Measurement of the top quark pair production cross section in pp collisions at $\sqrt{s} = 7$ TeV in dilepton final states with ATLAS

ATLAS Collaboration

A measurement of the production cross section of top quark pairs (tt) in proton–proton collisions at a center-of-mass energy of 7 TeV recorded with the ATLAS detector at the Large Hadron Collider is reported. Candidate events are selected in the dilepton topology with large missing transverse energy and at least two jets. Using a data sample corresponding to an integrated luminosity of 35 pb$^{-1}$, a tt production cross section $\sigma_{tt} = 177\pm20$ (stat.)±14 (syst.)±7 (lum.) pb is measured for an assumed top quark mass of $m_t = 172.5$ GeV. A second measurement requiring at least one jet identified as coming from a b quark yields a comparable result, demonstrating that the dilepton final states are consistent with being accompanied by b-quark jets. These measurements are in good agreement with Standard Model predictions.

© 2011 CERN. Published by Elsevier B.V. All rights reserved.
2. Detector and data sample

The ATLAS detector [10] at the LHC covers nearly the entire solid angle1 around the collision point. It consists of an inner tracking detector (ID) comprising a silicon pixel detector, a silicon microstrip detector (SCT), and a transition radiation tracker, providing tracking capability within $|\eta| < 2.5$. The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field, and by liquid-argon (LAr) electromagnetic sampling calorimeters with high granularity. An iron-scintillator tile calorimeter provides hadronic energy measurements in the central rapidity range ($|\eta| < 1.7$). The end-cap and forward regions are instrumented with LAr calorimetry for both electromagnetic and hadronic energy measurements up to $|\eta| < 4.9$. The calorimeter system is surrounded by a muon spectrometer incorporating three superconducting toroid magnet assemblies.

A three-level trigger system is used to select the high-p_T events for this analysis. The level-1 trigger is implemented in hardware and uses a subset of the detector information to reduce the rate to a design value of at most 75 kHz. This is followed by two software based trigger levels, that together reduce the event rate to about 200 Hz. The analyses use collision data with a center-of-mass energy of $\sqrt{s} = 7$ TeV recorded in 2010 with an integrated luminosity of 35.3 ± 1.2 pb$^{-1}$ [11].

3. Simulated samples

Monte Carlo (MC) simulation samples are used to calculate the $t\bar{t}$ acceptance and to evaluate the contributions from those background processes that are difficult to estimate from complementary data samples. All MC processes are processed with the Geant4 [12] simulation of the ATLAS detector [13] and events are passed through the same analysis chain as the data.

The generation of $t\bar{t}$ and single top quark events uses the MCH@NLO generator [14–16] with the CTEQ6.6 [17] parton distribution function (PDF) set and a top quark mass of 172.5 GeV. The $t\bar{t}$ cross section is normalized to the prediction of HATHOR [18] that employs an approximate NNLO perturbative QCD calculation. Single top quark production with MC@NLO includes the s, t and Wt channels, and the diagram-removal scheme [19] is used to reduce overlap with the tt final state.

Drell–Yan events ($Z/\gamma^* + jets$) are modeled with the ALPGEN generator using the MLM matching scheme [20] and the CTEQ6L1 [21] PDF set. The $Z/\gamma^* + jets$ samples, including light and heavy flavor jets, are normalized to NNLO calculations from the FEWZ program [22] with a K-factor of 1.25. Background contributions from the $W + jets$ final states come primarily from events where the W boson decays leptonically and the second lepton candidate is a misidentified jet. They are estimated using auxiliary data samples. All MC simulated events are hadronized using the Herwig shower model [23,24] supplemented by the JIMMY underlying event model [25]. Both hadronization programs are tuned to data using the ATLAS MC10 tune [26]. Diboson WW, WZ and ZZ events are modeled using the ALPGEN generator normalized with K-factors of 1.26 (WW), 1.28 (WZ) and 1.30 (ZZ) to match the total cross section from NLO QCD predictions using calculations with the MCFM program [27].

For backgrounds, such as $W + jets$ and QCD multijet events, that are mainly selected through non-prompt or misidentified leptons, simulated MC samples are not used, but instead data-driven estimations are employed (see Section 6).

4. Object selection

Electron candidates are reconstructed from energy deposits in the calorimeter, which are then associated to reconstructed tracks of charged particles in the ID. The candidates are required to pass a stringent selection [28], which uses calorimeter and tracking variables, and are required to have $p_T > 20$ GeV and $|\eta| < 2.47$. Electrons in the transition region between the barrel and endcap calorimeters, defined as $1.37 < |\eta| < 1.52$, are excluded.

Muon candidates are reconstructed [29] by searching for track segments in different layers of the muon chambers. These segments are combined starting from the outermost layer and matched with tracks found in the ID. The candidates are refit using the complete track information from both detector systems and are required to satisfy $p_T > 20$ GeV and $|\eta| < 2.5$.

Both lepton candidates are required to be isolated to reduce backgrounds arising from jets and to suppress the selection of leptons from heavy flavor decays inside jets. For electron candidates, the transverse energy (E_T) deposited in the calorimeter and not associated to the electron is summed in a cone in η–ϕ space of radius $\Delta R = 0.2$ around the electron. This E_T is required to be less than 4 GeV. For muon candidates, both the corresponding calorimeter isolation E_I and the analogous track isolation transverse momentum (p_T) must be less than 4 GeV in a cone of $\Delta R = 0.3$. The track isolation p_T is calculated from the sum of the track transverse momenta for tracks with $p_T > 1$ GeV around the muon candidate. Additionally, muon candidates must be separated by a distance $\Delta R > 0.4$ from any jet with $p_T > 20$ GeV, further suppressing muon candidates from heavy flavor decays.

Muon candidates arising from cosmic rays are rejected by removing candidate pairs that are back-to-back in the r–ϕ plane and that have transverse impact parameter relative to the beam axis $|d_0| > 0.5$ mm.

Track-lepton candidates are defined by an ID track with $p_T > 20$ GeV and a series of quality cuts optimized for high efficiency and discrimination between signal and the main background (non-Z boson background, see Section 6). Tracks must have at least six SCT hits and at least one hit in the innermost pixel layer. They also must have $|\eta| < 0.2$ mm, and the uncertainty on the momentum measurement must be less than 20%. Tracks have to be isolated from other nearby tracks: the track isolation as defined for muon candidates, but using tracks with $p_T > 0.5$ GeV, must be less than 2 GeV. The use of track-lepton candidates primarily recovers acceptance losses from uninstrumented regions in the muon system and calorimeter transition regions.

Jets are reconstructed with the anti-k_t algorithm [30] with radius parameter $R = 0.4$ starting from energy clusters of adjacent calorimeter cells. These jets are calibrated by first correcting the jet energy using the scale established for electromagnetic objects and then performing a further correction to the hadronic energy scale using p_T- and η-dependent correction factors obtained from simulation [31]. Jets are corrected for additional energy deposits from the presence of multiple pp interactions. The jets used in the analysis are required to have no electron candidate or, in case of lepton + jet events (see Section 5), no track-lepton candidate within $\Delta R = 0.4$, $p_T > 20$ GeV and $|\eta| < 2.5$.

Jets are identified as b-quark candidates using the JetProng b-tagging algorithm [32]. This algorithm takes all well-measured

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. Distances in η–ϕ space are given as $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$.
tracks associated with a given jet and forms a p-value for the hypothesis that the set of tracks comes from a common primary vertex of a \(pp \) interaction, taking into account the track measurement uncertainties. The p-value requirement results in a b-tagging efficiency of \(\approx 70\% \) per jet in \(\tau \) candidate events, and a mistag rate of order 1% for both light-quark and gluon jets.

The missing transverse energy \((E_{\text{T}}\text{miss}) \) calculation begins with the vector sum of transverse momenta of all jets with \(p_T > 20 \text{ GeV} \) and \(|\eta| < 4.5 \). The transverse energies of electron candidates are added. The contributions from all well-identified muon candidates and calorimeter clusters not belonging to a reconstructed object are also included. To suppress backgrounds from \(Z/\gamma^* + \text{jets} \), the \(E_{\text{T}}\text{miss} \) is corrected by the \(p_T \) of the track-lepton in muon + track events if the \(\Delta \phi \) between the \(E_{\text{T}}\text{miss} \) and track direction is less than 0.15 and there is no muon candidate within \(\Delta R = 0.05 \) of the track-lepton candidate. This properly accounts for the contribution to \(E_{\text{T}}\text{miss} \) of track-lepton candidates.

5. Event selection

The analysis requires events selected online by an inclusive single-lepton trigger (e or \(\mu \)). The detailed trigger requirements vary through the data-taking period, due to the rapidly increasing LHC luminosity and the commissioning of the trigger system, but with a trigger threshold that ensures full efficiency for the lepton candidates with \(p_T > 20 \text{ GeV} \) that are used in the analysis. To ensure that the event was triggered by the selected lepton candidates, one of the well-identified leptons and the trigger object are required to match within \(\Delta R < 0.15 \).

Events are required to have a primary interaction vertex with at least five tracks. The event is discarded if any jet with \(p_T > 20 \text{ GeV} \) fails quality cuts designed to reject jets arising from out-of-time activity or calorimeter noise [33]. If an electron candidate and a muon candidate share a track, the event is also discarded.

The selection of events in the signal region consists of a series of kinematic requirements on the reconstructed objects. The requirements on \(E_{\text{T}}\text{miss} \), the dilepton invariant mass \((m_{\ell\ell}) \), and the scalar \(p_T \) sum of all selected jets and leptons (\(H_T \)) are optimized using simulated events for maximum significance, defined as \(S/\sqrt{S+\sigma_T^2} \) where \(S \) is the expected number of signal events and \(\sigma_T \) is the total uncertainty on the number of background events, \(B \).

The presence of exactly two oppositely-charged well-identified lepton candidates is required. If only one well-identified lepton candidate is found, the event is retained if an oppositely charged track-lepton candidate is present, forming a lepton + track candidate event. Events must have at least two jets with \(p_T > 20 \text{ GeV} \) and \(|\eta| < 2.5 \). Furthermore, events in all channels other than \(e\mu \) are required to have \(m_{\ell\ell} > 15 \text{ GeV} \) in order to reject backgrounds from bottom quark production and vector meson decays.

The following additional kinematic requirements are made:

- Events in the \(ee \) and \(\mu\mu \) channels must satisfy \(E_{\text{T}}\text{miss} > 40 \text{ GeV} \), and \(m_{\ell\ell} \) must differ by at least 10 GeV from the \(Z \)-boson mass, \(m_Z \), to suppress backgrounds from \(Z/\gamma^* + \text{jets} \) and multijet events.
- Events in the \(e\mu \) channel have no \(E_{\text{T}}\text{miss} \) or \(m_{\ell\ell} \) cuts applied. In this case, remaining background from \(Z/\gamma^* + \text{jets} \) production is suppressed by requiring \(H_T > 130 \text{ GeV} \).
- The lepton + track event candidates must have \(E_{\text{T}}\text{miss} > 40 \text{ GeV} \), \(H_T \) (including the track-lepton) > 150 GeV, \(|m_{\ell\ell} - m_Z| > 10 \text{ GeV} \).

The requirement of at least one b-tagged jet using the JETPROB algorithm allows for a kinematic event selection that can be optimized further. To define the b-tagged sample, the selection described above is modified to require only events with two well-identified lepton candidates; the lepton + track candidates are discarded. The dilepton invariant mass must satisfy \(|m_{\ell\ell} - m_Z| > 5 \text{ GeV} \), and the \(E_{\text{T}}\text{miss} \) and \(H_T \) requirements are modified to \(E_{\text{T}}\text{miss} > 30 \text{ GeV} \) and \(H_T > 110 \text{ GeV} \).

The overall \(\tau \) signal efficiencies with respect to all \(\tau \) events (to all dilepton events) are 1.69% (16.1%) and 1.23% (11.7%) for the untagged and tagged analysis, respectively.

6. Backgrounds

The \(\tau \) event selection is designed to reject \(Z/\gamma^* + \text{jets} \) events. However, a small fraction of such events will remain in the signal sample primarily due to \(E_{\text{T}}\text{miss} \) mismeasurements. These events are difficult to model properly in simulations due to large uncertainties on the non-Gaussian tails of the \(E_{\text{T}}\text{miss} \) distribution, on the Z boson cross section for higher jet multiplicities and on the lepton energy resolution. To estimate the \(Z/\gamma^* + \text{jets} \) background (the \(Z \to \tau \tau \) channel is not considered here) in a data-assisted way, the number of \(Z/\gamma^* + \text{jets} \) events is measured in a control region orthogonal to the \(\tau \) dilepton signal region. The control region is formed by events with the same jet requirements as the signal region, but with \(|m_{\ell\ell} - m_Z| < 10 \text{ GeV} \) and a lower \(E_{\text{T}}\text{miss} \) cut \((E_{\text{T}}\text{miss} > 15 \text{ GeV} \) for the lepton + track event candidates and \(E_{\text{T}}\text{miss} > 30 \text{ GeV} \) for the others). Contamination in the control region from signal and background processes considered in the analysis is predicted by MC simulations and is subtracted. A scale factor, the ratio between the number of events predicted in the signal and control regions, is determined using MC simulations and is used to extrapolate the \(Z/\gamma^* + \text{jets} \) event rate from the control region measured in data into the signal region. Although the predictions from MC calculations agree with the data-driven estimates, the estimates have smaller uncertainties.

Non-Z boson backgrounds mainly come from \(W + \text{jets} \), \(\tau \) production with a single lepton in the final state and single top production. Such background events contain non-prompt leptons (e.g. leptons coming from b-hadron decays) or misidentified leptons arising from jets (e.g. lighter hadron decays with a leading \(p_T \) decaying to photons). The term “fake lepton” refers to both misidentified and non-prompt lepton candidates.

The yield of background events with two well-identified lepton candidates that contain at least one fake lepton is estimated from data using a matrix method [9]. From data control regions the probability for single loose leptons to pass the full identification cuts (tight leptons) is measured. A loose lepton refers to a lepton candidate that passes looser isolation criteria. The control regions are selected such that either dominantly real or fake leptons are selected by the looser cuts. The probability for real leptons is measured from the \(Z \to ee \) and \(Z \to \mu\mu \) control regions. The probability for fake leptons is measured in a data sample dominated by dijet production with events containing one loose lepton candidate and having low \(E_{\text{T}}\text{miss} \). These probabilities enter a matrix that relates the numbers of observed dilepton candidate events with every combination of loose or tight leptons with the numbers of events from the sources of either real leptons or objects that might result in a fake lepton candidate. The matrix is inverted in order to estimate the real and fake content of the observed event sample.

In the lepton + track channels, the largest source of non-Z boson backgrounds are events with a fake track lepton candidate. This background rate is determined from a \(y + \text{jets} \) data sample selected with photon triggers. The fake rate is applied to a second
sample enriched in $W + \text{jets}$ events with exactly one lepton and no track leptons but using the same kinematic cuts as for the signal sample. In this second sample the fake probabilities are summed over all jets in all events and the fake rates are calculated as a function of the jet multiplicity.

The contributions from other electroweak background processes with two real leptons (other EW), such as single top, $Z \rightarrow \tau\tau$, WW, ZZ and WZ production are estimated from Monte Carlo simulations and found to be relatively small. The numbers of background events estimated with each method are included in Table 1.

The modeled acceptances, efficiencies and data-driven background estimation methods are validated by comparing Monte Carlo predictions with data in control regions that are depleted of $t\bar{t}$ events but have similar kinematics. In particular, the E_{miss}, $m_{\ell\ell}$ and jet multiplicity distributions in a sample of Z boson candidates defined by requiring $|m_{\ell\ell} - m_Z| < 10$ GeV and low E_{miss} are compared to MC predictions and are in good agreement with data.

The background contributions after requiring at least one b-tagged jet are determined using the same techniques described above to evaluate the rate of the background sources before making the b-tag requirement. Measured light quark and gluon jet rejection factors [34] are then applied to estimate the number of background events that remain in the candidate sample.

7. Systematic uncertainties

The uncertainties due to MC simulation modeling of the lepton trigger, lepton and track-lepton reconstruction and selection efficiencies are assessed using $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ candidate events found in the same data sample used for the $t\bar{t}$ analyses before applying Z boson veto requirements. Scale factors are applied to MC samples when calculating acceptances to account for any observed differences in predicted and observed efficiencies. The modeling of lepton momentum scale and resolution is studied using the $m_{\ell\ell}$ distributions of $Z/\gamma^* + \text{jets}$ candidate events, and the simulation is adjusted accordingly. The acceptance uncertainty from the lepton modeling is dominated by the electron selection efficiency uncertainty.

The jet energy scale (JES) and its uncertainty are derived by combining information from test-beam data, LHC collision data and simulation [35]. For the selected jets, the JES uncertainty varies in the range 2–8% as a function of jet p_T and η. The jet energy resolution and jet reconstruction efficiency measured in data and in simulation are compared and are in good agreement. The statistical uncertainties on the comparisons, 10% and 1–2% for the energy resolution and the efficiency, respectively, are taken as systematic uncertainties associated with these effects. The effect on the acceptance is dominated by the JES uncertainty.

The systematic uncertainty in the efficiency of the JETPROB tagging algorithm has been estimated to be 6% for b-quark jets, based on b-tagging calibration studies using inclusive lepton and multijet final states [34]. The uncertainties on the tagging efficiencies for light and charm quarks are several times higher, but are not a large source of uncertainty due to the intrinsically high signal-to-background ratios in the dilepton final states. The acceptance uncertainty due to b-tagging ranges from 4 to 6% depending on the channel.

The uncertainty in the kinematic distribution of the $t\bar{t}$ signal events gives rise to systematic uncertainties in the signal acceptance, with contributions from the choice of generator, the modeling of initial and final state radiation (ISR/FSR) and the PDFs. The generator uncertainty is evaluated by comparing the MC@NLO MC predictions with those of the POWHEG MC [36–38] interfaced to both HERWIG or PYTHIA [39] shower models. The uncertainty due to ISR/FSR is evaluated using the AcerMC generator [40] interfaced to the PYTHIA shower model, and by varying the parameters controlling ISR and FSR in a range consistent with experimental data [41]. Finally, the PDF uncertainty is evaluated using a range of current PDF sets [9]. The dominant uncertainty in this category of systematics is the modeling of ISR/FSR and generator choice.

For $Z/\gamma^* + \text{jets}$ background events the normalization uncertainty is modeled by separately considering events with a given jet multiplicity. While the cross section in the 0-jet multiplicity sample has 4% uncertainty, the extrapolation to each following jet multiplicity increases the uncertainty by an additional 24% [42].

Overall normalization uncertainties on the backgrounds from single top quark and diboson production are taken to be 10% [43, 44] and 5% [45], respectively.

The systematic uncertainties from the background estimates employing complementary samples include the statistical uncertainties as well as the systematic uncertainties arising from the objects and MC estimates that are used in the methods. The uncertainty on the data-driven $Z/\gamma^* + \text{jets}$ estimation is included by varying the E_{miss} cut in the control region by ± 5 GeV. An additional systematic uncertainty for the fake track-lepton estimate is derived from the difference in the observed and predicted number of fake events in control regions, defined as opposite sign events with zero or one jet without an H_T cut or as same sign-events with more than one jet. Both data-driven methods are limited primarily by the statistical uncertainty in the number of events in the respective control regions.

8. Cross section measurement

The expected and measured numbers of events in the signal region after applying all selection cuts for each of the individual dilepton channels are shown in Table 1. A total of 154 candidate events are observed for the analysis without b-tagging, 104 events in the well-identified dilepton channels and 50 events in the lepton + track channels. A total of 98 candidate events are observed in the analysis using b-tagging, with 84 events in common with the untagged analysis.

In Fig. 1 the distributions of the jet multiplicity are shown for the $e\mu$, $\mu\mu$ and $e\mu$ channels and the sum of all five channels together with the expectation for 35 pb$^{-1}$. The distributions of E_{miss} for the sum of the $e\mu$, $\mu\mu$ channels, the sum of the track-lepton channels and of H_T for the $e\mu$ channel are shown in Fig. 2 and for the b-tag analysis in Fig. 3. All requirements are applied except on the variable whose distribution is shown in the figure.

The dominant background in the $e\mu$ and $\mu\mu$ channels is $Z/\gamma^* + \text{jets}$ production. The next largest background are events with fake leptons. From simulation it is found that this is mainly $W + \text{jets}$ production with an additional lepton candidate (mostly from b-quark decays).

The cross section results are obtained with a likelihood fit [46] in which the probability of observing a number of signal and background events, N_i^{obs}, in each channel i is modeled by a Poisson distribution, P, given an expected number of events, N_i^{exp}. The integrated luminosity, L, is modeled with a Gaussian distribution, \mathcal{G}, about its central value, L_0. The variation in N_i^{exp} due to each systematic source j is modeled with a Gaussian distribution, \mathcal{G}_j, for the associated nuisance parameter α_j, where $\alpha_j = \pm 1$ represents the ± 1 standard deviation variation of the systematic source. The cross section, σ_{sig}, is left as a free parameter in the fit of the likelihood function:

$$L(\sigma_{\text{sig}}, L, \alpha) = \prod_{i \text{channel}} P(N_i^{\text{obs}} | N_i^{\text{exp}}(\alpha_i))$$
The resulting estimate of $\lambda(\sigma)$ given $\hat{\lambda}$ and the double circumflex represents the conditional MLE for a $\lambda(\sigma)$.

Fig. 2. The E_T^{miss} distribution in the signal region without the $E_T^{miss} > 40$ GeV requirement (a) for the ee and $\mu\mu$ channels and (b) for the lepton + track channels. Fake denotes the contribution from fake track-leptons. The H_T distribution in the signal region for the $e\mu$ channel is shown in (c) without the $H_T > 130$ GeV requirement. Contributions from diboson and single top events are summarized as 'other EW'. In all figures the last bin contains the overflow. The uncertainty on the data points are statistical uncertainties only, whereas the uncertainty bands include statistical and systematic uncertainties.

The cross section is inferred from the profile likelihood ratio $\lambda(\sigma_{\text{sig}}) = L(\sigma_{\text{sig}}, \hat{\lambda}, \hat{\sigma})/L(\sigma_{\text{sig}}, \hat{\lambda}, \hat{\sigma})$, where a single circumscription represents the maximum likelihood estimate (MLE) of the parameter and the double circumscription represents the conditional MLE for a given σ_{sig}. Ensembles of pseudo-data are generated for N_{obs} and the resulting estimate of $\hat{\sigma}_{\text{sig}}$ is confirmed to be unbiased. Additionally, the variance of $\hat{\sigma}_{\text{sig}}$ is found to be consistent with the curvature of the profile likelihood at its minimum and with the mean square spread observed in the ensemble tests. Table 2 lists the uncertainties for each contribution from the data and MC statistics, the uncertainties related to the object selection (grouped in lepton, track-lepton, jet/E_T^{miss} and b-jet uncertainties), the background estimation methods and the uncertainties on the simulated samples. The variation of the cross section due to the luminosity uncertainty is obtained by repeating the likelihood minimization while fixing the luminosity to the nominal value ± 1 standard deviation. For the final result the luminosity uncertainty is

Table 1

<table>
<thead>
<tr>
<th>Un-tagged</th>
<th>$\mu\mu$</th>
<th>$e\mu$</th>
<th>eTL</th>
<th>μTL</th>
<th>Tagged</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z/\gamma^* \rightarrow ee/\mu\mu$</td>
<td>1.1 ± 0.5</td>
<td>3.5 ± 1.4</td>
<td>-1</td>
<td>7.1 ± 1.5</td>
<td>2.2 ± 0.9</td>
</tr>
<tr>
<td>$Z/\gamma^* \rightarrow e\tau$</td>
<td>0.4 ± 0.3</td>
<td>1.2 ± 0.6</td>
<td>3.0 ± 1.3</td>
<td>1.9 ± 1.0</td>
<td>2.2 ± 0.9</td>
</tr>
<tr>
<td>Fake leptons</td>
<td>1.0 ± 0.9</td>
<td>0.4 ± 0.5</td>
<td>1.9 ± 1.7</td>
<td>8.1 ± 2.9</td>
<td>8.2 ± 2.9</td>
</tr>
<tr>
<td>Single top</td>
<td>0.6 ± 0.1</td>
<td>1.2 ± 0.2</td>
<td>2.4 ± 0.3</td>
<td>0.5 ± 0.1</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>Diboson</td>
<td>0.5 ± 0.1</td>
<td>0.9 ± 0.1</td>
<td>2.0 ± 0.3</td>
<td>0.5 ± 0.1</td>
<td>0.4 ± 0.1</td>
</tr>
<tr>
<td>Total background</td>
<td>3.6 ± 1.2</td>
<td>7.2 ± 1.6</td>
<td>9.4 ± 2.5</td>
<td>18.1 ± 3.4</td>
<td>13.8 ± 3.2</td>
</tr>
<tr>
<td>Predicted $t\bar{t}$</td>
<td>10.9 ± 1.2</td>
<td>19.4 ± 1.5</td>
<td>45.7 ± 3.7</td>
<td>10.2 ± 1.3</td>
<td>11.0 ± 1.8</td>
</tr>
<tr>
<td>Total</td>
<td>14.5 ± 1.7</td>
<td>26.6 ± 2.1</td>
<td>55.1 ± 4.4</td>
<td>28.3 ± 3.6</td>
<td>24.6 ± 3.7</td>
</tr>
<tr>
<td>Observed</td>
<td>17</td>
<td>30</td>
<td>57</td>
<td>29</td>
<td>21</td>
</tr>
</tbody>
</table>
Table 2
The $\ell\ell$ cross section uncertainties. These include the uncertainties from the data and MC statistics, the uncertainties related to the object selection (grouped in lepton, track lepton ETL/μTL jet/EmissT and b-tagging uncertainties), the background estimation methods ($Z/\gamma^* +$ jets and fakes), the uncertainties on the simulated samples (generator) and the luminosity uncertainty.

<table>
<thead>
<tr>
<th>$\Delta \sigma / \sigma$ (%)</th>
<th>Untagged</th>
<th></th>
<th></th>
<th>Tagged</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ggF</td>
<td>± 22</td>
<td>± 30</td>
<td>± 22</td>
<td>± 28</td>
<td>± 24</td>
<td>± 28</td>
</tr>
<tr>
<td>VV</td>
<td>± 12</td>
<td>± 17</td>
<td>± 12</td>
<td>± 17</td>
<td>± 12</td>
<td>± 17</td>
</tr>
<tr>
<td>ZZ</td>
<td>± 8</td>
<td>± 11</td>
<td>± 8</td>
<td>± 11</td>
<td>± 8</td>
<td>± 11</td>
</tr>
<tr>
<td>tt</td>
<td>± 6</td>
<td>± 9</td>
<td>± 6</td>
<td>± 9</td>
<td>± 6</td>
<td>± 9</td>
</tr>
<tr>
<td>WW</td>
<td>± 5</td>
<td>± 7</td>
<td>± 5</td>
<td>± 7</td>
<td>± 5</td>
<td>± 7</td>
</tr>
<tr>
<td>WZ</td>
<td>± 4</td>
<td>± 5</td>
<td>± 4</td>
<td>± 5</td>
<td>± 4</td>
<td>± 5</td>
</tr>
<tr>
<td>Wγ</td>
<td>± 3</td>
<td>± 4</td>
<td>± 3</td>
<td>± 4</td>
<td>± 3</td>
<td>± 4</td>
</tr>
</tbody>
</table>

Table 3
Measured cross sections in each dilepton channel, and the combination of the untagged and tagged channels with their statistical and systematic uncertainties. The luminosity uncertainty is not included here.

<table>
<thead>
<tr>
<th>Channel</th>
<th>σ_ℓ (pb)</th>
<th>b-tag σ_ℓ (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ee</td>
<td>202.7 ± 30</td>
<td>190.7 ± 36</td>
</tr>
<tr>
<td>$\mu\mu$</td>
<td>192.2 ± 17</td>
<td>190.2 ± 20</td>
</tr>
<tr>
<td>$e\mu$</td>
<td>172 ± 13</td>
<td>193 ± 11</td>
</tr>
<tr>
<td>$\mu\ell$</td>
<td>175 ± 15</td>
<td>174 ± 15</td>
</tr>
<tr>
<td>μTL</td>
<td>110 ± 64</td>
<td>110 ± 64</td>
</tr>
<tr>
<td>Combined</td>
<td>171 ± 22</td>
<td>194 ± 23</td>
</tr>
</tbody>
</table>

Fig. 3. The E_{miss}^T distributions for (a) ee and (b) $\mu\mu$ channels omitting the E_{miss}^T requirement, and (c) the H_T distribution for the $e\mu$ channel omitting the H_T requirement, in each case after b-tagging has been applied. Contributions from diboson and single top events are summarized as ‘other EW’.

The measured cross sections are in good agreement with a simulation of events that arise from top quark pair production.

The measured cross sections are in good agreement with a simulation of events that arise from top quark pair production.

The measured cross sections are in good agreement with a simulation of events that arise from top quark pair production.

The measured cross sections are in good agreement with a simulation of events that arise from top quark pair production.

A measurement made requiring at least one of the jets to be identified as a b-quark jet results in $\sigma_\ell = 194 \pm 23$ (stat.) $^{+18}_{-14}$ (syst.) ± 7 (lum.) pb.

The two measurements agree with each other, taking into account that from all events 14% (tagged analysis) and 45% (untagged analysis) of the events are uncorrelated, and that the b-tagging systematic uncertainty is also uncorrelated. The agreement confirms that the candidate events are consistent with arising from top quark pair production.

Acknowledgements
We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; BMBF, BMDO, MPG and AVH Foundation, Germany; GNSA, Georgia; BMBF, DG, HGF, MPG and AVH Foundation, Germany; GSR, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands;

ATLAS Collaboration

...
International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, University of Toronto, Toronto, ON, Canada

(a)Triumf, Vancouver, BC; (b)Department of Physics and Astronomy, York University, Toronto, ON, Canada

Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan

Science and Technology Center, Tufts University, Medford, MA, United States

Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States

\begin{itemize}
 \item aINFN Gruppo Collegato di Udine;
 \item bICTP, Trieste;
 \item cDipartimento di Fisica, Università di Udine, Udine, Italy
\end{itemize}

Department of Physics, University of Illinois, Urbana, IL, United States

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

\begin{itemize}
 \item aAlso at Laboratorio de Instrumentacao e Fisica Experimental de Particulas – LIP, Lisboa, Portugal.
 \item bAlso at Faculdade de Ciencias and CFNU1, Universidade de Lisboa, Lisboa, Portugal.
 \item cAlso at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
 \item dAlso at CFPN, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
 \item eAlso at TRUIMF, Vancouver, BC, Canada.
 \item fAlso at Department of Physics, California State University, Fresno, CA, United States.
 \item gAlso at Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland.
 \item hAlso at Department of Physics, University of Coimbra, Coimbra, Portugal.
 \item iAlso at Università di Napoli Parthenope, Napoli, Italy.
 \item jAlso at Institute of Particle Physics (IPP), Canada.
 \item kAlso at Department of Physics, Middle East Technical University, Ankara, Turkey.
 \item lAlso at Louisiana Tech University, Ruston, LA, United States.
 \item mAlso at Group of Particle Physics, University of South Carolina, Columbia, SC, United States.
 \item nAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
 \item oAlso at California Institute of Technology, Pasadena, CA, United States.
 \item pAlso at Institute of Physics, Jagellonian University, Krakow, Poland.
 \item qAlso at Department of Physics, Oxford University, Oxford, United Kingdom.
 \item rAlso at Institute of Physics, Academia Sinica, Taipei, Taiwan.
 \item sAlso at High Energy Physics Group, Shandong University, Shandong, China.
 \item tAlso at Section de Physique, Université de Genève, Geneva, Switzerland.
 \item uAlso at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
 \item vAlso at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
 \item wAlso at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.
 \item xAlso at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.
 \item yAlso at Department of Physics, Nanjing University, Jiangsu, China.
\end{itemize}

* Deceased.