Search for the Higgs boson in the $\text{H} \to \text{WW}(*) \to \ell^+\nu\ell^-\bar{\nu}$ Decay Channel in pp Collisions at $\sqrt{s} = 7\text{ TeV}$ with the ATLAS Detector


DOI
10.1103/PhysRevLett.108.111802

Publication date
2012

Document Version
Final published version

Published in
Physical Review Letters

Link to publication

Citation for published version (APA):
Aad, G., et al., U., Bentvelsen, S., Colijn, A. P., de Jong, P., de Nooij, L., Doxiadis, A. D., Garitaonandia, H., Geerts, D. A. A., Gosselink, M., Kayl, M. S., Koffeman, E., Lee, H., Linde, F., Mechnich, J., Mussche, I., Ottersbach, J. P., Rijpstra, M., Ruckstuhl, N., ... Vreeswijk, M. (2012). Search for the Higgs boson in the $\text{H} \to \text{WW}(*) \to \ell^+\nu\ell^-\bar{\nu}$ Decay Channel in pp Collisions at $\sqrt{s} = 7\text{ TeV}$ with the ATLAS Detector. Physical Review Letters, 108(11), [111802].
https://doi.org/10.1103/PhysRevLett.108.111802

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Search for the Higgs Boson in the $H \rightarrow WW^{(*)} \rightarrow l^+ \nu l^- \bar{\nu}$ Decay Channel in $pp$ Collisions at $\sqrt{s} = 7$ TeV with the ATLAS Detector

G. Aad et al. *
(ATLAS Collaboration)
(Received 12 December 2011; published 13 March 2012)

A search for the Higgs boson has been performed in the $H \rightarrow WW^{(*)} \rightarrow \ell^+ \nu \ell^- \bar{\nu}$ channel ($\ell = e/\mu$) with an integrated luminosity of 2.05 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 7$ TeV collected with the ATLAS detector at the Large Hadron Collider. No significant excess of events over the expected background is observed and limits on the Higgs boson production cross section are derived for a Higgs boson mass in the range $110$ GeV $< m_H < 300$ GeV. The observations exclude the presence of a standard model Higgs boson with a mass $145 < m_H < 206$ GeV at 95% confidence level.

DOI: 10.1103/PhysRevLett.108.111802 PACS numbers: 14.80.Bn, 12.15.Ji, 13.85.Rm, 14.70.Fm

The standard model of particle physics postulates the existence of a complex scalar doublet with a vacuum expectation value, which spontaneously breaks the electroweak symmetry, gives masses to all the massive elementary particles in the theory, and gives rise to a physical scalar known as the Higgs boson [1]. At the LHC, the Higgs boson is expected to be produced mainly through gluon fusion ($gg \rightarrow H$) [2] due to the large gluon density, although vector boson fusion ($qq \rightarrow qH$) [3] is also important. Associated production of Higgs bosons ($WH, ZH$) also contributes more than 4% to the total rate for $m_H \leq 135$ GeV [4]. For $m_H > 135$ GeV, $H \rightarrow WW^{(*)}$ is the dominant decay mode of the Higgs boson. Direct searches at LEP and the Tevatron exclude a standard model Higgs boson with a mass $m_H < 114.4$ GeV or $156$ GeV $< m_H < 177$ GeV [5] at 95% confidence level (C.L.). The search for $H \rightarrow ZZ \rightarrow \ell^+ \ell^- \nu \nu$ at ATLAS excludes a standard model Higgs boson with a mass $340 < m_H < 450$ GeV, while the search for $H \rightarrow ZZ \rightarrow 4\ell$ excludes $191 < m_H < 197$ GeV, $199 < m_H < 200$ GeV, and $214 < m_H < 224$ GeV [6].

This Letter reports the results of a search for the Higgs boson in the channel $H \rightarrow WW^{(*)} \rightarrow \ell^+ \nu \ell^- \bar{\nu}$ [7] ($\ell = e/\mu$, but including contributions from $\tau 

Electron candidates are selected from clustered energy deposits in the electromagnetic (EM) calorimeter with an associated track reconstructed in the inner detector and are required to satisfy a stringent set of identification cuts [13] with an efficiency of 71% for electrons with transverse momentum $E_T > 20$ GeV and $|\eta| < 2.47$. Muons are reconstructed by combining tracks in the inner detector and muon spectrometer. The efficiency of this reconstruction is 92% for muons with $p_T > 20$ GeV and $|\eta| < 2.4$. Events are required to have a primary vertex with $\geq 3$ tracks with $p_T > 0.4$ GeV. For both electrons and muons, the track associated with the lepton candidate is required to be consistent with having been produced at the event’s primary vertex. Leptons are required to be isolated, satisfying stringent cuts on tracks and calorimeter deposits inside a cone $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} < 0.2$ around the lepton.

*Full author list given at the end of the article.
candidate, where $\Delta \phi$ and $\Delta \eta$ are the transverse opening angle and pseudorapidity difference between the lepton and the track or energy deposit. The lepton reconstruction efficiencies are evaluated with tag-and-probe methods using $Z \rightarrow \ell \ell$, $J/\psi \rightarrow \ell \ell$, and $W \rightarrow \ell \nu$ events in data [14].

Jets are reconstructed from calibrated clusters using the anti-$k_t$ algorithm [15] with radius parameter $R = 0.4$. Jet energies are calibrated using $E_T$ and $\eta$ dependent correction factors based on MC simulation and validated by test beam and collision data studies [16]. They are required to have $E_T > 25$ GeV and $|\eta| < 4.5$. Jets are identified as having been produced by $b$ quarks using an algorithm that combines information about the impact parameter significance of tracks in the jet and the topology of semileptonic $b$- and $c$-hadron decays [17]. The missing transverse momentum $E_T^{\text{miss}}$ [18] is reconstructed from calibrated energy clusters in the calorimeters and the reconstructed momenta of the muons, which generally deposit only a small fraction of their energy in the calorimeters. The $E_T^{\text{miss}}$ distribution in the presence of pileup has been studied, and both $E_T^{\text{miss}}$ as a function of the number of reconstructed primary vertices and $E_T^{\text{miss}}$ as a function of the event’s position in the bunch train are well-modeled by MC calculations.

Exactly two opposite-sign lepton candidates ($e$ or $\mu$) with $p_T > 15$ GeV for muons or $E_T > 20$ GeV for electrons are required. The leading lepton must have transverse momentum $> 25$ GeV so the selected events have a high efficiency for the trigger selection.

After the selection of events with two leptons, the significant backgrounds are the Drell-Yan process, $t\bar{t}$ and single top ($tW/tb/tq\bar{b}$), $WW$, other diboson processes ($WZ/ZZ/W\gamma$), and $W + j$ where a jet is misidentified as a lepton. In addition to data-driven validations of the background estimates discussed later, MC simulations of the signal and backgrounds are studied in detail. The $gg \rightarrow H$ and $qq \rightarrow qqH$ processes are modeled using POWHEG, with PYTHIA to handle the parton shower [19], and the $gg \rightarrow H$ Higgs boson $p_T$ spectrum is reweighted to agree with the prediction of Ref. [20]. PYTHIA is used to model $WH/ZH$ production. Signal MC calculations are performed in steps of 5 GeV for $m_H$ below 200 GeV and in steps of 20 GeV for larger masses. Signal expectations for intermediate mass values are obtained by linear interpolation of the signal efficiency. The $t\bar{t}$, $s$-channel single top ($tb$), and $qq/qg$ processes are modeled using MC@NLO, $t$-channel and $Wt$ single top with ACERMC (interfaced to the parton shower algorithm in PYTHIA), $gg \rightarrow WW$ with GG2WW interfaced to the parton shower algorithm in HERWIG [21], $W\gamma$ with MADGRAPH interfaced to PYTHIA, and $W + j$ and $Z/\gamma^* + j$ with ALPGEN interfaced to PYTHIA [22].

If the two leptons have different flavors, their invariant mass ($m_{\ell\ell}$) is required to be above 10 GeV. Otherwise, they must satisfy $m_{\ell\ell} > 15$ GeV and they must lie outside the region with $|m_{\ell\ell} - m_Z| < 15$ GeV to suppress backgrounds from $Y$ and $Z$ production, respectively.

The quantity $E_T^{\text{miss}}_{\text{rel}}$ is defined as $E_T^{\text{miss}}$ if the angle $\Delta \phi$ between the missing transverse momentum and the transverse momentum of the nearest lepton or jet is greater than $\pi/2$, or $E_T^{\text{miss}} \sin(\Delta \phi)$ otherwise. $E_T^{\text{miss}}_{\text{rel}}$ is less sensitive to the mismeasurement of a single lepton or jet than $E_T^{\text{miss}}$. To suppress backgrounds from multijet events and Drell-Yan production, it is required that $E_T^{\text{miss}}_{\text{rel}} > 40$ GeV if the two leptons have the same flavor, or $E_T^{\text{miss}}_{\text{rel}} > 25$ GeV if they have different flavor.

After these requirements, the data are separated into $H + 0 - j$ and $H + 1 - j$ [23] samples based on whether they have zero or exactly one jet. In the $H + 1 - j$ channel, the dilepton system is required to have a large transverse boost, $p_T^{\ell\ell} > 30$ GeV, to suppress backgrounds from $Z + j$ and continuum $WW$ production.

To suppress background from top-quark production, events in the $H + 1 - j$ channel are rejected if the jet is identified as the decay of a $b$ quark. These candidates are further required to have $|p_T^{\text{jet}}| < 30$ GeV, where $p_T^{\text{jet}}$ is the vector sum of the transverse momenta of the jet, the two leptons, and the $E_T^{\text{miss}}$ vector. This latter selection suppresses events with significant hadronic activity that recoils against the $p_T^{\ell\ell}$ system but does not leave high $p_T$ jets in the detector. In the $H + 1 - j$ channel, the event is required to pass the $Z \rightarrow \tau\tau$ rejection cut used in the $H \rightarrow WW$ analysis of Ref. [24].

Top and $WW$ backgrounds are suppressed by an upper bound on $m_{\ell\ell}$. Because the $m_{\ell\ell}$ distribution for the signal depends strongly on $m_H$, the chosen upper bound depends on the Higgs boson mass hypothesis. For $m_H < 170$ GeV, $m_{\ell\ell} < 50$ GeV is required, while for $170 \leq m_H < 220$ GeV, the cut is $m_{\ell\ell} < 65$ GeV. For $m_H \geq 220$ GeV, the requirement is $50 < m_{\ell\ell} < 180$ GeV.

For $m_H < 220$ GeV, an upper bound is imposed on the azimuthal angle between the two leptons to exploit differences in spin correlations between signal and background: $\Delta \phi_{\ell\ell} < 1.3$ for $m_H < 170$ GeV, or $\Delta \phi_{\ell\ell} < 1.8$ for $m_H < 220$ GeV. The final requirement uses the transverse mass $m_T$ [25] which is defined as $(m_T)^2 = m_{\ell\ell}^2 + 2(e_\ell p_T\ell, j - p_T j, \ell, i)$, where the subscripts $\nu$ and $j$ denote the visible and invisible decay products and $e_\nu = \sqrt{p_T j, \ell \cdot p_T j, i + m_v^2}$ denotes the transverse energy. The transverse mass $m_T$ is required to lie within $0.75m_{\ell\ell} < m_T < m_{\ell\ell}$ if $m_H < 220$ GeV or $0.6m_{\ell\ell} < m_T < m_{\ell\ell}$ otherwise. The upper bound on this window reduces the $WW$ and top backgrounds and excludes regions of phase space where interference effects between the signal and the $gg \rightarrow WW$ background are large [26].

Table I shows the expected and observed event yields after these cuts. As described below, the $W + j$ background is entirely determined from data, whereas for the other processes the expectations are based on simulation,
TABLE I. The expected numbers of signal \((m_H = 150 \text{ GeV})\) and background events after the requirements listed in the first column, as well as the observed numbers of events in data. All numbers are summed over lepton flavor.

<table>
<thead>
<tr>
<th>Control Regions</th>
<th>Signal</th>
<th>WW</th>
<th>W + jets</th>
<th>(Z/\gamma^* + \text{jets})</th>
<th>(t\bar{t})</th>
<th>(tW/tb/tqb)</th>
<th>(WZ/ZZ/W\gamma)</th>
<th>Total Bkg.</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Jet Veto</strong></td>
<td>99 ± 21</td>
<td>524 ± 52</td>
<td>84 ± 41</td>
<td>174 ± 169</td>
<td>42 ± 14</td>
<td>32 ± 8</td>
<td>15 ± 4</td>
<td>872 ± 182</td>
<td>920</td>
</tr>
<tr>
<td>(p_T^{\ell\ell} &gt; 30 \text{ GeV})</td>
<td>95 ± 20</td>
<td>467 ± 45</td>
<td>69 ± 34</td>
<td>30 ± 12</td>
<td>39 ± 14</td>
<td>29 ± 8</td>
<td>13 ± 4</td>
<td>648 ± 60</td>
<td>700</td>
</tr>
<tr>
<td>(m_{\ell\ell} &lt; 50 \text{ GeV})</td>
<td>68 ± 15</td>
<td>118 ± 15</td>
<td>21 ± 8</td>
<td>13 ± 8</td>
<td>7 ± 4</td>
<td>5.8 ± 1.8</td>
<td>1.9 ± 0.6</td>
<td>166 ± 19</td>
<td>199</td>
</tr>
<tr>
<td>(\Delta \phi_{\ell\ell} &lt; 1.3)</td>
<td>58 ± 13</td>
<td>91 ± 12</td>
<td>12 ± 5</td>
<td>9 ± 6</td>
<td>6 ± 3</td>
<td>5.8 ± 1.8</td>
<td>1.7 ± 0.6</td>
<td>125 ± 15</td>
<td>149</td>
</tr>
<tr>
<td>(0.75m_H &lt; m_T &lt; m_H)</td>
<td>40 ± 9</td>
<td>52 ± 7</td>
<td>5 ± 2</td>
<td>2 ± 4</td>
<td>2.4 ± 1.6</td>
<td>1.5 ± 1.0</td>
<td>1.1 ± 0.5</td>
<td>63 ± 9</td>
<td>81</td>
</tr>
<tr>
<td><strong>H + 0 – jet Channel</strong></td>
<td>Signal</td>
<td>WW</td>
<td>W + jets</td>
<td>(Z/\gamma^* + \text{jets})</td>
<td>(t\bar{t})</td>
<td>(tW/tb/tqb)</td>
<td>(WZ/ZZ/W\gamma)</td>
<td>Total Bkg.</td>
<td>Observed</td>
</tr>
<tr>
<td>1 jet</td>
<td>50 ± 9</td>
<td>193 ± 20</td>
<td>38 ± 21</td>
<td>74 ± 65</td>
<td>473 ± 124</td>
<td>174 ± 26</td>
<td>14 ± 2</td>
<td>967 ± 145</td>
<td>952</td>
</tr>
<tr>
<td>(b \rightarrow \text{jet veto})</td>
<td>48 ± 9</td>
<td>188 ± 19</td>
<td>35 ± 19</td>
<td>73 ± 61</td>
<td>174 ± 49</td>
<td>66 ± 11</td>
<td>14 ± 2</td>
<td>549 ± 83</td>
<td>564</td>
</tr>
<tr>
<td>(</td>
<td>p_T</td>
<td>&lt; 30 \text{ GeV})</td>
<td>39 ± 7</td>
<td>154 ± 16</td>
<td>18 ± 9</td>
<td>38 ± 32</td>
<td>106 ± 30</td>
<td>50 ± 9</td>
<td>9.7 ± 1.5</td>
</tr>
<tr>
<td>(Z \rightarrow \tau\tau \text{ veto})</td>
<td>39 ± 7</td>
<td>150 ± 17</td>
<td>18 ± 8</td>
<td>34 ± 23</td>
<td>102 ± 23</td>
<td>48 ± 8</td>
<td>9 ± 2</td>
<td>361 ± 38</td>
<td>388</td>
</tr>
<tr>
<td>(m_{\ell\ell} &lt; 50 \text{ GeV})</td>
<td>26 ± 6</td>
<td>33 ± 5</td>
<td>3.3 ± 1.4</td>
<td>8 ± 7</td>
<td>20 ± 7</td>
<td>11 ± 3</td>
<td>1.8 ± 0.5</td>
<td>77 ± 12</td>
<td>90</td>
</tr>
<tr>
<td>(\Delta \phi_{\ell\ell} &lt; 1.3)</td>
<td>23 ± 5</td>
<td>25 ± 4</td>
<td>2.1 ± 1.0</td>
<td>4 ± 6</td>
<td>17 ± 6</td>
<td>9 ± 3</td>
<td>1.5 ± 0.4</td>
<td>60 ± 10</td>
<td>72</td>
</tr>
<tr>
<td>(0.75m_H &lt; m_T &lt; m_H)</td>
<td>14 ± 3</td>
<td>12 ± 3</td>
<td>0.9 ± 0.4</td>
<td>1.3 ± 1.9</td>
<td>8 ± 2</td>
<td>4.0 ± 1.6</td>
<td>0.7 ± 0.3</td>
<td>28 ± 4</td>
<td>29</td>
</tr>
</tbody>
</table>

Control Regions: Signal | WW | W + jets | \(Z/\gamma^* + \text{jets}\) | \(t\bar{t}\) | \(tW/tb/tqb\) | \(WZ/ZZ/W\gamma\) | Total Bkg. | Observed |
| WW0 – jet (\(m_H < 220 \text{ GeV}\)) | 1.7 ± 0.4| 225 ± 30| 20 ± 15| 6 ± 8| 25 ± 10| 15 ± 4| 8 ± 3| 296 ± 36| 296 |
| WW0 – jet (\(m_H \geq 220 \text{ GeV}\)) | 10 ± 2| 173 ± 23| 24 ± 12| 13 ± 19| 15 ± 6| 8 ± 3| 3.3 ± 0.6| 236 ± 33| 258 |
| WW1 – jet (\(m_H < 220 \text{ GeV}\)) | 1.0 ± 0.3| 76 ± 13| 5 ± 3| 5 ± 5| 56 ± 14| 23 ± 5| 5 ± 1.4| 171 ± 21| 184 |
| WW1 – jet (\(m_H \geq 220 \text{ GeV}\)) | 5.8 ± 1.5| 51 ± 9| 3.9 ± 1.8| 10 ± 10| 35 ± 9| 18 ± 4| 2.8 ± 0.6| 120 ± 17| 129 |
| \(t\bar{t}1 – \text{jet}\) | 0.9 ± 0.3| 3.9 ± 1.0| \(\cdots\)| 1 ± 17| 184 ± 64| 80 ± 19| 0.2 ± 0.9| 270 ± 69| 249 |

with \(Z/\gamma^* + \text{jets}\), \(t\bar{t}\), and \(tW/tb/tqb\) corrected by scale factors derived from control samples. The uncertainties shown are the sum in quadrature of systematic uncertainties and statistical errors due to the finite number of MC events. Figure 1 shows the distributions of \(m_{\ell\ell}\) and \(\Delta \phi_{\ell\ell}\) before the final cut on \(m_{\ell\ell}\), and the distribution of \(m_T\) after the cut on \(\Delta \phi_{\ell\ell}\).

The background from \(W + \text{jets}\) events where one jet is misidentified as a lepton is estimated from data using a control sample where one of the two leptons satisfies a loosened set of identification and isolation criteria but not the full set of criteria normally used. The extrapolation from this control sample to the signal region is extracted from dijet events [27].

The Drell-Yan background is corrected for mismodeling of the distribution of \(E_T^{\text{miss}}\) at high values based on the observed difference between the fraction of events passing the \(E_T^{\text{miss}} > 40 \text{ GeV}\) selection in data and MC simulation for events with \(m_{\ell\ell}\) within 10 GeV of the Z boson mass. The correction factors are all found to be between 0.8 and 0.9, which indicates that the background in the signal region is about 15% less than the MC estimates.

The expected signal for \(m_H = 150 \text{ GeV}\) is shown as a separate thicker line, and the final bin includes the overflow.
The $\WW$ and top backgrounds are normalized by a simultaneous fit to the numbers of observed events in the signal region and several control samples. A sample enriched in $\WW$ background is defined by removing the selections on $m_T$ and $\Delta \phi_{\ell\ell}$ and changing the selection on $m_{\ell\ell}$. For $m_H < 220 \GeV$, the cut is changed to $m_{\ell\ell} > 80 \GeV$, while for $m_H > 220 \GeV$, the control region is the union of the regions with $15 < m_{\ell\ell} < 50 \GeV$ and $m_{\ell\ell} > 180 \GeV$. This control sample is studied separately for the $H + 0 - \text{jet}$ channel and the $H + 1 - \text{jet}$ channel, and the observed yields are consistent with expectations in both cases. The yields in these control regions, shown in Table I, are propagated to the signal region using scale factors computed with MC.

In the $H + 0 - \text{jet}$ channel, the top-enriched control sample consists of the same preselected sample used in the rest of this analysis: events with two leptons and $E_{\text{T}}^{\text{miss}}$. The scale factor used to propagate the $t\bar{t}$ yield from this sample to the signal region is estimated as the square of the efficiency for one top decay to survive the jet veto (estimated using another control sample, defined by the presence of an additional $b - \text{jet}$), with a correction computed using MC to account for the presence of single top [28]. A sample enriched in top background is defined for the $H + 1 - \text{jet}$ channel by reversing the $b - \text{jet}$ veto and removing the cuts on $\Delta \phi_{\ell\ell}$, $m_{\ell\ell}$, and $m_T$. The extrapolation to the signal region is done using a scale factor computed using MC. The control samples for top in the $H + 0 - \text{jet}$ and $H + 1 - \text{jet}$ channels also normalize the top contamination in the corresponding $\WW$ control regions. In both cases, the estimated top backgrounds are consistent with the expected yields in Table I.

The signal significance and limits on Higgs boson production are derived from a likelihood function that is the product of the Poisson probabilities of each of the lepton flavor and jet multiplicity yields for the signal selections, the $\WW + 0 - \text{jet}$ and $\WW + 1 - \text{jet}$ control regions, and top control region for the $H + 1 - \text{jet}$ channel. The normalization of the signal, the $\WW$ cross sections for the $H + 0 - \text{jet}$ and $H + 1 - \text{jet}$ channels, and the top cross section for the $H + 1 - \text{jet}$ channel are allowed to vary independently; the control regions included in the fit constrain all of these except the signal yield. All other components are normalized to their expectations scaled by nuisance parameters constrained by Gaussian terms that include the systematic uncertainties described below. The results from the control sample measurements for the top background in the $H + 0 - \text{jet}$ channel and for the $W +$ jets and Drell-Yan backgrounds everywhere are used as the expected values for the corresponding backgrounds in the fit. Since these contributions are small, the control samples themselves are not explicitly modeled in the fit as they are for top in the $H + 1 - \text{jet}$ channel and for $WW$ everywhere.

The systematic uncertainties include contributions from the 3.7% uncertainty in the luminosity [29], and from theoretical uncertainties, which are $-8/ + 12 \%$ and $\pm 8\%$ from the QCD scale and 1% and 4% from the parton density functions, for $g\rightarrow H$ and $q\bar{q} \rightarrow qqH$ respectively. Additional theoretical uncertainties on the acceptance are assessed as described in Ref. [30]. In particular, the uncertainty in the assignment of events to jet multiplicity bins is included separately as an uncertainty on the cross section of each bin, calculated from the approximate 10% and 20% uncertainties of the inclusive $0 - \text{jet}$ and $1 - \text{jet}$ cross sections, respectively.

Several sources of measurement uncertainty are taken into account. The uncertainty on the jet energy scale is less than 10% on the global scale including flavor composition effects, with an additional uncertainty of up to 7% due to pileup [16]. The electron and muon efficiencies are determined from samples of $W$ and $Z$ boson data with uncertainties of 2%–5% and 0.3%–1%, respectively, depending on $|\eta|$ and $p_T$. Uncertainties are $<1\%$ and $<0.1\%$, respectively, on the lepton energy scale and $<0.6\%$ and $<5\%$ on the resolution [14]. The uncertainties on the $b$-tagging efficiency and mistag rate are 6%–15% and up to 21%, respectively [17]. A 13% uncertainty is applied to the energy scale for low-$p_T$ depositions in the $E_{\text{T}}^{\text{miss}}$ measurement. All these sources of detector uncertainty are propagated to the result by varying reconstructed quantities and observing the effect on the expected yields. For the $WW$ background, the total (theoretical and experimental) uncertainty on the ratio of cross sections in the signal and control regions is 7.6% in the $H + 0 - \text{jet}$ channel and 21% in the $H + 1 - \text{jet}$ channel; for the top background in $H + 1 - \text{jet}$ the total for the extrapolation to the signal region is 38%, and 29% to the $WW$ control region.

The observed (dashed) and expected (solid) 95% C.L. upper limits on the cross section, normalized to the standard model cross section, as a function of the Higgs boson mass. Expected limits are given for the scenario where there is no signal. The vertical lines in the curves indicate the points where the selection cuts change, and the bands around the dashed line indicate the expected statistical fluctuations of the limit.

![Graph showing Higgs boson mass limits](image-url)
No significant excess of events is observed. The largest observed deviation from the expected background is $1.9\sigma$. A 95% C.L. upper bound is set on the Higgs boson cross section as a function of $m_H$ using the $CL_s$ formalism [31]. Figure 2 shows the expected and observed limits. Discontinuities occur where the selection changes, since the signal regions there are less statistically correlated between adjacent masses. In the absence of a signal, one would expect to exclude a standard model Higgs boson in the range $134 < m_H < 200$ GeV at the 95% C.L. The Higgs boson mass interval excluded by the measurements presented in this Letter, $145 < m_H < 206$ GeV, is consistent with that expectation. This measurement excludes, at 95% C.L., a larger part of the mass range favored by the electroweak fits than previous limits [32].

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; AHAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARIES and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.


(ATS Collaboration)

PRL 108, 111802 (2012) PHYSICAL REVIEW LETTERS week ending 16 MARCH 2012

1University at Albany, Albany, New York, USA
2Department of Physics, University of Alberta, Edmonton, Alberta, Canada
3aDepartment of Physics, Ankara University, Ankara, Turkey
3bDepartment of Physics, Dumlupinar University, Kutahya, Turkey
3cDepartment of Physics, Gazi University, Ankara, Turkey
3dDivision of Physics, TOBB University of Economics and Technology, Ankara, Turkey
3eTurkish Atomic Energy Authority, Ankara, Turkey
4LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
6Department of Physics, University of Arizona, Tucson, Arizona, USA
7Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
8Physics Department, University of Athens, Athens, Greece
9Physics Department, National Technical University of Athens, Zografou, Greece
10Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11Instituto de Física de Altas Energías and Departamento de Física de la Universidad Autónoma de Barcelona and ICREA, Barcelona, Spain
12Institute of Physics, University of Belgrade, Belgrade, Serbia
12bVinca Institute of Nuclear Sciences, Belgrade, Serbia
13Department for Physics and Technology, University of Bergen, Bergen, Norway

111802-14
Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
Faculty of Science, Hiroshima University, Hiroshima, Japan
Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
Department of Physics, Indiana University, Bloomington, Indiana, USA
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa City, Iowa, USA
Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
INFN Sezione di Lecce, Italy
Dipartimento di Fisica, Università del Salento, Lecce, Italy
Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lund universitet, Lund, Sweden
Departamento de Física Teórica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA
Department of Physics, McGill University, Montreal, Quebec, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor, Michigan, USA
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
INFN Sezione di Milano, Italy
Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Group of Particle Physics, University of Montreal, Montreal, Quebec, Canada
PN. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science, Nagoya University, Nagoya, Japan
INFN Sezione di Napoli, Italy
Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
Department of Physics, New York University, New York, New York, USA
Ohio State University, Columbus, Ohio, USA
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
Palacký University, RCPTM, Olomouc, Czech Republic
Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.

Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.