Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb-1 of pp collision data at $\sqrt{s} = 7$ TeV with ATLAS

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.108.111803

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Search for the Standard Model Higgs Boson in the Diphoton Decay Channel with 4.9 fb$^{-1}$ of pp Collision Data at $\sqrt{s} = 7$ TeV with ATLAS

G. Aad et al.*
(ATLAS Collaboration)
(Received 7 February 2012; published 13 March 2012)

A search for the standard model Higgs boson is performed in the diphoton decay channel. The data used correspond to an integrated luminosity of 4.9 fb$^{-1}$ collected with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 7$ TeV. In the diphoton mass range 110–150 GeV, the largest excess with respect to the background-only hypothesis is observed at 126.5 GeV, with a local significance of 2.8 standard deviations. Taking the look-elsewhere effect into account in the range 110–150 GeV, this significance becomes 1.5 standard deviations. The standard model Higgs boson is excluded at 95% confidence level in the mass ranges of 113–115 GeV and 134.5–136 GeV.

DOI: 10.1103/PhysRevLett.108.111803 PACS numbers: 14.80.Bn, 12.15.Ji, 14.70.Bh

The Higgs mechanism [1] is one of the best-motivated processes to explain electroweak (EW) symmetry breaking. In the standard model (SM), this mechanism explains the generation of the W and Z boson masses and predicts the existence of the only elementary scalar in the SM, the hypothetical Higgs boson. Prior direct searches at LEP, Tevatron and LHC exclude the SM Higgs boson with a mass $m_H < 114.4$ GeV and $145 < m_H < 206$ GeV at 95% confidence level (C.L.) [2–4].

The present search for $H \rightarrow \gamma \gamma$ uses the full 2011 data sample collected by ATLAS at 7 TeV center-of-mass energy and updates prior results with 1.08 fb$^{-1}$ [5].

The ATLAS detector [6] consists of an inner tracking detector surrounded by a superconducting solenoid providing a 2 T magnetic field, electromagnetic and hadron calorimeters, and a muon spectrometer. The main subdetectors relevant to the search presented here are the calorimeters, in particular, the electromagnetic section, and the inner tracking system. The inner detector provides tracking in the pseudorapidity region $|\eta| < 2.5$ and consists of silicon pixel- and microstrip detectors inside a transition radiation tracker. The electromagnetic calorimeter, a lead liquid-argon sampling device, is divided in one barrel ($|\eta| < 1.475$) and two end-cap ($1.375 < |\eta| < 3.2$) sections. The barrel ($|\eta| < 0.8$) and extended barrel ($0.8 < |\eta| < 1.7$) hadron calorimeter sections consist of steel and scintillating tiles, while the end-cap sections ($1.5 < |\eta| < 3.2$) are composed of copper and liquid argon.

The data were recorded using a diphoton trigger [7], each photon having a transverse energy, E_T, of at least 20 GeV, seeded by a lower-level trigger that required two clusters in the electromagnetic calorimeter with $E_T > 12$ or 14 GeV, depending on the data-taking period. The trigger efficiency for the signal events passing the final offline selection is 99%. After applying data quality requirements, the total integrated luminosity of the data set used in this analysis is 4.9 ± 0.2 fb$^{-1}$ [8].

Events are required to contain at least one vertex with at least three associated tracks, where the transverse momentum, p_T, of each track is required to be larger than 0.4 GeV, as well as two photon candidates each seeded by an energy cluster in the electromagnetic calorimeter with $E_T > 2.5$ GeV. Photons that convert to electron-positron pairs in the inner detector leave one or two tracks that are reconstructed and matched to the clusters in the calorimeter. The photon energy is calibrated separately for converted and unconverted photon candidates using Monte Carlo (MC) simulations of the detector [9].

A correction, depending on pseudorapidity and typically of the order of ±1%, is applied to the calibrated photon energy as obtained from studies using $Z \rightarrow ee$ decays in data [10]. Photons are reconstructed in the fiducial region $|\eta| < 2.37$, excluding the calorimeter barrel-to-end-cap transition regions $1.37 < |\eta| < 1.52$. The photon candidates are ordered in E_T and the leading (subleading) candidate is required to have $E_T > 40$ GeV (25 GeV). Both candidates are required to pass further identification criteria based on shower shapes measured in the electromagnetic calorimeter and on the energy leakage into the hadron calorimeter [11]. The photon reconstruction and identification efficiency ranges typically from 65% to 95% for E_T in the range 25 to 80 GeV. The two photon candidates are required to be isolated by having at most 5 GeV energy deposited in the calorimeters in a cone of $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4$ around the candidate, where ϕ is the azimuthal angle, after subtracting the energy assigned to the photon itself. The measured isolation [11] is corrected for lateral shower leakage and ambient energy from

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
multiple proton-proton interactions (pileup), following the method in Ref. [12]. The isolation cut retains \(\sim 87\% \) of Higgs boson signal events with \(m_H = 120 \) GeV while rejecting \(\sim 44\% \) of the selected data, which includes jets that can be misidentified as photons.

The opening angle of the two photons, used in the calculation of their invariant mass, is determined using the trajectories of the photons. For a converted photon with a well-measured conversion vertex, the trajectory is determined from the straight line between the barycenter of the associated energy deposits in the calorimeter and the conversion vertex. Otherwise, the trajectory is determined from the barycenters of the showers in the first and second layers of the calorimeter. The extrapolation of the trajectories as well as the average beam spot position are used to determine the origin of the photons along the beam axis, \(z \). The resolution of the \(z \) vertex coordinate is \(\sim 6 \) mm on average for two converted photons with reconstructed tracks, and \(\sim 15 \) mm otherwise. The contribution of the resulting angular resolution to the mass resolution is negligible in comparison to that of the energy resolution.

In total, 22,489 events pass the selection in the diphoton mass range 100–160 GeV. To confirm the dominance of the diphoton processes (\(\gamma \gamma \)) over backgrounds with one or two misidentified jets (\(\gamma j \), \(jj \)), the composition of the selected sample is estimated using the data. A sideband technique [5] is used to estimate the numbers of \(\gamma \gamma \), \(\gamma j \), or \(jj \) events. The fraction of true diphoton events is estimated to be \((71 \pm 5)\%\). The amount of Drell-Yan background is estimated by selecting \(Z \rightarrow ee \) decays in data where either one or both electrons pass the photon selection. The measured composition is summarized in Table I and is compatible with MC expectations. This decomposition is not directly used in the signal search; however, it is used to validate the parametrization of the background fit (see below).

The events are separated into nine mutually exclusive categories with different mass resolutions and signal-to-background ratios, to increase the sensitivity to a possible Higgs boson signal. Categories are defined by the conversion status, \(\eta \) of the selected photons, and \(p_T \) [13], the component of the diphoton \(p_T \) that is orthogonal to the thrust axis, as proposed in Ref. [14]. Events with two unconverted photons are separated into \textit{unconverted central} (\(|\eta| < 0.75 \) for both candidates) and \textit{unconverted rest} (all other events). Events with at least one converted photon are separated into \textit{converted central} (\(|\eta| < 0.75 \) for both candidates), \textit{converted transition} (at least one photon with \(1.3 < |\eta| < 1.75 \)), and \textit{converted rest} (all other events). Excepting the \textit{converted transition} category, each category is further divided by a cut at \(p_T = 40 \) GeV into two categories, \textit{low} \(p_T \) and \textit{high} \(p_T \). MC studies show that signal events, particularly those produced in vector-boson fusion (VBF) or in associated production (\(W/ZH \) and \(ttH \)), have on average larger \(p_T \) than background events. The number of data events in each category is given in Table II.

The distribution of the invariant mass of the diphoton events, \(m_{\gamma\gamma} \), summed over all categories, is shown in Fig. 1. The sum of the background-only fits (described below) to the invariant mass in each of the categories is superimposed. The signal expectation for a SM Higgs boson with \(m_H = 120 \) GeV is also shown. The presence of the Higgs boson will appear as a narrow resonance in the

<table>
<thead>
<tr>
<th>Category</th>
<th>(\sigma_{\text{CB}})</th>
<th>FWHM</th>
<th>(N_S)</th>
<th>(N_D)</th>
<th>(S/B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconverted central, low (p_T)</td>
<td>1.4</td>
<td>3.4</td>
<td>9.1</td>
<td>1763</td>
<td>0.05</td>
</tr>
<tr>
<td>Unconverted central, high (p_T)</td>
<td>1.4</td>
<td>3.3</td>
<td>2.6</td>
<td>235</td>
<td>0.11</td>
</tr>
<tr>
<td>Unconverted rest, low (p_T)</td>
<td>1.7</td>
<td>4.0</td>
<td>17.7</td>
<td>6234</td>
<td>0.02</td>
</tr>
<tr>
<td>Unconverted rest, high (p_T)</td>
<td>1.6</td>
<td>3.9</td>
<td>4.7</td>
<td>1006</td>
<td>0.04</td>
</tr>
<tr>
<td>Converted central, low (p_T)</td>
<td>1.6</td>
<td>3.9</td>
<td>6.0</td>
<td>1318</td>
<td>0.03</td>
</tr>
<tr>
<td>Converted central, high (p_T)</td>
<td>1.5</td>
<td>3.6</td>
<td>1.7</td>
<td>184</td>
<td>0.08</td>
</tr>
<tr>
<td>Converted rest, low (p_T)</td>
<td>2.0</td>
<td>4.7</td>
<td>17.0</td>
<td>7311</td>
<td>0.01</td>
</tr>
<tr>
<td>Converted rest, high (p_T)</td>
<td>1.9</td>
<td>4.5</td>
<td>4.8</td>
<td>1072</td>
<td>0.03</td>
</tr>
<tr>
<td>Converted transition</td>
<td>2.3</td>
<td>5.9</td>
<td>8.5</td>
<td>3366</td>
<td>0.01</td>
</tr>
<tr>
<td>All categories</td>
<td>1.7</td>
<td>4.1</td>
<td>72.1</td>
<td>22489</td>
<td>0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(m_H) [GeV]</th>
<th>110</th>
<th>115</th>
<th>120</th>
<th>125</th>
<th>130</th>
<th>135</th>
<th>140</th>
<th>145</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma \times BR) [fb]</td>
<td>45</td>
<td>44</td>
<td>43</td>
<td>40</td>
<td>36</td>
<td>32</td>
<td>27</td>
<td>22</td>
<td>16</td>
</tr>
<tr>
<td>Signal events</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>69</td>
<td>65</td>
<td>58</td>
<td>50</td>
<td>41</td>
<td>31</td>
</tr>
<tr>
<td>Efficiency [%]</td>
<td>31</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>37</td>
<td>37</td>
<td>38</td>
<td>38</td>
<td>39</td>
</tr>
</tbody>
</table>

The cross sections multiplied by the branching ratio into two photons, expected number of signal events summed over all categories for 4.9 fb\(^{-1}\), and selection efficiencies for various Higgs boson masses.

The cross sections multiplied by the branching ratio into two photons are listed in Table III. The number of signal events produced by gluon fusion is rescaled to take into account the expected destructive interference between the \(gg \rightarrow \gamma \gamma \) continuum background and the \(gg \rightarrow H \rightarrow \gamma \gamma \) process, leading to a reduction of the production rate by 2–5% depending on \(m_H \) and analysis category. The fractions of gluon fusion, VBF, \(WH \), \(ZH \), and \(t\bar{t}H \) production are approximately 87%, 7%, 3%, 2% and 1%, respectively, for \(m_H = 120 \) GeV.

The shower shape variables of the simulated samples are shifted to agree with the corresponding distributions in the data and MC events. Events generated with POWHEG at NLO have been reweighted to match the Higgs boson \(p_T \) distribution predicted by HQT. The signal yields expected for 4.9 fb\(^{-1}\) and selection efficiencies are given in Table III.

The invariant mass of the selected photon pairs superimposed on a smoothly falling background. The residual of the data with respect to the total background as a function of \(m_{\gamma\gamma} \) is also shown in Fig. 1.

Higgs boson production and decay are simulated with several MC samples that are passed through a full detector simulation using GEANT4. Pileup effects are simulated by overlaying each MC event with a variable number of MC inelastic proton-proton collisions. POWHEG, interfaced to PYTHIA for showering and hadronization, is used for generation of gluon-fusion and VBF production. PYTHIA is used to generate the Higgs boson production in association with W/Z and \(t\bar{t} \).

The Higgs boson production cross sections are computed up to next-to-next-to-leading order (NNLO) in QCD for the gluon-fusion process. In addition, QCD soft-gluon resummations up to next-to-leading log improve the NNLO calculation. The next-to-leading order (NLO) EW corrections are applied. These results are compiled in Refs. assuming factorization between QCD and EW corrections. The cross sections for the VBF process are calculated with full NLO QCD and EW corrections, and approximate NNLO QCD corrections are available. The \(W/ZH \) processes are calculated at NLO and at NNLO, and NLO EW radiative corrections are applied. The full NLO QCD corrections for \(t\bar{t}H \) are calculated. The Higgs boson cross sections, branching ratios, and their uncertainties are compiled in Ref.

The cross sections multiplied by the branching ratio into two photons are listed in Table III. The number of signal events produced by gluon fusion is rescaled to take into account the expected destructive interference between the \(gg \rightarrow \gamma \gamma \) continuum background and the \(gg \rightarrow H \rightarrow \gamma \gamma \) process, leading to a reduction of the production rate by 2–5% depending on \(m_H \) and analysis category. The fractions of gluon fusion, VBF, \(WH \), \(ZH \), and \(t\bar{t}H \) production are approximately 87%, 7%, 3%, 2% and 1%, respectively, for \(m_H = 120 \) GeV.

The shower shape variables of the simulated samples are shifted to agree with the corresponding distributions in the data and MC events. Events generated with POWHEG at NLO have been reweighted to match the Higgs boson \(p_T \) distribution predicted by HQT. The signal yields expected for 4.9 fb\(^{-1}\) and selection efficiencies are given in Table III.

The invariant mass shape of the signal in each category is modeled by the sum of a Crystal Ball function describing the core of the distribution with a width \(\sigma_{CB} \), and a wide Gaussian with a small amplitude describing the tails of the mass distribution. In Fig. 2, the sum of all signal processes in all categories is shown for a Higgs boson with \(m_H = 120 \) GeV. The expected full-width-at-half-maximum (FWHM) is 4.1 GeV and \(\sigma_{CB} \) is 1.7 GeV. The resolution varies with category and is also shown in Table II.

The background in each category is estimated from the data by fitting the diphoton mass spectrum in the range 100–160 GeV with an exponential function with free slope and normalization parameters. The background curve in Fig. 1 is the sum of these nine contributions. For each category, a single exponential fit satisfactorily describes the mass spectrum. This has been checked using large samples of diphoton events produced by the RESBOS and DIPHOS MC generators.
uncertainty on the mass resolution is $\pm 14\%$, dominated by the uncertainty on the energy resolution of the calorimeter, determined from $Z \rightarrow ee$ events ($\pm 12\%$). Further uncertainties on the mass resolution result from an imperfect knowledge of material in front of the calorimeter affecting the extrapolation from electron to photon calibration ($\pm 6\%$), the impact of pileup ($\pm 3\%$) estimated from events taken with random triggers, and the photon angle measurement ($\pm 1\%$) estimated using $Z \rightarrow ee$ events. The uncertainty on the knowledge of the material in front of the calorimeter is used to derive the amount of event migration between the converted and unconverted categories ($\pm 4.5\%$). Different parton density functions and scale variations in HQT calculations are used to derive possible event migration between high and low p_T categories ($\pm 8\%$).

A modified frequentist approach (CL_s) [38] for setting limits and a frequentist approach to calculate the p_0 value are used [39]. The p_0 is the probability that the background fluctuates to the observed number of events or higher. The combined likelihood, which is a function of the ratio of the measured cross section relative to that of the SM prediction, is constructed from the unbinned likelihood functions of the nine categories. Systematic uncertainties are incorporated by introducing nuisance parameters with constraints. Asymptotic formulae [40] are used to derive the limits and p_0 values, which are refined with pseudoexperiments [41], as functions of the hypothetical Higgs boson mass.

The observed and expected local p_0 values and the 95% C.L. limits on the Higgs boson production in units of the SM cross section are displayed in Figs. 3 and 4. Before considering the uncertainty on the signal mass position, the largest excess with respect to the

FIG. 2. Reconstructed invariant mass distribution for a simulated signal of $m_H = 120$ GeV summed over all categories, superimposed with the fit to the signal model.

The difference between the exponential function and the true background will contribute to an excess or a deficit of events over background expectations. In order to take this into account in a conservative way, a term is included in the likelihood function that allows for a signal-like component that is consistent with the background uncertainty. For each category this uncertainty is estimated from MC simulations by the difference between the mass distribution of diphoton events generated with RESBOS and the result of the exponential fit to this distribution. Photon reconstruction and identification efficiencies are taken into account. The MC events are scaled to correspond to 4.9 fb$^{-1}$ of data. The uncertainty is then the maximal difference between the MC shape and the model integrated in a sliding mass window of 4 GeV, the approximate FWHM of the expected signal. The uncertainties obtained are $\pm (0.1 - 7.9)$ events depending on the category. Pseudoexperiments are used to check that the sum of $\gamma\gamma$, γj, and jj events can also be described well by the exponential model. The background uncertainties are further validated by fitting the data with functions that have more degrees of freedom than the single exponential, and comparing the residuals to those obtained with the exponential fit.

The dominant experimental uncertainty on the signal yield is the photon reconstruction and identification efficiency ($\pm 11\%$), which is estimated with data by using electrons from Z and W decays and photons selected from $Z \rightarrow \ell\ell\gamma$ ($\ell = e, \mu$) events. Pileup also affects the identification efficiency and contributes to the uncertainty ($\pm 4\%$). Further uncertainties on the signal yield are related to the trigger ($\pm 1\%$), Higgs boson p_T modeling ($\pm 1\%$), isolation ($\pm 5\%$), and luminosity ($\pm 3.9\%$). Uncertainties on the predicted cross sections are due to uncertainties on the QCD renormalization and factorization scales ($\pm 8\%$) and on the parton density functions ([37] and references therein) and α_s ($\pm 8\%$). The total uncertainty on the signal yield is $\pm 17\%$. The total

FIG. 3 (color online). The observed local p_0, the probability that the background fluctuates to the observed number of events or higher (solid line). The open points indicate the observed local p_0 value when energy scale uncertainties are taken into account. The dotted line shows the expected median local p_0 for the signal hypothesis when tested at m_H.

111803-4
background-only hypothesis in the mass range 110–150 GeV is observed at 126.5 GeV with a local significance of 2.9 standard deviations. The uncertainty on the mass position (±0.7 GeV) due to the imperfect knowledge of the photon energy scale has a small effect on the significance. When this uncertainty is taken into account, the significance is 2.8 standard deviations; this becomes 1.5 standard deviations when the look-elsewhere effect [42] for the mass range 110–150 GeV is included. The median expected upper limits of the cross section in the absence of a true signal, at the 95% C.L., vary between 1.6 and 1.7 times the SM cross section in the mass range 115–130 GeV, and between 1.6 and 2.7 in the mass range 110–150 GeV. The observed 95% C.L. upper limit of the cross section relative to the SM cross section is between 0.83 and 3.6 over the full mass range. A SM Higgs boson is excluded at 95% C.L. in the mass ranges of 115–130 GeV and 134.5–136 GeV. These results are combined with SM Higgs searches in other decay channels in Ref. [41].

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

FIG. 4 (color online). Observed and expected 95% C.L. limits on the SM Higgs boson production normalized to the predicted cross section as a function of m_H.

[13] $p_T = |\vec{p}_T^\gamma \times \vec{p}_T^\gamma|$, where $\vec{t} = \vec{p}_T^\gamma - \vec{p}_{T1} - \vec{p}_{T2}$ denotes the transverse thrust, \vec{p}_T^γ and \vec{p}_{T1}, \vec{p}_{T2} are the transverse momenta of the two photons, and $p_T^{\gamma\gamma} = p_T^{\gamma1} + p_T^{\gamma2}$ is the transverse momentum of the diphoton system.

(ATLAS Collaboration)

1University at Albany, Albany, New York, USA
2Department of Physics, University of Alberta, Edmonton, Alberta, Canada
3aDepartment of Physics, Ankara University, Ankara, Turkey
3bDepartment of Physics, Dumlupinar University, Kayseri, Turkey
3cDepartment of Physics, Gazi University, Ankara, Turkey
3dDivision of Physics, TOBB University of Economics and Technology, Ankara, Turkey
3eTurkish Atomic Energy Authority, Ankara, Turkey
4LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
6Department of Physics, University of Arizona, Tucson, Arizona, USA
7Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
8Physics Department, University of Athens, Athens, Greece
9Physics Department, National Technical University of Athens, Zografou, Greece
10Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12aInstitute of Physics, University of Belgrade, Belgrade, Serbia
12bVinca Institute of Nuclear Sciences, Belgrade, Serbia
13Department for Physics and Technology, University of Bergen, Bergen, Norway
14Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
15Department of Physics, Humboldt University, Berlin, Germany
16Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18aDepartment of Physics, Bogazici University, Istanbul, Turkey
18bDivision of Physics, Dogus University, Istanbul, Turkey
18cDepartment of Physics Engineering, Gaziantep University, Gaziantep, Turkey
18dDepartment of Physics, Istanbul Technical University, Istanbul, Turkey
19aINFN Sezione di Bologna, Bologna, Italy
19bDipartimento di Fisica, Università di Bologna, Bologna, Italy
20Physikalisches Institut, University of Bonn, Bonn, Germany
21Department of Physics, Boston University, Boston, Massachusetts, USA
22Department of Physics, Brandeis University, Waltham, Massachusetts, USA
23aUniversidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
23bFederal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
23cFederal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
23dInstituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
24Physics Department, Brookhaven National Laboratory, Upton, New York, USA
25aNational Institute of Physics and Nuclear Engineering, Bucharest, Romania
25bUniversity Politehnica Bucharest, Bucharest, Romania
25cWest University in Timisoara, Timisoara, Romania
26Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28Department of Physics, Carleton University, Ottawa, Ontario, Canada
29CERN, Geneva, Switzerland
30Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
31aDepartamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
31bDepartamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32aInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
32bDepartment of Modern Physics, University of Science and Technology of China, Anhui, China
32cDepartment of Physics, Nanjing University, Jiangsu, China
32dSchool of Physics, Shandong University, Shandong, China

111803-15
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA

INFN Sezione di Milano, Italy

Dipartimento di Fisica, Università di Milano, Milano, Italy

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus

National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

Group of Particle Physics, University of Montreal, Montreal, Quebec, Canada

P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia

Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

Nagasaki Institute of Applied Science, Nagasaki, Japan

Graduate School of Science, Nagoya University, Nagoya, Japan

INFN Sezione di Napoli, Italy

Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy

Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

Department of Physics, Northern Illinois University, DeKalb, Illinois, USA

Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

Department of Physics, New York University, New York New York, USA

Ohio State University, Columbus, Ohio, USA

Faculty of Science, Okayama University, Okayama, Japan

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman Oklahoma, USA

Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA

Palacký University, RCPTM, Olomouc, Czech Republic

Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA

LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France

Graduate School of Science, Osaka University, Osaka, Japan

Department of Physics, University of Oslo, Oslo, Norway

Department of Physics, Oxford University, Oxford, United Kingdom

INFN Sezione di Pavia, Italy

Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Petersburg Nuclear Physics Institute, Gatchina, Russia

INFN Sezione di Roma I, Italy

Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Laboratorio de Instrumentación de Física Experimental de Partículas - LIP, Lisboa, Portugal

Departamento de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain

Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic

Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic

Czech Technical University in Prague, Prague, Czech Republic

State Research Center Institute for High Energy Physics, Protvino, Russia

Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

Physics Department, University of Regina, Regina, Saskatchewan, Canada

Ritsumeikan University, Kusatsu, Shiga, Japan

INFN Sezione di Roma I, Italy

Dipartimento di Fisica, Università La Sapienza, Roma, Italy

INFN Sezione di Roma Tor Vergata, Italy

Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

INFN Sezione di Roma Tre, Italy

Dipartimento di Fisica, Università Roma Tre, Roma, Italy

Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Énergies - Université Hassan II, Casablanca, Morocco

Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat, Morocco

Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco

Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco

Faculté des Sciences, Université Mohammed V, Rabat, Morocco