Cobalt-Catalyzed Enantioselective Hydrogenation of Trisubstituted Carbocyclic Olefins
An Access to Chiral Cyclic Amides

DOI
10.1002/anie.202301329

Publication date
2023

Document Version
Final published version

Published in
Angewandte Chemie - International Edition

License
CC BY-NC-ND

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Cobalt-Catalyzed Enantioselective Hydrogenation of Trisubstituted Carbocyclic Olefins: An Access to Chiral Cyclic Amides

Soumyadeep Chakrabortty, Katharina Konieczny, Felix J. de Zwart, Eduard. O. Bobylev, Eszter Baráth, Sergey Tin, Bernd H. Müller, Joost N. H. Reek, Bas de Bruin, and Johannes G. de Vries*

In memory of Professor Paul C. J. Kamer

Abstract: The enantioselective hydrogenation of cyclic enamides has been achieved using an earth-abundant cobalt-bisphosphine catalyst. Using CoCl$_2$(S,S)-Ph-BPE, several trisubstituted carbocyclic enamides were reduced with high activity and excellent enantioselectivity (up to 99 %) to the corresponding saturated amides. The methodology can be extended to the synthesis of chiral amines by base hydrolysis of the hydrogenation products. Preliminary mechanistic investigations reveal the presence of a high spin cobalt (II) species in the catalytic cycle. We propose that the hydrogenation of the carbon-carbon double bond proceeds via a sigma-bond-metathesis pathway.

Introduction

Enantioselective hydrogenation has emerged as one of the most atom-economic strategies for the synthesis of enantiopure saturated motifs from their prochiral precursors.$^{[1]}$ Many important pharmaceuticals and agrochemicals are produced on large scale via asymmetric hydrogenation.$^{[2]}$ The catalytic performance is strongly influenced by the presence of coordinating groups in the substrate and the catalyst-substrate interactions which guide the chirality transfer to the product. Enantiopure carbocyclic motifs such as chiral cyclic alkanes, amines, amides, ethers, esters etc. are commonly found in important pharmaceuticals and numerous bioactive molecules.$^{[3]}$ Among the various synthetic methods for the preparation of such molecules, enantioselective hydrogenation of the cyclic substrates bearing their corresponding unsaturated double bonds (C=C, C=N, C=O) is one of the most desired and environmentally benign strategies. The catalytic activity and stereoselectivity are also highly influenced by the ligands employed in the reaction. Chiral phosphines have performed the best thus far in asymmetric hydrogenation of functionalized and minimally functionalized cyclic alkenes.$^{[3]}$ Mixed donor P,N ligands developed by Pfaltz’s group,$^{[27]}$ Andersson’s group$^{[28]}$ and Diéguez’s group$^{[29]}$ have also been successful, delivering a high degree of enantioselectivity for several types of olefins.$^{[3]}$

Enantio-induction in asymmetric hydrogenation of some prochiral olefins such as the cyclic trisubstituted alkenes with amide functionalities, is still a challenging task, especially the β-derivative (i.e., 2-substituted derivatives). The asymmetric hydrogenation of this class of olefins is highly desirable, as their corresponding chiral amine derivatives such as Tametraline (norepinephrine-dopamine reuptake inhibitor),$^{[26]}$ Sertraline (antidepressant, selective serotonin reuptake inhibitor),$^{[7]}$ Alnespirone (selective 5-HT$_A$ receptor full agonist),$^{[9]}$ Terutroban (selective thromboxane prostanoid (TP) antagonist),$^{[9]}$ Rivotigone (dopamine agonist used as treatment for Parkinson’s disease),$^{[30]}$ Rasagiline (anti Parkinson’s therapeutic),$^{[11]}$ Indatraline (antidepressive agent)$^{[12]}$ have therapeutic properties (Figure 1, top). Very often, the chiral amide synthesis relies on the use of transition metal catalysis (Figure 1, middle); although still very few catalysts are known to deliver excellent ee’s in the reduction of this particular class of cyclic olefins. For example, N-(3,4-dihydropthalen-2-yl) acetic acid was hydrogenated using Ru-BINAP as catalyst affording 90–95 % ee.$^{[13]}$ Zhang and co-workers reported the Rh/PennPhos catalyst for asymmetric hydrogenation of cyclic enamides where excellent enantioselectivities were observed in the case of several α-enamides up to > 99 %, and up to 71 % ee in the case of β-derivatives.$^{[14]}$ Three years later, the same group also observed similar selectivities using Rh/α-Ph-hexa-MeO-BIPHEP as catalyst for the hydrogenation of α-enamides.$^{[15]}$ Minnaard, de Vries, Feringa and co-workers reported the use of a Rh/phosphoramidite catalytic system,
achieving up to 94% enantioselectivity.\[16\] Reek, de Vries and co-workers also achieved 94% ee with a supramolecular Rh-catalyst.\[17\] Riera, Verdaguer and co-workers utilized the MaxPHOS ligand for the Ir-catalyzed asymmetric hydrogenation of several cyclic enamides, where 99% ee was achieved at a relatively low partial pressure of hydrogen (H\(_2\)).\[18\] Pàmies, Diéguez and co-workers applied their P,N (phosphite-oxazoline) ligand family for the Ir- and Rh-catalyzed hydrogenation of several classes of olefins resulting in excellent enantioselectivities.\[19\] Use of a novel C\(_2\)-symmetric P-chirogenic bisphosphine WingPhos developed by Tang and co-workers also resulted in excellent ee.\[20\] However, most of these methods depend on the use of precious metals such as rhodium, ruthenium and iridium (as described in Figure 1, bottom) for their remarkable activity and robustness. The high costs and volatile prices of the late transition metals have made researchers think about alternatives.

The replacement of precious metals by earth abundant first-row transition metals has become an active area of research since the last decades.\[21\] 3d-Metals possess different chemical properties compared to their 4d or 5d congeners due to smaller d-orbital splitting. Very often this makes the 3d-transition metal catalysts to operate via different mechanisms, as well as results in different deactivation pathways of these compared to noble metal catalysts. Especially in asymmetric hydrogenation 3d metals can offer advantages, such as novel reactivity, altered selectivity, different mechanism, or reduced catalyst cost. Therefore, a de novo strategy has to be followed by the chemists for the transition of precious metals to the first-row transition metals.

Figure 1. Selected examples of drugs containing a cyclic chiral amine-scaffold (top); Schematic representation for the synthesis of chiral amide via asymmetric hydrogenation (middle); State of the art of chiral catalysts for enantioselective hydrogenation of cyclic enamides (bottom).
Although cobalt catalysts have been used frequently in homogeneous hydrogenation reactions,[23] since the pioneering work by Yoshimura in 1973 on enantioselective olefin hydrogenation by the bis(dimethylglyoximato)cobalt(II)-quinate complex,[23] not much progress has been made in this direction of research until 40 years later Chirik and coworkers discovered via high throughput screening that bis-(iminopyridine-Co3 and bisphosphine-Co11-Zn) are sufficiently active for the hydrogenation of unfunctionalized and functionalized olefins delivering excellent enantioselectivities.[24] Since then, enantioselective hydrogenation of C=C bonds using 1st row transition-metals (such as cobalt and nickel) has become an active area of research, especially in the last seven years.[22,25,26] Following our long-standing interest in transition metal catalyzed asymmetric hydrogenation, herein, we report the cobalt catalyzed enantioselective hydrogenation of carbonyl enamides. Employing CoCl\textsubscript{2} in combination with a commercially available chiral bisphosphine as ligand, excellent yields and enantioselectivities have been achieved. Hydrolysis of the resulting chiral amides resulted in the cyclic chiral amines with high optical purities which are of high interest for the preparation of active pharmaceuticals. Additional experiments, including electron paramagnetic resonance (EPR) spectroscopy and Mass spectrometry, have been carried out to shed light on the mechanistic cycle.

Results and Discussion

Reaction Development, Optimization, and Scope

We started our initial screening with the hydrogenation of N-(3,4-dihydronaphthalen-2-yl)acetamide (1\textsubscript{a}) using different cobalt precursors in combination with the air stable P-chiral bisphosphine ligands (R,R)-QuinoxP* (L\textsubscript{1}) and (S,S)-Ph-BPE (L\textsubscript{5}) (Table 1). Cobalt tetrafluoroborate hexahydrate [Co(BF\textsubscript{4})\textsubscript{2}·6H\textsubscript{2}O] was inactive in the hydrogenation of 1\textsubscript{a} using (R,R)-QuinoxP* (L\textsubscript{1}) as ligand (Table 1, entry 1), whereas >99 \% conversion was achieved using (S,S)-Ph-BPE (L\textsubscript{5}) as ligand (entry 2, Table 1). Moderate enantioselectivity was observed (e.r.: 71:29) in the presence of this metal precursor. Cobalt acetylacetonate [Co(acac)\textsubscript{3}] and dicobalt-octacarbonyl [Co\textsubscript{2}(CO)\textsubscript{8}] were found to be completely inert for this transformation, using (R,R)-QuinoxP* (L\textsubscript{1}) and (S,S)-Ph-BPE (L\textsubscript{5}) in MeOH (Table 1, entries 5–8). [Co(stearate)]\textsubscript{2}/(S,S)-Ph-BPE (L\textsubscript{5}) was active in MeOH delivering moderate enantioselectivity (e.r.: 72:28) with full conversion, although [Co(stearate)]\textsubscript{2}/(R,R) QuinoxP* (L\textsubscript{1}) failed to catalyze the reaction. Anhydrous cobalt (II) chloride with (S,S)-Ph-BPE afforded full conversion of the starting material to the desired product with a promising ee of 88 \%.

The solvent effect on the reactivity and enantioselectivity was also thoroughly examined. Following the lead of the high activity of CoCl\textsubscript{2}/(S,S)-Ph-BPE in polar protic medium, several alcoholic solvents were screened. The results are outlined in the Supporting Information (Table S1). [Co-(BF\textsubscript{4})\textsubscript{2}·6H\textsubscript{2}O]/(S,S)-Ph-BPE (L\textsubscript{5}) did not yield the desired product in iso-propanol (i-PrOH) and trifluoroethanol (TFE), whereas full conversion was achieved in tert-butanol (t-BuOH) with up to 88 \% of ee. [Co(acac)\textsubscript{3}]/(S,S)-Ph-BPE (L\textsubscript{5}) also resulted in no conversion in different alcoholic solvents (Table S1, Supporting Information). Surprisingly, CoCl\textsubscript{2}/(S,S)-Ph-BPE (L\textsubscript{5}) was found to be active only in methanol (MeOH), while use of other protic solvents resulted in sluggish reactions. On the other hand, [Co(stearate)]\textsubscript{2}/(S,S)-Ph-BPE (L\textsubscript{5}) was fairly active in most of the screened solvents. Full conversion was achieved in methanol (MeOH), ethanol (EtOH) and isopropanol (i-PrOH) with up to 78 \% of enantioselectivity (Supporting Information, Table S1). Excellent ee (up to 90 \%) was observed in tert-butanol (t-BuOH) and trifluoroethanol (TFE) at the cost of <50 \% conversion of the starting enamide (Table S1, Supporting Information). The effect of the ligand in the asymmetric hydrogenation was also

<table>
<thead>
<tr>
<th>Entry</th>
<th>[Co]</th>
<th>Ligand</th>
<th>Conversion of 1a [%]</th>
<th>Enantiomeric ratio (e.r.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Co(BF\textsubscript{4})\textsubscript{2}·6H\textsubscript{2}O</td>
<td>(R,R)-QuinoxP* (L\textsubscript{1})</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>CoCl\textsubscript{2}</td>
<td>(S,S)-Ph-BPE</td>
<td>>99</td>
<td>71:29</td>
</tr>
<tr>
<td>3</td>
<td>CoCl\textsubscript{2}</td>
<td>(R,R)-QuinoxP*</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>Co(acac)\textsubscript{3}</td>
<td>(S,S)-Ph-BPE</td>
<td>>99</td>
<td>94:6</td>
</tr>
<tr>
<td>5</td>
<td>Co(acac)\textsubscript{3}</td>
<td>(R,R)-QuinoxP*</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>Co(acac)\textsubscript{3}</td>
<td>(S,S)-Ph-BPE</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>Co\textsubscript{2}(CO)\textsubscript{8}</td>
<td>(R,R)-QuinoxP*</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>Co\textsubscript{2}(CO)\textsubscript{8}</td>
<td>(S,S)-Ph-BPE</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>Co(stearate)\textsubscript{2}</td>
<td>(R,R)-QuinoxP*</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>Co(stearate)\textsubscript{2}</td>
<td>(S,S)-Ph-BPE</td>
<td>>99</td>
<td>72:28</td>
</tr>
</tbody>
</table>

[a] Reaction conditions: [Co] (5 mol \%), Ligand (5 mol \%), solvent = MeOH, H\textsubscript{2} (60 bar), temperature = 60 °C, reaction time = 16 h. Conversion was determined by GC using internal standard (dodecane), GC-MS and NMR analysis. Enantiomeric ratio was determined by chiral HPLC (see Supporting Information for the HPLC method).
studied using several bidentate phosphines (Figure 2). Axially chiral (R) or (S)-BINAP (L2 and L3) failed to catalyze the reaction using CoCl₂ as metal precursor in methanol. The catalyst based on (R,R)-Chiraphos (L4) was also found to be inactive. The use of (S,S)-Me-DuPhos (L7) and (R)-Xyl-Garphos (L10) resulted in very low conversions of the cyclic enamide 1a. The complexes based on (S)-Phenaphos (L8) and L9 also failed to catalyze the hydrogenation of 1a. The reactivity of the CoCl₂/(S,S)-Ph-BPE catalyst was decreased upon lowering the temperature below 60 °C. However, the enantioselectivity remained almost the same even at lower temperatures, up to 90 %. The hydrogenation of 1a at 30 °C provided <5 % conversion using 60 bar of H₂ pressure (Figure S54, see Supporting Information). In order to check the catalytic activity, several other catalysts based on noble metals and 1st row transition metals have also been employed for the asymmetric hydrogenation of 1a using (S,S)-Ph-BPE as ligand (Supporting Information, Table S2). Typical iridium precursors used for olefin hydrogenation such as [Ir(COD)Cl], resulted in lower activity (<30 % conversion) with moderate enantioselectivity up to 40 %; whereas use of [Ir(COD)]BF₄ resulted in no conversion of 1a using (S,S)-Ph-BPE as ligand. The Rh(COD)BF₄/(S,S)-Ph-BPE complex can convert 1a to the corresponding amide with full conversion albeit with almost no enantioselectivity (Supporting Information, Table S2). Different nickel halides such as NiCl₂, NiBr₂, NiI₂ did not result in any conversion in MeOH at 60 °C (Supporting Information, Table S2). Iron and Manganese halides (FeBr₃, FeCl₃, MnCl₂ and Mn- (CO)₃Br) were also found to be almost inactive in the hydrogenation of enamides following the standard condition (Supporting Information, Table S2).

In view of the superior performance of the CoCl₂/(S,S)-Ph-BPE catalyst in MeOH this system was chosen to examine the scope of the asymmetric hydrogenation of trisubstituted cyclic enamides. Thus, cyclic β-enamides with substituents on the fused benzene ring and different amide functionalities as shown in Scheme 1 were hydrogenated using the optimized conditions using CoCl₂/(S,S)-Ph-BPE. The model substrate 1a (Scheme 1) was converted to the amide 2a in 88 % ee with 90 % isolated yield. Varying the alkyl groups at the amide from methyl (1a) to ethyl (1b), n-Pr (1c), i-Pr (1d), tert-butyl (1e), di n-Pr (1f), cyclohexyl (1g), phenyl (1h), we observed that hydrogenation proceeds with even higher enantioselectivity and near-quantitative yields. Use of bulky alkyl groups in the amide functionality such as tert-butyl (1e) and di n-Pr (1f) resulted in the highest enantioselectivity up to 98 % and, despite the steric bulk, the products were obtained in excellent yields. Next, the effect of additional substituents at the arene ring on the hydrogenation results was evaluated. The presence of a methoxy substituent on the fused benzene ring was well tolerated by the catalyst and led to no deleterious effects on yield or enantioselectivity. Enamides 1i (5-OMe) was hydrogenated in 90 % enantiomeric excess to 2i, a potential precursor in the synthesis of Rostigotin (Figure 1, top). Increased enantiomeric excess could be obtained by increasing the steric bulk of the amide group in the 5-OMe enamides. For instance, the enamides 2j (tert-butyl), 2k (ethyl), 2l (di n-Pr), and 2m (cyclohexyl) were near-quantitatively hydrogenated with enantioselectivities up to 98 %. The benzamid was hydrogenated to 2n (82 % ee). The other regioisomers of 1i, namely 1o (6-OMe), 1q (7-OMe) and 1x (8-OMe) were hydrogenated with similar enantioselectivity (up to 91 %). A similar trend was also noticed with the other methoxy derivatives such as 2p (6-O Me, tert-butyl), 2r (7-O Me, ethyl), 2s (7-O Me, i-Pr), 2t (7-O Me, tert-butyl), 2u (7-O Me, cyclohexyl), 2v (7-O Me, phenyl), where up to >99 % ee was achieved. The enamide 2w with a long alkyl chain, derived from the corresponding stearic acid derivative was also hydrogenated with excellent yield and 88 % ee. A β-cyclic enamide with an electron-withdrawing group (bromine, Br) at the 6-position of the fused benzene ring was hydrogenated in excellent yield and with 84 % ee. Additionally, we have also investigated the hydrogenation of α-enamides employing the same catalytic conditions. The enamides 1z (from α-tetralone), 1aa (from 4-chromanone), 1ab (from thiochroman-4-one), 1ac (6-O Me), 1ad (5,7-dimethyl) and 1ae (7-bromo) were hydro-
Scheme 1. Substrate evaluation using the Co/BPE catalyst. Reaction conditions: [CoCl₂] (5 mol%), (S,S-Ph-BPE) (5 mol%), solvent = MeOH, H₂ (60 bar), temperature = 60 °C, reaction time = 18–20 h. Conversion was determined by GC using internal standard (dodecane), GC-MS and NMR analysis. Enantiomeric ratio was determined by chiral HPLC (see Supporting Information for the HPLC method).
generated in excellent yields and enantioselectivities up to 99%. The seven-membered enamide 1af (from 1-Benzosuberone) was also hydrogenated with 86% ee and 97% yield.

However, the similar trisubstituted cyclic enamide (3-benzyloaminocoumarins) carrying an additional oxo functionality at the 2-position (substrate 1ag) could not be hydrogenated under the optimized reaction conditions. Hydrogenation of cyclohexane-based tetrasubstituted olefins was also examined using the Co/BPE catalyst. Unfortunately, this catalyst failed to convert the cyclohexane derived tetrasubstituted enamides (Scheme 1: N-(2-benzylcyclohex-1-en-1-yl)acetamide, 1ah and N-(3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl)acetamide, 1ai), which belong to the most challenging class of substrates in the asymmetric hydrogenation of olefins. These findings indirectly suggest that the specific mode of substrate-coordination or substrate-binding in the active catalyst is also an important factor in the Co-catalyzed asymmetric hydrogenation.[27]

Mechanistic Studies

Whereas the mechanisms of Rh- and Ir-catalyzed asymmetric hydrogenations have been studied extensively, investigation of the mechanism of cobalt-catalyzed hydrogenation is much more problematic because of its unclear oxidation state(s) in hydrogenation reactions. Aside from this, the other factor that makes cobalt catalysis puzzling is the spin state. Both high (S = 3/2) and low spin (S = 1/2) state of CoII species are found during catalysis which makes in situ mechanistic studies more challenging. On the top of that, there is always a competition between redox and non-redox pathways in Co-catalyzed stereoselective hydrogenation and the mechanism could easily be affected by the nature of the ligand, solvent and most importantly the type of substrate.

As an example, Hopmann, Chirik and co-workers have recently reported on the mechanism of Co6Bu3P and Co8DuPhos catalyzed asymmetric hydrogenation of dehydroamino acids amides and esters as well as dehydrolevetiracetam (DHL).[28] They considered four different mechanisms including a direct Co5/Co6 redox path, a metathesis pathway, a non-redox Co5 mechanism and a metallacycle pathway. They find that the mechanism varies with the substrate. Hence a strategy based upon a combination of experiments should be followed in order to get an insight in the mechanism.

We started our investigation by recording the reaction time profile for a number of hydrogenations. A control experiment was performed in order to check the hydrogenation activity of the [Co]-precursor via possible nanoparticle formation in the absence of any ligand. No olefin hydrogenation was observed (Figure 3a, grey line) using 5 mol% of CoCl2, which indirectly proves the homogeneous nature of the hydrogenation reaction. A linear progression (R² = 0.9953) of the reaction is observed with a turnover frequency of 7.06 × 10⁻¹ h⁻¹ in the initial 8 h (Figure 3a). A similar kinetic profile (Supporting Information, Figure S83, for detailed protocol) was also obtained using the preformed (S,S-Ph-BPE)CoCl2 catalyst where the turnover frequency of 7.90 × 10⁻¹ h⁻¹ was noted with 94:6 enantiomeric ratio (Supporting Information, Figure S84). To exclude the possibility of nanoparticles being the active catalyst, a stoichiometric phosphine addition experiment (which has been used successfully in 3d metal hydrogenation reactions[29]) was also performed. The hydrogenation of 1a still proceeds even after addition of PMe3 (0.15 eq w.r.t. Co) and no complete inhibition was noticed (Figure S87, for the detailed protocol). This rules out the possibility of nanoparticle catalysis. Next, a pre-hydrogenation experiment (Supporting Information, Figure S65, for detailed protocol) of the catalyst was also performed to check any deviation from the rate of the reaction during the initial phase of the hydrogenation. It was observed that the two reaction profiles are comparable having a turnover frequency of 7.08 × 10⁻¹ h⁻¹ (cf. 7.06 × 10⁻¹ h⁻¹) for the reaction with pre-hydrogenation procedure in the same time frame (8 h), where indeed no fast hydrogenation was detected (Fig 3a). This result argues against the formation of cobalt-hydride (Co–H) before substrate addition. We also performed the catalysis at different substrate concentrations (Supporting Information, Figure S90). The hydrogenation is slower at higher substrate concentrations, which suggests substrate inhibition. This seems the most probable explanation for the slightly sinusoidal form of the rate curve (Fig 3a). Furthermore, we also checked whether the rate of the olefin hydrogenation is affected by the presence of the product (via product inhibition or acceleration). For that reason, we conducted hydrogenation experiments where 10 and 20 equiv of product (2a) were added. In the first experiment, the desired product 2a (10 equiv with respect to the catalyst) was added to the catalytic mixture and < 40% conversion was observed even after 16 hrs of the reaction time (where > 85% conversion was achieved under the standard conditions). Secondly, we also followed the reaction time profile with 20 equiv of 2a, following the standard catalytic condition and 19% conversion (Supporting Information, Figure S85, for the detailed protocol) was noticed after 16 hrs of reaction time with a slow turn over frequency of 2.0 × 10⁻¹ h⁻¹ and the same enantiomeric ratio 94:6. This result suggests that the catalytic activity is inhibited by the product coordinating (most likely coordination through the amide functionality) to the active catalyst which also supports the notion that substrate binding proceeds initially via the amide bond. This experiment rules out the possibility of autocatalysis. To gain more insight in the mechanistic pathway of the olefin hydrogenation, a series of experiments was carried out with the aid of isotope labelling, EPR measurements and mass spectrometry. No deuterated product was detected when the solvent, MeOH, was exchanged by CH3OD or CD3OD using β- enamides as well as α-enamides as described in Figure 4a–d. This suggests that the protonation of a Co-alkyl intermediate is not involved in the catalytic cycle. Using D2, the hydrogenation of 1o, 1z and 1aa produced the corresponding bis-deuterated product with > 99% conversion and > 98% of deuterium incorporation (Figure 4e–g) (see Supporting Information for the NMR comparison and mass measurements, Figure S66–S74).
These findings with substrates 1o, 1z and 1aa clearly show that cyclic enamide (both α- and β- isomers) hydrogenation is an isomerization (imide-enamide tautomerization) free asymmetric direct hydrogenation (ADH) process with molecular hydrogen (H\textsubscript{2}). Next, we conducted several EPR experiments mimicking the catalytic conditions using 1a as model substrate to get an insight about the catalytically active species (abbreviated as cs, as described in the proposed mechanism). First, we performed an EPR measurement of a mixture where the CoCl\textsubscript{2}, BPE and substrate is dissolved in MeOH and heated up to 60°C. The EPR spectra (Figure S75, see Supporting Information for further details) shows the presence of high spin (S = 3/2) CoII species. Next, we conducted a high pressure EPR measurement using 10 bar of H\textsubscript{2} (pressure limit of the tube: 13 bar) where a similar signal was observed corresponding to CoII, S = 3/2 (Figure S76 and S77, see Supporting Information). In the following experiment, the sample was prepared following the standard catalytic conditions in a high-pressure autoclave and then subjected to EPR measurement after 6 h (as we observed ≈ 20 % conversion of the starting material using 1a, which confirmed the formation of the active catalyst in the reaction mixture) to identify the involved species (Figure 3b). Absence of any low spin (S = 1/2) CoII or zero valent Co (S = 1/2) species strongly suggests the involvement of CoII as an active metal centre in the hydrogenation activity of the cyclic enamides (Figure S78, see Supporting Information for the detailed protocol).
followed). We assume that after formation of the cobalt monohydride cs1 migratory insertion of the alkene occurs. Then the hydrogen complex cs2 forms which undergoes a sigma bond metathesis pathway through a redox neutral catalytic cycle (Scheme 2). Related to this, Hopmann and co-workers have lately proposed a non-redox reaction pathway for Co/bisphosphine catalyzed selective allylic and homoallylic alcohol hydrogenations.[27] A similar mechanism was also proposed for the Co-catalyzed asymmetric hydrogenation of unsaturated carboxylic acids by Zhang and co-workers.[26c]

To support this observation further, an additional experiment using triethylamine (Et_3N) was performed. It is expected that the chloride abstraction from the Co-precursor is much easier in the presence of additional base under reductive conditions, which could potentially form a Co0 species that can undergo oxidative addition of dihydrogen. Following this idea, we measured the EPR of the reaction mixture with Et_3N, where it shows indeed the presence of a Co0 species ($S = 1/2$) (Figure S79, see Supporting Information for the detailed protocol followed). However, the catalytic activity was not the same, as $>60\%$ conversion was achieved using 1a as model substrate using 60 bar of H_2 pressure in MeOH with a decrease in enantioselectivity (40% ee). The diminished activity and selectivity of the cobalt catalyst suggests the involvement of a different mechanism (Supporting Information, Figure S82) for the enantio-induction compared to our standard catalytic conditions. Furthermore, several mass spectrometric measurements were carried out using the model substrate 1a using the optimized catalytic conditions with the aim of identifying the possible involved species in the catalytic cycle. After 2 h of reaction without addition of hydrogen the sample was analyzed with mass spectrometry. Two species were observed that could potentially be involved in the catalytic cycle: (a) m/z 600.13 which is ligand bound cobalt chloride; (b) m/z 787.23 which is ligand- and substrate-bound cobalt chloride; have been detected (Fig 3c).

Based on our experimental findings, the EPR and mass experiments and the literature precedence,[28a,c, 27] we propose the following mechanism for the Co/bisphosphine catalyzed asymmetric hydrogenation of enamides via a redox neutral catalytic cycle (Scheme 2). In the first step, the catalyst-substrate complex cs0 reacts with hydrogen to form the mono-hydride complex cs1. This could occur through reaction of hydrogen with the cationic monochloro-complex, followed by loss of a proton. The binding of the amide group presumably adds to the stability of this intermediary cationic complex. Alternatively, this conversion could proceed via direct metathesis of cs0 with hydrogen.[30] Next, migratory insertion of the alkene leads to cobalt-alkyl complex cs2. This complex reacts with hydrogen to form the mono-hydride complex cs1. This could occur through reaction of hydrogen with the cationic monochloro-complex, followed by loss of a proton. The binding of the amide group presumably adds to the stability of this intermediary cationic complex. Alternatively, this conversion could proceed via direct metathesis of cs0 with hydrogen.[30] Next, migratory insertion of the alkene leads to cobalt-alkyl complex cs2. This complex reacts with hydrogen to from cs3. Sigma bond metathesis of cs3 leads to formation of the mono-hydride complex cs1. This complex reacts with hydrogen to from cs3. Sigma bond metathesis of cs3 leads to formation of the mono-hydride complex cs4 to which the product remains bound via the amide bond. Exchange of product for substrate to form cs1 closes the catalytic cycle.

It is not clear at what stage of the catalytic cycle the substrate inhibition occurs. Possible candidates are cs1, where binding of a second substrate molecule via its amide oxygen atom could displace the alkene binding of the first substrate molecule, as well as cs2 where an additional substrate molecule could bind via its amide bond and thus inhibit hydrogen bonding. For the product inhibition there are even more possibilities. The most obvious one is cs4 where the product needs to dissociate and the substrate needs to bind either via a dissociative or an associative
mechanism. But similar inhibition on cs1 and cs2 by binding via the amide oxygen is equally possible.

Gram Scale Synthesis and Application

The hydrogenation of 1a and 1z was performed on gram scale (6.0 mmol) with high yield and a high degree of enantioselectivity, as documented in the scalability protocol (See Supporting Information for details). Compound 2a and 2z were synthesized in both enantiomeric (R and S) forms using the S,S- and R,R-Ph-BPE ligand (Scheme 3a and b).

This synthetic protocol was also extended to the synthesis of the chiral primary amines from their corresponding chiral amides. 1,2,3,4-Tetrahydronaphthalen-1-amine 3z was synthesized with full retention of configuration in both enantiomeric forms by hydrolysis of amide 2z under basic conditions (Scheme 3b).

Conclusion

In summary, we have developed a highly efficient Co-catalyzed enantioselective hydrogenation of tri-substituted carbocyclic enamides, a challenging class of substrates with regard to enantio-induction. Excellent enantioselectivity (up to >99%) and yield have been achieved using Co^{PPh_{BPE}} as hydrogenation catalyst for a range of cyclic enamides derived from the corresponding α- and β-tetralones. Experimental evidence based on mass spectrometry, EPR and isotope labelling indicate the possible involvement of a high spin Co^{II} species in the catalytic cycle, and we propose that hydrogenation proceeds via a sigma-bond metathesis pathway to produce the chiral amides. This methodology, based on the use of a commercially available chiral bisphosphine ligand (Ph-BPE), for the production of chiral amides from their endocyclic prochiral enamides via the asymmetric hydrogenation strategy, expands the possibilities for the use of earth-abundant transition metals in asymmetric catalysis.
We acknowledge the contribution of Prof. Dr. Paul C. J. Kamer in the start-up phase of this research. We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support (project number 411421782). The analytical facilities at LIKAT are highly acknowledged. We also thank Prof. Dr. Matthias Beller for his valuable suggestions. Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.

Acknowledgements
We acknowledge the contribution of Prof. Dr. Paul C. J. Kamer in the start-up phase of this research. We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support (project number 411421782). The analytical facilities at LIKAT are highly acknowledged. We also thank Prof. Dr. Matthias Beller for his valuable suggestions. Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.

Acknowledgements
We acknowledge the contribution of Prof. Dr. Paul C. J. Kamer in the start-up phase of this research. We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support (project number 411421782). The analytical facilities at LIKAT are highly acknowledged. We also thank Prof. Dr. Matthias Beller for his valuable suggestions. Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.

Acknowledgements
We acknowledge the contribution of Prof. Dr. Paul C. J. Kamer in the start-up phase of this research. We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support (project number 411421782). The analytical facilities at LIKAT are highly acknowledged. We also thank Prof. Dr. Matthias Beller for his valuable suggestions. Open Access funding enabled and organized by Projekt DEAL.