Measurement of the $W W$ cross section in $\sqrt{s} = 7$ TeV pp collisions with the ATLAS detector and limits on anomalous gauge couplings

ATLAS Collaboration

1. Introduction

Measurements of $W W$ production at the LHC provide important tests of the Standard Model (SM), in particular of the $W W Z$ and $W W \gamma$ triple gauge couplings (TGCs) resulting from the non-Abelian nature of the $SU(2)_L \times U(1)_Y$ symmetry group. Precise measurements of TGCs are sensitive probes of new physics in the electroweak sector and are complementary to direct searches. Furthermore, since $W W$ production is a background to possible new processes such as the production of the SM Higgs boson, a precise measurement of the $W W$ cross section is an important step in the search for new physics.

This Letter describes the measurements of the $W W$ cross section of $gg \rightarrow W W$ triple gauge couplings (including decays through tau leptons with additional neutrinos). The fiducial cross section is defined as \(\sigma \times A_{WW} \times B \) [1].

Previous measurements of $W W$ production using the CMS and ATLAS detectors, both based on the data recorded in 2010 and corresponding to an integrated luminosity of 36 pb$^{-1}$, have found \(\sigma \times A_{WW} = 41.1 \pm 15.3 \) (stat.) \(\pm 5.8 \) (syst.) \(\pm 4.5 \) (lumi.) pb [2] and \(\sigma \times A_{WW} = 41_{-16}^{+20} \) (stat.) \(\pm 5 \) (syst.) \(\pm 1 \) (lumi.) pb [3], respectively. CMS has additionally used these data to set limits on anomalous gauge-coupling parameters at higher center of mass energies than corresponding measurements at the Tevatron [4] and LEP [5].

2. ATLAS detector

The ATLAS detector [6] consists of an inner tracking system (inner detector, or ID) surrounded by a superconducting solenoid providing a 2 T magnetic field, electromagnetic and hadronic calorimeters, and a muon spectrometer (MS) incorporating three large superconducting toroid magnets arranged with an eight-fold azimuthal coil symmetry around the calorimeters. The ID consists of silicon pixel and microstrip detectors, surrounded by a transition radiation tracker. The electromagnetic calorimeter is based on two different detector technologies, with scintillator tiles or LAr as active media, and with either steel, copper, or tungsten as the absorber material. The MS comprises three layers of chambers for the trigger and for track measurements.

A three-level trigger system is used to select events. The level-1 trigger is implemented in hardware and uses a subset of detector information to reduce the event rate to a design value of at most 75 kHz. This is followed by two software-based trigger levels, level-2 and the event filter, which together reduce the event rate to about 200 Hz recorded for analysis.
The nominal pp interaction point at the center of the detector is defined as the origin of a right-handed coordinate system. The positive x-axis is defined by the direction from the interaction point to the center of the LHC ring, with the positive y-axis pointing upwards, while the z-axis is along the beam direction. The azimuthal angle \(\phi \) is measured around the beam axis and the polar angle \(\theta \) is the angle from the z-axis. The pseudorapidity is defined as \(\eta = -\ln \tan(\theta/2) \).

3. Data sample and event selection

The data used for this analysis correspond to an integrated luminosity of 1.02 ± 0.04 fb\(^{-1}\) [7], recorded between April and June of 2011. Events are selected with triggers requiring either a single electron with \(p_T > 20 \) GeV and \(|\eta| < 2.5 \) or a single muon with \(p_T > 18 \) GeV and \(|\eta| < 2.4 \). Additional data collected with a trigger requiring a single muon with \(p_T > 40 \) GeV, \(|\eta| < 1.05 \), and looser identification criteria are used to increase efficiency. The combination of triggers results in \(\approx 100\% \) (98\%) trigger efficiency for events with WW decays to \(e\nu\mu\nu \) and \(e\nu e\nu \) (\(\mu\nu\mu\nu \)) passing the selection described below.

The WW event selection begins with the identification of electrons and muons, requiring exactly two of these particles with opposite charge. Electrons are reconstructed with a clustering algorithm in the electromagnetic calorimeter and matched to an ID track. To distinguish electrons from hadrons, selection criteria are applied based on the quality of the position and momentum match between the extrapolated track and the calorimeter cluster, the consistency of the longitudinal and lateral shower profiles with an incident electron, and the observed transition radiation in the TRT. Electrons are required to lie within the fiducial regions of the calorimeters (\(|\eta| < 1.37 \) or \(1.52 < |\eta| < 2.47 \)), have \(p_T > 25 \) GeV \((p_T > 20 \text{ GeV for the lower } p_T \text{ electron in the } e\nu e\nu \text{ decay channel})\), and be isolated in the calorimeter and tracker. Calorimeter isolation requires the summed transverse energies deposited in calorimeter cells, excluding those belonging to the electron cluster, in a cone of radius \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.3 \) around the electron direction to be \(< 4 \) GeV. Tracker isolation requires the summed \(p_T \) of ID tracks in a cone of radius \(\Delta R = 0.2 \) centered on and excluding the electron track to be \(< 10\% \) of the electron \(p_T \).

The muon reconstruction algorithm begins with a track from the MS to determine the muon’s \(\eta \), and then combines it with an ID track to determine the muon’s momentum [9]. Muons are required to have \(p_T > 20 \) GeV and \(|\eta| < 2.4 \), and in the \(\mu\nu\mu\nu \) channel at least one muon must have \(p_T > 25 \) GeV. Decays of hadrons to muons are suppressed using calorimeter and track isolation. The calorimeter isolation requires the summed transverse energies deposited in calorimeter cells in a cone of radius \(\Delta R = 0.2 \) around the muon track to be less than 15\% of the muon’s \(p_T \). The track isolation requirement is the same as for electrons. The tracks associated with muon and electron candidates must have longitudinal and transverse impact parameters consistent with originating from the primary reconstructed vertex. The primary vertex is defined as the vertex with the highest \(\sum p_T^2 \) of associated ID tracks.

The presence of neutrinos is characterized by an imbalance of transverse momentum in the event. The missing transverse momentum \((E_T^{\text{miss}}) \) is the modulus of the event \(-p_T \) vector, calculated by summing the transverse momentum determined from each calorimeter cell’s energy and direction with respect to the primary vertex. Cells with \(|\eta| < 4.5 \) are used in the calculation and a correction is applied to account for the momentum of measured muons.

Misreconstructed leptons and jets, as well as leptons from tau decays, are suppressed by applying cuts on \(E_T^{\text{miss}} \times \sin \Delta \phi \) when \(\Delta \phi < \pi/2 \). Here, \(\Delta \phi \) is the azimuthal angle between the missing transverse momentum and the nearest charged lepton or jet; small \(\Delta \phi \) indicates that \(E_T^{\text{miss}} \) is dominated by a mismeasured lepton or jet, or by the presence of neutrinos in the direction of the lepton or jet, as would occur in a tau decay. The lower cuts on \(E_T^{\text{miss}} \), or \(E_T^{\text{miss}} \times \sin \Delta \phi \) for \(\Delta \phi < \pi/2 \), are 25 GeV in the \(e\nu \) channel, 40 GeV in the \(e\nu \) channel, and 45 GeV in the \(\mu\nu \) channel. The thresholds in the \(e\nu \) and \(\mu\nu \) channels are more stringent than in the \(e\nu \) channel to suppress the background from Drell–Yan (DY) production of \(ee \) and \(\mu\mu \) pairs.

Background from top-quark production is rejected by vetoing events containing a reconstructed jet with \(p_T > 25 \) GeV and \(|\eta| < 4.5 \). Jets are reconstructed with the anti-\(k_t \) algorithm [10] with a radius parameter of \(R = 0.4 \). A further 30\% reduction of top-quark background is achieved by rejecting events with a jet with \(p_T > 20 \) GeV, \(|\eta| < 2.5 \), and identified as originating from a b-quark (b-jet). The identification of b-jets combines information from the impact parameters and the reconstructed vertices of tracks within the jet [11]. The additional b-jet rejection reduces WW acceptance by 1.3\%.

Resonances with dilepton decays are removed by requiring \(ee \) and \(\mu\mu \) invariant masses to be greater than 15 GeV and not within 10 GeV of the Z-boson mass. To suppress backgrounds from heavy-flavour hadron decays, events with an \(e\nu \) invariant mass below 10 GeV are also removed. The complete event selection yields 202 \(e\nu\mu \), 59 \(e\nu e\nu \), and 64 \(\mu\nu\mu\nu \) candidates.

4. Background estimation

The selected data sample contains 26 ± 3% background to the WW production process (Table 1). In decreasing order of size, the main background processes are: DY production of dileptons, with significant \(E_T^{\text{miss}} \) arising from misreconstructed jet(s) or charged lepton(s); \(t\bar{t} \) and \(tWb \) production, where the b-quarks in the \(WWb\bar{b} \) final state are not rejected by the jet veto; \((W \rightarrow l\nu) + \text{jet} \), where the jet is misidentified as a lepton; \(WZ \rightarrow l\nu \nu \) production, where one lepton is not reconstructed; \((W \rightarrow l\nu) + y \), where the photon converts in the inner detector and is misreconstructed as an electron; \(ZZ \rightarrow l\nu l\nu \) production; and cosmic-ray muons overlapping a pp collision (which is negligible).

Backgrounds are estimated using a combination of Monte Carlo (MC) samples including a full geant [12] simulation of the ATLAS detector [13], and control samples (independent of the measurement sample) from data. The simulation includes the modeling of multiple pp interactions in the same bunch crossing (pile-up), as well as corrections (determined from data) to improve the modeling of reconstructed objects.

The DY background is estimated using the alpgen [14] Monte Carlo generator interfaced to pythia [15] for parton showering. To test the modeling of \(E_T^{\text{miss}} \), data are compared to simulated \(Z/\gamma^* \) events where the lepton pair forms an invariant mass within 15 GeV of the Z-boson mass. The DY MC accurately models the number of events above the thresholds on \(E_T^{\text{miss}} \) or \(E_T^{\text{miss}} \times \sin \Delta \phi \) used to select WW events, after subtracting the \(\approx 20\% \) non-DY

<table>
<thead>
<tr>
<th>Production process</th>
<th>(e\nu\mu) selection</th>
<th>(e\nu e\nu) selection</th>
<th>(\mu\nu\mu) selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY</td>
<td>13.0 ± 2.1 ± 1.6</td>
<td>12.5 ± 2.3 ± 1.4</td>
<td>10.9 ± 2.5 ± 1.4</td>
</tr>
<tr>
<td>Top</td>
<td>11.9 ± 1.8 ± 2.4</td>
<td>3.1 ± 0.5 ± 0.6</td>
<td>3.8 ± 0.6 ± 0.8</td>
</tr>
<tr>
<td>W + jet</td>
<td>10.0 ± 1.6 ± 2.1</td>
<td>4.1 ± 1.3 ± 0.9</td>
<td>4.2 ± 1.1 ± 1.3</td>
</tr>
<tr>
<td>Diboson</td>
<td>5.1 ± 1.0 ± 0.7</td>
<td>2.1 ± 0.8 ± 0.3</td>
<td>2.9 ± 0.4 ± 0.4</td>
</tr>
<tr>
<td>Total background</td>
<td>40.0 ± 3.3 ± 3.6</td>
<td>21.7 ± 2.8 ± 1.8</td>
<td>21.8 ± 2.8 ± 2.1</td>
</tr>
</tbody>
</table>
teria to the number of candidates failing the criteria. These ratios are measured in data samples dominated by hadronic jets collected with a trigger requiring an electromagnetic cluster or a muon candidate. All candidates are required to pass a loose set of selection criteria, including an isolation requirement. The measured f_e and $f_\text{\mu}$ are then applied as multiplicative factors to events satisfying all WW selection cuts except with one lepton failing the identification criteria but passing the looser criteria.

The above procedure measures f_e and $f_\text{\mu}$ ratios averaged over misidentified jets and heavy-flavour quark decays in jet-dominated samples. If, for example, the ratio f_e differs for these two contributions, the $W + \text{jet}$ prediction could be biased. To address this issue, two sets of loose criteria are applied to electron candidates, one based on the track and the shower profile and expected to enhance the misidentification fraction, and the other based on the isolation and expected to enhance the heavy flavour fraction. The f_e ratio is measured for these criteria separately in events where there is an additional b-jet and events where there is no such jet. From the combination of measurements, the heavy-flavour and misidentification contributions are separated; the resulting $W + \text{jet}$ background is consistent with that obtained using the inclusive f_e for the misidentification and heavy-flavour components. A similar separation is not performed for $f_\text{\mu}$, since heavy-flavour decays dominate the contribution of background muons from the $W + \text{jet}$ process.

The systematic uncertainty on the $W + \text{jet}$ prediction is dominated by a 30% variation of the ratios f_e and $f_\text{\mu}$ with the jet p_T threshold. This variation is sensitive to the relative fraction of quarks and gluons in the samples used to measure f_e and $f_\text{\mu}$, and thus encompasses potential differences in f_e and $f_\text{\mu}$ ratios between these samples and those used to estimate the $W + \text{jet}$ background.

Several alternative methods are used to check the $W + \text{jet}$ prediction and give consistent results. The first method applies the measured f_e and $f_\text{\mu}$ ratios to an inclusive $W + \text{jet}$ data sample, and then determines the fraction of expected events with no additional jets using $W + \text{jet}$ Monte Carlo events with two identified leptons. The second method defines different sets of “loose” lepton criteria and independently measures efficiencies for lepton identification and rates for misidentified or decaying hadrons to pass the standard identification criteria. Background from dijet production is estimated with this method and is found to be small; it is implicitly included in the primary estimate.

Monte Carlo estimates of the $W\gamma$, WZ, and ZZ backgrounds are obtained using a combination of ALPGEN and PYTHIA (for $W\gamma$) and HERWIG [19] with JIMMY [20] (for the others), normalized to the next-to-leading order (NLO) cross sections calculated with MCFM [21]. The $O(10\%)$ systematic uncertainty on these backgrounds is dominated by the uncertainty on the jet energy scale.

5. WW acceptance modeling

The WW total cross section measurement requires the knowledge of the A_{WW} and C_{WW} factors given in Eq. (1). The acceptance factor A_{WW} is defined as the ratio of generated WW events in the fiducial phase space to those in the total phase space. The correction factor C_{WW} is defined as the ratio of measured events to generator-level events in the fiducial phase space. The value of this ratio is determined primarily by lepton trigger and identification efficiencies, with a small contribution from differences in generated and measured phase space due to detector resolutions. The fiducial phase space is defined at generator level as:

- Muon $p_T > 20$ GeV and $|\eta| < 2.4$ ($p_T > 25$ GeV for at least one muon in the $\mu\mu\mu\nu$ channel);
nominator for the acceptances in the table. The impact of pile-up
each leptonic decay channel, including decays to tau leptons (Ta-
section measurement are based on the kinematics of SM

tainties, as described below. Because the corrections are applied
6.6 [23] parton distribution functions (PDFs). The underlying event
[22], respectively. Initial parton momenta are modeled with CTEQ
292
2012) 289–308
bring contributions from photons within
R = 0.4) with \(p_T > 25 \text{ GeV} \), \(|\eta| < 4.5\), and
\(\Delta R(e, \text{jet}) > 0.3 \);
No anti-\(k_t \) jet with \(p_T > 20 \text{ GeV} \), \(|\eta| < 2.5\), \(\Delta R(\text{jet}) > 0.3 \),
and \(\Delta R(b, \text{jet}) < 0.3 \), where the \(b \)-quark has \(p_T > 5 \text{ GeV} \);
Neutrino \(|\sum p_T| > |\sum p_T| \sin \Delta \phi \) (for \(\Delta \phi < \pi/2 \)) > 45, 40,
25 GeV in the \(\mu \nu \mu \nu \) channel and \(\nu \nu \mu \nu \) channels, respectively
(\(\Delta \phi \) is the azimuthal angle between the neutrino \(\sum p_T \)
and the nearest charged lepton);
\(m_\ell > 15 \) (10) GeV in the \(\mu \nu \mu \nu \) and \(e \nu e \nu \) channels
(\(\nu \nu \mu \nu \) channel);
\(|m_\ell - m_Z| > 15 \text{ GeV} \) in the \(\mu \nu \mu \nu \) and \(e \nu e \nu \) channels,
where \(m_Z \) is the Z boson mass. To reduce the dependence on
the model of QED final-state radiation, the electron and muon \(p_T \)
include contributions from photons within \(\Delta R = 0.1 \) of the lepton
direction.

Estimates of \(A_{WW} \) and \(C_{WW} \) are based on samples of \(q \bar{q} \to W W \)
and \(gg \to W W \) events generated with \textsc{mc@nlo} and \textsc{gg2vv} [22], respectively.
Initial parton momenta are modeled with CTEQ 6.6 [23] parton distribution functions (PDFs). The underlying event
and parton showering are modeled with \textsc{herwig}, and hadronization
and tau-lepton decays with \textsc{herwig}. Data-based corrections measured with \(W \) and \(Z \) boson data are applied to reduce uncertainties,
as described below. Because the corrections are applied to \(W \) and \(Z \) boson MC samples, residual uncertainties on the fiducial cross section measurement are based on the kinematics of SM \(W \) MC
production.

The combined factor \(A_{WW} \times C_{WW} \) is estimated separately for
each lepton decay channel, including decays to tau leptons (Table 2).
Tau-lepton decays to hadrons are not included in the denominator
for the acceptances in the table. The impact of pile-up is modeled by adding \textsc{pythia}-generated low-Q^2 events to the \(W W \)
MC according to the distribution of the number of additional collisions in the same bunch crossing in the data. Effects on detector response from nearby bunches are also modeled using this distribution.

A correction to the \(q \bar{q} \to W W \) MC modeling of the jet veto is derived using \(Z \)-boson data. The fraction of \(Z \)-boson events with
no additional jets is compared between data and \textsc{mc@nlo} simulated samples. The ratio of this fraction in data to the fraction in the MC is applied as a multiplicative correction factor of 0.963 to the \(W W \) MC. The correction reduces the uncertainties due to jet energy scale and resolution to 1.1%. A theoretical uncertainty of 5.0% on the jet veto acceptance contributes the largest uncertainty to \(A_{WW} \), as shown in Table 3.

Contributions to \(E_T^{\text{miss}} \) include energy from the interacting protons’ remnants (the underlying event), and from pile-up. The dominant uncertainty arises from the detector response to the underlying event, and is evaluated by varying the individual calorimeter cell energy deposits in the MC [24]. To determine the uncertainty due to additional \(pp \) interactions in the same bunch crossing as the hard-scattering process, the event \(\vec{p}_T \) measured with the calorimeter is compared between data and MC in \(Z \to \mu \mu \) events. The mean \(|\vec{p}_T| \) as a function of the number of reconstructed vertices agrees to within 3% between data and MC, yielding a negligible uncertainty on the \(W W \) acceptance. The effect of collisions from other bunch crossings is studied by splitting \(Z \)-boson samples in data and MC according to the bunch position in the LHC train, and by smearing \(E_T^{\text{miss}} \) in the simulation samples to match the acceptance of a given \(E_T^{\text{miss}} \) cut in the data samples. The resulting uncertainty on the \(W W \) acceptance is small.

The efficiencies for triggering, reconstructing, and identifying charged leptons are measured as a function of lepton \(p_T \) and \(\eta \) using \(Z \) boson events and (for electrons) \(W \) boson events [1]. Corrections to the MC derived from these data are within 1% of unity for trigger and muon identification efficiencies and deviate from unity by up to 11% at low \(p_T \) for the electron identification efficiency. Uncertainties on the corrections are largely due to the limited number of events available for the measurements and, in case of electron identification, from the estimate of the jet background contamination.

Finally, there are small uncertainties on the \(W W \) production model. Uncertainties on PDFs are determined using the CTEQ eigenvectors and the acceptance differences between the CTEQ 6.6 and MSTW 2008 PDF sets [25]. The impact of unmodeled higher order contributions is estimated by varying the renormalization and factorization scales coherently by factors of 2 and 1/2.

The total acceptance uncertainty on the three channels combined is 6.2%.

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Relative uncertainty (%)</th>
<th>ev(\mu\nu) selection</th>
<th>e(\nu)e(\nu) selection</th>
<th>(\mu\nu\mu\nu) selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger efficiency</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Lepton efficiency</td>
<td>2.3</td>
<td>4.1</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Lepton (p_T) scale and resolution</td>
<td>0.4</td>
<td>1.0</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Jet energy scale and resolution</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Lepton acceptance</td>
<td>2.0</td>
<td>2.1</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Jet veto acceptance</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>PDFs</td>
<td>1.4</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6.2</td>
<td>7.2</td>
<td>6.2</td>
<td></td>
</tr>
</tbody>
</table>

Table 2
The total \(W W \) acceptance \(A_{WW} \times C_{WW} \) in the individual decay channels, and the expected number of SM \(W W \) events \(N_{WW} \) for an integrated luminosity of 1.02 fb\(^{-1}\).

<table>
<thead>
<tr>
<th>(A_{WW} \times C_{WW})</th>
<th>(N_{WW})</th>
</tr>
</thead>
<tbody>
<tr>
<td>ev(\mu\nu) selection</td>
<td>10.8%</td>
</tr>
<tr>
<td>WW (\to e\nu\mu\nu)</td>
<td>114.9</td>
</tr>
<tr>
<td>WW (\to e e \nu)</td>
<td>3.0%</td>
</tr>
<tr>
<td>e(\nu)e(\nu) selection</td>
<td>4.4%</td>
</tr>
<tr>
<td>WW (\to e\nu e \nu)</td>
<td>23.4</td>
</tr>
<tr>
<td>WW (\to e e \nu)</td>
<td>1.1%</td>
</tr>
<tr>
<td>(\mu\nu\mu\nu) selection</td>
<td>7.6%</td>
</tr>
<tr>
<td>WW (\to \mu\mu\mu\nu)</td>
<td>40.3</td>
</tr>
<tr>
<td>WW (\to \mu\nu\nu)</td>
<td>1.6%</td>
</tr>
</tbody>
</table>
Table 4
The measured total $\sigma(pp \rightarrow WW)$ and fiducial ($σ_{fid}$) cross sections and the components used in the calculations, as well as the SM predictions for the fiducial cross sections ($σ_{fid}^{SM}$). The first uncertainty is statistical and the second systematic. The 3.7% relative uncertainty on the integrated luminosity is the third uncertainty on the measured cross sections. The uncertainties on $σ_{fid}^{SM}$ are highly correlated between the channels.

<table>
<thead>
<tr>
<th>e^+e^- selection</th>
<th>$e^\mu\nu$ selection</th>
<th>$\mu e\nu$ selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>$σ_{fid}$ [fb]</td>
<td>$σ_{fid}$ [fb]</td>
<td>$σ_{fid}$ [fb]</td>
</tr>
<tr>
<td>$N_{data} - N_{bg}$</td>
<td>$σ_{fid} = \frac{N_{data} - N_{bg}}{CC_{WW}}$</td>
<td></td>
</tr>
<tr>
<td>1.8 events in the $\mu\nu$ channel and $\nu\mu\nu$ channel</td>
<td>1.3 events in the $e\nu\nu$ channel and $e\mu\nu$ channel</td>
<td>0.1 events in the $e\nu\nu$ channel and $e\mu\nu$ channel</td>
</tr>
</tbody>
</table>

Uncertainties on the fiducial section measurement result from modeling lepton and jet efficiency, energy scale and resolution, and E_T^miss (the first five rows of Table 3). Small uncertainties of 1.4% ($\mu\nu\nu$ and $e\nu\nu$ channels) and 0.5% ($e\mu\nu$ channel) arise from the impact of QCD renormalization and factorization scale variations on lepton momenta (included in the sixth row of Table 3). Table 4 shows CC_{WW} and the other components of the cross section measurements for each channel. The measurements are performed by minimizing a likelihood fit to the observed data with respect to the WW and background predictions for the three channels combined. The measured cross sections are consistent with the SM predictions, differing by $+1.7\sigma$ ($e\nu\nu\nu$ channel), -1.3σ ($e\nu\nu\nu$ channel) and -0.0σ ($\mu\nu\nu$ channel). Contributions from a hypothetical SM Higgs boson would be small: 2.9, 0.9, and 1.8 events in the $e\nu\nu\nu$, $e\nu\nu\nu$ and $\mu\nu\nu$ channels, respectively, for a Higgs boson mass of 125 GeV.

The A_{WW} uncertainty comes from PDFs and scale variations affecting the lepton and jet veto acceptance (the last three rows of Table 3). The combined $A_{WW} \times CC_{WW}$ and the total measured cross section in each channel are shown in Table 4. The contribution by leptons from top decays is included. The channels are combined by maximizing a log likelihood, yielding

$σ(pp \rightarrow WW) = 54.4 \pm 4.0$ (stat.) ± 3.9 (syst.) ± 2.0 (lumi.) pb,

to be compared with the NLO SM prediction of $σ(pp \rightarrow WW) = 44.4 \pm 2.8$ pb [16,22]. Fig. 2 shows the following distributions for data and MC: E_T^miss transverse mass, the azimuthal angle between the charged leptons $[Δϕ(l,l)]$, and the invariant mass of the charged leptons $m_{ℓℓ}$. The transverse mass is $m_T(ΔE_T^\text{miss}) = \sqrt{(p_T^l + p_T^l + E_T^\text{miss})^2 - (p_T^l + p_T^l + E_T^\text{miss})^2}$, where the sum runs over the x and y coordinates and l_1 and l_2 refer to the two charged leptons.

6. Cross section results

The WW cross section is measured in the fiducial phase space and extrapolated to the total phase space. The total cross section is defined in Eq. (1), while the fiducial cross section is

$σ_{fid} = \frac{N_{data} - N_{bg}}{CC_{WW}}$ (2)

The A_{WW} uncertainty comes from PDFs and scale variations affecting the lepton and jet veto acceptance (the last three rows of Table 3). The combined $A_{WW} \times CC_{WW}$ and the total measured cross section in each channel are shown in Table 4. The contribution by leptons from top decays is included. The channels are combined by maximizing a log likelihood, yielding

$σ(pp \rightarrow WW) = 54.4 \pm 4.0$ (stat.) ± 3.9 (syst.) ± 2.0 (lumi.) pb,

to be compared with the NLO SM prediction of $σ(pp \rightarrow WW) = 44.4 \pm 2.8$ pb [16,22]. Fig. 2 shows the following distributions for data and MC: E_T^miss transverse mass, the azimuthal angle between the charged leptons $[Δϕ(l,l)]$, and the invariant mass of the charged leptons $m_{ℓℓ}$. The transverse mass is $m_T(ΔE_T^\text{miss}) = \sqrt{(p_T^l + p_T^l + E_T^\text{miss})^2 - (p_T^l + p_T^l + E_T^\text{miss})^2}$, where the sum runs over the x and y coordinates and l_1 and l_2 refer to the two charged leptons.

7. Anomalous triple-gauge couplings

The s-channel production of WW events occurs via the triple-gauge couplings WWV and WWZ. Contributions to these couplings from new physics processes at a high energy scale would affect the measured cross section, particularly at high momentum transfer [26]. Below the energy scale of these new physics processes, an effective Lagrangian can be used to describe the effect of non-SM processes on the $WWV (V=γ, Z)$ couplings. Assuming the dominant non-SM contributions conserve C and P, the general Lagrangian for WWV couplings is

$L_{WWV} / g_{WWV} = g_W^V (W_{µν}^V W_{Vµν} - W_{Vν}^V W_{µν}^V) + iκ_W W_{µν}^V W_{Vµν} + iκ_W W_{µν}^V W_{Vµν} V_{µν}\partial^2 \rho$, (3)

where $g_{WWV} = -e$, $g_{WWZ} = -e\cotθ_W$, $V_{µν} = θ_W V_µ V_ν - θ_W V_ν V_µ$, and $W_{µν} = θ_W W_µ V_ν - θ_W W_ν V_µ$. The SM couplings are $g_1 = κ = 1$ and $λ_3 = 0$. Individually, non-zero couplings lead to divergent cross sections at high N and non-SM values of the g_1 or $κ$ couplings break the gauge cancellation of processes at high momentum transfer. To regulate this behavior, a suppression factor depending on a scale $Λ$ with the general form

$λ(Λ) = \frac{λ}{(1 + Λ^2)^2}$ (4)

is defined for $λ$, $Δg_1 ≡ g_1 - 1$ and $Δκ ≡ κ - 1$. Here, $λ$ is the coupling value at low energy and N is the invariant mass of the WW pair. The g_1 coupling is fixed to its SM value by electromagnetic gauge invariance.

To reduce the number of WWV coupling parameters, three specific scenarios are considered. The first is the “LEP scenario” [27,28], where anomalous couplings arise from dimension-6 operators and electroweak symmetry breaking occurs via a light SM Higgs boson. This leads to the relations

$Δκ_{V} = -\frac{cos^2θ_W}{sin^2θ_W} (Δκ_{Z} - Δg_{V}^2)$ and $λ_V = λ_Z$, (5)

leaving three free parameters ($Δg_{V}^2$, $Δκ_{Z}$, $λ_Z$). The parameter space can be further reduced by requiring equal couplings of the $SU(2)$ and $U(1)$ gauge bosons to the Higgs boson in the dimension-6 operators. This adds the constraint $Δg_{V}^2 = Δκ_{V} (2cos^2θ_W)$ and is referred to as the “HISZ scenario” [27,28]. The third “Equal Coupling scenario” assumes common couplings for the WWZ and $WWγ$ vertices (Δ$κ_{Z} = Δκ_{γ}$, Δ$κ_{Z} = Δg_{V}^2 = 0$).

The differential cross section as a function of the invariant mass of the WW pair is the most direct probe of anomalous couplings, particularly at high invariant mass. The mass cannot be fully reconstructed but is correlated with the momentum of the individual leptons. The p_T distribution of the highest-p_T charged lepton is therefore a sensitive probe of anomalous TGCs and is used in a binned likelihood fit to extract the values of the anomalous couplings preferred by the data (Fig. 3). The dependence of the distribution on specific anomalous couplings is modeled by reweighting the MC@NLO SM WW MC to the predictions of the BHO generator.
Fig. 2. The E_T^{miss} (top left), m_T (top right), $\Delta\phi(l,l)$ (bottom left) and $m_\ell\ell$ (bottom right) distributions for the combined dilepton channels after all selection requirements. The data (dots) are compared to the expectation from WW and the backgrounds (histograms). The W+jet and dijet backgrounds are estimated using data. The hashed region shows the $\pm 1\sigma$ uncertainty band on the expectation.

Fig. 3. The p_T distribution of the highest-p_T charged lepton in WW final states. Shown are the data (dots), the background (shaded histogram), SM WW plus background (solid histogram), and the following WW anomalous couplings added to the background: $\Lambda/Delta_1\kappa_Z = 0.1$ (dashed histogram), $\lambda_Z = \lambda_{\gamma} = 0.15$ (dotted histogram), and $\Lambda/Delta_1g_Z = 0.2$ (dash-dotted histogram). The last bin corresponds to $p_T > 120$ GeV.

Table 5 and Fig. 4 show the results of the coupling fits to one and two parameters respectively in the LEP scenario, with the other parameter(s) fixed by Eq. (5) or set to the SM value(s). One-dimensional limits on λ_Z in the HISZ and Equal Coupling scenarios are the same as in the LEP scenario. In the HISZ scenario, the 95% CL limits on $\Delta\kappa_Z$ are $[-0.049, 0.072]$ and $[-0.037, 0.069]$ for $\Lambda = 3$ TeV and $\Lambda = \infty$, respectively. The corresponding limits in the Equal Coupling scenario are $[-0.089, 0.096]$ and $[-0.065, 0.102]$, respectively.

The anomalous coupling limits in the LEP scenario are comparable with limits obtained from CMS, CDF, D0 and the combined LEP results in Fig. 5. The sensitivity of this result is significantly greater than that of the Tevatron due to the higher center-of-mass energy and higher WW production cross section. It is also comparable to the combined results from LEP, which include data from four detectors and all WW decay channels.

8. Summary

Using 1.02 fb$^{-1}$ of $\sqrt{s} = 7$ TeV pp data, the $pp \rightarrow WW$ cross section has been measured with the ATLAS detector in the fully leptonic decay channel. The measured total cross section of 54.4 ± 5.9 pb is consistent with the SM prediction of 44.4 ± 2.8 pb and is the most precise measurement to date. In addition, the first measurement of the WW cross section in a fiducial phase space region
Fig. 4. Two-dimensional fits to the anomalous couplings in the LEP scenario: $\Delta\kappa_Z$ vs. λ_Z (left), $\Delta\kappa_Z$ vs. Δg_1^Z (middle), and λ_Z vs. Δg_1^Z (right). The inner (outer) ellipse encloses the 68% (95%) CL allowed region.

Fig. 5. Anomalous TGC limits from ATLAS, D0 and LEP (based on the LEP scenario) and CDF and CMS (based on the HISZ scenario), as obtained from WW production measurements.

has been presented. Limits on anomalous couplings have been derived in three scenarios using the p_T distribution of the leading charged lepton. No significant deviation is observed with respect to the SM prediction. These limits are competitive with previous results and are sensitive to a higher mass scale for new physical processes.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, MPG and AvH Foundation, Germany; CSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCUK, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NILT (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

ATLAS Collaboration

1 University at Albany, Albany, NY, United States
2 Department of Physics, University of Alberta, Edmonton, AB, Canada
3 (a) Department of Physics, Ankara University, Ankara; (b) Division of Physics, TOBB University of Economics and Technologies, Ankara; (c) Turkish Atomic Energy Authority, Ankara, Turkey
4 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
6 Department of Physics, University of Arizona, Tucson, AZ, United States
7 Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
8 Physics Department, University of Athens, Athens, Greece
9 Physics Department, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Instituto de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12 (a) Institute of Physics, University of Belgrade, Belgrade, Serbia; (b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 (a) Department of Physics, Bogazici University, Istanbul, Turkey; (b) Institute of Physics, University of Belgrade, Belgrade, Serbia; (c) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
19 Department of Physics, Istanbul Technical University, Istanbul, Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
21 (a) Physics Institute, University of Bonn, Bonn, Germany; (b) School of Physics, Shandong University, Shandong, China
22 Department of Physics, Boston University, Boston, MA, United States
23 Department of Physics, Brandeis University, Waltham, MA, United States
24 Universidad Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton, NY, United States
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
27 Department of Physics, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa, ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
32 (a) Departamento de Fisica, Pontificia Universidad Catolica de Chile, Santiago; (b) Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Valparaiso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
35 Nevis Laboratory, Columbia University, Irvington, NY, United States
36 Niels Bohr Institute, University of Copenhagen, København, Denmark
37 INFN Gruppo Collegato di Casertana, Department of Physical Sciences, University of Caserta, Caserta, Italy
38 (a) INFN Section of Firenze, University of Florence and INFN Florence, Florence, Italy
39 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
40 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
41 Physics Department, Southern Methodist University, Dallas, TX, United States
42 Physics Department, University of Texas at Dallas, Richardson, TX, United States
43 DESY, Hamburg and Zeuthen, Germany
44 (a) Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany; (b) Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham, NC, United States
46 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria
48 INFN Laboratori Nazionali di Frascati, Frascati, Italy
1 Also at School of Physics, Shandong University, Shandong, China.
2 Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
3 Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.
4 Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
5 Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France.
6 Also at Section de Physique, Université de Genève, Geneva, Switzerland.
7 Also at Departamento de Física, Universidade de Minho, Braga, Portugal.
8 Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
9 Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
10 Also at School of Physics, Shandong University, Shandong, China.
11 Also at California Institute of Technology, Pasadena, CA, United States.
12 Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
13 Also at LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France.
14 Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
15 Also at Department of Physics, Oxford University, Oxford, United Kingdom.
16 Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
17 Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.
* Deceased.