Measurement of the top quark pair production cross section in pp collisions at $\sqrt{s} = 7$ TeV in dilepton final states with ATLAS

DOI
10.1016/j.physletb.2011.12.055

Publication date
2012

Document Version
Final published version

Published in
Physics Letters B

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Measurement of the top quark pair production cross section in pp collisions at $\sqrt{s} = 7$ TeV in dilepton final states with ATLAS

ATLAS Collaboration

1. Introduction

The study of top quarks probes the validity of the Standard Model (SM) and plays an important role in the search for new physics. At the Large Hadron Collider (LHC) the tt production cross section (σ_{tt}) in proton–proton (pp) collisions at a center-of-mass energy $\sqrt{s} = 7$ TeV is predicted by an approximate next-to-next-to-leading-order (NNLO) SM calculation to be 165^{+11}_{-10} pb [1,2]. A measurement of σ_{tt} in various decay channels tests perturbative QCD and the description of top quark decay. Moreover, tt production is an important background in searches for the Higgs boson and physics beyond the Standard Model. The study of tt events may provide evidence for new physics that modifies the production and/or decay of top quarks.

In the SM the top quark decays to a W boson and a b quark ($t \rightarrow Wb$) with a branching ratio close to 100% [3–5]. The tt event topologies are determined by the decays of the two W bosons: a pair of quarks ($W \rightarrow q\bar{q}$) or a lepton–neutrino pair ($W \rightarrow \ell\nu_{\ell}$), where ℓ refers to an electron, muon or tau lepton and ν_{ℓ} is the corresponding neutrino. Top quark production in dilepton final states has been previously studied using proton–antiproton collisions at $\sqrt{s} = 1.96$ TeV [6,7] and LHC measurements have recently been reported in several final states [8,9]. In this Letter, we present a measurement of the tt production cross section using the dilepton channel, in which both W bosons decay to leptons. A selected event should exhibit two opposite-sign leptons, unbalanced transverse momentum indicating the presence of neutrinos from the W-boson decays and two b-quark jets. The measurement is performed with ten times more data than the previous ATLAS observation of tt production [9].

The tt dilepton final states can be efficiently selected using kinematic requirements on the final state objects. To further reduce backgrounds and verify that the dilepton final states are accompanied by b-quark jets, a separate measurement is performed requiring the presence of a jet identified as coming from a b quark and relaxing the kinematic selection. Both cross section measurements are reported in this Letter. Leptons are either well-identified electron or muon candidates or, to reduce losses from lepton identification inefficiencies, isolated tracks (referred to as track-lepton candidates). Selected events have either two well-identified lepton candidates (ee, $\mu\mu$ and $e\mu$), or one well-identified lepton candidate and one track-lepton candidate ($e\ell\ell$ and $\mu\ell\ell$), together creating five separate dilepton channels. Each selected dilepton channel is exclusive, i.e. has no overlap with the other channels. Tau leptons are not explicitly reconstructed, but reconstructed leptons can arise from leptonic tau decays and a track-lepton can arise from all one-prong tau decay modes.

The number of candidate events in the selected sample is corrected for background contributions from $Z/\gamma^{*} +$ jets, single top and diboson production, and from events with misidentified lepton candidates. The cross section is measured taking into account the tt signal acceptance. The primary background contributions are estimated using complementary data samples to reduce the uncertainties associated with the simulation and theoretical calculations of background rates.
2. Detector and data sample

The ATLAS detector [10] at the LHC covers nearly the entire solid angle\(^1\) around the collision point. It consists of an inner tracking detector (ID) comprising a silicon pixel detector, a silicon microstrip detector (SCT), and a transition radiation tracker, providing tracking capability within \(|\eta| < 2.5\). The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field, and by liquid-argon (LAr) electromagnetic sampling calorimeters with high granularity. An iron-scintillator tile calorimeter provides hadronic energy measurements in the central rapidity range \((|\eta| < 1.7)\). The end-cap and forward regions are instrumented with LAr calorimetry for both electromagnetic and hadronic energy measurements up to \(|\eta| < 4.9\). The calorimeter system is surrounded by a muon spectrometer incorporating three superconducting toroid magnet assemblies.

A three-level trigger system is used to select the high-\(p_T\) events for this analysis. The level-1 trigger is implemented in hardware and uses a subset of the detector information to reduce the rate to a design value of at most 75 kHz. This is followed by two software based trigger levels, that together reduce the event rate to about 200 Hz. The analyses use collision data with a center-of-mass energy of \(\sqrt{s} = 7\) TeV recorded in 2010 with an integrated luminosity of \(35.3 \pm 1.2\) pb\(^{-1}\) [11].

3. Simulated samples

Monte Carlo (MC) simulation samples are used to calculate the \(t\bar{t}\) acceptance and to evaluate the contributions from those background processes that are difficult to estimate from complementary data samples. All MC processes are produced with the GEANT4 [12] simulation of the ATLAS detector [13] and events are passed through the same analysis chain as the data.

The generation of \(t\bar{t}\) and single top quark events uses the MC@NLO generator [14-16] with the CTEQ6.6 [17] parton distribution top quark production with \(\Delta R = 0.2\) around the electron. This \(E_T\) is required to be less than 4 GeV. For muon candidates, both the corresponding calorimeter isolation \(E_T\) and the analogous track isolation transverse momentum \((p_T)\) must be less than 4 GeV in a cone of \(\Delta R = 0.3\). The track isolation \(p_T\) is calculated from the sum of the track transverse momenta for tracks with \(p_T > 1\) GeV around the muon candidate. Additionally, muon candidates must be separated by a distance \(\Delta R > 0.4\) from any jet with \(p_T > 20\) GeV, further suppressing muon candidates from heavy flavor decays.

Muon candidates arising from cosmic rays are rejected by removing candidate pairs that are back-to-back in the \(r-\phi\) plane and that have transverse impact parameter relative to the beam axis \(|d_0| > 0.5\) mm.

Track-lepton candidates are defined by an ID track with \(p_T > 20\) GeV and a series of quality cuts optimized for high efficiency and discrimination between signal and the main background (non- \(Z\) boson background, see Section 6). Tracks must have at least six SCT hits and at least one hit in the innermost pixel layer. They also must have \(|d_0| < 0.2\) mm, and the uncertainty on the momentum measurement must be less than 20\%. Tracks have to be isolated from other nearby tracks: the track isolation as defined for muon candidates, but using tracks with \(p_T > 0.5\) GeV, must be less than 2 GeV. The use of track-lepton candidates primarily recovers acceptance losses from uninstrumented regions in the muon system and calorimeter transition regions.

Jets are reconstructed with the \textit{anti}-\(k_t\) algorithm [30] with radius parameter \(R = 0.4\) starting from energy clusters of adjacent calorimeter cells. These jets are calibrated by first correcting the jet energy using the scale established for electromagnetic objects and then performing a further correction to the hadronic energy scale using \(p_T\) and \(\eta\)-dependent correction factors obtained from simulation [31]. Jets are corrected for additional energy deposits from the presence of multiple \(p\bar{p}\) interactions. The jets used in the analysis are required to have no electron candidate or, in case of leptonic+jet events (see Section 5), no track-lepton candidate within \(\Delta R = 0.4\), \(p_T > 20\) GeV and \(|\eta| < 2.5\).

Jets are identified as \(b\)-quark candidates using the jeTRkon \(b\)-tagging algorithm [32]. This algorithm takes all well-measured

\(^1\) ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi\) being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle \(\theta\) as \(\eta = -\ln\tan(\theta/2)\). Distances in \(\eta-\phi\) space are given as \(\Delta R = \sqrt{\Delta\eta^2 + \Delta\phi^2}\).
tracks associated with a given jet and forms a p-value\(^2\) for the hypothesis that the set of tracks comes from a common primary vertex of a \(pp\) interaction, taking into account the track measurement uncertainties. The p-value requirement results in a b-tagging efficacy of \(\approx 70\%\) per jet in \(\ell\ell\) candidate events, and a mistag rate of order 1% for both light-quark and gluon jets.

The missing transverse energy (\(E_T^{\text{miss}}\)) calculation begins with the vector sum of transverse momenta of all jets with \(p_T > 20\) GeV and \(|\eta| < 4.5\). The transverse energies of electron candidates are added. The contributions from all well-identified muon candidates and calorimeter clusters not belonging to a reconstructed object are also included. To suppress backgrounds from \(Z/\gamma^* +\) jets, the \(E_T^{\text{miss}}\) is corrected by the \(p_T\) of the track-lepton in muon + track events if the \(\Delta\phi\) between the \(E_T^{\text{miss}}\) and track direction is less than 0.15 and there is no muon candidate within \(\Delta R = 0.05\) of the track-lepton candidate. This properly accounts for the contribution to \(E_T^{\text{miss}}\) of track-lepton candidates.

5. Event selection

The analysis requires events selected online by an inclusive single-lepton trigger (e or \(\mu\)). The detailed trigger requirements vary through the data-taking period, due to the rapidly increasing LHC luminosity and the commissioning of the trigger system, but with a trigger threshold that ensures full efficiency for the lepton candidates with \(p_T > 20\) GeV that are used in the analysis. To ensure that the event was triggered by the selected lepton candidates, one of the well-identified leptons and the trigger object are required to match within \(\Delta R < 0.15\).

Events are required to have a primary interaction vertex with at least five tracks. The event is discarded if any jet with \(p_T > 20\) GeV fails quality cuts designed to reject jets arising from out-of-time activity or calorimeter noise [33]. If an electron candidate and a muon candidate share a track, the event is also discarded.

The selection of events in the signal region consists of a series of kinematic requirements on the reconstructed objects. The requirements on \(E_T^{\text{miss}}\), the dilepton invariant mass \((m_{\ell\ell})\), and the scalar \(p_T\) sum of all selected jets and leptons (\(H_T\)) are optimized using simulated events for maximum significance, defined as \(S/\sqrt{S + \sigma_T^2}\), where \(S\) is the expected number of signal events and \(\sigma_T\) is the total uncertainty on the number of background events, \(B\).

The presence of exactly two oppositely-charged well-identified lepton candidates is required. If only one well-identified lepton candidate is found, the event is retained if an oppositely charged track-lepton candidate is present, forming a lepton + track candidate event. Events must have at least two jets with \(p_T > 20\) GeV and \(|\eta| < 2.5\). Furthermore, events in all channels other than e\(\mu\) are required to have \(m_{\ell\ell} > 15\) GeV in order to reject backgrounds from bottom quark production and vector meson decays.

The following additional kinematic requirements are made:

- Events in the \(ee\) and \(\mu\mu\) channels must satisfy \(E_T^{\text{miss}} > 40\) GeV, and \(m_{\ell\ell}\) must differ by at least 10 GeV from the Z-boson mass, \(m_Z\), to suppress backgrounds from \(Z/\gamma^* +\) jets and multijet events.
- Events in the \(e\mu\) channel have no \(E_T^{\text{miss}}\) or \(m_{\ell\ell}\) cuts applied. In this case, remaining background from \(Z/\gamma^* +\) jets production is suppressed by requiring \(H_T > 130\) GeV.
- The lepton+track event candidates must have \(E_T^{\text{miss}} > 40\) GeV, \(H_T\) (including the track-lepton) > 150 GeV, \(|m_{\ell\ell} - m_Z| > 10\) GeV.

\(^2\) Probability value for a jet formed by the individual track probabilities.
sample enriched in $W + \text{jets}$ events with exactly one lepton and no track leptons but using the same kinematic cuts as for the signal sample. In this second sample the fake probabilities are summed over all jets in all events and the fake rates are calculated as a function of the jet multiplicity.

The contributions from other electroweak background processes with two real leptons (other EW), such as single top, $Z \rightarrow \tau\tau$, WW, ZZ and WZ production are estimated from Monte Carlo simulations and found to be relatively small. The numbers of background events estimated with each method are included in Table 1.

The modeled acceptances, efficiencies and data-driven background estimation methods are validated by comparing Monte Carlo predictions with data in control regions that are depleted of $t\bar{t}$ events but have similar kinematics. In particular, the E_{miss} and jet multiplicity distributions in a sample of Z boson candidates defined by requiring $|m_{\text{EC}} - m_Z| < 10$ GeV and low E_{miss} are compared to MC predictions and are in good agreement with data.

The background contributions after requiring at least one b-tagged jet are determined using the same techniques described above to evaluate the rate of the background sources before making the b-tag requirement. Measured light quark and gluon jet rejection factors [34] are then applied to estimate the number of background events that remain in the candidate sample.

7. Systematic uncertainties

The uncertainties due to MC simulation modeling of the lepton trigger, lepton and track-lepton reconstruction and selection efficiencies are assessed using $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ candidate events found in the same data sample used for the $t\bar{t}$ analyses before applying Z boson veto requirements. Scale factors are applied to MC samples when calculating acceptances to account for any observed differences in predicted and observed efficiencies. The modeling of lepton momentum scale and resolution is studied using the m_ℓ distributions of $Z/\gamma^* +jets$ candidate events, and the simulation is adjusted accordingly. The acceptance uncertainty from the lepton modeling is dominated by the electron selection efficiency uncertainty.

The jet energy scale (JES) and its uncertainty are derived by combining information from test-beam data, LHC collision data and simulation [35]. For the selected jets, the JES uncertainty varies in the range 2–8% as a function of jet p_T and η. The jet energy resolution and jet reconstruction efficiency measured in data and in simulation are compared and are in good agreement. The statistical uncertainties on the comparisons, 10% and 1–2% for the energy resolution and the efficiency, respectively, are taken as systematic uncertainties associated with these effects. The effect on the acceptance is dominated by the JES uncertainty.

The systematic uncertainty in the efficiency of the JER simulation has been estimated to be 6% for b-quark jets, based on b-tagging calibration studies using inclusive lepton and multijet final states [34]. The uncertainties on the tagging efficiencies for light and charm quarks are several times higher, but are not a large source of uncertainty due to the intrinsically high signal-to-background ratios in the dilepton final states. The acceptance uncertainty due to b-tagging ranges from 4 to 6% depending on the channel.

The uncertainty in the kinematic distribution of the $t\bar{t}$ signal events gives rise to systematic uncertainties in the signal acceptance, with contributions from the choice of generator, the modeling of initial and final state radiation (ISR/FSR) and the PDFs. The generator uncertainty is evaluated by comparing the MC@NLO MC predictions with those of the Powheg MC [36–38] interfaced to both HERWIG or PYTHIA [39] shower models. The uncertainty due to ISR/FSR is evaluated using the AcerMC generator [40] interfaced to the PYTHIA shower model, and by varying the parameters controlling ISR and FSR in a range consistent with experimental data [41]. Finally, the PDF uncertainty is evaluated using a range of current PDF sets [9]. The dominant uncertainty in this category of systematics is the modeling of ISR/FSR and generator choice.

For $Z/\gamma^* + jets$ background events the normalization uncertainty is modeled by separately considering events with a given jet multiplicity. While the cross section in the 0-jet multiplicity sample has 4% uncertainty, the extrapolation to each following jet multiplicity increases the uncertainty by an additional 24% [42].

Overall normalization uncertainties on the backgrounds from single top quark and diboson production are taken to be 10% [43, 44] and 5% [45], respectively.

The systematic uncertainties from the background estimates employing complementary samples include the statistical uncertainties as well as the systematic uncertainties arising from the objects and MC estimates that are used in the methods. The uncertainty on the data-driven $Z/\gamma^* + jets$ estimation is included by varying the E_{miss} cut in the control region by ± 5 GeV. An additional systematic uncertainty for the fake track-lepton estimate is derived from the difference in the observed and predicted number of fake events in control regions, defined as opposite sign events with zero or one jet without an H_T cut or as same sign-events with more than one jet. Both data-driven methods are limited primarily by the statistical uncertainty in the number of events in the respective control regions.

8. Cross section measurement

The expected and measured numbers of events in the signal region after applying all selection cuts for each of the individual dilepton channels are shown in Table 1. A total of 154 candidate events is observed for the analysis without b-tagging, 104 events in the well-identified dilepton channels and 50 events in the lepton + track channels. A total of 98 candidate events are observed in the analysis using b-tagging, with 84 events in common with the untagged analysis.

In Fig. 1 the distributions of the jet multiplicity are shown for the ee, $\mu\mu$ and $e\mu$ channels and the sum of all five channels together with the expectation for 35 pb$^{-1}$. The distributions of E_{miss} for the sum of the ee and $\mu\mu$ channels, the sum of the track-lepton channels and of H_T for the $e\mu$ channel are shown in Fig. 2 and for the b-tag analysis in Fig. 3. All requirements are applied except on the variable whose distribution is shown in the figure.

The dominant background in the ee and $\mu\mu$ channels is $Z/\gamma^* + jets$ production. The next largest background are events with fake leptons. From simulation it is found that this is mainly $W + \text{jets}$ production with an additional lepton candidate (mostly from b-quark decays).

The cross section results are obtained with a likelihood fit [46] in which the probability of observing a number of signal and background events, N_i^{obs}, in each channel i is modeled by a Poisson distribution, P_i, given an expected number of events, N_i^{exp}. The integrated luminosity, L, is modeled with a Gaussian distribution, G_i, about its central value, L_0. The variation in N_i^{exp} due to each systematic source j is modeled with a Gaussian distribution, G_j, for the associated nuisance parameter α_j, where $\alpha_j = \pm 1$ represents the ± 1 standard deviation variation of the systematic source. The cross section, σ_{sig}, is left as a free parameter in the fit of the likelihood function:

$$L(\sigma_{\text{sig}}, L, \alpha_n) = \prod_{i \in \{\text{channel}\}} P(N_i^{\text{bs}}|N_i^{\text{exp}}(\alpha_n))$$
the resulting estimate of $\hat{\sigma}$ given
and the double circumflex represents the conditional MLE for a

Fig. 2. The E_{T}^{miss} distribution in the signal region without the $E_{T}^{miss} > 40$ GeV requirement (a) for the ee and $\mu\mu$ channels and (b) for the lepton + track channels. Fake
coordinates the contribution from fake track-leptons. The H_{T} distribution in the signal region for the $e\mu$ channel is shown in (c) without the $H_{T} > 130$ GeV requirement. Contributions from diboson and single top events are summarized as 'other EW'. In all figures the last bin contains the overflow. The uncertainty on the data points are statistical uncertainties only, whereas the uncertainty bands include statistical and systematic uncertainties.

\[\times G(\sigma|\sigma_{L}) \times \prod_{j \in syst} G_{f}(0|\sigma_{j}, 1). \]

The cross section is inferred from the profile likelihood ratio
\[\lambda(\sigma_{sig}) = L(\sigma_{sig}, \hat{\sigma}, \hat{\theta})/L(\sigma_{sig}, \hat{\sigma}, \hat{\theta}), \]
where a single circumscribed represents the maximum likelihood estimate (MLE) of the parameter and the double circumscribed represents the conditional MLE for a

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
 & Un-tagged & $\mu\mu$ & $e\mu$ & eTL & μTL \\
\hline
$Z/\gamma^{*} \rightarrow ee/\mu\mu$ & 1.1 ± 0.5 & 3.5 ± 1.4 & - & 7.1 ± 1.5 & 2.2 ± 0.9 \\
$Z/\gamma^{*} \rightarrow \tau\tau$ & 0.4 ± 0.3 & 1.2 ± 0.6 & 3.0 ± 1.3 & 1.9 ± 1.0 & 2.2 ± 0.9 \\
Fake leptons & 1.0 ± 0.9 & 0.4 ± 0.5 & 1.9 ± 1.7 & 8.1 ± 2.9 & 8.2 ± 2.9 \\
Single top & 0.6 ± 0.1 & 1.2 ± 0.2 & 2.4 ± 0.3 & 0.5 ± 0.1 & 0.6 ± 0.1 \\
Diboson & 0.5 ± 0.1 & 0.9 ± 0.1 & 2.0 ± 0.3 & 0.5 ± 0.1 & 0.4 ± 0.1 \\
Total background & 3.6 ± 1.2 & 7.2 ± 1.6 & 9.4 ± 2.5 & 18.1 ± 3.4 & 13.8 ± 3.2 \\
Predicted $t\bar{t}$ & 10.9 ± 1.2 & 19.4 ± 1.5 & 45.7 ± 3.7 & 10.2 ± 1.3 & 11.0 ± 1.8 \\
Total & 14.5 ± 1.7 & 26.6 ± 2.1 & 55.1 ± 4.4 & 28.3 ± 3.6 & 24.6 ± 3.7 \\
\hline
Observed & 17 & 30 & 57 & 29 & 21 \\
\hline
\end{tabular}
\caption{Table 1: Full breakdown of the expected $t\bar{t}$ signal and background events compared to the observed event yields for each dilepton channel. For the expected number of events a $t\bar{t}$ cross section of 165$^{+10}_{-8}\text{ pb}$ [1,2] is used. All systematic uncertainties are included and correlations between different background sources are taken into account. The fake lepton category includes both misidentified and non-prompt lepton candidates.}
\end{table}
the difference of the total uncertainties for the likelihood function with and without the luminosity term. Table 3 summarizes the cross sections extracted from the profile likelihood ratio for the individual channels and for the combination of all channels for the analysis with and without a b-tagging requirement, respectively.

9. Results

The top quark pair production cross section is measured using events selected by requiring two oppositely-charged lepton candidates, at least two additional jets and missing transverse energy. The result is

$$\sigma_{\ell\ell} = 177 \pm 20_{\text{stat.}} \pm 14_{\text{syst.}} \pm 7_{\text{lum.}} \text{ pb}.$$
RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERVYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; M S S R, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

ATLAS Collaboration

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Department of Physics, University of Toronto, Toronto, ON, Canada
TRIUMF, Vancouver, BC; Department of Physics and Astronomy, York University, Toronto, ON, Canada
Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
Science and Technology Center, Tufts University, Medford, MA, United States
Centro de Investigaciones, Universidad Antonio Nariño, Bogota, Colombia
Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States
INFN Gruppo Collegato di Udine; ICTP, Trieste; Dipartimento di Fisica, Università di Udine, Udine, Italy
Department of Physics, University of Illinois, Urbana, IL, United States
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver, BC, Canada
Department of Physics and Astronomy, York University, Toronto, ON, Canada
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison, WI, United States
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven, CT, United States
Yerevan Physics Institute, Yerevan, Armenia
Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

Also at Laboratório de Instrumentação e Física Experimental de Partículas – LIP, Lisboa, Portugal.
Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
Also at TRIUMF, Vancouver, BC, Canada.
Also at Department of Physics, California State University, Fresno, CA, United States.
Also at Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland.
Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
Also at Università di Napoli Parthenope, Napoli, Italy.
Also at Institute of Particle Physics (IPP), Canada.
Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
Also at Louisiana Tech University, Ruston, LA, United States.
Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
Also at California Institute of Technology, Pasadena, CA, United States.
Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
Also at Department of Physics, Oxford University, Oxford, United Kingdom.
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
Also at High Energy Physics Group, Shandong University, Shandong, China.
Also at Section de Physique, Université de Genève, Geneva, Switzerland.
Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.
Also at Laboratoire de Physique Nuclaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.
Also at Department of Physics, Nanjing University, Jiangsu, China.
Deceased.