Search for magnetic monopoles in $\sqrt{s} = 7$ TeV pp collisions with the ATLAS detector

DOI
10.1103/PhysRevLett.109.261803

Publication date
2012

Document Version
Final published version

Published in
Physical Review Letters

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Search for Magnetic Monopoles in $\sqrt{s} = 7$ TeV pp Collisions with the ATLAS Detector

G. Aad et al.*

(ATLAS Collaboration)

(Received 26 July 2012; published 27 December 2012)

This Letter presents a search for magnetic monopoles with the ATLAS detector at the CERN Large Hadron Collider using an integrated luminosity of 2.0 fb$^{-1}$ of pp collisions recorded at a center-of-mass energy of $\sqrt{s} = 7$ TeV. No event is found in the signal region, leading to an upper limit on the production cross section at 95% confidence level of 1.6/\(1\) fb for Dirac magnetic monopoles with the minimum unit magnetic charge and with mass between 200 GeV and 1500 GeV, where \(\epsilon\) is the monopole reconstruction efficiency. The efficiency \(\epsilon\) is high and uniform in the fiducial region given by pseudorapidity \(|\eta| < 1.37\) and transverse kinetic energy 600–700 < \(E_{\text{kin}}\sin\theta\) < 1400 GeV. The minimum value of 700 GeV is for monopoles of mass 200 GeV, whereas the minimum value of 600 GeV is applicable for higher mass monopoles. Therefore, the upper limit on the production cross section at 95% confidence level is 2 fb in this fiducial region. Assuming the kinematic distributions from Drell-Yan pair production of spin-1/2 Dirac magnetic monopoles, the efficiency is in the range 1%–10%, leading to an upper limit on the cross section at 95% confidence level that varies from 145 fb to 16 fb for monopoles with mass between 200 GeV and 1200 GeV. This limit is weaker than the fiducial limit because most of these monopoles lie outside the fiducial region.

DOI: 10.1103/PhysRevLett.109.261803

Magnetic monopoles have long been the subject of dedicated search efforts for three main reasons: their introduction into the theory of electromagnetism would restore the symmetry between electricity and magnetism in Maxwell’s equations; their existence would explain the quantization of electric charge [1]; and they appear in many grand unified theories [2]. However, to date no experimental evidence of a magnetically charged object exists.

Recent searches for magnetic monopoles from astrophysical sources [3–9] are complemented by searches at colliders [10–14]. This Letter describes a search for magnetic monopoles in proton-proton collisions recorded at a center-of-mass energy of $\sqrt{s} = 7$ TeV using the ATLAS detector at the CERN Large Hadron Collider (LHC).

The Dirac quantization condition [1], given in Gaussian units, leads to a prediction for the minimum unit magnetic charge \(g\),

\[
\frac{ge}{\hbar c} = \frac{1}{2} \Rightarrow \frac{g}{\epsilon} = \frac{1}{2\alpha_e} = 68.5, \tag{1}
\]

where \(e\) is the unit electric charge and \(\alpha_e\) is the fine structure constant. With the introduction of a magnetic monopole, the duality of Maxwell’s equations implies a magnetic coupling [15],

\[
\alpha_m = \frac{(g\beta)^2}{\hbar c} = \frac{1}{4\alpha_e} \beta^2, \tag{2}
\]

where \(\beta = v/c\) is the monopole velocity. For relativistic monopoles, \(\alpha_m\) is very large, precluding any perturbative calculation of monopole production processes. Therefore, the main result of this analysis is a fiducial cross-section limit for Dirac monopoles of magnetic charge \(g\) derived without assuming a particular production mechanism. A cross-section limit assuming the kinematic distributions from Drell-Yan monopole pair production is also provided.

Monopoles are highly ionizing particles, interacting with matter like an ion of electric charge 68.5e, according to Eq. (1). The high stopping power of the monopole ionization [16] results in the production of a large number of \(\delta\) rays. These energetic “knock-on” electrons emitted from the material carry away energy from the monopole trajectory and further ionize the medium. In the mass and energy regime of this study, the \(\delta\) rays have kinetic energies ranging from 1 MeV to a maximum of \sim100 MeV. The secondary ionization by these \(\delta\) rays represents a significant fraction of the ionization energy loss of the magnetic monopole [16]. The dominant energy loss mechanism for magnetic monopoles in the mass and energy range considered herein is ionization [16–18]. Furthermore, the monopole ionization is independent of the monopole speed \(\beta\) to first order, in contrast to the ionization of electrically charged particles.

In the ATLAS detector [19,20], the monopole signature can be easily distinguished using the transition radiation tracker (TRT) in the inner detector and the liquid argon (LAr) sampling electromagnetic (EM) calorimeter.
The TRT is a straw-tube tracker that comprises a barrel ([\(\eta\) < 1.0] with 4 mm diameter straws oriented parallel to the beam line, and two end caps (0.8 < [\(\eta\) < 2.0]) with straws orientated radially. A minimum ionizing particle deposits \(\sim 2\) keV of energy in a TRT straw. Energy deposits in a TRT straw greater than 200 eV (called “low-threshold hits”) are used for tracking, while those that exceed 6 keV (called “high-threshold hits”) typically occur due to the transition radiation emitted by highly relativistic electrons when they penetrate the radiator layers between the straws. As a result, an electron of energy 5 GeV or above has a 20% probability of producing a high-threshold hit in any straw it traverses. The high-threshold hits can also indicate the presence of a highly ionizing particle. A 2 T superconducting solenoid magnet surrounds the inner detector. The LAr barrel EM calorimeter lies outside the solenoid in the [\(\eta\) < 1.5] region. It is divided into three shower-depth layers and comprises accordion-shaped electrodes and lead absorbers. The cell granularity in the second layer is \(\Delta \eta \times \Delta \phi = 0.025 \times 0.025\). The characteristic signature of magnetic monopoles in ATLAS is a large localized energy deposit in the LAr EM calorimeter (EM cluster) in conjunction with a region of high ionization density in the TRT. A search for particles with large electric charge, which yield a similar signature, was performed previously [21] and production cross-section limits for such particles were set [22].

The trajectory of an electrically neutral magnetic monopole in the inner detector is straight in the \(r-\phi\) plane and curved in \(r-z\). The behavior of magnetic monopoles in the ATLAS detector is described by a GEANT4 [23] simulation [24], which includes the equations of motion, the ionization, the \(\delta\)-ray production and a modified Birks’ law [25] to model recombination effects in LAr due to highly ionizing particles [26]. Equation 5.5 in Ref. [16] gives the \(\delta\)-ray production cross section and Eq. 5.7 describes the derivation of the magnetic monopole ionization; both equations are implemented in GEANT4.

Simulated Monte Carlo (MC) single-monopole samples are used to determine the efficiency as a function of the transverse kinetic energy \(E_{\text{kin}}^\text{trans} = E_{\text{kin}} \sin \theta\) and pseudorapidity \(\eta\) for various monopole masses. For the Drell-Yan process, it is assumed that spin-1/2 magnetic monopoles are produced in pairs from the initial \(\bar{p}p\) state via quark-antiquark annihilation into a virtual photon. MADGRAPH [27] is used to model this process by assuming leading-order Drell-Yan heavy lepton pair production but making the replacement \(e \rightarrow g\beta\) to reflect the magnetic coupling in Eq. (2). In the absence of a consistent theory describing the coupling of the monopole to the Z boson, such a coupling is set to zero in the MADGRAPH model. In the Drell-Yan samples, the CTEQ6L1 [28] parton distribution functions are used and PYTHIA version 6.425 [29] is used for the hadronization and the underlying event. Only Drell-Yan monopoles with transverse momentum \(p_T > 200\) GeV are processed by the simulation since lower \(p_T\) monopoles fail to reach the calorimeter. For all the simulated samples, both the monopoles and the antimonopoles are assumed to be stable and all final-state particles are processed by the simulation of the ATLAS detector. Additional \(\bar{p}p\) collisions in each event are simulated according to the distribution of \(\bar{p}p\) interactions per bunch crossing in the selected data period.

A simple algorithm is used to preselect events with monopole candidates for further study. Monopoles with \(E_{\text{kin}}^\text{trans} > 60\) GeV traverse the inner detector and penetrate to the LAr calorimeter, depositing most of their energy there. Only one third of the deposited energy is recorded due to the recombination effects in LAr [26]. Lacking a dedicated monopole trigger, only events collected with a single-electron trigger with transverse energy threshold \(E_T > 60\) GeV are considered. This trigger requires a track in the inner detector within [\(\Delta \eta\) < 0.01 and \(\Delta \phi\) < 0.02 of the LAr energy deposit. Monopoles that fulfill the 60 GeV energy requirement travel fast enough to satisfy the tracking and timing requirements of the trigger. Very high-energy monopoles (i.e., those with \(E_{\text{kin}}^\text{trans} \gtrsim 1400–1900\) GeV, where the value of 1400 GeV is for monopoles of mass 1500 GeV and the value of 1900 GeV is for monopoles of mass 200 GeV) exit the EM calorimeter and are rejected by a veto on hadronic energy that is intrinsic to the single-electron trigger. This trigger was operational during the first six months of 2011 data-taking and recorded an integrated luminosity of 2.0 fb\(^{-1}\), defining the data set used for this search.

The reconstructed EM cluster is then required to have \(E_T > 65\) GeV and \(|\eta| < 1.37\). The trigger efficiency is independent of \(E_T\) for \(E_T > 65\) GeV, motivating the former requirement. The \(\eta\) requirement ensures that the EM cluster is in the barrel region of the LAr calorimeter, where the two-dimensional spatial resolution is uniform. If two or more EM clusters in an event satisfy these criteria, only the cluster with the highest energy is considered as a monopole candidate.

In the barrel region, the monopole typically traverses 35 TRT straws and its high ionization ensures that most of these register high-threshold hits. Furthermore, as each \(\delta\) ray produced by the monopole ionization deposits \(\sim 2\) keV in a straw, the combined energy deposited by multiple \(\delta\) rays crossing a single TRT straw gives rise to additional high-threshold hits. The large number of \(\delta\) rays bend in the 2 T magnetic field in the \(r-\phi\) plane; therefore, the monopole trajectory appears as a \(\sim 1\)-cm-wide swath of high-threshold TRT hits. The fraction of TRT hits that exceed the high threshold in the vicinity of the path of an ionizing particle is therefore a powerful discriminator between the monopole signal and the background. The \(\phi\) position of the EM cluster is used to define a road of width \(\Delta \phi = \pm 0.05\) rad from the beam line to the cluster. At least 20 high-threshold TRT hits must be present in the
road. In addition, at least 20% of the TRT hits in the road must be high-threshold hits.

After the preselection, a more refined TRT hit counting algorithm is used to distinguish the signal from the backgrounds. A histogram with a bin width of 0.8 mrad is filled with the \(\phi \) distribution of the high-threshold hits in the previously defined road. The location of the highest bin is used to calculate the center of a new road. In the TRT barrel, a rectangular road of \(\pm 4 \) mm in the \(r-\phi \) plane is used and the hits are counted. In the TRT end cap, a wedge-shaped road of width \(\Delta \phi = 0.006 \) rad is used. These roads are wide enough to encompass two neighboring straws, taking into account the monopole trajectory and the associated \(\delta \) rays, but sufficiently narrow to ensure that the fraction of hits that exceed the high threshold, \(f_{HT} \), is insensitive to the presence of neighboring tracks. In the barrel region, the number of hits in the road is required to be greater than 54. An \(\eta \)-dependent requirement on the number of hits in the road is applied in the end cap and barrel–end-cap transition region to account for the TRT geometry.

Energy loss by bremsstrahlung and \(e^+e^- \) pair production is negligible for magnetic monopoles in the mass and energy range considered herein. Therefore, magnetic monopoles give rise to a narrow ionization energy deposit in the LAr calorimeter, the size of which provides another powerful discriminator of the monopole signal from backgrounds such as electrons and photons, which induce an EM shower via bremsstrahlung and \(e^+e^- \) pair production. The variable used is \(\sigma_R \), the energy-weighted two-dimensional \(\eta-\phi \) cluster dispersion in the second layer of the EM calorimeter, which has the highest two-dimensional spatial resolution. The dispersion \(\sigma_R \) is calculated from the energies deposited in a \(3 \times 7 \) array of cells centered around the most energetic cell of the EM cluster: \(\sigma_R = \left(\sigma_{\phi}^2 + \sigma_{\eta}^2 \right)^{1/2} \), where \(\sigma_{\phi}^2 = \sum (E_i \delta \phi_i^2)/\sum E_i - \left[\sum (E_i \delta \phi_i)/\sum E_i \right]^2 \) is the deviation in \(\phi \) between cell \(i \) and the most energetic cell, and \(E_i \) is the energy of cell \(i \); \(\sigma_{\eta}^2 \) is defined similarly.

The high-threshold TRT hit fraction, \(f_{HT} \), and the cluster dispersion, \(\sigma_R \), are thus chosen as the distinguishing variables between the signal and background, and are shown in Fig. 1. The main physics background sources are high-energy electrons, photons, and jets, which exhibit no correlation between these variables in simulated processes. The background and monopole MC samples are used to define an approximate signal region. Then \((\sigma_R, f_{HT}) \) parameter pairs are generated by randomly sampling the one-dimensional \(\sigma_R \) and \(f_{HT} \) distributions for data outside this approximate signal region. The borders of the signal region are tuned for maximal significance of observation of three signal events by replacing the background MC events with these parameter pairs. The final signal region \(A \) is defined by \(\sigma_R \leq 0.017 \) and \(f_{HT} > 0.7 \).

The efficiencies, which include trigger, reconstruction, and selection effects, in the two-dimensional \(E_T^{kin} \) versus \(\eta \) plane are obtained from the simulated single-monopole samples. A fiducial region for each monopole mass is defined by the \(E_T^{kin} \) range in which the efficiency is 0.80 or higher in the \(|\eta| < 1.37 \) region. Figure 2 shows the efficiency versus \(E_T^{kin} \), averaged over \(|\eta| < 1.37 \). For monopoles with a mass of 200 GeV, the minimum transverse kinetic energy \((E_T^{kin})_{min} \) where the efficiency rises above 0.80 is 700 GeV. For monopoles with a mass between 500 GeV and 1500 GeV, \((E_T^{kin})_{min} \) is 600 GeV. Monopoles with lower \(E_T^{kin} \) fail to penetrate the EM calorimeter and therefore do not satisfy the trigger requirements. Monopoles with very high \(E_T^{kin} \) exit the EM calorimeter and are rejected by the hadronic veto of the electron trigger. A common upper value of \(E_T^{kin} = 1400 \) GeV is used for the fiducial region of all monopole masses. As the minimum efficiency is 0.80 in the fiducial region.
region, a common value of 0.80 is used in the determination of the upper cross-section limit.

The efficiencies can be under- or overestimated for several reasons. These effects are described below and the relative systematic uncertainties for each effect are given. (1) Cross talk in the second EM layer in the \(\phi \) direction is not modeled in the simulation. The energy is reweighted assuming 1.8\% cross talk [30] and the cluster dispersion, \(\sigma_R \), recomputed. The efficiency is reduced and the resulting relative shift of \(-1.7\%\) for single monopoles is taken as a one-sided uncertainty. (2) The simulation underestimates the TRT occupancy in the data by up to 20\%; therefore, the number of low-threshold hits (those unlikely to come from the monopole or related \(\delta \) rays) is increased by 20\%. The resulting relative uncertainty is \(-1.3\%\). (3) The modification to Birks’ law is varied between its upper and lower systematic uncertainties [26], yielding a relative uncertainty of \(+1.8\%\) and \(+1.5\%\), respectively. (4) The production of \(\delta \) rays is varied by 3\% [16] and the resulting uncertainty is negligible. (5) The GEANT4 “range cut” [23] controls the minimum kinetic energy threshold below which \(\delta \) rays are not propagated explicitly. This parameter is reduced from 50 \(\mu \)m to 25 \(\mu \)m in the TRT simulation. The resulting relative uncertainty is \(+0.14\%\). (6) The material in the inner detector, in the barrel cryostat and in between the cryostat and the first layer of the EM calorimeter is increased by 5\%, 10\%, and 5\%, respectively, in the simulation [31]. The resulting \(-0.74\%\) relative uncertainty is taken as symmetric. Including an uncertainty of \(-1.7\%\) to account for the limited number of MC events, the total upper and lower relative uncertainties on the efficiency for single monopoles are \(+2.6\%\) and \(-2.8\%\), respectively.

The efficiencies to reconstruct at least one of the monopoles in the pairs produced with Drell-Yan kinematic distributions are given in Table I for each mass. Only masses up to 1200 GeV are considered, taking into account the phase space limitations for pair production. The total relative uncertainties, which reflect the same systematic variations described above, are also given. The efficiencies and their associated systematic uncertainties reflect large losses due to acceptance, since many Drell-Yan monopoles have insufficient energy to reach the calorimeter.

The background in the signal region is predicted directly from the data. The two-dimensional plane in Fig. 1 is divided into quadrants, one of which is dominated by signal (region \(A \)), and three others that are occupied mainly by background (regions \(B, C, \) and \(D \)). The ratio of background events in signal region \(A \) to events in background region \(B \) is expected to be the same as the ratio of background events in regions \(C \) to \(D \). This assumption is incorporated into a maximum likelihood fit to determine the estimated numbers of signal and background events in signal region \(A \). The inputs to the fit include the observed event yields in quadrants \(A \) through \(D \), which are 0, 5, 16, and 7001, respectively, the efficiencies and associated systematic uncertainties that have already been discussed, and the integrated luminosity and its 3.7\% uncertainty [32]. For each monopole mass, the rate of appearance of signal events in quadrants \(B \) and \(C \), as predicted by the simulation, is also taken into account. According to the simulation, no signal event appears in quadrant \(D \) for any monopole mass. The fit predicts \(0.011 \pm 0.007\) background events in the signal region.

Using the results of the maximum likelihood fit, the upper limits on the production cross sections at 95\% confidence level are calculated using the profile likelihood ratio as a test statistic [33]. The results are extracted using the \(CL_s \) method [34]. The cross-section limits can be expressed as a function of the efficiency, \(\epsilon \), which is shown in Fig. 2 for single monopoles and given in Table I for Drell-Yan pair-produced monopoles. The upper limit on the production cross section at 95\% confidence level is found to be \(1.6/\epsilon \) fb for Dirac magnetic monopoles with the minimum unit magnetic charge and with mass between 200 GeV and 1500 GeV. Assuming the kinematic distributions from Drell-Yan pair production of spin-1/2 Dirac magnetic monopoles, this translates to an upper limit on the cross section at 95\% confidence level that varies from 145 fb to 16 fb for monopoles with mass between 200 GeV and 1200 GeV, as shown in Fig. 3. Since the number of expected background events is very small and no event is

<table>
<thead>
<tr>
<th>Mass (GeV)</th>
<th>200</th>
<th>500</th>
<th>800</th>
<th>1000</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>0.011</td>
<td>0.048</td>
<td>0.081</td>
<td>0.095</td>
<td>0.095</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relative uncertainty</th>
<th>Upper (%)</th>
<th>+32</th>
<th>+24</th>
<th>+22</th>
<th>+23</th>
<th>+20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower (%)</td>
<td>-36</td>
<td>-23</td>
<td>-22</td>
<td>-25</td>
<td>-25</td>
<td>-25</td>
</tr>
</tbody>
</table>

![FIG. 3 (color online). Upper limits on the monopole production cross sections at 95\% confidence level. The solid line is the limit for single monopoles in the fiducial region and the dashed line is the limit assuming the kinematic distributions from Drell-Yan (DY) monopole pair production.](image-url)
observed in the signal region, only the observed limits are shown. To compare with previous experiments that have provided lower mass limits on spin-1/2 Dirac magnetic monopoles by assuming Drell-Yan pair production, such an approach would yield a lower mass limit of 862 GeV in the present search [35].

The monopole reconstruction efficiency is high and uniform in the fiducial region given by pseudorapidity $|\eta| < 1.37$ and transverse kinetic energy $(E_{\text{kin}}^T)_{\text{min}} < 1400$ GeV, where $(E_{\text{kin}}^T)_{\text{min}}$ is 600 GeV for monopoles with a mass between 500 GeV and 1500 GeV. For monopoles with a mass of 200 GeV, $(E_{\text{kin}}^T)_{\text{min}}$ = 700 GeV. Therefore, the upper limit on the production cross section at 95% confidence level is 2 fb, as shown in Fig. 3, for Dirac magnetic monopoles with the minimum unit magnetic charge and with mass between 200 GeV and 1500 GeV in this fiducial region. The fluctuations of the observed limit in the fiducial region originate from variations of the nuisance parameters used in the profile likelihood ratio.

These results extend the upper limits on the production cross section for monopoles in this mass region established by preceding experiments. This is the first direct collider approach that yields cross-section constraints on magnetic monopoles with masses greater than 900 GeV.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We thank J. Apostolakis, V. Ivanchenko, M. Horbatsch, and V. Sanz for helpful discussions. We acknowledge the support of ANPCyT, Argentina; YerPhi, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DLR, DMSR, and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GFN, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FC, Portugal; MERS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSEC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA) and in the Tier-2 facilities worldwide.

[20] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis coinciding with the axis of the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

[35] Over the range of monopole masses from 200 GeV to 1200 GeV, the leading-order Drell-Yan production cross section drops from 10^5 fb to 1 fb, but has large theoretical uncertainties, due to the nonperturbative nature of the magnetic coupling.
Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, Carleton University, Ottawa, Ontario, Canada
CERN, Geneva, Switzerland
Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
Department of Modern Physics, University of Science and Technology of China, Anhui, China
School of Physics, Shandong University, Shandong, China
Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubière Cedex, France
Nevis Laboratory, Columbia University, Irvington, New York, USA
Niels Bohr Institute, University of Copenhagen, København, Denmark
INFN Gruppo Collegato di Cosenza, Italy
Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
Physics Department, Southern Methodist University, Dallas, Texas, USA
Physics Department, University of Texas at Dallas, Richardson, Texas, USA
DESY, Hamburg and Zeuthen, Germany
Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
Department of Physics, Duke University, Durham, North Carolina, USA
SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
INFN Laboratori Nazionali di Frascati, Frascati, Italy
Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
Section de Physique, Université de Genève, Geneva, Switzerland
INFN Sezione di Genova, Genova, Italy
Dipartimento di Fisica, Università di Genova, Genova, Italy
E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi, Georgia
High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
II Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
Department of Physics, Hampton University, Hampton, Virginia, USA
Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
Department of Physics, Indiana University, Bloomington, Indiana, USA
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa City, Iowa, USA
Department of Physics and Astronomy, Iowa State University, Ames Iowa, USA
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
INFN Sezione di Lecce, Lecce, Italy
Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
aDeceased.

bAlso at Laboratorio de Instrumentacao e Fisica Experimental de Particulas—LIP, Lisboa, Portugal.

cAlso at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.

dAlso at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.

eAlso at TRIUMF, Vancouver, BC, Canada.

fAlso at Department of Physics, California State University, Fresno, CA, USA.

gAlso at Novosibirsk State University, Novosibirsk, Russia.

hAlso at Fermilab, Batavia, IL, USA.

iAlso at Department of Physics, University of Coimbra, Coimbra, Portugal.

jAlso at Department of Physics, UASLP, San Luis Potosi, Mexico.

kAlso at Universitá di Napoli Parthenope, Napoli, Italy.

lAlso at Institute of Particle Physics (IPP), Canada.

mAlso at Department of Physics, Middle East Technical University, Ankara, Turkey.

nAlso at Louisiana Tech University, Ruston, LA, USA.

oAlso at Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.

pAlso at Department of Physics and Astronomy, University College London, London, United Kingdom.

qAlso at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.

rAlso at Department of Physics, University of Cape Town, Cape Town, South Africa.

sAlso at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

tAlso at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.

uAlso at Manhattan College, New York, NY, USA.

vAlso at School of Physics, Shandong University, Shandong, China.

wAlso at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

xAlso at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.

yAlso at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.

zAlso at Dipartimento di Fisica, Università La Sapienza, Roma, Italy.

aaAlso at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.

bbAlso at Section de Physique, Université de Genève, Geneva, Switzerland.

cAlso at Departamento de Fisica, Universidade de Minho, Braga, Portugal.

dAlso at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA.

eAlso at Institute for Particle and Nuclear Physics, Wigner Research center for Physics, Budapest, Hungary.

ffAlso at California Institute of Technology, Pasadena, CA, USA.

ggAlso at Institute of Physics, Jagiellonian University, Krakow, Poland.

hhAlso at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.

iiAlso at Nevis Laboratory, Columbia University, Irvington, NY, USA.

jjAlso at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.

kkAlso at Department of Physics, Oxford University, Oxford, United Kingdom.

llAlso at Institute of Physics, Academia Sinica, Taipei, Taiwan.

mmAlso at Department of Physics, The University of Michigan, Ann Arbor, MI, USA.