Search for second generation scalar leptoquarks in pp collisions at √s = 7 TeV with the ATLAS detector

DOI
10.1140/epjc/s10052-012-2151-6

Publication date
2012

Document Version
Final published version

Published in
European Physical Journal C

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Search for second generation scalar leptoquarks in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS Collaboration*

CERN, 1211 Geneva 23, Switzerland

Abstract The results of a search for the production of second generation scalar leptoquarks are presented for final states consisting of either two muons and at least two jets or a muon plus missing transverse momentum and at least two jets. A total of 1.03 fb$^{-1}$ integrated luminosity of proton-proton collision data produced by the Large Hadron Collider at $\sqrt{s} = 7$ TeV and recorded by the ATLAS detector is used for the search. The event yields in the signal regions are found to be consistent with the Standard Model background expectations. The production of second generation leptoquarks is excluded for a leptoquark mass $m_{LQ} < 594$ (685) GeV at 95 % confidence level, for a branching ratio of 0.5 (1.0) for leptoquark decay to a muon and a quark.

1 Introduction

The remarkable similarities between quarks and leptons in the Standard Model (SM) lead to the supposition that there could be a fundamental relationship between them at a sufficiently high energy scale, manifested by the existence of leptoquarks (LQ) [1–8]. LQs are hypothetical particles which carry both baryon and lepton number and have fractional electrical charge. The present search is performed within the minimal Buchmüller-Rückl-Wyler model [9], where LQs are restricted to couple to quarks and leptons of one generation. In this model, LQs are required to have pure chiral couplings to SM fermions in order to avoid inducing four-fermion interactions that would cause flavour-changing neutral currents and lepton family-number violations. At the Large Hadron Collider (LHC), scalar LQs can be produced either in pairs or singly. Single LQ production involves the unknown $\lambda_{LQ-\ell-q}$ coupling, while pair production of scalar LQs occurs mostly via gluon-gluon fusion, dominant for $m_{LQ} \lesssim 1$ TeV, and $q\bar{q}$-annihilation, dominant at larger masses. Both pair-production modes involve only the strong coupling constant, and therefore all model dependence is contained in the assumed LQ mass m_{LQ} and the branching ratio β for LQ decay to a charged lepton and a quark.1 LQs can also decay to a neutrino and a quark; in this case, the branching ratio is $1 - \beta$. Pair production of scalar LQs at the LHC has been calculated at next-to-leading order (NLO) [11].

The results presented in this paper are an update of the previous ATLAS search for second generation LQs [12] and extend the bounds arising from previous direct searches performed by CMS [13], ATLAS [12], D0 [14] and OPAL [15]. A total integrated luminosity of 1.03 fb$^{-1}$ of proton-proton collision data at a centre of mass energy $\sqrt{s} = 7$ TeV, collected with the ATLAS detector from March through July 2011, is used for the search. The final states arising from leptoquark pairs decaying into two muons and two quarks ($\mu\nu jj$), or into a muon, a neutrino and two quarks ($\mu\nu jj$), are considered. These result in experimental signatures of either two high transverse momentum (p_T) muons and two high p_T jets, or one high p_T muon, missing transverse momentum, and two high p_T jets.

Analyses for both dimuon and single muon final states start with the selection of event samples with large signal acceptance. Since background cross sections are several orders of magnitude larger than the signal cross sections, these samples are dominated by the major backgrounds: $Z + \text{jets}$ and $t\bar{t}$ in the $\mu\mu jj$ case, and $W + \text{jets}$ and $t\bar{t}$ for the $\mu\nu jj$ case. Further selection requirements are then applied to these samples to define control regions used to determine the normalization of the aforementioned backgrounds. The determination of the multi-jet background is performed in a

1The $\lambda_{LQ-\ell-q}$ coupling determines the LQ lifetime and width [10]. For LQ masses considered here, 200 GeV $\leq m_{LQ} \leq 700$ GeV, couplings greater than $e \times 10^{-6}$, with $e = 1.8 \times 10^{-10}$ the electron charge, and $\sqrt{s}/M_{\lambda_{LQ}} = 1/128$, correspond to decay lengths less than roughly 1 mm. In addition, to be insensitive to the coupling, the width cannot be larger than the experimental resolution of a few GeV. This sets the approximate sensitivity to the unknown coupling strength.
fully data-driven approach, and the smaller diboson and single top-quark backgrounds are estimated using Monte Carlo (MC) simulations.

After all background contributions are determined, variables selected to enhance the discrimination between signal and background are combined into a log likelihood ratio, which is used to search for an excess of events over the SM background prediction. The searches are performed independently for each final state. The results are then combined and interpreted as lower bounds on the LQ mass for different β hypotheses.

2 The ATLAS detector

The ATLAS detector [16] is a multi-purpose detector with a forward-backward symmetric cylindrical geometry and nearly 4π coverage in solid angle.2

The three major sub-components of ATLAS are the tracking detectors, the calorimeters and the muon spectrometer. Charged particle tracks and vertices are reconstructed with silicon-based tracking detectors that cover $|\eta| > 2.5$ and a transition radiation tracker extending to $|\eta| < 2.0$. The inner tracking system is immersed in a homogeneous 2 T axial magnetic field provided by a solenoid. Electron, photon, and jet energies are measured in the calorimeters. The calorimeter system is segmented into a central barrel and two end-caps, collectively covering the pseudorapidity range of $|\eta| < 4.9$. A liquid-argon (LAr) electromagnetic calorimeter covers the range $|\eta| < 3.2$ and an iron-scintillator tile hadronic calorimeter covers the range $|\eta| < 1.7$. Endcap and forward LAr calorimeters provide both electromagnetic and hadronic measurements and cover the region $1.5 < |\eta| < 4.9$.

Surrounding the calorimeters, a muon spectrometer [16] with air-core toroids, a system of precision tracking chambers, and detectors with triggering capabilities provides muon identification and precise momentum measurements. The muon spectrometer is based on three large superconducting toroids with coils arranged in an eight-fold symmetry around the calorimeters, covering a range of $|\eta| < 2.7$. Over most of the η range, precision measurements of the track coordinates in the principal bending direction of the magnetic field are provided by Monitored Drift Tubes (MDTs). At large pseudorapidities ($2 < |\eta| < 2.7$), Cathode Strip Chambers (CSCs) with higher granularity are used in the innermost station.

A three-level trigger system selects events to be recorded for offline analysis. The muon trigger detectors consist of

Resistive Plate Chambers (RPCs) in the barrel ($|\eta| < 1.05$) and Thin Gap Chambers (TGCs) in the end-cap regions ($1.05 < |\eta| < 2.4$), with a small overlap in the $|\eta| = 1.05$ region. The data considered in this analysis are selected from events containing at least one muon with the transverse momentum determined by the trigger system satisfying $p_T > 18$ GeV.

3 Simulated samples

Simulated event samples are used to determine all signal and some of the background yields. Signal samples for LQ masses between 200 GeV and 1000 GeV are simulated with PYTHIA 6.4.25 [17]. NLO cross sections as determined in Ref. [11], using CTEQ6.6 [18] parton distribution functions (PDFs), are used to normalize the samples at each mass point.

Samples of W and Z/γ^* production in association with n partons (where n can be 0, 1, 2, 3, 4 and 5 or more) are simulated with the ALPGEN [19] generator interfaced to HERWIG [20] and JIMMY [21] to model parton showers and multiple parton interactions, respectively. The MLM [19] parton-shower matching scheme is used to form inclusive $W/Z+/jets$ samples. MC@NLO [22, 23] is used to estimate the production of single top quarks and top quark pairs. A top quark mass of 172.5 GeV is used in the simulation. Diboson events are generated using HERWIG, and the cross sections are scaled to NLO calculations [22–24].

All simulated events are passed through a full detector simulation based on GEANT4 [25] and then reconstructed with the same software chain as the data [26]. During the data-taking period considered in this search, the mean number of primary proton-proton interactions per bunch crossing was approximately six. The effect of this pile-up is taken into account in the analysis by overlaying simulated minimum bias events onto the simulated hard-scattering events. The MC samples are then reweighted such that the average number of pile-up interactions matches that seen in the data.

4 Object and event selection

Collision events are identified by requiring at least one reconstructed primary vertex candidate with at least three associated tracks with $p_T^{\text{track}} > 0.4$ GeV. If two or more such vertices are found, the one with the largest sum of p_T^{track} is taken to be the primary vertex. Muons are reconstructed by matching tracks in the inner detector to track segments in the muon spectrometers, as described in Ref. [27]. In addition to the track quality requirements imposed for identification, the muon tracks must also satisfy $|d_0| < 0.1$ mm and

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point and the z-axis along the beam pipe. Cylindrical coordinates (r, ϕ) are used in the transverse plane, with ϕ the azimuthal angle around the beam pipe. The pseudorapidity η is defined in terms of the polar angle θ by $\eta = -\ln \tan(\theta/2)$.

using the anti-
acceptance times efficiency ranges from about 60 % (55 %)
Jets are reconstructed from calorimeter energy clusters
In the channel, events are required to have $p_T > 30 \text{ GeV}$, exactly
such observed in data, with an impact on the predicted number
of events of less than 2 %. These corrections are derived
from MC samples, and their absolute normalization is evaluated from data using control regions,
which are subsets of the selected sample, designed to enhance either the $V + \text{jets}$ or the top quark contribution. The multi-jet background is obtained directly from data and prior to the estimation of the normalization for the two main backgrounds, while the determination of the remaining backgrounds (diboson and single top quark production) relies entirely on MC simulations.

Three control regions are used in the $\mu\nujj$ channel. (I) $W + 2 \text{ jets}$: events in the vicinity of the W boson Jacobian peak, selected by requiring $40 < m_T < 120 \text{ GeV}$, exactly two jets and $S_T < 225 \text{ GeV}$, where S_T is the scalar sum of transverse energy S_T, defined as $S_T = p_T^{\mu} + E_T^{\text{miss}} + p_T^{\text{jet1}} + p_T^{\text{jet2}}$, (II) $W + 3 \text{ jets}$: events passing the $40 < m_T < 120 \text{ GeV}$ requirement, with at least three jets and $S_T < 225 \text{ GeV}$, and (III) $t\bar{t}$ events: with at least four jets, with $p_T^{\text{jet1}} > 50 \text{ GeV}$ and $p_T^{\text{jet2}} > 40 \text{ GeV}$. In all of the control regions the expected signal yields are negligible.

The normalizations of the $V + \text{jets}$ and $t\bar{t}$ backgrounds are obtained by comparing data and MC yields in the control samples defined above. In the $\mu\nujj$ channel, each correction factor is obtained independently for each background, on account of the high purity of the two different control regions. In the $\mu\nujj$ channel, there is significant cross-region contamination and therefore the number of $V + \text{jets}$ and $t\bar{t}$ events is determined by simultaneously minimizing the χ^2 formed by the differences between the observed and predicted SM yields in the three control regions. The resulting scale factors are of the order of 10 % in the low S_T region.

The multi-jet background in the selected sample and in each control sample is obtained from a fit to the $m_{\mu\mu}$ and E_T^{miss} distribution in the $\mu\mujj$ and $\nu\nujj$ channels, respectively. In these fits, the relative fraction of the multi-jet background is a free parameter, and the sum of the total predicted events is constrained to be equal to the total observed number of events. The $V + \text{jets}$ and $t\bar{t}$ normalizations are not fixed. Multi-jet background arises predominantly from muons from secondary decays. Therefore, tem-
plates for the multi-jet background distributions are constructed from multi-jet enhanced samples of data events in which the muons fail the requirement on the transverse impact parameter or the isolation selection requirements described in Sect. 4. In the $\mu\mu jj$ channel, the $W + \text{jets}$ contribution is estimated together with the multi-jet background. During this procedure, the $V + \text{jets}$ and $t\bar{t}$ normalizations are fitted as well, providing an independent estimate. The resulting values agree with those obtained from the control regions, which are the ones used in the analysis.

After analyzing 1.03 fb$^{-1}$ of data and applying the analysis requirements described in Sect. 4, good agreement is observed between the data and the SM expectation. The observed and expected yields in the selected sample are 9254 and 9300 ± 1700 for the $\mu\mu jj$ channel, and 97113 and 97000 ± 19000 for the $\mu\nu jj$ channel. For a LQ mass of 600 GeV, 8.2 ± 0.4 and 3.9 ± 0.2 events are expected for the $\mu\mu jj$ and the $\mu\nu jj$ final states, respectively. The aforementioned uncertainties fully account for (the dominant) systematic and statistical uncertainties.

6 Likelihood analysis

Several kinematic variables, selected to provide the best discrimination between LQ events and SM backgrounds, are combined in a log likelihood ratio in order to search for a LQ signal. In the $\mu\mu jj$ channel, $m_{\mu\mu} = p_T^{\mu_1} + p_T^{\mu_2} + p_T^{\text{jett}_1} + p_T^{\text{jett}_2}$ and the average reconstructed leptoquark mass \bar{m}_{LQ} are used. In the $\mu\nu jj$ channel, S_T, m_T, the transverse leptoquark mass m_{LQ}^T and the leptoquark mass m_{LQ} are used. The distributions of these input variables are shown in Fig. 1 and Fig. 2 for the $\mu\mu jj$ and the $\mu\nu jj$ final states, respectively.

In the $\mu\mu jj$ channel, an average LQ mass \bar{m}_{LQ} is defined for each event by reconstructing all possible combinations of lepton-jet pairs, using the two highest p_T jets in each event. Of the four possible combinations in each event, the pairing which provides the smallest difference between the LQ masses is chosen, and their average is used in the likelihood analysis. In the $\mu\nu jj$ final state, because the longitudinal component of the neutrino momentum is unknown, only one mass from the muon and a jet can be reconstructed, and the E_T^{miss} and the remaining jet are used to calculate the trans-

![Fig. 1](image-url) Distributions of the input LLR variables for the $\mu\mu jj$ channel for data and the SM backgrounds. (a) Invariant mass of the two muons in the event, (b) Average LQ mass resulting from the best muon-jet combinations in each event, and (c) S_T. The stacked distributions show the various background contributions, and data are indicated by the points with error bars. The 600 GeV LQ signal is also shown for $\beta = 1.0$. In all figures, the last bin contains the sum of all entries equal to and above the bin lower boundary.
verse mass of the other LQ. The two masses which provide the smallest absolute difference are used in the likelihood analysis. With this algorithm, the probability of picking the correct pairing is of around 90% for both channels.

For each event, likelihoods are constructed for the background (L_B) and the various signal LQ hypothesis (L_S) as follows:

$$L_B \equiv \prod b_i(x_{ij}), \quad L_S \equiv \prod s_i(x_{ij}),$$

where b_i, s_i are the probabilities of the i-th input variable from the normalized summed background and signal distributions, respectively, and x_{ij} is the value of that variable for the j-th event in a sample. The log likelihood ratio for each tested signal, $LLR = \log(L_S/L_B)$, is used as the final variable to search for the LQ signal.

7 Systematic uncertainties

Systematic uncertainties originating from several sources are considered. These include uncertainties in lepton momentum, jet energy and E_T^{miss} scales and resolutions and their dependence on the number of pile-up events, the background estimations, and the LQ production cross section.

For each source of uncertainty considered, the analysis is repeated with the relevant variable varied within its uncertainty, and a new LLR is built for the systematically varied sample, enabling the uncertainty in both the predicted yield and the kinematic distributions to be propagated to the final result. In this section, systematic uncertainties are described for each source of systematics, calculated assuming each source to be 100% correlated among the different backgrounds. Uncertainties are given for the region of $LLR \geq 2$ and $LLR \geq 7$ for the $\mu\mu jj$ and the $\mu\nu jj$ channels, respectively, although the full LLR distribution is used to search for the LQ signal.

The jet energy scale (JES) and resolution (JER) are varied up and down by 1σ [32] for all simulated events. Their impact is estimated independently, and the corresponding variations are propagated to the E_T^{miss} in the case of the μjj channel. The resulting effect of the JES (JER) uncertainty is 9% (8%) and 15% (7%) for the backgrounds in the μjj and the μjj channels, respectively. For a LQ signal of $m_{LQ} = 600$ GeV, both are 1% for the $\mu\mu jj$ channel, and 2.4% and 1% for the $\mu\nu jj$ channel.
The systematic uncertainties from the muon resolution and momentum scale are derived by comparing the \(m_{\mu\mu}\) distribution in \(Z \rightarrow \mu\mu\) control samples to \(Z \rightarrow \mu\mu\) MC samples and are approximately 1 % [28]. These result in uncertainties of 12 % and 3 % for the total background prediction in the \(\mu\mu\)jj and the \(\mu\nu\)jj channels, respectively, and in uncertainties of 1.4 % for a LQ signal of \(m_{\text{LQ}} = 600\) GeV for the \(\mu\mu\)jj and the \(\mu\nu\)jj channels.

Systematic uncertainties due to assumptions in the modelling of the \(V + \text{jets}\) background are estimated by using SHERPA [34–36] samples instead of the ALPGEN samples described in Sect. 3. The resulting uncertainty is 30 % for the \(\mu\mu\)jj channel and 60 % for the \(\mu\nu\)jj channel. Similarly, systematic uncertainties arising from the modelling of the \(t\bar{t}\) process are obtained by using different parameter values to simulate alternative samples to the one described in Sect. 3. These include samples in which the top quark mass is varied up and down by 2.5 GeV, generated with MC@NLO, samples where the initial and final-state radiation (ISR and FSR) contributions are varied accordingly to their uncertainties, generated with ACER MC [37], and samples generated with POWHEG [38] interfaced to PYTHIA and JIMMY. These impact the total background yields by 12 % (7 %) for the \(\mu\mu\)jj (\(\mu\nu\)jj) final state. For both \(V + \text{jets}\) and \(t\bar{t}\) backgrounds, a 10 % uncertainty on the scale factors is considered, covering the variation of the scale factors in the low and high \(p_T\) regions.

Systematic uncertainties in the multi-jet background in the \(\mu\mu\)jj channel are determined by comparing results derived from fits to kinematic variables other than the nominal ones. These include the leading muon \(p_T\), the leading jet \(p_T\), the \(E_T^{\text{miss}}\) and the scalar sum of the transverse momenta of the two muons in the event. In the \(\mu\nu\)jj channel, an alternative loose-tight matrix method [39] with two different multi-jet enhanced samples obtained by inverting the isolation and the \(|d_0|\) requirements is used. Since the relevant phase space of the multi-jets in the two channels is very different, the different control regions have very different statistics which leads to a large difference in precision to which this background can be estimated. The resulting uncertainties are 90 % in the \(\mu\mu\)jj channel and 33 % in the \(\mu\nu\)jj channel.

A luminosity uncertainty of 3.7 % [40, 41] is assigned to the LQ signal yields and to the yields of background processes determined from simulation: diboson and single top quark production. Further systematic uncertainties considered arise from the finite number of events in the simulated samples, amounting to 4 %–25 % depending on the LQ mass being considered.

For the signal samples, additional systematic uncertainties originate from ISR and FSR effects, resulting in an uncertainty of 2 % for both channels. The choice of the renormalization and factorization scales, which are varied from \(m_{\text{LQ}}\) to \(2m_{\text{LQ}}\) and \(m_{\text{LQ}}/2\), and the choice of the PDF, determined with the CTEQ eigenvectors errors and by using the MRST2007LO* PDF set [42], result in an uncertainty in the signal acceptance of 1 %–6 % for LQ masses between 300 GeV and 700 GeV.

8 Results

Figure 3 shows the \(LLR\) for the data, the predicted backgrounds and a LQ signal of 600 GeV for the \(\mu\mu\)jj and the \(\mu\nu\)jj channels. To ensure sufficient background statistics, bins with a total background yield less than twice the statistical uncertainty in that bin are merged into a single bin. There is no significant excess in data observed at large \(LLR\) values where such a signal would appear, and the data are found to be consistent with the SM background expectations (see Table 1). Upper limits are derived at 95 % confidence
level (CL) for the scalar leptoquark production cross section using a modified frequentist CL_s approach [43, 44]. The test statistic is defined as $-2 \ln(Q) = -2 \ln(L_{s+b}/L_{b})$, where the likelihoods L_{s+b} and L_{s} follow a Poisson distribution and are calculated based on the corresponding LLR distributions. Systematic uncertainties as described in Sect. 7 are treated as nuisance parameters with a Gaussian probability density function.

The 95 % CL upper bounds on the cross section for leptoquark pair production as a function of mass are shown in Fig. 4 for the $\mu\mu jj$ and the $\mu\nu jj$ channels at $\beta = 1.0$ and $\beta = 0.5$, respectively. The expected and observed limits for the combined channels are shown in the β vs. m_{LQ} plane in Fig. 5.

9 Conclusions

The results of a search for the pair production of second generation scalar leptoquarks using 1.03 fb$^{-1}$ of proton-proton collision data produced by the LHC at $\sqrt{s} = 7$ TeV and recorded by the ATLAS detector are presented. The data are in good agreement with the expected SM background, and no evidence of LQ production is observed. Lower limits on leptoquark masses of $m_{LQ} > 685$ GeV and $m_{LQ} > 594$ GeV for $\beta = 1.0$ and $\beta = 0.5$ are obtained at 95 % CL, whereas the expected limits are $m_{LQ} > 671$ GeV and $m_{LQ} > 605$ GeV, respectively. These are the most stringent limits to date arising from direct searches for second generation scalar leptoquarks.

Acknowledgements We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.
Fig. 5 95 % CL exclusion region resulting from the combination of the $\mu \nu jj$ and the $\mu \nu jj$ channels shown in the β versus leptoquark mass plane. The shaded area at the left indicates the D0 exclusion limit [14] and the thick dotted line indicates the CMS exclusion region [13]. The dotted and dotted-dashed lines indicate the individual limits derived for the $\mu \nu jj$ and $\mu \nu jj$ channels, respectively. The combined observed limit is indicated by the solid black line. The combined expected limit is indicated by the dashed line, together with the solid band containing 68 % of possible outcomes from pseudo-experiments in which the yield is Poisson-fluctuated around the background-only expectation.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

The ATLAS Collaboration

Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
(a) INFN Sezione di Lecce; (b) Dipartimento di Fisica, Università del Salento, Lecce, Italy
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS-IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, United States of America
Department of Physics, McGill University, Montreal QC, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
(a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik, München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science, Nagoya University, Nagoya, Japan
(a) INFN Sezione di Napoli; (b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb IL, United States of America
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Department of Physics, New York University, New York NY, United States of America
Ohio State University, Columbus OH, United States of America
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
Department of Physics, Oklahoma State University, Stillwater OK, United States of America
Palacký University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene OR, United States of America

LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France

Graduate School of Science, Osaka University, Osaka, Japan

Department of Physics, University of Oslo, Oslo, Norway

Department of Physics, Oxford University, Oxford, United Kingdom

(a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy

Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America

Petersburg Nuclear Physics Institute, Gatchina, Russia

(a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America

(a) Laboratorio de Instrumentacao e Física Experimental de Partículas - LIP, Lisboa, Portugal; (b) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain

Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic

Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic

Czech Technical University in Prague, Praha, Czech Republic

State Research Center Institute for High Energy Physics, Protvino, Russia

Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

Physics Department, University of Regina, Regina SK, Canada

Ritsumeikan University, Kusatsu, Shiga, Japan

(a) INFN Sezione di Roma I; (b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy

(a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

(a) INFN Sezione di Roma Tre; (b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy

(a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des Sciences, Université Mohammed V- Agdal, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America

Department of Physics, University of Washington, Seattle WA, United States of America

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shinshu University, Nagano, Japan

Fachbereich Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby BC, Canada

SLAC National Accelerator Laboratory, Stanford CA, United States of America

(a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

(a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

(a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, University of Toronto, Toronto ON, Canada