A measurement of the ratio of the W and Z cross sections with exactly one associated jet in pp collisions at \(s = 7 \) TeV with ATLAS

Published in:
Physics Letters B

DOI:
10.1016/j.physletb.2012.01.042

Citation for published version (APA):
Aad, G., et al., U., Bentvelsen, S., Bobbink, G. J., Bos, K., Boterenbrood, H., ... Vreeswijk, M. (2012). A measurement of the ratio of the W and Z cross sections with exactly one associated jet in pp collisions at \(s = 7 \) TeV with ATLAS. Physics Letters B, 708(3-5), 221-240. DOI: 10.1016/j.physletb.2012.01.042
A measurement of the ratio of the W and Z cross sections with exactly one associated jet in pp collisions at $\sqrt{s} = 7$ TeV with ATLAS

ATLAS Collaboration

1. Introduction

Measurements of vector bosons V where $V = W$ or Z produced in association with one or more jets ($V + \text{jet}$) [1–4] provide an important test of the Standard Model (SM) description of the strong interaction in perturbative quantum chromodynamics (QCD). This is particularly important in the kinematic region accessible at the LHC in order to understand the physics at or above the electroweak symmetry-breaking scale. Production of vector bosons is also a significant source of background for studies of other SM processes, including studies of top quark properties, searches for the Higgs boson, as well as in many searches for physics beyond the Standard Model. Measurements of the kinematic properties and dynamics of $V + \text{jet}$ processes and comparisons to theoretical predictions are therefore of significant interest. Individual measurements of kinematic observables in $W + \text{jet}$ [4] and $Z + \text{jet}$ events are limited by systematic uncertainties common to both. Measurement of the ratio was first proposed in Ref. [5] to exploit the cancellation of theoretical and experimental uncertainties, therefore building the foundations for a high precision test of the Standard Model. In the present measurement, this ratio is measured, for states involving exactly one jet, as a function of the minimum jet transverse momentum. In addition to testing the predictions of perturbative QCD at various energy scales, the measurement provides model-independent sensitivity to new physics coupling to leptons and jets.

This Letter describes a measurement of the ratio of the production cross sections in the electron and muon decay channels of the W and Z gauge bosons in association with exactly one jet with transverse momentum $p_T > 30$ GeV. The measurement was performed in the active fiducial volume of the detector and in a kinematic range where events are well-measured, hence minimising any model-dependence. The results were corrected to facilitate direct comparison to theoretical predictions at the particle level. Following the detector acceptance, the fiducial regions were defined by $p_T^{\ell \ell} > 20$ GeV, $p_T^{\ell} > 25$ GeV, $p_T^{\nu} > 30$ GeV, $|\eta^{\ell\ell}| < 2.8$, and for electrons by $1.52 < |\eta| < 2.47$ or $|\eta| < 1.37$ and for muons by $|\eta| < 2.4$. Events with a second jet with $p_T > 30$ GeV within this fiducial region were rejected. The selected jet was required to be isolated from electrons by requiring $\Delta R_{\ell \text{jet}} > 0.6$ (where $\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2}$). Requirements are made on the boson masses specific to their reconstruction. For the W, the transverse mass defined by the lepton ℓ and neutrino ν transverse momenta and angles as $m_T = \sqrt{2p_T^{\ell}p_T^{\nu}(1-\cos(\phi^\ell - \phi^\nu))}$ was required to satisfy $m_T > 40$ GeV. The dilepton invariant mass of the Z was required to be within the range $71 < m_{\ell\ell} < 111$ GeV.

1 The nominal pp interaction point at the centre of the detector is defined as the origin of a right-handed coordinate system. The positive x-axis is directed from the interaction point to the centre of the LHC ring. The positive y-axis points upwards, while the beam direction defines the z-axis. The azimuthal angle ϕ is measured around the beam axis and the polar angle θ from the z-axis. The pseudorapidity is defined as $\eta = -\ln(\tan(\theta/2))$.

2 This veto is not expected to significantly affect fixed-order predictions for $V + \text{jet}$ cross sections within the presented range of jet p_T measurements.
Particle-level jets were defined as jets reconstructed in simulated events by applying the anti-k_T jet reconstruction algorithm [6] with a radius parameter $R = 0.4$ to all final state particles with a lifetime longer than 10 ps (including muons and non-interacting particles). Particle-level electrons were defined by including the energy of all radiated photons within a cone of $\Delta R = 0.1$ around each electron. The results are compared to perturbative leading-order [7] (LO), leading-log [8] (LL), and next-to-leading-order [9] (NLO) QCD calculations.

2. The ATLAS detector

The ATLAS detector [10,11] consists of an inner detector tracking system (ID) surrounded by a superconducting solenoid providing a 2 T magnetic field, electromagnetic and hadronic calorimeters, and a muon spectrometer (MS). The ID consists of pixel and silicon microstrip detectors inside a transition radiation tracker (TRT). The electromagnetic calorimeter is a lead liquid-argon (LAr) detector in the barrel ($|\eta| < 1.475$) and the end-cap (1.375 $< |\eta| < 3.2$) regions. Hadron calorimetry is based on two different detector technologies. The barrel ($|\eta| < 0.8$) and extended barrel ($0.8 < |\eta| < 1.7$) calorimeters are composed of scintillator/steel, while the hadronic end-cap calorimeters (1.5 $< |\eta| < 3.2$) are LAr/Cu. The forward calorimeters (3.1 $< |\eta| < 4.9$) are instrumented with LAr/Cu and LAr/W, providing electromagnetic and hadronic energy measurements, respectively. The MS is based on three large superconducting toroids and a system of three stations of trigger chambers and precision tracking chambers.

3. Simulated event samples

Simulated event samples were used to correct signal yields for detector effects, for some of the background estimates, and for comparison of the results to theoretical expectations. Samples of $W \rightarrow e\nu + N_{\text{parton}}$ and $Z \rightarrow \ell\ell + N_{\text{parton}}$ (where $\ell = e, \mu, \tau$) were generated using Alpgen v2.13 [8] with the MLM matching scheme [12], interfaced to Herwig v6.510 [13] for parton shower and fragmentation processes, and to Jimmy v4.31 [14] for the underlying event simulation. The CTEQ6L1 [15] parton density functions (PDFs) were used for samples generated with Alpgen. Additional inclusive samples were generated using Pythia 6.4.21 [7] using the MRST 2007 LO [16] PDF for the same processes. The underlying event was generated with the ATLAS MC09 tune [17] for the Alpgen and Pythia samples. A Powheg v1.01p4 [18] NLO matrix element calculation with the CTEQ6.6M [19] PDF set and CTEQ6L1 Pythia parton showering and underlying event was used to generate $t\bar{t}$ samples. The radiation of photons from charged leptons was treated in Herwig and Pythia using Photos v2.15.4 [20], and Tauola v1.0.2 [21] was used for tau decays. The Powheg sample used the ATLAS MC09 tune with one parameter adjusted. Inclusive samples of charm and bottom quark production were generated with Pythia 6.4.21. To reproduce the detector conditions, samples were also generated with multiple inelastic non-diffractive interactions overlaid on top of the hard-scattering event; the number of additional interactions followed a Poisson distribution with a mean of approximately two [22]. These MC samples were then re-weighted such that the distribution of the number of primary vertices matched that of the data. All samples were passed through the ATLAS detector simulation [23] performed using GEANT4 [24] and were subjected to the same reconstruction and analysis chain as the data.

Predictions for the $W + \text{one jet}$ and $Z + \text{one jet}$ cross sections at NLO were obtained with MC@F [9] with the same jet algorithm and kinematic selection requirements as applied to the data. A correction to particle level was applied to the MC@F predictions using Pythia to account for initial and final state radiation, underlying event, and hadronization. Renormalisation and factorisation scales were set to $H_T/2$, where H_T is the scalar sum of the p_T of the unclustered partons, the lepton and the neutrino. The CTEQ6.6M [19] PDF was used for the NLO calculations.

4. Data and event selection

The data used in this analysis were collected in the period March to October 2010. Basic requirements on beam, detector, stable trigger conditions and data quality resulted in a data set corresponding to an integrated luminosity $L = 33 \text{ pb}^{-1}$. The criteria for event selection and lepton identification followed those employed for the W and Z inclusive cross-section measurement [25] with a few differences to account for the jet selection and to optimise cancellation of systematic uncertainties in the ratio.

In the electron channel, events were selected using a trigger logic that required the presence of at least one electromagnetic cluster in the calorimeter with transverse energy $E_T \geq E \sin(\theta)$ above 15 GeV in the region $|\eta| < 2.5$. Electron candidates were required to be matched to a track with silicon pixel and strip measurements in the ID, to have $E_T > 20 \text{ GeV}$, and be within the fiducial region, avoiding the calorimeter barrel and end-cap transition regions. Candidates were required to satisfy standard “tight” or “medium” criteria [25]. Candidates satisfying lateral shower containment, shape and width criteria with minimal leakage into the hadronic calorimeter were classified as “medium”. Candidates satisfying additional pixel and impact parameter criteria which also satisfied further requirements on the ratio of cluster energy to track momentum and on the ratio of high-threshold hits to the total number of TRT hits were classified as “tight”.

In the muon channel, events were selected with a trigger system which identified muon candidates by the presence of hit patterns in the MS, consistent with a muon track with $p_T > 10 \text{ GeV}$ or $p_T > 13 \text{ GeV}$ (depending on the data period). The measured transverse momentum in the MS was required to satisfy $p_T > 10 \text{ GeV}$ to reject backgrounds from decays in flight. Muon candidates were required to have independent momentum measurements in both the ID and MS, which were then combined. Candidates which satisfied $p_T > 20 \text{ GeV}$ and were found to be within the fiducial region were classified as “medium”.

Muons were additionally classified as “tight” if they satisfied all of the following additional criteria: the impact parameter with respect to the nominal beam axis was consistent with prompt muon production, the ID track satisfied additional hit quality criteria, the independent ID and MS track p_T measurements were consistent, and the muon was isolated by requiring the sum of all tracks within $\Delta R < 0.2$ of the muon to be less than 1.8 GeV.

Events were required to have at least one reconstructed primary vertex with three or more associated tracks consistent with the nominal luminous region. The vertex with the largest p_T^2 of associated tracks was assumed to be the primary vertex and was required to be within 150 mm of the centre of the detector along the beam direction. The missing transverse energy (E_{miss}) was calculated from the energy deposits of calorimeter cells grouped into three-dimensional clusters [26] following the prescription in Ref. [25]. These clusters were corrected to account for the different response to hadrons compared to electrons or photons, as well as dead material and energy losses [27]. The E_{miss} was also corrected for measured muon momenta and their energy depositions in the
calorimeter. To calculate \(m_T \), the \((x, y)\) components of the neutrino momentum were inferred from the corresponding \(E_T^{\text{miss}} \) components.

Events containing \(W \) boson candidates were selected by requiring one electron or muon satisfying “tight” selection criteria with no other “medium” leptons in the event, \(E_T^{\text{miss}} > 25 \text{ GeV} \) and \(m_T > 40 \text{ GeV} \). Events containing \(Z \) candidates were selected by requiring at least one lepton satisfying “tight” requirements and an additional same flavour, opposite charge lepton satisfying at least “medium” criteria, for which the pair was required to satisfy \(71 < m_{ee} < 111 \text{ GeV} \). The less stringent requirements on the second lepton reduced the systematic uncertainty on the lepton identification within the ratio measurement. These \(W \) and \(Z \) selections were defined to ensure mutual exclusivity.

The jet reconstruction efficiency in simulated data control samples [28] was found to be close to 100% for jets with \(p_T > 30 \text{ GeV} \). Events containing jets arising from detector noise or cosmic rays were rejected [29]. A \(p_T \)- and \(\eta \)-dependent correction factor, derived from simulated events, was applied to the \(p_T \) of each jet to provide an average energy scale correction [30]. Jets were required to be reconstructed within \(|\eta| < 2.8\) and with \(p_T > 30 \text{ GeV} \). To avoid double-counting of electrons as jets, the closest jet within \(\Delta R < 0.2 \) of an electron candidate was not considered. Selected jets were required to be isolated from selected “medium” electrons by requiring \(\Delta R(e, \text{jet}) > 0.6 \), to prevent a distortion of the jet energy response and of the jet reconstruction efficiency due to the proximity of the electron’s electromagnetic shower. Jets from multiple interactions in a bunch crossing were suppressed by requiring jets with associated tracks to have a good jet-vertex fraction \((JVF > 0.75)\) [4]. This algorithm used track-jet association within a cone of \(\Delta R(\text{track}, \text{jet}) < 0.4 \). The \(JVF \) was computed for each jet as the scalar sum of all associated tracks which also originated from the primary vertex divided by the scalar sum of all the associated tracks. Events were required to have exactly one jet satisfying the above criteria with transverse momentum above the jet \(p_T \) threshold. Events containing a second jet with a good \(JVF \) and \(p_T > 30 \text{ GeV} \) were rejected.

Applying these \(W \) (\(Z \)) selection criteria, 12112 (948) events and 12995 (1376) events were retained in the electron and muon channels respectively.

5. Background estimation

Two categories of background events were considered, originating from either QCD multijet or electroweak processes. The electroweak background contributions in both channels were estimated from the simulated event samples as a fraction \(f_{\text{ewk}} \) of the total multijet-subtracted event yield, which has the advantage that there is no reliance on the measured absolute luminosity, and reduces the systematic uncertainty from detector effects on the acceptance. The multijet contributions were estimated using template methods based on simulated electroweak and multijet-enriched data samples, and were also expressed as a fraction \(f_{\text{multijet}} \) of the total event yield. The background contributions were derived in the electron and muon channels for \(W \) and \(Z \) selections separately for each jet \(p_T \) threshold value. They were subtracted from the total event yield \(N_{\text{tot}} \) using Table 1, using

\[
N_{\text{Sig}} = N_{\text{tot}} \cdot (1 - f_{\text{multijet}})(1 - f_{\text{ewk}})
\]

(1)

to obtain the signal event yield \(N_{\text{Sig}} \). The yields and breakdown of background predictions are shown in Table 1.

The background contribution from multijet processes in the electron channel originates from events with jets misidentified as electrons and the mismeasurement of calorimetric energy resulting in large \(E_T^{\text{miss}} \). This background contribution was estimated by using a partially data-driven method [25].

The multijet background within the \(W \rightarrow e\nu \) sample selection was estimated by fitting templates to the low \(E_T^{\text{miss}} \) control region \(15 < E_T^{\text{miss}} < 55 \text{ GeV} \). The \(E_T^{\text{miss}} \) templates for signal and electroweak processes were derived from Monte Carlo simulations, while the template for the multijet contribution was extracted from data by inverting the “tight” electron identification criteria which are not correlated with the \(E_T^{\text{miss}} \). The result of this fit was the relative contribution of the multijet background [25] to the data. This estimate was performed for each jet \(p_T \) threshold considered.

The multijet background in the \(Z \rightarrow ee \) channel was estimated with a similar fit using the di-electron invariant mass distribution. Templates for signal and electroweak processes were derived from Monte Carlo simulated events, while the template describing the multijet contribution was obtained by inverting two of the “medium” selection criteria of the \(Z \) selection.

For the \(W \) selection in the electron channel, the electroweak contributions mainly originate from \(W \rightarrow \tau\nu \) events where the \(\tau \) decays to an electron, and \(\tau \bar{\nu} \) where one or more \(W \) decay to an electron. For the \(Z \) selection, they similarly come from \(\tau\nu \) events, and from \(Z \rightarrow \tau\tau \) where both \(\tau \) leptons decay to electrons. Finally, \(W \) and \(Z \) production also constitute significant background to each other, due to events in which one electron from the \(Z \) was not reconstructed, or when a \(W \) event contains an additional electron candidate. The total electroweak background fraction in the electron channel was approximately 3.4% for the selected \(W \) candidates, and less than 1% for the \(Z \) candidates.

The multijet background to \(W \rightarrow \mu\nu + \text{jet} \) events is estimated from the number of events passing all signal selections except isolation, and efficiencies derived from control samples in data for signal and multijet events required to pass the isolation requirement.

To estimate the multijet background for the \(Z \) in the muon channel, non-isolated muon pairs were selected in the simulated multijet sample. By comparing the dimuon invariant mass distribution for this sample and a non-isolated sample in data, a scale

\[
\text{Table 1}
\]

Predicted and observed event yields in data in the electron and muon channels for the \(W \) and \(Z \) selections for \(\mathcal{L} = 33 \text{ pb}^{-1} \). Background estimates are quoted for a jet \(p_T \) threshold of 30 GeV. “Other” includes contributions from diboson and single top events. The total statistical uncertainties on predictions are quoted.

<table>
<thead>
<tr>
<th>Process</th>
<th>(W \rightarrow e\nu)</th>
<th>(Z \rightarrow e\nu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W \rightarrow \mu\nu)</td>
<td>11860 ± 40</td>
<td>1370 ± 40</td>
</tr>
<tr>
<td>(Z \rightarrow \mu\mu)</td>
<td>360 ± 6</td>
<td>117 ± 1</td>
</tr>
<tr>
<td>(W \rightarrow \tau\nu)</td>
<td>234 ± 6</td>
<td>380 ± 70</td>
</tr>
<tr>
<td>(Z \rightarrow \tau\tau)</td>
<td>22 ± 1</td>
<td>117 ± 1</td>
</tr>
<tr>
<td>(\tau\bar{\nu})</td>
<td>35 ± 1</td>
<td>3 ± 2</td>
</tr>
<tr>
<td>Multijet</td>
<td>380 ± 70</td>
<td>4 ± 4</td>
</tr>
<tr>
<td>Other</td>
<td>117 ± 1</td>
<td>8 ± 3</td>
</tr>
<tr>
<td>Total</td>
<td>13010 ± 80</td>
<td>1380 ± 40</td>
</tr>
<tr>
<td>Data (N_{\text{tot}})</td>
<td>12995</td>
<td>1376</td>
</tr>
</tbody>
</table>
factor was derived that was used to normalise a simulated background sample with the isolation requirement applied.

For the W selection in the muon channel, the electroweak backgrounds mainly originate from decays $W \rightarrow \tau \nu$ with the τ decaying to a muon and $Z \rightarrow \mu \mu$ where one muon fails to be reconstructed. The $Z \rightarrow \tau \tau$ and $t\bar{t}$ processes where one or both W boson(s) decay to a muon, contribute a smaller background fraction. For the Z selection in the muon channel, the dominant electroweak backgrounds arise from $Z \rightarrow \tau \tau$ and $t\bar{t}$ events with two real muons in the final state. The total electroweak background fraction in the muon channel was approximately 5% for the selected W candidates, and less than 1% for the Z candidates.

6. Correction to particle-level yield

The number of events after selection and background subtraction ($N_{\text{part}}^{\ell,V}$) for each lepton ℓ and boson V was corrected for the detector effects and selection efficiencies back to the particle level ($N_{\text{sig}}^{\ell,V}$). This corrected yield can be directly compared to theoretical predictions at the particle level. The corresponding correction factors from detector to particle level were computed for each jet p_T threshold in the electron and muon channels for the W and Z selections separately.

Yields were corrected with multiplicative factors which include trigger efficiency ($\epsilon_{\text{trig}}^\ell$), lepton identification efficiency (ϵ^ℓ), and boson reconstruction and resolution (C^V_{ℓ}). The number of signal events for each boson at particle level was then obtained using

$$N_{\text{part}}^{\ell,V} = \frac{N_{\text{sig}}^{\ell,V}}{\epsilon_{\text{trig}}^\ell \times \epsilon^\ell \times C^V_{\ell}},$$

where the boson corrections C^V_{ℓ} correct the observed phase space to the fiducial phase space defined above, accounting for the resolution of leptons and E_T^{miss}.

Trigger and identification efficiencies were binned to account for variations in detector response. These efficiencies were binned in E_T and η for electrons and η and ϕ for muons. Efficiencies were found to be independent of the jet multiplicity and jet p_T. Therefore, a single efficiency map was used for all jet p_T thresholds.

The methods used to derive these efficiencies and corrections were similar for the electron and muon channels. The trigger efficiency and identification efficiency were measured using a sample of unbiased leptons obtained by selecting a well-identified tag lepton in $Z \rightarrow \ell\ell$ candidate events. The boson reconstruction correction C^V_{ℓ} was computed using the Alpgen event generator. The Pythia Monte Carlo, used for comparison, was found to produce a consistent correction factor.

By measuring the ratio, almost complete cancellation of jet resolution effects was achieved. A small correction C_{jet}^ℓ was applied to the ratio to account for remaining non-cancelling effects due to lepton selection, jet selection criteria, and isolation criteria. The ratio measured was then the ratio of yields corrected to particle level and finally corrected for these remaining effects:

$$R_{\text{jet}} = \frac{N_{\text{sig}}^{W,Z}}{N_{\text{part}}^{W,Z}} \times C_{\text{jet}}.$$

The jet correction for the muon channel C_{jet}^μ is shown in Fig. 1. Systematic uncertainties from this correction were evaluated on the ratio itself. The jet correction C_{jet}^ℓ accounts for the difference of the ratio when calculated in terms of jets defined at particle level and reconstructed jets. The correction factor is different from unity if an offset exists between $W +$ jet and $Z +$ jet events in the jet p_T migration from particle level to detector level. This offset is due to the different requirements applied in the $W +$ jet and $Z +$ jet selections prior to the jet selections, placing the jets into slightly different phase space regions for the numerator and the denominator of the measurement. Performing the measurement as a function of p_T threshold instead of differentially removes the effects of migration across the upper bin edge.

7. Systematic uncertainties

To evaluate cancellations of systematic uncertainties which occur in the ratio, the correlations between W and Z systematic effects must be considered. Correlations between the measurements at each jet p_T threshold must also be accounted for. The effects of systematic uncertainties were therefore evaluated by measuring the relative change in the ratio R_{jet} from each source.

The total systematic uncertainty ranges from 4% at low jet p_T to 15% for the largest p_T threshold studied. For jet p_T thresholds of greater than 50 GeV the statistical uncertainty dominates the total measurement uncertainty.

The sources of systematic uncertainties on R_{jet} were grouped into uncertainties on the boson reconstruction (including lepton trigger, reconstruction and identification efficiencies, as well as lepton and E_T^{miss} scales and resolutions), on jet-related corrections, multijet and electroweak background predictions, and generator-related uncertainties.

In the muon channel, where the background was small, the uncertainty on R_{jet} from the background estimation was approximately 1% for the whole jet p_T range. In the electron channel, the uncertainty increases as a function of jet p_T threshold. This is due to the larger background in the electron channel and the limited statistics used to compute backgrounds for high jet p_T thresholds.

Systematic uncertainties on the multijet background fractions were estimated by varying the criteria used to derive the background fractions. Each systematic uncertainty includes a component from the statistical uncertainty on the estimate of the background fraction.

The estimate of the electroweak background is affected by systematic effects from the event selection criteria. Samples with and without multiple pp interactions included in the simulation were also compared.

The lepton trigger efficiency and identification uncertainties were estimated following the procedure documented in Ref. [25]. The uncertainty on the ratio from lepton identification efficiencies is...
was directly obtained by scaling the single lepton identification efficiencies by their uncertainties, taking cancellations into account. A contribution to the uncertainty on the identification efficiency was assigned from the difference between its value derived in data and Monte Carlo. The total identification uncertainty was 1.1% (1.7%) for electrons (muons) independent of jet p_T thresholds.

The uncertainties on the scale and resolution of lepton energies and E_T^{miss} were propagated to evaluate their effects on boson reconstruction by smearing the simulated signal samples using a Gaussian with a width corresponding to the nominal uncertainties. The resulting variations in R_{jet} were applied as systematic uncertainties.

Uncertainties on the jet energy scale (JES) and jet energy resolution (JER) were determined by comparing data and simulations [30]. The JES uncertainty includes components from calibration and jet sample composition differences. The JES calibration uncertainty varies with $|\eta|$ and p_T, and ranges from 4% to 8%. The JES and JER were measured with di-jet events, which have different proportions of quark and gluon initiated jets than events containing vector bosons. Therefore, an uncertainty was assigned to account for the difference in calorimeter response between jets containing vector bosons. Therefore, an uncertainty was assigned from the difference between its value derived in data and Monte Carlo. The total JES uncertainty ranges from approximately 2 to 5%, and was added in quadrature to the JES calibration uncertainty.

The JES uncertainty includes components from calibration and jet sample composition differences. The JES calibration uncertainty varies with $|\eta|$ and p_T, and ranges from 4% to 8%. The JES and JER were measured with di-jet events, which have different proportions of quark and gluon initiated jets than events containing vector bosons. Therefore, an uncertainty was assigned to account for the difference in calorimeter response between jets containing vector bosons. Therefore, an uncertainty was assigned from the difference between its value derived in data and Monte Carlo. The total JES uncertainty ranges from approximately 2 to 5%, and was added in quadrature to the JES calibration uncertainty. The total JES uncertainty ranges from 10% at 20 GeV to 5% at 100 GeV.

To compute the effect of the JER uncertainty on the ratio R_{jet}, jets were smeared according to a Gaussian with a width corresponding to the JER. The effect of the JES uncertainty on the ratio was obtained in a similar manner, but in this case, shifting the jet energy by its uncertainty. The ratio was recomputed applying these variations simultaneously to the numerator and denominator. The change was applied as a systematic uncertainty. The uncertainties on R_{jet} due to the JER and JES were approximately 0.5% and 2% respectively. The contribution to the uncertainty on the ratio from the small component of heavy flavour jets is covered by the total JES uncertainty.

To account for systematics associated with the modelling of the signal at particle level, correction factors were re-computed with samples generated with Pythia instead of Airon, and the observed variation was applied as a systematic uncertainty. Systematic uncertainties were assigned from this variation to the following corrections: (C^α_{JVF}), the boson reconstruction correction C^γ_j, and the electroweak background estimation f_{ewk}. At large jet p_T threshold, where the statistical uncertainty on the measurement dominates the total uncertainty, this systematic uncertainty is limited by the statistics of the samples used and is the dominant systematic uncertainty.

The uncertainties due to multiple pp interactions are dominated by uncertainties on the efficiency of the JVF algorithm. It was confirmed that the results obtained with simulated signal samples which include this effect were consistent with those obtained from samples which contained no additional interactions in the simulation. The residual difference on R_{jet} between samples with and without multiple interactions included was used as the systematic error from this JVF requirement.

Corrections to the simulation for hadronisation and the underlying event on the NLO parton-level calculation were computed with Pythia as a function of jet p_T threshold. The impact of this correction on R_{jet} was 1% to 6% for the electrons and 1% to 4% for the muons. The slightly larger variation for the electrons was due to the jet-electron isolation and the jet isolation veto included in the corrections.

The uncertainty on the correction of the MCFM cross-section ratio predictions for fragmentation, hadronisation and underlying event effects was estimated by comparing the Pythia AMBT1 [31] tune with the AMBT1 tune with increased underlying event activity, and without any underlying event. The uncertainty due to initial and final state radiation (ISR/FSR) was evaluated by varying the Pythia parameters controlling ISR and FSR [7]. For the ISR the variation ranges used were similar to the ranges used in the Perugia Soft and Perugia Hard tunes. For the FSR the variation ranges were similar to the ranges used in the Perugia 2011 radHi and Perugia 2011 radLo tunes [32].

Renormalisation and factorisation scale uncertainties were estimated by varying the scales in all combinations, up and down, by a factor of two. Although these variations are arbitrary, they are motivated by the dependence of the behaviour of the NLO W + jet and $Z + jet$ cross-section on the scale. This choice has a minimal impact on the uncertainty of the R_{jet} prediction. Systematic uncertainties from imperfect knowledge of PDFs were computed by summing in quadrature the dependence on each of the 22 eigenvectors characterising the CTEQ6.6 PDF set; the uncertainty in α_s was also taken into account. An alternative PDF set, MSTW2008 [33], with its set of 68% C.L. eigenvectors was also examined, and the envelope of the uncertainties from CTEQ6.6 and MSTW2008 was used as the PDF uncertainty.

All systematic uncertainties were added in quadrature to obtain the total systematic uncertainty. A summary of sources of systematic uncertainties and their relative contributions to R_{jet} is shown in Fig. 2 and in Table 2.

8. Results

The ratio R_{jet} was measured in the fiducial region of the ATLAS detector defined by the jet p_T threshold and selection criteria. The present measurements were corrected back to the particle level and within the defined kinematic range. The electron and muon measurements were performed in slightly different phase space, due to the different η range and electron-jet isolation requirements, as well as for the different QED treatment between electron and muon definitions. The observed signal yields were corrected to recover the yield at particle level as described in Section 6.

Table 2

<table>
<thead>
<tr>
<th>Systematic uncertainties on R_{jet} (%)</th>
<th>Electron channel</th>
<th>$p_T > 30$ GeV</th>
<th>$p_T > 100$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Boson reconstruction</td>
<td>2.5</td>
<td>2.5</td>
<td>2.4</td>
</tr>
<tr>
<td>γ</td>
<td>1.7</td>
<td>1.7</td>
<td>0.2</td>
</tr>
<tr>
<td>JES/JER</td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Electroweak background</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total non-generator</td>
<td>3.8</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Generator</td>
<td>1.4</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Total</td>
<td>4.0</td>
<td>4.2</td>
<td>4.2</td>
</tr>
</tbody>
</table>
Fig. 2. Relative systematic uncertainties on R_{jet} in the electron channel (left) and in the muon channel (right). The top plot displays the total systematic and statistics uncertainty (shown as dashed line) versus jet p_T threshold. The lower plot shows the breakdown of the systematic uncertainties. Boson reconstruction contains the uncertainties related with the leptons and E_T^{miss} (including trigger and lepton identification). Jets contains systematics of the jet correction as well as the jet energy scale and resolution. Uncertainties from each group were added in quadrature.

Fig. 3. Results for R_{jet} in the electron channel (left) and in the muon channel (right) for their respective fiducial regions. The results are compared to NLO predictions from MCFM (corrected to particle level using Pythia). Data are shown as black points at the lower bin edge corresponding to the jet p_T threshold with black error bars indicating the statistical uncertainties. The central band shows all systematic uncertainties added in quadrature and the larger hatched band shows statistical and systematic uncertainties added in quadrature. The theory uncertainty (dashed line) shown on the MCFM prediction includes uncertainties from PDF and renormalisation and factorisation scales. Note that these threshold data and their associated uncertainties are correlated between bins.

The corrected ratio R_{jet} of the production cross sections in the leptonic (electron or muon) decays of the gauge bosons W and Z in association with exactly one jet is shown in Fig. 3 as a function of the jet p_T threshold for the electron (left) and muon (right) channels. As the jet p_T threshold increases, the ratio R_{jet} is expected to decrease as the effective scale of the interaction becomes large compared to the difference in boson masses. This dependence is observed in the data. The values for the lowest jet p_T threshold of 30 GeV are:

- $R_{\text{jet}}(e) = 8.73 \pm 0.30(\text{stat}) \pm 0.40(\text{syst})$.
- $R_{\text{jet}}(\mu) = 8.49 \pm 0.23(\text{stat}) \pm 0.33(\text{syst})$.

The statistical uncertainties were evaluated by repeating the measurement with Monte Carlo pseudo-experiments assuming Poisson distributed data with a mean at the observed yield. Both electron and muon channel results are individually compatible with the theoretical predictions.
Electron and muon channel results were compatible and were therefore combined to reduce the statistical and uncorrelated systematic uncertainties on the result. Each channel was extrapolated to a common fiducial phase space, defined as $|\eta| < 2.5$ before any QED radiation (Born level) with Pythia. The electron channel was further corrected for the effect on the acceptance of the electron-jet isolation requirements. This extrapolation to a common fiducial region decreases the value of the ratio for both channels primarily due to the more central distribution of leptons from the Z. The results were combined using a Bayesian approach [34] in the combination of systematic uncertainties accounting for correlations between them. The systematic uncertainties from E_T^{miss}, jet energy scale and resolution and electroweak background sources were considered fully correlated between the electron and muon channels. The combined result is shown in Fig. 4 (left). The value of R_{jet} for the lowest jet p_T threshold of 30 GeV is found to be $8.29 \pm 0.18^{(stat)} \pm 0.28^{(syst)}$.

The combined results were also extrapolated to the full phase space, correcting for regions of geometric and kinematic acceptance not measured (only the requirement on the invariant mass of the Z and veto on additional jets were retained), and presented as a function of jet p_T threshold. For this extrapolation, the W and Z acceptance factors were calculated at particle level using Alpgen, and their ratio was applied as a correction to R_{jet}. This
extrapolation to the full phase space increases the value of the ratio for both channels primarily due to additional kinematic acceptance for the W. Fig. 4 (right) shows the result in the full boson acceptance phase space for the combined electron and muon channels. Due to the additional uncertainty on the correction to the generator-level acceptance, this result has larger total uncertainty than the results obtained in the fiducial regions. No significant discrepancy between data and theory is observed in any of these results.

9. Conclusions

This Letter presents a first measurement of the ratio of the production cross sections of the gauge bosons W and Z in association with exactly one jet. Results are presented as a function of jet p_T threshold, in both the electron and muon decay modes of the W and Z vector bosons. The measurement was corrected for all detector effects back to the particle level and presented within a fiducial phase space for electrons and muons. The ratio was measured to be $8.73 \pm 0.30\text{(stat)} \pm 0.40\text{(syst)}$ in the electron channel, and $8.49 \pm 0.23\text{(stat)} \pm 0.33\text{(syst)}$ in the muon channel at a jet p_T threshold of 30 GeV (Table 3). Results have also been extrapolated to $|\eta| < 2.5$ and combined, yielding $8.29 \pm 0.18\text{(stat)} \pm 0.28\text{(syst)}$, and extrapolated to the full phase of the boson and combined giving $10.13 \pm 0.22\text{(stat)} \pm 0.45\text{(syst)}$. The design of the measurement allows a cancellation of many theoretical and systematic uncertainties. These results are provided as a function of jet p_T threshold from 30 to 200 GeV, exploring the transition region of electroweak scale breaking in the perturbative jet production. This measurement builds the foundations of a high precision test of the Standard Model, and provides model-independent sensitivity to new physics coupling to leptons and jets. Comparisons with LO and NLO perturbative QCD predictions were made and found to be in agreement with data over the jet p_T threshold range covered by this measurement.

Acknowledgements

We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC and NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DLRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; CNAS, Georgia; BMBF, DFG, MPG and AvH Foundation, Germany; GSRT, Greece; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

[31] ATLAS Collaboration, Charged particle multiplicities in pp interactions at $\sqrt{s} = 0.9$ and 7 TeV in a diffactive limited phase space measured with the ATLAS detector at the LHC in a new PYTHIA6 tune, ATLAS-CONF-2010-031, 2010.
3 Department of Physics, Ankara University, Ankara, Turkey; 4 Department of Physics, Dumlupinar University, Kütahya, Turkey; 5 Department of Physics, Selcuk University, Konya, Turkey; 6 Department of Physics, TOBB University of Economics and Technology, Ankara, Turkey; 7 Turkish Atomic Energy Authority, Ankara, Turkey; 8 LAPP CNRS-IN2P3 and Université de Savoie, Annecy-le-Vieux, France; 9 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States; 10 Department of Physics, University of Arizona, Tucson, AZ, United States; 11 Department of Physics, The University of Texas at Arlington, Arlington, TX, United States; 12 Physics Department, Athens, Athens, Greece; 13 Physics Department, National Technical University of Athens, Zografou, Greece; 14 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan; 15 Instituto de Física d’Altes Energies and Departamento de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain; 16 Institute of Physics, University of Belgrade, Belgrade, Serbia; 17 Vinca Institute of Nuclear Sciences, Belgrade, Serbia; 18 Department for Physics and Technology, University of Bergen, Bergen, Norway; 19 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States; 20 Department of Physics, Humboldt University, Berlin, Germany; 21 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland; 22 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom; 23 Department of Physics, Bogazici University, Istanbul, Turkey; 24 Division of Physics, Døgus University, Istanbul, Turkey; 25 Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey; 26 Department of Physics, Istanbul Technical University, Istanbul, Turkey; 27 INFN Sezione di Bologna, Italy; 28 Dipartimento di Fisica, Università di Bologna, Bologna, Italy; 29 Physikalisches Institut, University of Bonn, Bonn, Germany; 30 Department of Physics, Boston University, Boston, MA, United States; 31 Department of Physics, Brandeis University, Waltham, MA, United States; 32 Instituto de Fisica d’Altes Energies, Departament de Fisica de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain; 33 Department of High Energy Physics, Chinese Academy of Sciences, Beijing, China; 34 Department of Modern Physics, University and Science and Technology of China, Anhui, China; 35 Department of Physics, Nankai University, Tianjin, China; 36 High Energy Physics Group, Shanghai University, Shanghai, China; 37 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubière Cedex, France; 38 Nevis Laboratory, Columbia University, Irvington, NY, United States; 39 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark; 40 INFN Gruppo Collegato di Cosenza, Italy; 41 Dipartimento di Fisica, Università della Calabria, Arcavate di Rende, Italy; 42 Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland; 43 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland; 44 Physics Department, Southern Methodist University, Dallas, TX, United States; 45 Physics Department, University of Texas at Dallas, Richardson, TX, United States; 46 DESY, Hamburg and Zeuthen, Germany; 47 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany; 48 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany; 49 Department of Physics, Duke University, Durham, NC, United States; 50 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom; 51 Fachhochschule Wiener Neustadt, Johannes Gutenbergrasse 3, 2700 Wiener Neustadt, Austria; 52 INFN Laboratori Nazionali di Frascati, Frascati, Italy; 53 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany; 54 Section de Physique, Université de Genève, Geneva, Switzerland; 55 Department of Physics and HEP Institute, Georgian Academy of Sciences and Tbilisi State University, Tbilisi, Georgia; 56 II Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany; 57 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom; 58 Physikalisches Institut, Georg-August-Universität, Göttingen, Germany; 59 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France; 60 Department of Physics, Hampton University, Hampton, VA, United States; 61 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States; 62 IRIS – Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany; 63 Kirchhoff-Institut für Physik, Ruprecht-Karls-Universitats Heidelberg, Heidelberg, Germany; 64 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; 65 I2T2 Institute for technological Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany; 66 Faculty of Science, Hiroshima University, Hiroshima, Japan; 67 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan; 68 Department of Physics, Indiana University, Bloomington, IN, United States; 69 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria; 70 University of Iowa, Iowa City, IA, United States; 71 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States; 72 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia; 73 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan; 74 Graduate School of Science, Kobe University, Kobe, Japan; 75 Faculty of Science, Kyoto University, Kyoto, Japan; 76 Kyoto University of Education, Kyoto, Japan; 77 Instituto de Fisica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina; 78 Physics Department, Lancaster University, Lancaster, United Kingdom; 79 INFN Sezione di Lecce, Italy; 80 Dipartimento di Fisica, Università dell’Aquila, L’Aquila, Italy; 81 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom; 82 Department of Physics, Jozef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia; 83 Department of Physics, Queen Mary University of London, London, United Kingdom;

239