Measurement of the $W \rightarrow \tau \nu \tau$ cross section in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS experiment

Published in:
Physics Letters B

DOI:
10.1016/j.physletb.2011.11.057

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

Download date: 17 Sep 2020
Measurement of the $W \to \tau \nu_\tau$ cross section in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS experiment

ATLAS Collaboration

1. Introduction

The study of processes with τ leptons in the final state is an important part of the ATLAS physics program, for example in view of searches for the Higgs boson or supersymmetry [1–3]. Decays of Standard Model particles to τ leptons, in particular $Z \to \tau \tau$ and $W \to \tau \nu_\tau$, are important background processes in such searches. Studies of the $W \to \tau \nu_\tau$ decay complement the measurement of W production in the muon and electron decay modes [4,5].

1.1. The ATLAS experiment

The ATLAS detector is described in Ref. [12]. The cylindrical coordinate system is defined with polar angles θ relative to the beamline and azimuthal angles ϕ in the plane transverse to the beam. Pseudorapidities η are defined as $\eta = -\ln \tan \frac{\theta}{2}$. Transverse momenta, p_T, are defined as the component of momentum perpendicular to the beamline. Distances are measured in the η–ϕ plane as $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$.

Measurements of charged-particle trajectories and momenta are performed with silicon detectors in the pseudorapidity range $|\eta| < 2.5$, and also by a straw-tube tracking chamber in the range $|\eta| < 2.0$. Together, these systems form the inner tracking detector, which is contained in a 2 T magnetic field produced by a superconducting solenoid. These tracking detectors are surrounded by a finely segmented calorimeter system which provides three-dimensional reconstruction of particle showers up to $|\eta| < 4.9$. The electromagnetic calorimeter uses liquid argon as the active material and comprises separate barrel ($|\eta| < 1.5$), end-cap ($1.4 < |\eta| < 3.2$) and forward ($3.2 < |\eta| < 4.9$) components. The hadron
calorimeter is based on scintillating tiles in the central region \((|\eta| < 1.7)\). It is extended up to \(|\eta| = 4.9\) by end-caps and forward calorimeters which use liquid argon. The muon spectrometer measures the deflection of muon tracks in the field of three large superconducting toroidal magnets. It is instrumented with trigger and high-precision tracking chambers.

The trigger system consists of three levels. The first level is implemented as a hardware trigger, while the decision on the following levels is based on software event processing similar to the offline reconstruction.

3. Data samples

The data used in this measurement were recorded in proton–proton collisions at a center-of-mass energy of \(\sqrt{s} = 7\) TeV during the 2010 LHC run. The integrated luminosity of the data sample, considering only data-taking periods where all relevant detector subsystems were fully operational, is \(34\) \(\text{pb}^{-1}\) [13,14]. The data were collected using triggers combining the two main signatures of \(W \rightarrow \tau \nu\) decays, namely the presence of a hadronically decaying \(\tau\) lepton and missing transverse energy.

Processes producing \(W\) or \(Z\) bosons that subsequently decay into electrons or muons constitute important backgrounds to this measurement if the lepton from the decay or an accompanying jet is misidentified as a hadronically decaying \(\tau\) lepton. Here, the missing transverse energy signature arises from a \(W\) decay neutrino or the misreconstruction of jets or of other objects in the event. Also, \(W \rightarrow \tau \nu\) decays with the \(\tau\) decaying leptonically are considered as a background. Incompletely reconstructed \(Z \rightarrow \tau \tau\) and \(\tau \tau\) decays can also enter the signal sample. The number of background events from these electroweak processes is referred to as \(N_{\text{EW}}\) in the following.

The production of \(W\) and \(Z\) bosons in association with jets is simulated with the PYTHIA [15] generator with the modified JIMMY [19]. The TAUOLA [20] and PHOTOS [21] programs are used to model the decay of \(\tau\) leptons and QED radiation of photons, respectively.

All simulated samples include multiple proton–proton interactions (pile-up) produced with PYTHIA using the ATLAS MC10 tune [22]. Those samples are passed through a full detector simulation based on GEANT4 [23,24]. The simulated events are reweighted so that the distribution of the number of reconstructed primary vertices per bunch crossing matches the data.

Due to their large production cross sections, QCD processes provide a significant background if quark/gluon jets (QCD jets) are misidentified as hadronic \(\tau\) decays and a significant amount of \(E_{\text{T}}^{\text{miss}}\) is measured, mainly due to incomplete reconstruction. The number of QCD background events \(N_{\text{QCD}}\) is estimated directly from data.

4. Object reconstruction

Electron candidates, which together with muons are relevant for the electroweak background, are reconstructed from a cluster in the electromagnetic calorimeter matched to a track in the inner tracking detector. The cluster must have a shower profile consistent with an electromagnetic shower [25]. Muon candidates are reconstructed by combining tracks in the muon spectrometer with tracks in the inner tracking detector [26].

Jets are reconstructed with the anti-\(k_t\) algorithm [27] with a radius parameter \(R = 0.4\). The jet energies are calibrated [28] using a \(p_T\)- and \(\eta\)-dependent calibration scheme, corrected for losses in dead material and outside the jet cone [29]. All jets considered in this analysis are required to have a transverse momentum above 20 GeV and a pseudorapidity in the range \(|\eta| < 4.5\).

Reconstructed jets within \(|\eta| < 2.5\) provide the starting point (seed) for the reconstruction of hadronic \(\tau\) decays. The direction of a \(\tau_h\) candidate is taken directly from the corresponding seed jet. The energy is calibrated by applying a dedicated correction extracted from Monte Carlo to the sum of energies of the cells that form the clusters of the seed jet [30]. Therefore, the energy of the \(\tau_h\) refers to the visible decay products. The transverse momentum is calculated as \(p_T = E \sin \theta\), i.e. \(\tau_h\) candidates are treated as massless. Good-quality tracks are associated with a \(\tau_h\) candidate if they are found within \(\Delta R < 0.2\) around the seed jet axis. At least one track must be associated to the candidate.

The \(\tau_h\) identification [30] is based on eight observables: The invariant mass of the \(\tau\) decay products is calculated separately using the associated tracks and the associated clusters. The fact that the \(\tau\) decay products are typically more collimated than QCD jets is quantified by calculating the transverse momentum-weighted radius from tracks and the energy-weighted radius from electromagnetic energy information. The fraction of transverse energy within \(\Delta R < 0.1\) of the \(\tau_h\) seed direction is used as well. Further discrimination is provided by the fraction of the transverse \(\tau_h\) momentum carried by the highest-\(p_T\) track and the fraction of transverse energy deposited in the electromagnetic calorimeter, for which higher values are expected in case of hadronic \(\tau\) decays compared to QCD jets. For \(\tau_h\) candidates with more than one associated track, the \(\tau\) lifetime is also exploited by measuring the decay length significance of the associated secondary vertex in the transverse plane. The single most discriminating of these quantities is the energy-weighted radius

\[
R_{\text{EM}} = \frac{\sum_i \Delta R_{\text{EM}} \cdot \Delta R_{i}}{\sum_i \Delta R_{\text{EM}}},
\]

where \(i\) iterates over cells in the first three layers of the electromagnetic calorimeter associated with the \(\tau_h\) candidate, \(\Delta R_i\) is defined relative to the \(\tau_h\) seed axis, and \(E_{\text{T},i}\) is the cell transverse energy.

These eight variables are combined in a boosted decision tree discriminator (BDT) [31], which provides an output value between 0 (background-like) and 1 (signal-like) with a continuous gradient of signal and background efficiency. This discriminator was optimized using a combination of \(W \rightarrow \tau \nu\) and \(Z \rightarrow \tau \tau\) Monte Carlo samples for the signal. The background was modeled from dijet events selected from data. For \(\tau_h\) transverse momenta \((p_T)\) above 20 GeV, the efficiency of the \(\tau_h\) identification at the tighter working point of the BDT identification considered for this measurement is about 30% with a jet rejection factor of 100 for \(\tau_h\) candidates with one track, while for candidates with three tracks it is about 35% with a rejection factor of 300 [30]. Additional requirements on the calorimeter and tracking properties of \(\tau_h\) candidates are used to discriminate against electrons and muons.

The missing transverse energy in the event, \(E_{\text{T}}^{\text{miss}}\), is reconstructed as \(\sqrt{(E_{\text{T}}^{\text{miss}})^2 + (E_{\text{T}}^{\text{miss}})^2}\), where \((E_{\text{T}}^{\text{miss}}, E_{\text{T}}^{\text{miss}})\) is the vector sum of all calorimeter energy clusters in the region \(|\eta| < 4.5\), corrected for identified muons [32]. With good approximation, the resolution of \(E_{\text{T}}^{\text{miss}}\) components is proportional to \(\alpha \propto \sqrt{E_T}\), where the scaling factor \(\alpha\) depends on both the detector and reconstruction performance and \(\sum E_T\) is calculated from all calorimeter energy clusters. The factor \(\alpha\) is about 0.5\$/\sqrt{\text{GeV}}$ for minimum bias events [33].
In order to reject events with large reconstructed E_{T}^{miss} due to fluctuations in the energy measurement, we define the significance of E_{T}^{miss} as

$$S_{E_{T}^{\text{miss}}} = \frac{E_{T}^{\text{miss}}[\text{GeV}]}{0.5\sqrt{\text{GeV}/\sqrt{\sum E_{T}[\text{GeV}]}}}$$ \hspace{1cm} (2)$$

$S_{E_{T}^{\text{miss}}}$ is found to provide better discrimination between the signal and the background from QCD jets than a simple E_{T}^{miss} requirement.

5. Event selection

Events are selected using triggers based on the presence of a τ_{h} jet and E_{T}^{miss}. In the earlier part of the 2010 data taking, corresponding to an integrated luminosity of 11 pb$^{-1}$, a loosely identified τ_{h} candidate with $p_{T}^{\tau_{h}} > 12$ GeV (as reconstructed at the trigger level) in combination with $E_{T}^{\text{miss}} > 20$ GeV was required. In the second part of the period (24 pb$^{-1}$), a tighter τ_{h} identification and higher thresholds of 16 GeV and 22 GeV had to be used for $p_{T}^{\tau_{h}}$ and E_{T}^{miss} respectively, due to the increasing luminosity. The signal efficiencies of these two triggers with respect to the offline selection are estimated from the simulation to be $(81.3 \pm 0.8\%)$ and $(62.7 \pm 0.7\%)$, respectively.

Events satisfying the trigger selection are required to have at least one reconstructed vertex that is formed by three or more tracks with $p_{T} > 150$ MeV. Further selection requirements based on calorimeter information are applied to reject non-collision events and events containing jets that were incompletely reconstructed or significantly affected by electronic noise in the calorimeters.

The calorimeter has a lower resolution for jets in the barrel-endcap transition regions. In order to ensure a uniform E_{T}^{miss} resolution, events are rejected if a jet or a τ_{h} candidate with $1.3 < |\eta| < 1.7$ is found. In events where the E_{T}^{miss} is found to be collinear to one of the jets, the reconstructed E_{T}^{miss} is likely to originate from an incomplete reconstruction of this jet. Therefore, a minimum separation $|\Delta\phi(\text{jet}, E_{T}^{\text{miss}})| > 0.5$ rad is required.

In order to suppress backgrounds from other leptonic W and Z decays, events containing identified electrons or muons with $p_{T} > 15$ GeV are rejected. The highest-p_{T} identified τ_{h} candidate in the event is considered for further analysis and required to be in the pseudorapidity range $|\eta| < 2.5$ and to have $20 < p_{T}^{\tau_{h}} < 60$ GeV. A minimum E_{T}^{miss} of 30 GeV is required and events are rejected if $S_{E_{T}^{\text{miss}}} < 6$.

6. Background estimation

The number of expected events from signal and electroweak background processes is obtained from simulation. This is justified by the good agreement between data and simulation observed in the ATLAS W cross section measurements [4,5] through decays into electrons or muons. It is further validated using a high-purity data sample of $W \rightarrow \mu \nu_{\mu}$ events, in which the muon is removed and replaced by a simulated τ_{h} lepton. Thus, only the τ decay and the corresponding detector response are taken from simulation while the underlying W kinematics and all the other properties of the event are obtained from the $W \rightarrow \mu \nu_{\mu}$ events. A good agreement is observed within the statistical uncertainties, which adds further confidence in the electroweak background event model provided by the simulated event samples used in this analysis.

Fig. 1 compares the distribution of $S_{E_{T}^{\text{miss}}}$ for the τ_{h}-embedded data sample with simulated $W \rightarrow \tau_{h} \nu_{\tau}$ events. A good agreement is observed within the statistical uncertainties, which adds further confidence in the electroweak background event model provided by the simulated event samples used in this analysis.

The background contribution from QCD jet production, for which the cross section is large and the selection efficiency is low, cannot be reliably modeled using simulated events alone and is thus estimated from data. In addition to the signal-dominated data set defined by the selection described in Section 5, three background control regions are defined by inverting the requirements on the $S_{E_{T}^{\text{miss}}}$ and/or the τ_{h} identification (ID), resulting in the following four samples:

- Region A: $S_{E_{T}^{\text{miss}}} > 6.0$ and τ_{h} candidates satisfying the signal τ_{h} ID requirements described in Section 4;
- Region B: $S_{E_{T}^{\text{miss}}} < 4.5$ and τ_{h} candidates satisfying the signal-region τ_{h} ID requirements;
- Region C: $S_{E_{T}^{\text{miss}}} > 6.0$ and τ_{h} candidates satisfying a looser τ_{h}-ID but failing the signal-region τ_{h} ID requirements;
- Region D: $S_{E_{T}^{\text{miss}}} < 4.5$ and τ_{h} candidates satisfying a looser τ_{h}-ID but failing the signal-region τ_{h} ID requirements.

Here, the looser τ_{h}-ID region is defined by selecting τ_{h} candidates with a lower value of the BDT output.

After ensuring that the shape of the $S_{E_{T}^{\text{miss}}}$ distribution for the QCD background is independent of the τ_{h}-ID requirement and assuming that the signal and electroweak background contributions in the three control regions are negligible, an estimate for the number of QCD background events in the signal region A is provided by

$$N_{QCD}^{A} = N^{B}\frac{N^{C}}{N^{D}},$$ \hspace{1cm} (3)$$

where N^{i} represents the number of observed events in region i.

In order to take into account the residual signal and EW background contamination in the control regions $i = B, C, D$, the number of selected events, N^{i}, needs to be replaced in Eq. (3) by $N^{i} - c_{i}(N^{A} - N_{QCD}^{A})$, where

$$c_{i} = \frac{N_{\text{sig}}^{i} + N_{\text{EW}}^{i}}{N_{\text{sig}}^{A} + N_{\text{EW}}^{A}}$$ \hspace{1cm} (4)$$

is the ratio of simulated signal and EW background events in the control region i and the signal region. Therefore Eq. (3) becomes

$$N_{QCD}^{A} = \frac{[N^{B} - c_{i}(N^{A} - N_{QCD}^{A})][N^{C} - c_{i}(N^{A} - N_{QCD}^{A})]}{N^{D} - c_{D}(N^{A} - N_{QCD}^{A})}.$$

(5)$$

The statistical error on N_{QCD}^{A} includes both the uncertainty on the calculation of the c_{i} coefficients, due to the Monte Carlo statis-
Table 1
Estimated sample compositions and c_i factors (as defined in Eq. (4)) in the signal region A and control regions B, C, and D defined in the text.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>N^I (Data)</td>
<td>2335</td>
<td>4796</td>
<td>1577</td>
<td>27636</td>
</tr>
<tr>
<td>$N_{bkg}^I (W \rightarrow \tau_h \nu)$</td>
<td>1811 ± 25</td>
<td>683 ± 16</td>
<td>269 ± 8</td>
<td>93 ± 5</td>
</tr>
<tr>
<td>N_{EW}^I</td>
<td>284 ± 7</td>
<td>118 ± 4</td>
<td>388 ± 9</td>
<td>90 ± 4</td>
</tr>
<tr>
<td>c_i</td>
<td>0.38 ± 0.01</td>
<td>0.31 ± 0.01</td>
<td>0.087 ± 0.003</td>
<td></td>
</tr>
<tr>
<td>N_{QCD}</td>
<td>127 ± 8</td>
<td>3953 ± 75</td>
<td>885 ± 45</td>
<td>27444 ± 166</td>
</tr>
</tbody>
</table>

Fig. 2. (a) S_{EM} distribution in the combined region AB, extended over the full S_{EM} range. The QCD background shape has been extracted from regions CD. Monte Carlo signal and EW background in regions AB are also shown; (b) the τ_h identification variable R_{EM} in the combined region AC. The QCD background shape has been extracted from regions BD. Monte Carlo signal and EW background in regions AC are also shown.

The quality of the description of the selected data by the background models can be judged from Figs. 2 and 3, where data and the background estimates (EW and QCD) are shown. Fig. 2(a) shows the distribution of S_{EM} in regions A and B, extended over the full S_{EM} range, for all events passing the selection criteria except for the S_{EM} requirement. In Fig. 2(b) the distribution of R_{EM} is shown. In this case events passing the selection criteria but considering τ_h candidates identified by the loose and the tight selections in regions A and C are shown. The agreement between data and Monte Carlo expectation confirms the results obtained by the data-driven background estimation. In Fig. 3 the distribution of E_{T}^{miss}, the p_T^{τ} spectrum, the number of tracks associated to the τ_h candidate, the distribution of $\Delta \phi (\tau_h, E_{T}^{\text{miss}})$ and the transverse mass, $m_T = \sqrt{2 \cdot p_T^{\tau} \cdot E_{T}^{\text{miss}} \cdot (1 - \cos \Delta \phi (\tau_h, E_{T}^{\text{miss}}))}$, in the selected signal region A are shown, illustrating the characteristic properties of $W \rightarrow \tau h \nu$ decays. In all the distributions reasonable agreement is observed between the data and Monte Carlo prediction.

7. Cross section measurement

The fiducial cross section is measured in a phase space region given by the geometrical acceptance of the detector and by the kinematic selection of the analysis (as described in Section 5). This region is defined based on the decay products from a simulated hadronic τ decay and corresponds to the criteria presented in Table 2.

Here, the visible τ momentum $p_{T}^{\tau, \text{vis}}$ and pseudorapidity $\eta^{\tau, \text{vis}}$ are calculated from the sum of the four-vectors of the decay products from the simulated hadronic τ decay, except for the neutrinos. This momentum also includes photons radiated both from the τ lepton and from the decay products themselves, considering only photons within $\Delta R < 0.4$ with respect to the τ_h. The minimum E_{T}^{miss} requirement translates into a cut on the transverse component of the sum of the simulated neutrino four-vectors $(\Sigma p_{T})_{\nu}$.

The fiducial cross section, including the branching ratio $BR(W \rightarrow \tau_h \nu \chi)$, is computed as

$$\sigma_{W \rightarrow \tau_h \nu} = \frac{N_{\text{obs}} - N_{\text{bkg}}}{C_{W}}$$

where N_{obs} is the number of observed events in data, N_{bkg} is the number of estimated (QCD and EW) background events (signal region A in Table 1), and C_{W} is the integrated luminosity. C_{W} is the correction factor that takes into account the efficiency of trigger, τ_h reconstruction and identification and the efficiency of all selection cuts within the acceptance:

$$C_{W} = \frac{N_{\text{reco, all cuts}}}{N_{\text{gen, kin/geom}}}$$

where $N_{\text{reco, all cuts}}$ is the number of fully simulated signal events passing the reconstruction, trigger and the selection cuts of the analysis and $N_{\text{gen, kin/geom}}$ is the number of simulated signal events within the fiducial region defined above.

With the kinematic and geometrical signal acceptance

$$A_{W} = \frac{N_{\text{gen, kin/geom}}}{N_{\text{gen, all}}}$$

where $N_{\text{gen, all}}$ is the total number of simulated signal events while $N_{\text{gen, kin/geom}}$ is the denominator of C_{W}, the total cross section

$$\sigma_{W \rightarrow \tau_h \nu} = \frac{N_{\text{obs}} - N_{\text{bkg}}}{A_{W} C_{W} L}$$

can be obtained. A_{W} and C_{W} are determined using a PYTHIA Monte Carlo signal sample described in Section 3. The fiducial acceptance is found to be $A_{W} = 0.0975 \pm 0.0004$ (MC stat) and the correction factor $C_{W} = 0.0799 \pm 0.0011$ (MC stat).

The measured fiducial cross section of the $W \rightarrow \tau_h \nu$ decay is $\sigma_{W \rightarrow \tau_h \nu} = 0.70 \pm 0.02$ (stat) nb and the total cross section is found to be $\sigma_{W \rightarrow \tau_h \nu} = 7.2 \pm 0.2$ (stat) nb.

Several alternative analyses are performed to confirm these results. For example, the BDT τ_h ID is replaced by a simpler identification based on cuts on three of the ID variables only [30]. Also, in order to study the influence of pile-up on the result, the signal selection is restricted to events with only one reconstructed primary vertex. In both cases consistent results are found.
8. Systematic uncertainties

Table 3 summarizes the systematic uncertainties. The main sources are discussed in the following.

8.1. Monte Carlo predictions

The trigger efficiency is determined in Monte Carlo for the combined E_{miss} and τ_h triggers used in the two data periods. The differences between the measured trigger responses of the two trigger components in data and Monte Carlo are used to determine the systematic uncertainty. A pure and unbiased sample enriched with W → τ_hν, events is obtained in data by applying an independent τ_h(E_{miss}^τ) trigger and selected cuts of the event selection like the BDT τ_h ID. The corresponding E_{miss}^τ(τ_h) trigger part is applied to this sample and the response of this trigger is compared to the response in Monte Carlo. The observed differences are integrated over the offline p_T^τ and E_{miss} range used for the cross section measurement. The total systematic uncertainty after the combination of the different trigger parts is 6.1%.

The signal and background acceptance depends on the energy scale of the clusters used in the computation of E_{miss} and S_{E_{miss}} and the energy scale of the calibrated τ_h candidates. Based on the current knowledge of the calibration the uncertainty due to cluster energy within the detector region |η| < 3.2 is at most 10% for p_T of 500 MeV and within 3% at high p_T [34]. In the forward region |η| > 3.2 it is estimated to be 10%. The effect on E_{miss} and S_{E_{miss}} has been evaluated by scaling all clusters in the event according to these uncertainties and recalculating E_{miss} and Σ E_T. At the same time, the τ_h energy scale has been varied according to its uncertainty [30]. This uncertainty depends on the number of tracks associated to the τ_h candidate, its p_T and the η region in which it was reconstructed, and ranges from 2.5% to 10%. In addition, the sensitivity of the signal and background efficiency to the E_{miss} resolution has been investigated [33]. Consequently, the yield of signal and EW background varies within 6.7% and 8.7%, respectively.

The identification and reconstruction efficiency of τ_h candidates was studied with Monte Carlo W → τ_hν, and Z → ττ samples and was found to vary with different simulation conditions such as different underlying event models, detector geometry, hadronic shower modeling and noise thresholds for calorimeter cells in the cluster reconstruction. In Ref. [30], these uncertainties are evaluated as a function of p_T^τ, separately for candidates with one or multiple tracks and low or high multiplicity of primary vertices in the event. The corresponding changes in the signal and EW background efficiencies are found to be 9.6% and 4.1%, respectively.

The probability of a jet or electron to be misidentified as a τ_h candidate has been evaluated in data and compared with the expectation from Monte Carlo. The rate of jets that are misidentified as a τ_h candidate was calculated using a selection of W → ℓν + jets events (with ℓ = e, μ) and measuring the fraction of reconstructed candidates that are found by the τ_h identification. The difference of this misidentification rate in Monte Carlo compared to that in data is 30% and this was applied as a systematic uncertainty to the fraction of events mimicked by a jet. The overall uncertainty on the EW background is 7.2%. The misidentification probability of
electrons as τ_h candidates has been determined with a "tag-and-probe" method using $Z \rightarrow ee$ events where the τ_h identification and τ_h electron veto is applied to one of the electrons. The difference between the misidentification probability in data and Monte Carlo as a function of η has been applied as a systematic uncertainty to τ_h candidates mimicked by an electron. It amounts to 4.5% for the total EW background.

Other sources of systematic uncertainty have been evaluated and were found to have only small effects on the resulting cross section measurement, for example the procedure to include pile-up effects, the uncertainty on the lepton selection efficiency entering via the veto of electrons and muons and the influence of the underlying event modeling on E_T^{miss} quantities. The uncertainties on the cross sections used for the EW background are taken from ATLAS measurements, when available, or theoretical NNLO calculations, and lie between 3 and 9.7% [8,35,6,7]. The uncertainty on the integrated luminosity is 3.4% [13,14].

8.2. QCD background estimation

Two different sources of systematic uncertainty arising from the method of estimating the QCD background events from data have been studied. The stability of the method and the small correlation of the two variables (τ_h ID and $S_{E_T^{\text{miss}}}$) used to define the control regions have been tested by varying the $S_{E_T^{\text{miss}}}$ threshold. The systematic uncertainty due to the correction for signal and EW background contamination in the control regions was obtained by varying the fraction of these events in the regions within the combined systematic and statistical uncertainties on the Monte Carlo predictions discussed above. The total uncertainty on the QCD background estimation is 3.4%.

8.3. Acceptance

The theoretical uncertainty on the geometric and kinematic acceptance factor A_W is dominated by the limited knowledge of the proton PDFs and the modeling of W boson production at the LHC.

The uncertainty resulting from the choice of the PDF set is evaluated by comparing the acceptance obtained with different PDF sets (the default MRST LO*, CTEQ6.6 and HERAPDF 1.0 [36]) and within one PDF set by re-weighting the default sample to the different error eigenvectors available for the CTEQ6.6 NLO PDF [37].

The uncertainty is 1.6% and 1.0%, respectively, which combines to 1.9%.

The uncertainty on the modeling of W production was evaluated by comparing the default sample acceptance to that obtained from an MC@NLO sample where the parton shower is modeled by HERWIG. The difference in acceptance is found to be smaller than 0.5%.

9. Results

The results of the analysis relevant to the cross section measurement are summarized in Table 4. Within the acceptance region defined in Table 2 they translate into a fiducial cross section σ_W^{fid} of

$$0.70 \pm 0.02 \text{ (stat)} \pm 0.11 \text{ (syst)} \pm 0.02 \text{ (lumi)} \text{ nb}$$

and a total cross section σ_W^{tot} of

$$7.2 \pm 0.2 \text{ (stat)} \pm 1.1 \text{ (syst)} \pm 0.2 \text{ (lumi)} \text{ nb}.$$
ATLAS Collaboration

ATLAS Collaboration

Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States
3 Department of Particle Physics, University of Montreal, Montreal, QC, Canada
4 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
5 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
6 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
7 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
8 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
9 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
10 Nagasaki Institute of Applied Science, Nagasaki, Japan
11 Graduate School of Science, Nagoya University, Nagoya, Japan
12 *INFN Sezione di Napoli*; *Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy*
13 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
14 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
15 *Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands*
16 Department of Physics, Northern Illinois University, DeKalb, IL, United States
17 Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
18 Department of Physics, New York University, New York, NY, United States
19 Ohio State University, Columbus, OH, United States
20 Faculty of Science, Okayama University, Okayama, Japan
21 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States
22 Department of Physics, Oklahoma State University, Stillwater, OK, United States
23 Petersburg Nuclear Physics Institute, Gatchina, Russia
24 *INFN Sezione di Pisa*; *Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy*
25 Department of Physics, University of Pennsylvania, Philadelphia, PA, United States
26 Physics Department, University of Regina, Regina, SK, Canada
27 Physics Department, Academy of Sciences of the Czech Republic, Praha, Czech Republic
28 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
29 Czech Technical University in Prague, Prague, Czech Republic
30 State Research Center Institute for High Energy Physics, Protvino, Russia
31 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
32 Physics Department, University of Rome Tor Vergata, Roma, Italy
33 *INFN Sezione di Roma I*; *Dipartimento di Fisica, Università La Sapienza, Roma, Italy*
34 *INFN Sezione di Roma Tor Vergata*; *Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy*
35 *INFN Sezione di Roma Tre*; *Dipartimento di Fisica, Università Roma Tre, Roma, Italy*
36 *Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Énergies – Université Hassan II, Casablanca;* *Centre National de l’Énergie des Sciences Techniques Nucléaires, Rabat,* *Université Cadi Ayyad, Faculté des Sciences Semlalia, Département de Physique, B.P. 2390, Marrakech 40000;* *Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda;* *Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy*
37 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States
38 Department of Physics, University of Washington, Seattle, WA, United States
39 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
40 Department of Physics, Shinsu University, Nagano, Japan
41 Fachbereich Physik, Universität Siegen, Siegen, Germany
42 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
43 SLAC National Accelerator Laboratory, Stanford, CA, United States
44 *Faculté de Mathématiques, Physique & Informatique, Comenius University, Bratislava;* *Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic*
45 *Department of Physics, University of Johannesburg, Johannesburg,* *School of Physics, University of the Witwatersrand, Johannesburg,* *South Africa*
46 *Department of Physics, Stockholm University;* *The Oskar Klein Centre, Stockholm, Sweden*
47 Physics Department, Royal Institute of Technology, Stockholm, Sweden
48 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, United States
49 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
50 School of Physics, University of Sydney, Sydney, Australia
51 Institute of Physics, Academia Sinica, Taipei, Taiwan
52 Department of Physics, Technion – Israel Inst. of Technology, Haifa, Israel
53 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
54 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
55 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
56 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
57 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
58 Department of Physics, University of Toronto, Toronto, ON, Canada
59 *TRIUMF, Vancouver, BC;* *Department of Physics and Astronomy, York University, Toronto, ON, Canada*
60 Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
61 Science and Technology Center, Tufts University, Medford, MA, United States
62 *Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia*
63 *Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States*
64 *INFN Gruppo Collegato di Udine;* *ICTP, Trieste;* *Department of Fisica, Università di Udine, Udine, Italy*
65 Department of Physics, University of Illinois, Urbana, IL, United States