was continuously measured. The Ringer’s solution contained (in mM): 102.0 NaCl, 2.6 KCl, 1.0 MgCl₂, 1.0 CaCl₂, 28.0 NaHCO₃, 5.0 glucose, and was continuously gassed with approximately 2.5% CO₂ and 97.5% O₂. Minor adjustments to the amount of CO₂ were made such that the pH was 7.8. All chemicals were obtained from Sigma-Aldrich (St. Louis, MO, U.S.A.), except for SKF89976A (a kind gift from Smith Kline Beecham Pharmaceuticals, London, United Kingdom).

Voltage clamp measurements of cone responses

Optical stimulator: Two optical stimulators were used for the cone measurements. The first consisted of a 450 W Xenon-lamp which supplied two beams of light that were directed to the preparation after passing through Uniblitz VS14 shutters (Vincent associates, Rochester, NY, U.S.A.), neutral density filters (Schott, Mainz, Germany), and a series of lenses and apertures. The second consisted of two homemade LED stimulators based on a three wavelength high intensity LED (Atlas, Lamina Ceramics Inc., Westhampton, NJ, U.S.A.). The peak wavelengths of the LEDs were 635, 520, and 460 nm, respectively, with a bandwidth smaller
than 25 nm. An optical feedback loop ensured linearity. The output of the LEDs was coupled to the microscope via light guides.

Feedback-induced responses to 500 ms, 3000 µm spot stimulation were measured in cones at different potentials while the cone was continuously saturated with a 20 µm spot. The 20 µm spots were projected through the 60x water immersion objective (N.A. = 1.00) of the microscope, and the 3000 µm spots were projected through the microscope condenser (N.A. = 1.25). For experiments with cones, only white light stimuli were used. Light intensities are expressed in log units of attenuation relative to a luminance of $4 \times 10^3 \text{ cd/m}^2$.

Electrodes and recording equipment: Pipettes were pulled from borosilicate glass (GC150TF-10 Harvard Apparatus Ltd., Kent, United Kingdom) with a Sutter P-87 micropipette puller (Sutter Instruments Company, Novato, CA, U.S.A.); the impedances ranged from 3 to 6 MΩ when filled with pipette medium and measured in Ringer’s solution. The standard patch pipette medium contained (in mM): 10.0 KCl, 96.0 D-Gluconic-K, 1.0 MgCl₂, 0.1 CaCl₂, 5.0 EGTA, 5.0 HEPES, 5.0 ATP-K, 1.0 GTP-Na₃, 0.2 3': 5'-cGMP-Na, 20 phosphocreatine-Na₂, 50 units/ml creatine phosphokinase. In experiments with the standard patch pipette medium, the calculated E_{Cl} was -55 mV. Where appropriate, E_{Cl} was shifted by interchanging concentrations of KCl and D-Gluconic-K. The pH of the pipette medium was adjusted to 7.25 with KOH. The electrodes were mounted on a MP-85 Huxley/Wall-type micromanipulator (Sutter Instruments Company, Novato, CA, U.S.A.) and connected to a Dagan 3900A Integrating Patch Clamp (Dagan Corporation, Minneapolis, MN, U.S.A.). The liquid junction potential was measured with a patch pipette filled with the pipette medium, and positioned in a bath filled with pipette medium. The reference electrode was filled with 3M KCl. After the potential was adjusted to zero, the bath solution was replaced with Ringer’s solution. The resulting potential change was considered the junction potential, and all data were corrected accordingly. The preparation was illuminated with infrared light ($\lambda > 850$ nm; Wratten filter 87c, Kodak, Rochester, NY, U.S.A.), magnified with a Nikon 60x water immersion objective (N.A. = 1.00), differential interference contrast, and viewed using a video camera (Philips, Eindhoven, The Netherlands). Data acquisition, and control of the patch clamp and optical stimulator were done with a CED 1401 AD/DA converter and Signal 3.07 (both from Cambridge Electronic Design Ltd., Cambridge, United Kingdom).
Cone chloride currents and horizontal cell feedback

Intracellular measurements of horizontal cell responses

Optical stimulator: Light stimuli were generated using 2 beams from a 450 W Xenon light source, and a pair of circular neutral density filters (Barr & Strout, Glasgow, United Kingdom). Full-field chromatic light stimuli were projected onto the retina through a 2× objective lens (N.A. = 0.08) of the microscope. To spectrally classify the HC, a monochromator (Ebert, Waltman, U.S.A.), and interference filters with a bandwidth of 8 ± 3 nm (Ealing Electro-Optics Inc., South Natick, MA, U.S.A.) were used. Light intensities are expressed in log units relative to 4×10^4 photons μm$^{-2}$ sec$^{-1}$.

Electrodes and recording equipment: Microelectrodes were pulled on a horizontal puller (P-80/PC, Sutter Instruments Company, Novato, CA, U.S.A.) using aluminosilicate glass (SM100F-10, Harvard Apparatus Ltd., Kent, United Kingdom), and had impedances ranging from 300-400 MΩ when filled with 3M KCl. Intracellular recordings were made with a WPI S7000A microelectrode amplifier system (World Precision Instruments Inc., Sarasota, FL, U.S.A.), recorded on paper (Linearcorder F WR3701, Graphtec, Yokohama, Japan), and sampled using an AD/DA converter (CED 1401, Cambridge Electronic Design Ltd., Cambridge, United Kingdom) coupled to a Windows based computer system (Microsoft Corporation, Redmond, WA, U.S.A.).

Model

The model describing negative feedback from HCs to cones is an extended version of a model for the goldfish retina (Fahrenfort et al., 2009; Klaassen et al., 2011). Briefly, a simple conductive network was used to evaluate whether the physiology and morphology of the cone/HC synapse allows for physiologically relevant ephaptic interaction. The HC is modeled as three conductances with their associated reversal potentials; the hemichannel-conductance (g_{hemi}), the glutamate-gated-conductance (g_{Glu}) and a non-linear potassium-conductance (g_K) taken from (Dong & Werblin, 1995).

g_{hemi} is located on the dendrites of HCs, while g_{Glu} is located on both the dendrites and the soma of the HCs. The reversal potentials for g_{hemi} and g_{Glu} are 0 mV and that for g_K is -82.7 mV (E_K). In the dark, the HC membrane potential (V_{HC}) is more positive than E_K, and current will flow from g_K into g_{hemi} and g_{Glu} via an extracellular resistive pathway in the synaptic complex whose conductance is g_{ext}. This current will generate a voltage drop over g_{ext}, making the potential deep in the synaptic cleft (V_{ext}) slightly negative. The light-induced closure of g_{Glu} causes the HC to hyperpolarize, resulting in an increase in current through g_{ext}, and a greater negativity in V_{ext}. The
fall in V_{ext} causes the cone membrane to depolarize locally, which modulates the cone Ca$^{2+}$-current (I_{Ca}), and increases the release of neurotransmitter. All parameters and equations of the model were kept equal to parameter set 2 in Fahrenfort et al. (2009). The cone model consisted only of a voltage-gated Ca$^{2+}$-current and glutamate release. I_{Ca} was modeled according to equation (1) with parameter values: $K_{\text{Ca}} = -5.4 \text{ mV}$, $E_{\text{Ca}} = 44.6 \text{ mV}$, $n_{\text{Ca}} = 12 \text{ mV}$ and $g_{\text{Ca}}^\text{max} = 36$ (normalized units) (Klaassen et al., 2011). The relation between I_{Ca} in the cone and the glutamate-dependent-conductance g_{Glu} in the HC is described by equation (2). This relation is based upon the finding that the glutamate release depends linearly on I_{Ca} (Schmitz & Witkovsky, 1997) and that the dependence of g_{Glu} on the glutamate concentration can be described by a Hill function with coefficient 2 (O’Dell & Christensen, 1989; Schmitz & Witkovsky, 1997). Similar to Klaassen et al. (2011), $g_{\text{Glu}}^\text{max} = 10 \text{ nS}$ and $K_{\text{Glu}} = 0.1$ (normalized units). The relation between I_{Cl} and V_{cone} is given by equation (3).

$$I_{\text{Ca}} = g_{\text{Ca}}^\text{max} \frac{V_{\text{cone}} - V_{\text{ext}} - E_{\text{Ca}}}{1 + e^{-(V_{\text{cone}} - V_{\text{ext}} - K_{\text{Ca}}) / n_{\text{Ca}}}}$$ (1)

$$g_{\text{Glu}} = g_{\text{Glu}}^\text{max} \frac{I_{\text{Ca}}^2}{I_{\text{Ca}}^2 + K_{\text{Glu}}^2}$$ (2)

$$I_{\text{Cl}} = g_{\text{Cl}} \cdot (V_{\text{cone}} - V_{\text{ext}} - E_{\text{Cl}})$$ (3)

The present extension of the model consists of only one free parameter g_{Cl}. To determine how critical this value is for the behavior of the model, E_{Cl} and g_{Cl} were varied.

Statistics
Data are presented as means ± standard error of the mean (SEM). Significance was determined using the Student’s-t test (paired if appropriate) or the Mann-Whitney test. $p < 0.05$ was considered as significant.
Cone chloride currents and horizontal cell feedback

Results

Activation of the Ca2+-dependent Cl-current reduces feedback responses in cones

Cones possess a large $I_{\text{Cl(Ca)}}$ with highly specific characteristics. Fig 1 illustrates these features by showing the current traces of a cone at -80 mV and stepped for 2000 ms to various potentials with E_{Cl} at -55 mV. Stepping the cone membrane potential to the depolarized potentials yields a slowly developing outward current (Fig 1A, left). Small tail currents are visible when the membrane potential is hyperpolarized back to -80 mV. This slowly activating current can be blocked by niflumic acid, one of the most potent pharmacological blockers of $I_{\text{Cl(Ca)}}$ (Barnes & Deschênes, 1992; Kraaij et al., 2000a; Mercer et al., 2011) (Fig 1A, right). However, some of niflumic acid’s ability to block $I_{\text{Cl(Ca)}}$ might lie in its ability to block Ca2+-influx (Thoreson et al., 2003). This makes this drug less suitable to study the functional role of $I_{\text{Cl(Ca)}}$ in cones. We therefore chose to manipulate the size of $I_{\text{Cl(Ca)}}$ without the use of pharmacology, by simply manipulating the holding potential of the cone. It exploits the slow kinetics of $I_{\text{Cl(Ca)}}$. When keeping a cone hyperpolarized for a prolonged period, $[\text{Ca}^{2+}]_i$ will decrease and Ca2+-dependent Cl-channels will be closed. Subsequent short term depolarization will only minimally activate $I_{\text{Cl(Ca)}}$. On the other hand, keeping the cell depolarized for a prolonged time will lead to high $[\text{Ca}^{2+}]_i$ and strong activation of $I_{\text{Cl(Ca)}}$. Subsequent brief hyperpolarization will minimally inactivate $I_{\text{Cl(Ca)}}$. Thus, after stepping to a potential at which feedback can be measured (-45 mV to -25 mV), there will be a short time window in which $I_{\text{Cl(Ca)}}$ will be relatively stable activated or inactivated depending on the prepulse. To verify the above, a number of control experiments were performed.

Cones, in the isolated retina, were voltage-clamped for at least 1 minute at either -20 mV, to activate $I_{\text{Cl(Ca)}}$ or -80 mV, to inactivate $I_{\text{Cl(Ca)}}$. E_{Cl} was set to -35 mV. Whole cell IV-relations of the sustained current were constructed in conditions with $I_{\text{Cl(Ca)}}$ activated (Fig 1B, black line) or inactivated (Fig. 1B, red line) and subtracted from each other. The resulting difference curve, plotted in Fig. 1C (black line), is a linear current with a reversal potential around E_{Cl} (-33.9 ± 5.8 mV; $n = 6$), suggesting it is carried by Cl−. This current could be blocked by the application of 100 µM niflumic acid ($n = 6$), shown in Fig. 1C (red line). Application of niflumic acid reduced the difference current at -95 mV by $69.8 \pm 0.072 \%$ ($n = 6$; $p = 0.017$), indicating that this current is mediated through Ca2+-dependent Cl−.
-channels. These results confirm that the designed protocol indeed modulates the activity of $I_{Cl(Ca)}$. Moreover, $I_{Cl(Ca)}$ remains stably activated or inactivated for a period long enough to determine the size of feedback from horizontal cells to cones in cones.

The activation of the $I_{Cl(Ca)}$ led to a number of changes in the cone-horizontal cell communication. First of all the half-activation potential of I_{Ca} was significantly shifted to positive potentials after holding the cell at -20 mV (-20 mV: -21.5 ± 1.6 mV; -80 mV: -26.6 ± 1.1 mV; $n = 5$; $p = 0.01$) (Fig 1D, left), without a change in the peak amplitude of the I_{Ca} (-20 mV: 120 ± 13 pA; -80 mV: 124 ± 26 pA; $n = 5$; $p = 0.80$) (Fig 1D, middle). What would be the effect of the activation of $I_{Cl(Ca)}$ on the communication between HCs and cones? Cones were voltage clamped at -40 mV and saturated with a 20 µm spot of intense white light and a full-field stimulus (0 log) was flashed on for 500 ms in addition. Full-field light stimulation leads to hyperpolarization of HCs, which induces an inward current in cones. This current is the light-induced feedback mediated response in cones (Verweij et al., 1996; Kamermans et al., 2001; Klaassen et al., 2011).

Activating $I_{Cl(Ca)}$ affected the light-induced feedback responses measured in cones (Fig. 1E). The black trace shows a feedback-induced response in a cone clamped for 250 ms at -40 mV after at 1 minute depolarization to -20 mV (light intensity = 0 log; $E_{Cl} = -55$ mV). The red trace shows a similar response, but now clamped for 250 ms at -40 mV after a 1 minute hyperpolarization to -80 mV. The feedback response after prolonged hyperpolarization is significantly larger than after prolonged depolarization (16.6 ± 4.8 pA and 3.3 ± 0.8 mV respectively; $n = 6$; $p = 0.021$) (Fig 1D, right). This reduction was voltage dependent. Fig 1F shows the amplitude of feedback measured at different potentials after 1 minute Depolarization (-20 mV; black line) and after 1 minute of hyperpolarization (-60 mV; blue line and -80 mV; red line). After prolonged hyperpolarization the feedback amplitude was maximal at -40 mV whereas after prolonged depolarization the potential where feedback was at around -30 mV and reduced in amplitude. This reduction was significant at -40 mV ($n = 4$; $p = 0.04$), which is the middle of the activation range of the cones Ca$^{2+}$-current. These results show that activation of a I_{Cl} in an individual cone is sufficient to reduce feedback induced response in the physiological membrane potential range of the cones.
Cone chloride currents and horizontal cell feedback

A) Control

B) Niflumic Acid

C) Control

D) Niflumic Acid

E) -20 mV

F) -80 mV

Figure 1. Activation of the Ca^{2+}-dependent Cl⁻-current in individual cones decreases the size of light-induced feedback responses. A) The cone membrane potential was clamped at -60 mV and stepped to a range of voltages from -80 mV to +30 mV in 10 mV steps. Left panel: Whole cell current traces in control conditions show that $I_{Cl(Ca)}$ is a slowly activating current. Right panel: Whole cell current traces of a cone when $I_{Cl(Ca)}$ is blocked by 100 µM niflumic acid. The slowly activating current is absent. B) Average whole-cell IV-relations of cones after a pre-pulse of 1 minute to either -20 mV (black trace, $n = 5$) or -80 mV (red trace, $n = 5$). From these curves both the peak amplitude and the half-activation potential of the I_{Ca} were determined. The peak amplitude not differ significantly between the two V_{Clamp} values but the half-activation potential of I_{Ca}, was significantly shifted to positive potentials for a depolarized V_{Clamp} (-20 mV: -21.5 ± 1.6 mV; -80 mV: -26.6 ± 1.1 mV; $n = 5$; $p = 0.01$). C) Average IV-relations of the pre-pulse-induced current (the difference between the current after the pre-pulse of -20mV and -80 mV) in the presence or absence of niflumic acid. The pre-pulse induced current (black trace) reverses around the calculated value (-35 mV) for E_{Cl} (-3.9 ± 5.8 mV; $n = 6$) and can partially be blocked by 100 µM niflumic acid (red trace). D) Activation of $I_{Cl(Ca)}$ leads to changes in the communication between HCs and cones. Left panel: Activation of $I_{Cl(Ca)}$ leads to a sustained shift of I_{Ca} to positive potentials. Middle panel: The peak amplitude of I_{Ca} does not depend on the activation of $I_{Cl(Ca)}$. Right panel: Feedback responses in cones are significantly reduced when $I_{Cl(Ca)}$ is activated. E) Example of a feedback responses to 100 ms full field flash in a cone clamped at -40 mV, following either a pre-pulse of -20 mV (black trace) or -80 mV (red trace). A depolarizing pre-pulse significantly reduces the feedback responses compared to a hyperpolarizing pre-pulse (3.3 ± 0.8 pA vs. 16.6 ± 4.8 pA respectively; $n = 6$; $p = 0.021$). F) The amplitude of light-induced feedback responses in cones at different clamping potentials and pre-pulse potentials. The amplitude of feedback is dependent on both the potential at which it is measured and the pre-pulse potential. Feedback is the largest for the most hyperpolarized pre-pulse.

Cones have a GABA-gated current

$I_{Cl(Ca)}$ is not the only I_{Cl} reported in cones. In many vertebrates, cones express GABA receptors (Kamermans & Werblin, 1992; Verweij et al., 1998; Paik et al., 2003; Klooster et al., 2004) and have a $I_{Cl(GABA)}$ (Tachibana & Kaneko, 1984; Picaud et al., 1998). HCs contain GABA and release GABA via a GABA transporter working in the reversed direction, at least in non-mammalian species (Schwartz, 1982; Yazulla & Kleinschmidt, 1983). These two findings led to the hypothesis that HCs feedback to cones via a GABAergic pathway. However, direct measurements of the light-induced feedback signal in cones in goldfish (Verweij et al., 1996; Kamermans et al., 2001) and macaque (Verweij et al., 2003) showed that the feedback responses remained present when GABAergic transmission was blocked, leaving the function of $I_{Cl(GABA)}$ unexplained.
Goldfish cones have a GABA-receptor mediated Cl⁻ currents. A) Example of a whole-cell IV-relation of a cone in the presence or absence of GABA: Control (black trace), 200 µM GABA (red trace), Wash (blue trace). B) IV-relations of drug-induced (drug minus control) currents. 200 µM GABA induces a current reversing close to the calculated value for \(E_{\text{Cl}} \) -55 mV (red trace, \(n = 5 \)). Application of 25 µM SKF89976-A, a GABA-transporter blocker, leads to the closure of a current (black trace, \(n = 5 \)), similar to the effect of 200 µM PTX (green trace, \(n = 4 \)). All currents reverse close to the estimated value of \(E_{\text{Cl}} \). C) The GABA-induced (GABA minus control) IV-relations in conditions with a calculated \(E_{\text{Cl}} \) of -20 mV (black trace, \(n = 8 \)) or -55 mV (red trace, \(n = 5 \)). Changing \(E_{\text{Cl}} \) shifts the reversal potential of the currents near the values of the calculated \(E_{\text{Cl}} \) (-20mV: -29.1 ± 3.5; -55mV: -48.8 ± 6.0 mV). D) Example of cone current traces with or without light stimulation. To maximize the size of the Cl⁻ current, \(E_{\text{Cl}} \) was set to an estimated -20 mV and the cone was stepped to -102 mV. Next, HCs were hyperpolarized by a 3 sec full field light flash (red trace). This sequence did not elicit any current changes compared to cones kept in the dark following the same potential step (black trace) in all 6 cones tested.
Cones in the isolated retina of goldfish were voltage-clamped and IV-relations were constructed in the presence (red trace, Fig. 2A) or absence of 200 µM GABA (black and blue traces, Fig. 2A). Application of GABA led to an increase in conductance. GABA-induced currents were isolated by subtraction of the control IV-relation from the one determined in the experimental condition. GABA application induced a linear current (Fig. 2B, red line) with a reversal potential of -48.8 ± 6.0 mV (n = 5). This is close to the calculated reversal potential for Cl⁻ (E_Cl = -55 mV), implying that this current is mainly carried by Cl⁻. If this current is indeed carried by Cl⁻, then its reversal potential should depend on E_Cl. This was tested next by performing the same experiments with a different intracellular chloride concentration. The red line in Fig. 2C is the IV-relation of the GABA-induced current with E_Cl at -55 mV and the black line is the IV-relation of the GABA-induced current with E_Cl at -20 mV (-29.1 ± 3.5; n = 8). The reversal potential of the GABA-induced current shifts with E_Cl (Fig. 2C), corroborating that it is carried by Cl⁻. Application of 200 µM of the GABA-gated Cl⁻ channel blocker picrotoxin (PTX) closed a conductance (Fig. 2B, green line) with a reversal potential close to E_Cl, -50.5 ± 3.0 mV (n = 4). This indicates the presence of an endogenous I_Cl(GABA) in cones in control conditions.

HCs are the only GABAergic neurons synapsing in the outer plexiform layer (Marc et al., 1978; Lam et al., 1980; Yazulla, 1986). HCs release GABA via GABA-transporters (Schwartz, 1982, 1987), which can be blocked by SKF89976-A (Verweij et al., 1998). The black line in Fig. 2B shows that application of 25 µM SKF89976-A leads to the closure of a conductance with a reversal potential of -47.6 ± 4.4 mV (n = 5), just as the application of 200 µM PTX. Thus, blocking GABA-transporters leads to a reduction of I_Cl(GABA) in cones. This is consistent with the hypothesis that HCs release GABA via a GABA transporter working in the reversed direction (Schwartz, 1982). These experiments show that GABA, released by HCs, opens GABA-gated Cl⁻ conductances in cones, illustrating that HCs project to cones via a GABAergic pathway. Moreover, a significant fraction of the GABA receptors on cones are activated under control conditions.

If HCs would modulate their GABA release in a voltage-dependent manner (Schwartz, 1987), then hyperpolarizing HCs should change the GABA-gated-conductance in cones. However, we were unable to modulate the GABA-gated conductance in cones by a light induced hyperpolarization of horizontal cells. HCs were hyperpolarized by full-
Cone chloride currents and horizontal cell feedback

field light stimulation (0 log) for 3 sec (Fig. 2D). Hyperpolarization of HCs should lead to a reduction of the GABA release by HCs (Schwartz, 1987) and thus close GABA-gated-conductance in cones and lead to a reduction of the current at -102 mV. Fig. 2D shows the whole-cell current of a cone when stepped from -62 mV to -102 mV without light stimulation (black trace) and with a 3 sec full-field light stimulus (0 log, red trace), which hyperpolarizes HCs. The two traces are identical. This was found in all 6 cells tested this way. These results indicate that light-induced hyperpolarization of HCs does not modulate GABA-gated-conductance in cones on a time scale of seconds (see Discussion).
GABA-gated current inhibits feedback responses in cones and horizontal cells

What is the effect of the activation of this GABAergic mechanism on the communication between HCs and cones? Light-induced feedback-mediated responses in cones were reduced in the presence of 200 µM GABA (Fig 3A, middle trace) compared to the control conditions (Fig. 3A, left trace) which recovered after washing out GABA (Fig. 3A, right trace). On average feedback-induced responses were reduced by $42.2 \pm 6.5\%$ ($n = 15; \ p = 0.00014$). Blocking GABA-gated channels with 200 µM PTX had the opposite effect (Fig. 3B).

Application of PTX increased the feedback-induced current by $74.9 \pm 20.2\%$ ($n = 8; \ p = 0.018$) relative to control conditions, revealing the presence of an endogenous GABA-gated current in control conditions as previously shown in Fig. 2B. Blocking GABA release from horizontal cells by application of SKF 89976-A led, in 2 of the 4 cells tested to a similar increase in feedback as PTX (Fig 3 C). The two other cells did not respond to the application of SKF89976-A.

►► Figure 3 GABA reduces the size of feedback responses in cones and HCs. A) Example of light-induced feedback responses in a cone in the presence and absence of GABA. The cone was clamped at -40 mV and saturated with a 20 µm spot of intense white light to saturate the direct light response. A full-field stimulus was flashed on for 500 ms, which induces an inward current. Application of 200 µM GABA reduces the amplitude of this current by $42.2 \pm 6.5\%$ ($n = 15; \ p = 0.00014$). The feedback responses recover after wash out of the drug. B) Example of light-induced feedback responses in a cone in the presence and absence of PTX. In contrast to GABA application of 200 µM PTX results in an increase in the amplitude of the feedback response in cones by $74.9 \pm 20.2\%$ ($n = 8; \ p = 0.018$). The feedback response returned to pre-drug value after washing out. C) Example to a light-induced feedback response in a cone with and without SKF89976-A. Blocking the GABA transporter activity leads to an enhancement of feedback responses in cones. D) Example of responses in a HC to a 500 ms full-field flash in the presence of 25 µM SKF89976-A while applying GABA and PTX. The rollback in the light-induced response of the HCs (arrow, left trace) is an indirect measure for negative feedback from HCs to cones. Application of 200 µM GABA (middle trace) reduced the rollback on average by $14.9 \pm 3.3\%$ ($n = 10; \ p = 0.0084$). Conversely, co-application of 200 µM PTX (right trace) had the opposite effect and increased the rollback by $14.5 \pm 4.1\%$ ($n = 6; \ p = 0.027$) relative to the value of rollback in the presence of GABA. E) The voltage response of a BHC to diffuse light stimulation of 550 nm and of 650 nm in control (left trace) and in the presence of 200 µM GABA (right trace). Feedback induces a depolarizing response to 650 nm light stimulation (arrow). This response is suppressed by GABA. F) The voltage response of a BHC to diffuse light stimulation of 550 nm and of 650 nm in control (left trace) and in the presence of 25 µM SKF89976-A (right trace). The feedback induced depolarizing response to 650 nm light (arrow) is enhanced by SKF89976-A.
The rollback, defined as the ratio between the peak and sustained light-response of monophasic horizontal cells (MHCs), is an indirect measure for negative feedback from HCs to cones (Kamermans et al., 2001). To test the effect of GABA on this measure of HC feedback we recorded full-field light (0 log) responses of MHCs in the presence of 200 µM GABA alone or in combination with 200 µM PTX (Fig. 3D). During these experiments 25 µM SKF89976-A was present in control conditions to exclude interference of the GABA-transporters on the HCs. Application of GABA alone led to a marked change in response shape (Fig. 3D, middle trace). The rollback response clearly present in control conditions (Fig. 3D; left trace; arrow) was reduced by 14.9 ± 3.3 % (n = 10; p = 0.0084) after GABA application. Subsequent co-application of PTX increased the rollback response by 14.5 ± 4.1 % (n = 6; p = 0.027) (Fig. 3D right trace) similar to control values. In the absence of both SKF89976-A and GABA, application of PTX increased rollback by 6.17 ± 1.60 % (n = 12; p = 0.003), presumably owing to the closure of previously mentioned endogenous GABA-gated on cones.

A second measure for feedback in HCs is the depolarizing response of biphasic horizontal cells (BHCs) to red light. Fig. 3E and F show the responses of a BHC due to green (550 nm, 0 log) and red (650 nm, 0 log) light stimulation in control conditions and after application of 200 µM GABA or 25 µM SKF89976-A. GABA reduced the ratio between the hyperpolarizing and the depolarizing response of the BHCs by 21.0 ± 6.6 % (n = 8; p = 0.03). Application of SKF89976-A led to an increase of the depolarizing response to red light in 3 out of 3 BHCs (Fig. 3F). These results illustrate that feedback-induced responses in both cones and HCs are inhibited by GABA and enhanced when the GABAergic system is blocked.

Apart from affecting feedback measures in HCs, application of GABA slightly depolarized MHC membrane potential by 3.9 ± 1.1 mV (n = 10; p = 0.008) but did not affect sustained light response amplitudes. The response amplitude in control and GABA differed 6.7 ± 0.05 %, which is not significant from zero (n = 10; p = 0.19). Also, PTX application did not affect the MHC membrane potential. The membrane potential in control and PTX differed 0.04 ± 1.26 % (n = 12), which is not significantly different from zero. However, the sustained light response amplitude was reduced by 18.0 ± 0.06 % (n = 12; p = 0.004). The latter reduction might be fully explained by the increase in rollback response.
Feedback modulating mechanism

The results so far indicate that opening Cl⁻-channels in cones leads to a reduction of the feedback from horizontal cells to cones. What is the mechanism? Since the reduction can be obtained by opening Cl⁻-channels in a single cone, the mechanism must be local in the cones. Recently, it was shown that feedback from HCs to cones is mediated by a connexin hemichannel, most likely via an ephaptic interaction (Kamermans et al., 2001; Fahrenfort et al., 2009; Klaassen et al., 2011). Next, we evaluated whether such an ephaptic feedback mechanism could be modulated by a I_{Cl} in the cone synaptic complex. Therefore, Cl⁻-channels were incorporated in the ephaptic feedback model, described previously (Fahrenfort et al., 2009; Klaassen et al., 2011) (Fahrenfort et al., 2009; Klaassen et al., 2011) (Fig. 4), and its behavior as function of the Cl⁻-conductance was analyzed. Details of the modification of the model can be found in Material & Methods.

In short, this mechanism functions as follows. Connexin hemichannels are located at the tips of the HC dendrites close to the synaptic ribbon (Fig 4A). Current will flow into HCs via these hemichannels. This current has to come from outside the synaptic terminal. Since the extracellular space in the synaptic terminal has a finite resistance, a voltage drop over this intersynaptic resistance will occur. This makes the potential deep in the synaptic cleft slightly negative. The voltage-dependent Ca²⁺-currents in the cones will be influenced by this voltage drop. They will experience a slightly more depolarized membrane potential. Hyperpolarizing HCs will lead to an increase of the hemichannel current, which will cause an increase of the voltage drop over the intersynaptic resistance. This makes the potential deep in the synaptic cleft even more depolarized. So far, this model correctly predicted the specific way feedback is affected when the number of hemichannels in HC dendrites was reduced (Klaassen et al., 2011) and how ephaptic feedback depends on glutamate receptors (Fahrenfort et al., 2005; Fahrenfort et al., 2009). Now the model was extended with a I_{Cl} in the cone synaptic complex and used to evaluate the behavior of feedback as function of the Cl⁻-conductance (Fig 4B). Its equivalent circuit is given in Fig 4C.
Cone chloride currents and horizontal cell feedback
Figure 4 Description of the ephaptic feedback model. A) Schematic representation of the ephaptic feedback model. The model, described by Fahrenfort et al. (2009), consists of a simple resistive network. The HC is modeled as three conductances with their associated reversal potentials; the hemichannel-conductance (g_{hemi}, blue resistor), the glutamate-gated-conductance (g_{Glu}, green resistors) and a non-linear potassium-conductance (g_{K}, orange resistor). In the dark, the HC membrane potential (V_{HC}) is more positive than reversal potential for potassium (E_{K}) and current will flow from g_{K} in the HC membrane into g_{hemi} and g_{Glu} via an extracellular resistive pathway in the synaptic complex with conductance g_{ext} (white resistors). This current will generate a voltage drop over g_{ext}, making the potential deep in the synaptic cleft (V_{ext}) slightly negative. Light stimulation leads to a reduction of glutamate release by cones, which ultimately leads to the closure of g_{Glu} and hyperpolarization of the HC and an increase in the current through g_{hemi} and an increase of the voltage drop over g_{ext}, making V_{ext} more negative. V_{ext} is sensed by voltage-gated Ca$^{2+}$-channels (red voltage sensor), which adjust the cone Ca$^{2+}$-current (I_{Ca}) accordingly. The pink resistor is g_{K} in the cone. B) Schematic representation of the ephaptic feedback model including a Cl$^-$-current in the cone pedicle. The original feedback model was extended by incorporation of a Cl$^-$-conductance (g_{Cl}, yellow resistor) with its associated equilibrium potential (E_{Cl}) to evaluate the consequences of this current on the feedback and compare it to experimental results. C) The equivalent electrical circuit of the ephaptic model of feedback from HCs to cones. All components as described above. In addition, $g_{\text{Glu,tip}}$ is the glutamate-gated-conductance at the tips of HC dendrites, $g_{\text{Glu,neuropil}}$ is the glutamate-gated-conductance in the HC neuropil, $[\text{Glu}]$ is the glutamate concentration in the synaptic cleft and V_{cone} is the cone membrane potential relative to outside.

Fig 5A shows the steady state I_{Ca} of the cone with HCs resting at their dark membrane potential of -34.7 mV (red) or when hyperpolarized to -54.7 mV (blue). HC hyperpolarization leads to a shift of I_{Ca} to negative potentials. E_{Cl} was set to the value where the I_{Cl} reverses when E_{Cl} was set to -55 mV (-50.3 mV). Increasing g_{Cl} from 0 pS (left), to 5 pS (middle) or 10 pS (right) shifted I_{Ca} to positive potentials. Next, the feedback-induced currents (i.e.: I_{Ca} when HCs are depolarized, subtracted from I_{Ca} when HCs are hyperpolarized) were determined. Fig 5B shows that the maximal feedback-induced response shifts to positive potentials and reduces in amplitude with increasing g_{Cl}. This result is qualitatively similar to those experimentally obtained (Fig 3D), although the curves do deviate somewhat from the experimental results at positive potentials. This is most likely due to the fact that g_{Cl} in the model is static whereas $I_{\text{Cl(Ca)}}$ changes dynamically during a voltage-clamp experiment. Changing E_{Cl} from -55 mV to -29.4 mV leads to shifts of I_{Ca} in the opposite direction with increasing g_{Cl} but the reduction of the feedback-induced shift of I_{Ca} remained (Fig 5C).
Figure 5 Inclusion of a Cl⁻-conductance in the ephaptic model of HC feedback shifts I_{Ca} and reduces the size of feedback. A) The normalized steady state I_{Ca} of the cone with the HC membrane potential either depolarized at -34.7 mV (red traces) or hyperpolarized at -54.7 mV (black traces). E_{Cl} was set to -50.3 mV. For the left panel g_{Cl} was set to 0 pS. In this condition, hyperpolarization of HCs leads to a shift of I_{Ca} to negative potentials. Increasing g_{Cl} to 5 pS (middle panel) or 10 pS (right panel) leads to a shift of I_{Ca} to positive potentials and a reduction of the feedback-induced shift of I_{Ca}. B) Plot of the feedback-induced current as a function of V_{cone} for different values of g_{Cl}. The feedback-induced currents were calculated by subtracting I_{Ca}, when HCs were depolarized, from I_{Ca}, when HCs were hyperpolarized. Increasing g_{Cl} (0 pS, black trace; 5 pS, red trace; 10 pS; green trace) reduces the maximal feedback-induced response and shifts it to positive potentials. C) Plot of the feedback-induced current as a function of V_{cone} for different values of g_{Cl} with E_{Cl} set to -29.4 mV. The reduction of the feedback-induced shift of I_{Ca} remains (0 pS, black trace; 5 pS, red trace; 10 pS; green trace).
Discussion

Excitatory output of photoreceptors is counteracted by negative feedback from HCs. These two elements create a balance, which ensures optimal information transfer to bipolar cells (BCs). To maintain high sensitivity throughout the broad range of stimuli encountered under natural conditions, it is essential that the contribution of both these elements can adapt. Although much is known about mechanisms facilitating photoreceptor adaptation, how the strength of inhibitory feedback is modulated, has received less attention. In the present study, the role of $I_{Ca(Cl)}$ and GABA-gated currents in cones, in modulating the size of feedback from HCs was examined in the goldfish retina. It was shown that these two I_{Cl} are involved in modulating the balance between cone excitation and HC inhibition, by altering the efficacy of HC feedback to cones.

Could the change in feedback strength, described in this paper be due to changes in [Cl]? Thoreson and co-workers showed that in photoreceptors of the tiger salamander, I_{Ca} is reduced when $[Cl^-]_i$ is reduced (Thoreson et al., 2000, 2003). The relevance of this pathway strongly depends on E_{Cl}. The physiological value of E_{Cl} in photoreceptors seems to differ between rods and cones. Rods seem to have an E_{Cl} of -25 mV which is more positive than the dark membrane potential (Rabl & Thoreson, 2002). In cones, E_{Cl} seems to be close or slightly negative to the dark resting membrane potential (Kraaij et al., 2000a; Thoreson & Bryson, 2004). Therefore, opening of Cl- channels in goldfish cones in the dark will not alter either membrane potential or $[Cl^-]_i$ substantially. Accordingly, the peak amplitude of I_{Ca} in cones was found to be independent of activation of either $I_{Cl(GABA)}$ or $I_{Cl(Ca)}$. The modulation of feedback by opening a Cl-channel in cones cannot be accounted for by such modulation of I_{Ca} by changes in [Cl], since feedback reduced when a Cl- conductance was activated while E_{Cl} was set at -50 mV. In such condition Cl- ions will flow into the cell instead of out which should make I_{Ca} larges instead of smaller.

Cl-channel activity modulates ephaptic feedback

How could the activation of a cone I_{Cl} modulate feedback? One option would be that opening Cl- channels in cones would limit the change in surround induced depolarization due to shunting inhibition which reduces membrane potential changes in cones. Although we cannot exclude some contribution of shunting inhibition, it is highly unlikely that this would be the mechanism for the modulation of feedback, because feedback hardly
Cone chloride currents and horizontal cell feedback

alters the membrane potential of the cone, but strongly modulates the Ca2+\,- channels by changing the extracellular potential (Verweij et al., 1996; Kraaij et al., 2000a). Therefore, we explored how the activation of Cl\,-channels would affect the ephaptic feedback mechanism.

Negative feedback from HCs to cones strongly depends on the morphology of the cone synaptic terminal. The specific relative localization of Ca2+-channels, hemichannels and glutamate receptors in the invaginating cone synapse seems to be crucial for the function of the feedback mechanism. We developed a quantitative model of this ephaptic feedback mechanism based on gold- and zebrafish data (Fahrenfort et al., 2009; Klaassen et al., 2011). The model, extended with I_{Cl} in cones, reproduced the inhibition of feedback by the Cl\,-conductance correctly (Fig 5). The mechanism by which this happens is as follows. Activation of a Cl\,-conductance in the presynaptic membrane will influence the current flow in the synaptic terminal. When E_{Cl} is more negative than V_m, a I_{Cl} will flow from the inside of the cone into the synaptic cleft. This current will compensate part of the current flow over the intersynaptic resistance. The result is that the potential deep in the synaptic cleft will be slightly less negative. This leads to a shift of I_{Ca} to positive potentials as was found experimentally (Fig 1D, left).

Apart from these sustained shifts of I_{Ca}, adding I_{Cl} in the synaptic terminal leads to modulation of the feedback-induced shift of I_{Ca} in cones. Hyperpolarization of HCs leads to an increase in current flow through the hemichannels. Without a Cl\,-conductance in cones all current has to come from outside the synaptic terminal and would flow through the intersynaptic space. However, with a Cl\,-conductance in the cone synaptic terminal, part of this current will flow via this pathway making the current through the intersynaptic space smaller. Since the potential deep in the synaptic cleft strongly depends on the modulation of the current flow through the intersynaptic space, the feedback-induced shift of I_{Ca} is reduced (Fig 1E). Note that this reduction is independent of E_{Cl}. The reason being that in the dark I_{Cl}, the hemichannel-current and the current through the intersynaptic space are balanced. In this condition, I_{Cl} can either be inward or outward depending on E_{Cl}. Increasing the hemichannel-current through HC hyperpolarization will lead to an increase in the current through the intersynaptic space and to an increase in outward I_{Cl} or a decrease of inward I_{Cl} depending on E_{Cl}. However, the change in current will be the same in both conditions.
The functional role of the Ca^{2+}-dependent I_{Cl}-current

We found that activation of $I_{\text{Cl(Ca)}}$ leads to a decrease of the amplitude of the feedback response. This implies that in cones around their dark resting membrane potential, in which $I_{\text{Cl(Ca)}}$ is activated, feedback is suppressed. This generates an intriguing mechanism. As soon as feedback becomes too large, and too much Ca^{2+} is flowing into the cone synaptic terminal, $I_{\text{Cl(Ca)}}$ gets activated and suppresses feedback. $I_{\text{Cl(Ca)}}$ tunes the amount of feedback a cone receives at its dark resting membrane potential and in that way ensures a proper balance between the feedforward and feedback signals flowing across this synapse. Note that this balance is mainly set by the properties of $I_{\text{Cl(Ca)}}$; i.e.: its Ca^{2+}-dependence. In other words, $I_{\text{Cl(Ca)}}$ prevents cones from getting a Ca^{2+}-overload due to excessive HC feedback. This mechanism functions on a timescale from a few 100 ms to seconds.

Role of GABA in the outer retina

Both the activation of $I_{\text{Cl(Ca)}}$ and $I_{\text{Cl(GABA)}}$ reduce the feedback induced responses. They might influence feedback via the mechanism outlined above. However, we cannot exclude that GABA exerts its effect via multiple pathways. These alternative pathways will be discussed next.

It has been suggested that the feedback pathway from HCs to cones is GABAergic. This suggestion was based on the evidence that at least one type of HC in goldfish (H1-HCs) contain and release GABA (Marc et al., 1978; Yazulla & Kleinschmidt, 1983) in a Ca^{2+}-independent manner (Schwartz, 1982; Yazulla & Kleinschmidt, 1983; Cammack & Schwartz, 1993), and that cones express GABA$_A$ receptors located close to the glutamate release sites (Yazulla & Brecha, 1980; Yazulla et al., 1989; Klooster et al., 2004), which can be activated by GABA (Murakami et al., 1982; Tachibana & Kaneko, 1984). However, direct measurements of feedback from HCs to cones in goldfish shows that HC feedback is not GABA-mediated (Verweij et al., 1996). Similar results were obtained in monkey (Verweij et al., 2003).

In the present study, it was confirmed that cones have an $I_{\text{Cl(GABA)}}$ and that GABA released by HCs, via a GABA-transporter working in the reversed direction, activates these receptors. Furthermore, it was shown that GABA inhibits negative feedback from HCs to cones. However, blocking this GABAergic pathway leads to an enhancement of feedback responses. These results are inconsistent with GABA as the feedback neurotransmitter but indicate that GABA modulates feedback.
How does GABA inhibit feedback? GABA can act at many locations in the retina. Firstly, GABA could hyperpolarize cones. This would lead to a reduction in the synaptic gain of the cone and thus to a smaller horizontal cell response (VanLeeuwen et al., 2009). Secondly, GABA could act on horizontal cells. Goldfish and salamander HCs have been shown to possess GABA receptors (Kamermans & Werblin, 1992; Verweij et al., 1998; Paik et al., 2003; Klooster et al., 2004). Opening these GABA-gated-channels will polarize the HC membrane potential depending on the position of E_{Cl} and shunt the HC light response. In principle, the reduction of the feedback responses in cones could be due to a reduction of the HC response amplitude as described in the previous section. Smaller HC response amplitudes will result in smaller feedback responses in cones (Kraaij et al., 2000b). However, in this study we showed that the HC response amplitude did not significantly reduce, suggesting that the opening of GABA-gated-channels on cones is the main mechanism responsible for the GABA-induced reduction of feedback responses. Secondly, GABA could act on dopaminergic interplexiform cells, which project to HCs (Dowling & Ehinger, 1978) and receive GABAergic input from the inner retina (Yazulla & Zucker, 1988). Dopamine is known to modulate the gap-junctional coupling and sensitivity of the glutamate receptors of horizontal cells (Knapp & Dowling, 1987; Tornqvist et al., 1988; Yang et al., 1988a, 1988b; McMahon et al., 1989). Both of these changes could result in modulation of negative feedback from HCs to cones. It is unlikely that the modulation of the gap-junctions is the underlying mechanism for the modulation of feedback since the modulation of feedback remains present for full field stimuli. In such conditions, no current will flow through the gap-junctions and thus modulation of the gap-junctions will not affect the system.

We were not able to activate this modulatory pathway by light stimuli. One of the reasons for this might be that this pathway functions on a time scale of seconds to minutes. The time constant of this GABAergic pathway is most likely determined by the time constant of the GABA-transporter, the time constant of the GABA-receptors and the volume into which GABA is released. Since both the GABA-transporter and the GABA-receptor time constants are fast (Cammack et al., 1994; Lukasiewicz & Shields, 1998), it seems likely that the volume of the compartment wherein GABA is released, is the rate limiting factor. Immunocytochemical evidence shows that GABA-transporters are not focally localized in the synaptic complex but are also present on the somatic membrane of HCs (Klooster et al., 2004). This distribution of the GABA-
transporters indicates that HCs release GABA in the extracellular space around them, which is a relatively large volume. Inducing significant changes in the GABA concentration in such a large compartment will take time (Kamermans & Werblin, 1992). How much time will depend on the precise organization of the extracellular space around HCs and might vary strongly between species.

Alternatively, one could hypothesize that the GABA release by HCs is only partly voltage-dependent but that modulation of GABA-transporters by, for instance phosphorylation is a much more prominent way of regulating GABA release. In the dark-adapted retina, GABA release from HCs is increased (Yazulla, 1985). Interestingly, the efficiency of the feedback pathway changes strongly during light-dark adaptation, with feedback almost absent in the dark-adapted state (Weiler & Wagner, 1984). Choi et al. (2011) showed that the localization of GABA receptors in cones is modulated by light/dark adaptation, with most GABA receptors located in the membrane in the dark adapted state. These observations lead to the suggestion that GABA is involved in adaptation-induced changes in feedback strength (Gilbertson et al., 1991; Yang & Wu, 1993; Yang et al., 1998).

It has been suggested that HCs feed forward to BCs via a GABAergic pathway (Yang & Wu, 1991). The results of the present paper do not exclude the existence of such a feedforward pathway. It might be that in the dark adapted retina, the global, transporter-mediated GABAergic pathway from HCs to cones dominates. On the other hand, in the light adapted retina, GABA may mediate a local feedforward signal from HCs to BCs (Thoreson & Mangel, 2012). This feedforward pathway might be a Ca2+-dependent, vesicular release pathway (Lee & Brecha, 2010; Hirano et al., 2011).

Functional role of GABAergic modulation of negative feedback

In this paper, we have shown that activation of \(I_{\text{Cl}(\text{GABA})} \) in cones inhibits negative feedback from HCs to cones. What is the functional consequence of this modulation? In the light adapted retina, GABA release is low (Yazulla & Kleinschmidt, 1983; Yazulla, 1985; O’Brien & Dowling, 1985) and feedback is consequently barely inhibited by \(I_{\text{Cl}(\text{GABA})} \). Therefore, the feedback pathway from HCs to the cones will be maximally active in this adaptational condition. This leads to a well-developed center/surround organization in BCs and spectral coding of HCs, which are instrumental to reduce redundancies.
In the dark adapted retina, the signal-to-noise ratio drops and redundancy reduction has to be limited in order to collect enough reliable information about the stimulus. In this condition, GABA release is high (Yazulla & Kleinschmidt, 1982; Yazulla, 1985; O’Brien & Dowling, 1985), resulting in the opening of GABA-gated Cl- channels and consequently a reduction of the efficiency of feedback from HCs to cones. This will result in a reduction of the center/surround organization of BCs (Thoreson & Mangel, 2012) and a loss of spectral coding of HCs (Weiler & Wagner, 1984). In the meantime, the cone Ca$^{2+}$-current has to remain in its operating range. $I_{\text{Cl(Ca)}}$ might be responsible for this. If sustained feedback is reduced, $I_{\text{Cl(Ca)}}$ will be activated less and sustained feedback might increase again keeping the cone I_{Ca} in its working range. This delicate interplay between feedback, $I_{\text{Cl(Ca)}}$ and I_{Ca} ensures that I_{Ca} will remain in its operating range independent of the adaptation state of the retina.
References

Gilbertson TA, Borges S & Wilson M (1991). The effects of glycine and...
Cone chloride currents and horizontal cell feedback

Kraaij DA, Spekreijse H & Kamermans M (2000b). The open- and closed-
Chapter 5

Cone chloride currents and horizontal cell feedback

evidence from a photoreceptor-glia co-culture model. *J Physiol* 33–42.
Rabl K & Thoreson WB (2002). Calcium-dependent inactivation and
depletion of synaptic cleft calcium ions combine to regulate rod
calcium currents under physiological conditions. *Eur J Neurosci* 16,
2070–2077.

Schmitz Y & Witkovsky P (1997). Dependence of photoreceptor glutamate
release on a dihydropyridine-sensitive calcium channel. *Neuroscience*
78, 1209–1216.

Schwartz EA (1982). Calcium-independent release of GABA from isolated

Schwartz EA (1987). Depolarization without calcium can release gamma-

Scudieri P, Sondo E, Ferrera L & Galietta LJ V (2012). The anoctamin
family: TMEM16A and TMEM16B as calcium-activated chloride

Stöhr H, Heisig JB, Benz PM, Schöberl S, Milenkovic VM, Strauss O,
TMEM16B, a novel protein with calcium-dependent chloride channel
activity, associates with a presynaptic protein complex in

Tachibana M & Kaneko A (1984). gamma-Aminobutyric acid acts at axon
terminals of turtle photoreceptors: difference in sensitivity among cell

Tatsukawa T, Hirasawa H, Kaneko A & Kaneda M (2005). GABA-
mediated component in the feedback response of turtle retinal cones.
Vis Neurosci 22, 317–324.

Thoreson WB & Bryson EJ (2004). Chloride equilibrium potential in

Thoreson WB, Bryson EJ & Rabl K (2003). Reciprocal interactions
between calcium and chloride in rod photoreceptors. *J Neurophysiol*
90, 1747–1753.

Thoreson WB, Nitzan R & Miller RF (2000). Chloride efflux inhibits single
calcium channel open probability in vertebrate photoreceptors:
chloride imaging and cell-attached patch-clamp recordings. *Vis
Neurosci* 17, 197–206.

horizontal cell activity in the teleost fish retina. III. Effects of
prolonged darkness and dopamine on electrical coupling between

Cone chloride currents and horizontal cell feedback