Measurement of the $W\pm Z$ production cross section and limits on anomalous triple gauge couplings in proton-proton collisions at $s = 7$ TeV with the ATLAS detector

Published in:
Physics Letters B

DOI:
10.1016/j.physletb.2012.02.053

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Measurement of the $W^\pm Z$ production cross section and limits on anomalous triple gauge couplings in proton–proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

ATLAS Collaboration

Abstract

This Letter presents a measurement of $W^\pm Z$ production cross section and limits on aTGC with the ATLAS detector in LHC proton–proton collisions at a centre-of-mass energy, \sqrt{s}, of 7 TeV. The analysis uses four channels with leptonic decays ($W^\pm Z \rightarrow \ell \nu \ell \nu$) involving electrons and muons: $eeee$, $\mu\mu\mu\mu$, or $\mu\nu\mu\nu$, where the ν is estimated by the missing transverse momentum, E_T^{miss}. The main sources of background are ZZ, $Z\gamma$, $Z + \text{jets}$, and top-quark events.

A common phase space is defined for combining the four decay channels and measuring a “fiducial” cross section. The phase space is chosen to match closely the detector acceptance and analysis selection. The leptons from the Z and W boson decays are required to have transverse momenta $p_T^{\ell}\geq 20$ GeV, pseudorapidity $|\eta^{\ell}| < 2.5$, $|m_{\ell\ell}(Z) - m_Z| < 10$ GeV, $p_T^{\nu} > 25$ GeV and the transverse mass $m_T^W > 20$ GeV. Final state electrons and muons whose four-momenta include all photons within $\Delta R < 0.1$ are used in the phase space definition. Since the fiducial phase space is defined by the lepton kinematics, the cross section definition includes the branching ratios of the bosons decaying into electrons or muons. The fiducial cross section definition excludes the contribution from W and Z boson decays into τ leptons.

1. **Introduction**

The underlying structure of the electroweak interactions in the Standard Model (SM) is the non-abelian $SU(2)_L \times U(1)_Y$ gauge group. Properties of electroweak gauge bosons such as their masses and couplings to fermions have been precisely measured at LEP and the Tevatron [1]. However, triple gauge boson couplings (TGC) predicted by this theory have not yet been determined with comparable precision.

In the SM the triple gauge boson vertex is completely fixed by the electroweak gauge structure. A measurement of this vertex, for example through the analysis of diboson production at the LHC, tests the gauge symmetry and probes for possible new phenomena involving gauge bosons. In general, electroweak gauge boson couplings deviating from gauge constraints yield enhancements of the $W^\pm Z$ production cross section at high diboson invariant mass. Furthermore, new particles decaying into $W^\pm Z$ pairs are predicted in models with extra vector bosons (e.g. W') as well as in supersymmetric models with an extended Higgs sector (charged Higgs) [2,3].

At the LHC, the dominant $W^\pm Z$ production mechanism is from quark–antiquark and quark–gluon interactions at leading order (LO) and at next-to-leading order (NLO), respectively [4]. Only the s-channel diagram has a triple electroweak gauge boson interaction vertex and is hence the only channel that may contribute to anomalous TGC (aTGC).

1. ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the interaction point to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (\(r\), \(\phi\)) are used in the transverse plane, \(\phi\) being the azimuthal angle around the beam pipe. The pseudorapidity \(\eta\) is defined in terms of the polar angle \(\theta\) as \(\eta = -\ln\tan(\theta/2)\).

2. The transverse mass is defined as \(m_T^W = 2E_T^\ell E_T^\nu - 2p_T^\ell p_T^\nu\).

3. \(\Delta R\) is defined as \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}\).
In order to measure the total cross section, the experimentally accessible phase space is extrapolated to the full phase space. The region dominated by the contribution of a γ^* propagator in singly resonant diagrams to the theoretical cross section is highly suppressed by requiring the invariant mass of the dilepton system from Z/γ^* to satisfy 66 GeV $< m_{\ell\ell} < 116$ GeV for the full phase space.

In the SM the only allowed boson combinations for TGC vertices are $WW\gamma$ and WWZ, and the latter is addressed in this Letter. Expressions for the most general effective Lagrangian for a TGC vertex with two charged and one neutral vector boson can be found in Refs. [5] and [6]. If only terms that separately conserve charge conjugation and parity are considered, then the couplings can be represented by three dimensionless parameters g_{γ}^2, κ_2 and λ_2. In the SM $g_{\gamma}^2 = 1$, $\kappa_2 = 1$ and $\lambda_2 = 0$. Anomalous couplings, defined as deviations from these SM values, are then Δg_{γ}^2, $\Delta \kappa_2$ and λ_2.

To avoid tree-level unitarity violation, which occurs in the effective Lagrangian approach at sufficiently large energies, the anomalous couplings must be suppressed at higher energy scales. To achieve this, an arbitrary form factor can be introduced to mitigate the effect of anomalous couplings at higher energy scales. For comparison with previous studies, results are presented using a dipole form factor $f_2(\Delta s) = 1/(1 + \Delta s^2)^2$, where Δs is the partonic centre-of-mass energy. This choice ensures that unitarity is not violated. However, since the choice of the scale is arbitrary and the experimental centre-of-mass energy scale is finite, the interpretation of the data in the framework of anomalous couplings is also presented without using a form factor, corresponding to setting $\Lambda = \infty$.

2. The ATLAS detector and event samples

The ATLAS detector [7] consists of an inner detector (ID) surrounded by a superconducting solenoid which provides a 2 T magnetic field, electromagnetic and hadronic calorimeters and a muon spectrometer (MS) with a toroidal magnetic field. The ID provides precision charged particle tracking for $|\eta| < 2.5$. It consists of a silicon pixel detector, a silicon strip detector and a straw tube tracker that also provides transition radiation measurements for electron identification. The calorimeter system covers the range $|\eta| < 4.9$ and comprises sampling calorimeters with either liquid argon (LAr) or scintillating tiles as the active media. In the region $|\eta| < 2.5$ the electromagnetic LAr calorimeter is finely segmented and plays an important role in electron identification. The muon spectrometer has separate trigger and high-precision tracking chambers which provide muon identification in $|\eta| < 2.7$.

This study uses 1.02 ± 0.04 fb$^{-1}$ [8,9] of collision data collected up to the end of June 2011.

Candidate events are selected online with single-lepton triggers requiring p_T of at least 18 (20) GeV for muons (electrons). The trigger efficiency for $W^\pm Z \rightarrow e\ell\ell\nu\bar{\nu}$ events which pass all selection criteria is in the range of 96–99% depending on the final state.

The $W^\pm Z$ production processes and the subsequent purely leptonic decays are modelled by the MC@NLO [10,11] generator, which incorporates the NLO QCD matrix elements into the parton shower by interfacing to the HERWIG [12] program. The generator also provides matrix element information which allows a given sample to be reweighted to a different set of anomalous coupling parameters on an event-by-event basis. The parton density function (PDF) set CTEQ6.6 [13] is used and the underlying event is modelled with JIMMY [14,15]. HERWIG is used to model the hadronization, initial state radiation and QCD final state radiation (FSR). PHOTOS [16] is used for QED FSR, and Tauola [17] for the τ lepton decays.

The $W^\pm Z$ production cross section at NLO in α_s as previously defined is calculated with the program MCFM [18] to be $17.3^{+1.3}_{-0.8}$ pb. Electroweak corrections are not considered as they are not relevant at the currently available integrated luminosity [19,20].

The background sources for which data-driven methods could not be used were estimated with simulated samples. The diboson processes WW and ZZ are modelled with HERWIG, and $W/Z + \gamma$ with MADGRAPH [21] and PYTHIA [22]. MC@NLO [10] is used to model the $t\bar{t}$ and single top-quark background in the $W^\pm Z \rightarrow e\ell\ell$ decay channel. Whenever LO event generators are used, the cross sections are corrected by using k-factors to NLO or NNLO (if available) matrix element calculations [10,18,23–25].

The response of the ATLAS detector is simulated [26] with GEANT4 [27]. Small response and efficiency corrections, based on studies in data and simulated control samples, are applied to the simulated samples. All event samples are simulated with in-time pile-up (multiple pp interactions within a single bunch crossing) and out-of-time pile-up (signals from nearby bunch crossings). The weights of simulated events are defined such that the distribution of multiple collisions per bunch crossing matches the observation in the data period under consideration.

3. Object reconstruction

The main physics objects necessary to select $W^\pm Z$ events are electrons, muons, and E_{miss}. Muons are identified by matching tracks reconstructed in the MS to tracks reconstructed in the ID. Their momenta are calculated by combining information from the two tracks and correcting for energy deposited in the calorimeter. ID tracks that are tagged as muons on the basis of matching with track segments in the MS (‘segment-tagged’ muons) [28] are also included. Only muons with $p_T > 15$ GeV and $|\eta| < 2.5$ are considered. Non-prompt muons from hadronic jets are rejected by selecting only isolated muons, requiring the scalar sum of the p_T of tracks within $\Delta R < 0.2$ of the muon to be less than 10% of the muon p_T [28].

Electrons are reconstructed by matching clusters found in the electromagnetic calorimeter to tracks in the ID. Electron candidates must have $E_T > 15$ GeV, where E_T is calculated from the cluster energy and track direction. To avoid the transition regions between the calorimeters, the electron cluster must satisfy $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$. Electrons are required to pass the ‘medium’ identification criteria described in Ref. [29]. To ensure isolation, the sum of the calorimeter energy in a cone of $\Delta R = 0.3$ around the electron candidate, not including the energy of the cluster associated to the candidate itself, must be less than 4 GeV.

The E_{miss} is calculated with reconstructed electrons within $|\eta| < 2.47$, muons within $|\eta| < 2.7$, and jets and calorimeter energy clusters outside of other reconstructed objects within $|\eta| < 4.5$. The clusters are calibrated as electromagnetic or hadronic energy according to cluster topology. A small correction avoids double-counting the energy deposited by muons in the calorimeters [30].

4. Event selection

At least one single electron or muon trigger is required for the event selection. A minimum of one reconstructed vertex, with at least three tracks associated with it, is required to remove non-collision backgrounds. The vertex with the largest sum of the p_T^2 computed from the associated tracks is selected as the primary vertex. Events with two leptons of the same flavour and opposite
charge with an invariant mass within 10 GeV of the Z boson mass are selected. For the ee(ee) and µνµµ channels more than one lepton pair combination may satisfy this criterion and the pair closest to the Z boson mass is chosen. This requirement of a lepton pair consistent with originating from a Z boson reduces much of the background from multijet and top-quark production, and a fraction of the diboson background.

Events are then required to have at least three reconstructed leptons originating from the primary vertex; their longitudinal impact parameters with respect to the primary vertex are required to be less than 10 mm.

The lepton not attributed to the Z boson decay must pass more stringent identification criteria than the leptons attributed to the Z boson, and have \(p_T > 20 \) GeV. Electrons are additionally required to pass the ‘tight’ identification criteria [29] with cuts on the matched track quality, the ratio of the energy measured in the calorimeter to the momentum of the matched track, and the detection of transition radiation. Segment-tagged muons may not be used as the third lepton.

Events are required to have \(E_T^{\text{miss}} > 25 \) GeV and the transverse mass of the \(W \pm \) boson candidate, \(m_W \), formed from the \(E_T^{\text{miss}} \) and the third lepton, is required to be greater than 20 GeV. These cuts suppress the remaining backgrounds from Z and ZZ production.

At least one of the leptons is required to have fired the trigger. To ensure that the trigger is well onto the efficiency plateau above the threshold of the primary single-lepton trigger, trigger-matched leptons are required to have \(p_T > 20 \) GeV for muons and 25 GeV for electrons.

5. Signal efficiency and background estimate

The fiducial efficiency is defined as the ratio of simulated signal events meeting the event selection criteria to the numbers of simulated events\(^4\) within the defined fiducial phase space region. The values for each channel are shown in Table 1. The fraction of selected simulated signal events which come from outside the fiducial phase space is 13%.

The total systematic uncertainty on the efficiency is 3−7% depending on the decay channel and is dominated by the uncertainties on the electron and muon reconstruction. These include uncertainties associated with the reconstruction and identification efficiencies, energy scale, and isolation. The uncertainties are determined by comparing simulated events with data in control regions and are 2−6% depending on the decay channel. The uncertainties on the objects involved in the \(E_T^{\text{miss}} \) calculation are used to derive the systematic uncertainties on \(E_T^{\text{miss}} \) following Ref. [30]. Uncertainties in the description of the pile-up conditions by the simulation are also considered. The total systematic uncertainty on the acceptance of the \(E_T^{\text{miss}} \) and transverse mass cuts due to the imperfect simulation is 1−2%.

Data-driven methods are used to estimate the backgrounds from \(Z \pm 4 \) jets and top-quark production. Simulation is used for the remaining background sources, including \(W/Z + \gamma \) events where the photon converts into an electron–positron pair. The backgrounds from \(W^{\pm}W^{\mp} \) and multijet production are negligible. For simulated events, the uncertainties on the theoretical cross section of the background processes are included in the systematic uncertainty.

In the \(\mu\mu\mu\mu \) and \(\mu\nu\mu\nu \) channels, the top-quark background contribution is evaluated from the average density of events in the side-bands around the Z mass peak after applying all selection cuts except the Z boson mass cut. Since the background from top-quark production does not contain a Z boson, this density is used to estimate the background from top-quark production in the signal region within the Z mass window. The systematic uncertainty is estimated from various cross checks, including a comparison of the difference between the side-band estimate and the prediction within the Z mass window in simulated events. This method is not applicable to the \(ee(ee) \) channel, since the \(Z + \) jet background dominates the side-bands due to electron misidentification, therefore a simulated event sample is used.

In order to estimate the background from \(Z \pm 4 \) jets events, a sample of events containing a Z boson candidate selected as described above and one “lepton-like” jet is identified. The lepton-like jet is a lepton candidate which does not explicitly have to satisfy lepton quality (e) or isolation (\(\mu \)) requirements. To ensure that the control sample is as similar to the signal as possible, all other event selection criteria, including the \(E_T^{\text{miss}} \) and \(m_W \) requirements, are applied. The background contribution is then estimated by scaling each event in the resulting sample by the probability \(f(p_T) \) that a “lepton-like” jet satisfies the quality or isolation requirements. The scaling factor \(f(p_T) \) is determined from a data sample of events containing a Z boson plus an extra lepton-like jet, with a low missing transverse momentum, \(E_T^{\text{miss}} < 25 \) GeV. The validity of extrapolation to high values of \(E_T^{\text{miss}} \) has been verified with dijet events from simulation and data. An estimate of the systematic uncertainty is derived from the \(E_T^{\text{miss}} \) extrapolation in dijet data.

6. Results

The numbers of expected and observed events after the full selection are shown in Table 2. A total of 71 \(W \pm Z \) candidates are observed in data, with \(12.1 \pm 1.5(\text{stat.})^{+4.0}_{-2.0}(\text{syst.}) \) expected background events. The expected signal events shown in the table include the contribution from \(\tau \) lepton decays into electrons or muons. The discrepancy between channels in the number of observed to expected events is consistent with a statistical fluctuation at the 16% level. The invariant mass and the transverse momentum of the Z boson in \(W \pm Z \) candidate events are shown in Figs. 1 and 2, respectively.

The fiducial cross section is calculated from

\[
\sigma_{WZ \rightarrow \ell\ell\ell\ell}^{\text{fid}} = \frac{N_{\text{obs}}^{\ell\ell\ell\ell} - N_{\text{bkg}}^{\ell\ell\ell\ell}}{C_{WZ \rightarrow \ell\ell\ell\ell}} \times \left(\frac{1}{N_{\text{MC}}^{\ell\ell\ell\ell}} - \frac{N_{\text{MC}}^{\ell\ell\ell\ell}}{N_{\text{sig}}^{\ell\ell\ell\ell}} \right)
\]

where \(N_{\text{bkg}}^{\ell\ell\ell\ell} \) and \(N_{\text{bkg}}^{\ell\ell\ell\ell} \) are the numbers of observed and background events, \(C_{WZ \rightarrow \ell\ell\ell\ell} \) the integrated luminosity and \(C_{WZ \rightarrow \ell\ell\ell\ell} \) the fiducial efficiency defined above. The last term corrects for the \(\tau \) lepton contribution estimated from the selected simulated signal sample, where \(N_{\text{MC}}^{\ell\ell\ell\ell} \) is the number of \(W \pm Z \) events with at least one of the bosons decaying to a \(\tau \) lepton and \(N_{\text{MC}}^{\ell\ell\ell\ell} \) is the number of \(W \pm Z \) events with decays into any lepton flavour. For each final state, the simulated signal samples include W and Z bosons

\(^4 \) Contributions from \(\tau \) lepton decays are excluded.
and systematic uncertainty shown by shaded bands. The shape of the top-quark from simulation or, where applicable, data-driven estimates including the statistical date events after the full selection. The stacked histograms represent the predictions ratios of the number of events within the fiducial phase space re-
tiated (0.6%) and parton distribution function uncertainty (1.5%).

Summary of observed events and expected signal and background contributions for the four trilepton channels and their combination. Statistical uncertainties are shown for the individual channels, and both statistical and systematic uncertainties are shown for the combined channel. Expected signal (W+Z) and background events from ZZ and W/Z + γ are predicted from MC simulation. Data-driven background estimation methods are used for W/Z + jets for all decay channels. For backgrounds with top-quark decays, data-driven estimates are used for the μμμ, eμμ and eee channels whereas MC simulation is used for the eee channel. W/Z + γ does not contribute to the eee and μμμ channels.

<table>
<thead>
<tr>
<th>Final state</th>
<th>eee + E_T^{miss}</th>
<th>eee + E_T^{miss}</th>
<th>eee + E_T^{miss}</th>
<th>μμμ + E_T^{miss}</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>11</td>
<td>9</td>
<td>22</td>
<td>29</td>
<td>71</td>
</tr>
<tr>
<td>ZZ</td>
<td>0.4 ± 0.0</td>
<td>1.0 ± 0.1</td>
<td>0.8 ± 0.1</td>
<td>1.7 ± 0.1</td>
<td>3.9 ± 0.1 ± 0.2</td>
</tr>
<tr>
<td>W/Z + jets</td>
<td>2.0 ± 0.5</td>
<td>0.7 ± 0.3</td>
<td>1.7 ± 0.5</td>
<td>0.4 ± 0.3</td>
<td>4.8 ± 0.8 ± 0.6</td>
</tr>
<tr>
<td>Top</td>
<td>0.2 ± 0.1</td>
<td>0.8 ± 0.5</td>
<td>0.9 ± 0.7</td>
<td>0.4 ± 0.5</td>
<td>2.3 ± 0.1 ± 0.5</td>
</tr>
<tr>
<td>W/Z + γ</td>
<td>0.5 ± 0.3</td>
<td>-</td>
<td>0.6 ± 0.4</td>
<td>-</td>
<td>1.1 ± 0.5 ± 0.1</td>
</tr>
<tr>
<td>Total background</td>
<td>3.1 ± 0.6</td>
<td>2.5 ± 0.7</td>
<td>3.9 ± 0.0</td>
<td>2.6 ± 0.6</td>
<td>12.1 ± 4.4 ± 1.6</td>
</tr>
<tr>
<td>Expected signal</td>
<td>7.7 ± 0.2</td>
<td>11.6 ± 0.2</td>
<td>12.24 ± 0.2</td>
<td>18.6 ± 0.3</td>
<td>50.3 ± 4.3 ± 9.3</td>
</tr>
<tr>
<td>Total expected events</td>
<td>10.9 ± 0.6</td>
<td>14.0 ± 0.7</td>
<td>16.4 ± 1.0</td>
<td>21.2 ± 0.7</td>
<td>62.4 ± 1.5 ± 4.6</td>
</tr>
</tbody>
</table>

The latter can be compared with the SM expectation, 17.3^{+1.3}_{-0.8} pb, calculated with MCFM [18].

In order to set limits on the anomalous coupling parameters, a frequentist approach [31] is used with the profile likelihood ratio used as the test statistic. The limits are set separately on each parameter with the other couplings fixed to their SM values. A reweighting procedure is used to predict the numbers of expected events as functions of the parameter being studied. The uncertainties on the signal acceptance and efficiency and on the background estimates are included as nuisance parameters with Gaussian constraints in the likelihood function. The 95% confidence interval (C.I.) is defined as the range(s) of the coupling parameter(s) for which at least 5% of randomly generated pseudo-experiments result in a smaller value of the profile likelihood ratio than is observed with the data.

The observed and expected 95% C.I. for the anomalous couplings are summarized in Table 3. The observed limits are compared with DØ results from W⁺Z production in Fig. 3. Other results on anomalous couplings from W⁺W⁻ production can be found in Refs. [32–38]. Significant improvements in these limits are expected with more integrated luminosity and refined extraction methods which take advantage of the differential spectra of kinematic quantities. The anomalous couplings influence the kinematic properties of W⁺Z events and thus the fiducial efficiency. The C_{WW} variation within the measured aTGC limits results maximally in a 3% decrease of the fiducial cross section.

![Fig. 1](image1.png)
Fig. 1. The invariant mass of the lepton pair attributed to the Z boson in candidate events after the full selection. The stacked histograms represent the predictions from simulation or, where applicable, data-driven estimates including the statistical and systematic uncertainty shown by shaded bands. The shape of the top-quark background is taken from simulation.

![Fig. 2](image2.png)
Fig. 2. The transverse momentum of Z bosons in candidate events after full selection. The stacked histograms represent the predictions from simulation or, where applicable, data-driven estimates including the statistical and systematic uncertainty shown by shaded bands. The last bin includes the overflow. The shape of the top-quark background is taken from simulation.
Table 3
Observed and expected 95% C.L. for the anomalous couplings Δg^Z_1, $\Delta \kappa Z$, and λZ. Expected experimental limits assume SM values.

<table>
<thead>
<tr>
<th>Coupling</th>
<th>Observed ($\Lambda = 2$ TeV)</th>
<th>Expected ($\Lambda = \infty$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δg^Z_1</td>
<td>$[-0.20, 0.30]$</td>
<td>$[-0.16, 0.24]$</td>
</tr>
<tr>
<td>$\Delta \kappa Z$</td>
<td>$[-0.9, 1.1]$</td>
<td>$[-0.8, 1.0]$</td>
</tr>
<tr>
<td>λZ</td>
<td>$[-0.17, 0.17]$</td>
<td>$[-0.14, 0.14]$</td>
</tr>
</tbody>
</table>

7. Conclusion

A measurement of the $W^\pm Z$ production cross section has been performed using final states with electrons and muons, in LHC pp collisions at $\sqrt{s} = 7$ TeV with ATLAS. In data with an integrated luminosity of 1.02 fb^{-1}, a total of 71 candidates is observed with a background expectation of $12.1 \pm 1.4(\text{stat.}) \pm 2.1(\text{syst.})$ events. The SM expectation for the number of signal events is $50.3 \pm 4.8(\text{stat.}) \pm 4.3(\text{syst.})$. The fiducial and total cross sections determined in the present work are given in Eqs. (3) and (4), respectively. The total cross section is in good agreement with the SM expectation. Limits on the anomalous triple gauge couplings Δg^Z_1, $\Delta \kappa Z$, and λZ are reported and the results are consistent with zero, as expected from the SM.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CPNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAM, Georgia; BMFB, DFG, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and NIFS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; NISiS, Poland; GRICES and FCT, Portugal; MERS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DSTNRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STF, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Egham, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst, MA, United States
Department of Physics, McGill University, Montreal, QC, Canada
Faculty of Science, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor, MI, United States
Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
INFN Sezione di Milano, Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States
Group of Particle Physics, University of Montreal, Montreal, QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Graduate School of Science, Nagoya University, Nagoya, Japan
Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
Department of Physics, Radboud University Nijmegen, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb, IL, United States
Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
Department of Physics, New York University, New York, NY, United States
Ohio State University, Columbus, OH, United States
Faculté de Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States
Department of Physics, Oklahoma State University, Stillwater, OK, United States
Polacký University, RCP, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene, OR, United States
LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
Department of Physics, University of Pennsylvania, Philadelphia, PA, United States
Petersburg Nuclear Physics Institute, Gatchina, Russia
INFN Sezione di Pisa, Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States
Laboratorio de Instrumentación e Investigación de Partículas - LIP, Lisboa, Portugal
Department of Física Teorica y del Cosmos and CAFFE, Universidad de Granada, Granada, Spain
Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
Czech Technical University in Prague, Prague, Czech Republic
State Research Center Institute for High Energy Physics, Protvino, Russia
Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Physics Department, University of Regina, Regina, SK, Canada
Ritsumeikan University, Kusatsu, Shiga, Japan
INFN Sezione di Roma I, Dipartimento di Fisica, Università La Sapienza, Roma, Italy
INFN Sezione di Roma Tor Vergata, Dipartimento di Fisica, Università Roma Tor Vergata, Roma, Italy
INFN Sezione di Roma Tre, Dipartimento di Fisica, Università Roma Tre, Roma, Italy
Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies, Université Hassan II, Casablanca, Morocco
Centre National de l’Énergie des Sciences Techniques Nucléaires, Rabat, Morocco
Université Cadi Ayyad, Faculté des sciences, Sémllalia Département de Physique, B.P. 2390, Marrakech 40000, Morocco
Faculté des Sciences, Université Mohammed Premier et LPTPM, Oujda, Morocco
FACULTE DES SCIENCES, Université Mohammed V, Rabat, Morocco
DPS/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), GF-sur-Yvette, France
Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States
Department of Physics, University of Washington, Seattle, WA, United States
Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Department of Physics, Shinshu University, Nagano, Japan
Fachbereich Physik, Universität Siegen, Siegen, Germany
Department of Physics, Simon Fraser University, Burnaby, BC, Canada
SLAC National Accelerator Laboratory, Stanford, CA, United States
Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovakia
Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Košice, Slovak Republic
Department of Physics, University of Johannesburg, Johannesburg, South Africa
School of Physics, University of the Witwatersrand, Johannesburg, South Africa
Department of Physics, Stockholm University, Stockholm, Sweden
Physics Department, Royal Institute of Technology, Stockholm, Sweden
Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, United States
Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion, Israel Inst. of Technology, Haifa, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, University of Toronto, Toronto, ON, Canada

Department of Physics, University of British Columbia, Vancouver, BC, Canada

Department of Physics and Astronomy, University of Ottawa, Ottawa, ON, Canada

Department of Physics, University of Illinois, Urbana, IL, United States

Department of Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison, WI, United States

Department of Physics, University of California Irvine, Irvine, CA, United States

Department of Physics, University of Illinois, Urbana, IL, United States

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver, BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison, WI, United States

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven, CT, United States

Yerevan Physics Institute, Yerevan, Armenia

Department of Physics and Astronomy, University of Toronto, Toronto, ON, Canada

Department of Physics, University of Toronto, Toronto, ON, Canada

Department of Physics, The University of Michigan, Ann Arbor, MI, United States

School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at Section de Physique, Université de Genève, Geneva, Switzerland.

Also at Department of Physics, University of Minnesota, Minneapolis, MN, United States.

Also at Fermilab, Batavia, IL, United States.

Also at Department of Physics, University of Chicago, Chicago, IL, United States.

Also at Department of Physics, University of Texas, Austin, TX, United States.

Also at High Energy Physics Group, Shandong University, Shandong, China.

Also at Section de Physique, Université de Genève, Geneva, Switzerland.

Also at Department of Physics, University of Wisconsin, Madison, WI, United States.

Also at Department of Physics, University of South Carolina, Columbia, SC, United States.

Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.

Also at California Institute of Technology, Pasadena, CA, United States.

Also at Department of Physics, Jagiellonian University, Krakow, Poland.

Also at Department of Physics, Oxford University, Oxford, United Kingdom.

Also at Department of Physics, Academia Sinica, Taipei, Taiwan.

Also at Laboratory of Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.

Deceased.