Selective Anthracene Photooxidation over Titania-supported Single Atom Catalysts

Martijn J. Mekkering, Gadi Rothenberg,* Hong Zhang, and Ning Yan*
Here we show other variations of the formula include multiplying by $(hv)^n$ where n is the corresponding electronic transition (see Figure S1). The parameter n corresponds to a direct allowed transition for $n = \frac{1}{2}$. For $n = 2$, this corresponds to an indirect allowed transition.\footnote{1}

Figure S1 – Other fitting variations of the DRS results. The differences in the bandgap between the TiO$_2$ support and anthracene dried over the surface are highlighted.

We also recorded the photochemical conversions for different supports with different bandgaps as reference material. We see a unique behavior of anthracene oxidation possible on TiO$_2$, irrespective of the bandgap.

Figure S2 – Endoperoxide selectivity and anthracene conversion for different supports for a 30 min reaction. It shows that anthracene conversion is not limited to the metal oxide. Nevertheless, TiO$_2$ showed the highest conversion. Bandgap literature; TiO$_2$ = 3.0 eV\footnote{2}, Al$_2$O$_3$ = 8.7 eV\footnote{2}, CeO$_2$ = 3.4 eV\footnote{3}, MgO = , ZrO$_2$ = 5.8 eV\footnote{4}, MnO = 2.5\footnote{5}.}.
We also recorded anthracene conversions to quantify the role of oxygen from the TiO₂ support. We noticed that there was a small contribution (<10%) of the remaining oxygen from the TiO₂ support. This could be replenished with gaseous O₂ and would lead to a Mars van Krevelen type of mechanism for the SAC.
Figure S5 – Emission profile of the lamps available at https://kessil.com/products/science_PR160L.php. Observe the emission profile for the lamp that has a peak maximum of 456 nm.

References

2 V. M. Kiseleva, I. M. Kislyakov and A. N. Burchino, Condens. Spectrosc., 2015, 120, 545–555.
5 Z. R. Tian, W. Tong, J. Y. Wang, N. G. Duan, V. V. Krishnan and S. L. Suib, Science (80-.), 1997, 276, 926–930.