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Spatially Pooled Contrast Responses Predict Neural and
Perceptual Similarity of Naturalistic Image Categories
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1 Cognitive Neuroscience Group, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands, 2 Intelligent Systems Lab Amsterdam, Institute of
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Abstract
The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into
a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial
information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast
responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict
image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain
a large amount of variance between single-image evoked potentials (ERPs) in individual subjects. Dissimilarity analysis on
multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of
more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar
evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as
different categories, whereas images with little differences were confused. These findings suggest that statistics derived
from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of
visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-
order properties of contrast distributions (skewness and kurtosis). Interestingly, whereas these statistics allow for accurate
image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging
computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that
corresponds with perceived visual similarity in a rapid, low-level categorization task.

Citation: Groen IIA, Ghebreab S, Lamme VAF, Scholte HS (2012) Spatially Pooled Contrast Responses Predict Neural and Perceptual Similarity of Naturalistic
Image Categories. PLoS Comput Biol 8(10): e1002726. doi:10.1371/journal.pcbi.1002726

Editor: Olaf Sporns, Indiana University, United States of America

Received February 29, 2012; Accepted August 2, 2012; Published October 18, 2012

Copyright: � 2012 Groen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is part of the Research Priority Program ‘Brain & Cognition’ at the University of Amsterdam and was supported by an Advanced Investigator
grant from the European Research Council (http://erc.europa.eu/). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: i.i.a.groen@uva.nl

Introduction

Complex natural images are categorized remarkably fast [1,2],
sometimes even faster than simple artificial stimuli [3]. For animal
and non-animal scenes, differences in EEG responses are found
within 150 ms [4] and a correct saccade is made within 120 ms
[5]. This speed of processing is also found for other scene
categories [6] and may require less attentional resources compared
to artificial images [7,8]. This suggests that relevant visual
information is rapidly and efficiently extracted from early visual
responses to natural scenes. However, the neural computations
involved in this process are not known.

Importantly, natural images differ from other image types such
as white noise in low-level properties (e.g., sparseness), leading to
the suggestion that the visual system has adapted to these low-level
properties [9]. This idea paved the way for optimal coding models
for natural images [10,11] and successful predictions of response
properties of visual neurons [12]. Recent work identified statistical
properties that differ even within the class of natural images, e.g.
between natural scene parts [13,14] or natural image categories
[15], showing that image statistics such as power spectra of spatial
frequency content or distributions of local image features are
informative about scene category.

The fact that it is mathematically possible to distinguish
categories based on image statistics, however, does not imply that
they are used for categorization in the brain. Image statistics may
not be sufficiently reliable, or their computation may not be
suitable for neural implementation [12,16]. We recently showed
that statistics derived from the frequency histogram of local
contrast – summarized by two parameters of a Weibull fit, Fig. 1A
– explain up to 50% of the variance of event-related potentials
(ERPs) recorded from visual cortex [17]. These parameters inform
about the width and shape of the histogram, respectively, and
appear to describe meaningful variability between images
(Fig. 1B). Importantly, we found that these parameters can be
reliably approximated by linear summation of the output of
localized difference-of-Gaussians filters modeled after X- and Y-
type LGN cells, suggesting that this global information may be
available to visual cortex directly from its early low-level contrast
responses [17].

Moreover, we found that output of contrast filters with a larger
range of receptive field sizes captures additional image information
[18]. This is not surprising since objects in natural scenes appear at
many distances and hence spatial scales [19]. In the present
implementation, the model first estimates at which scale relevant
contrast information is present, as well as characteristics of the
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distribution of contrast strengths at those scales. This model, which
approximates early visual population responses based on spatially
pooled contrasts, was able to explain almost 80% of ERP variance
to natural images [18].

These previous findings suggest that images with more similar
contrast response statistics evoke more similar early visual activity.
Could these responses already contain relevant information about
the stimulus for rapid categorization? The two parameters appear
to index meaningful information such as degree of clutter, depth
and figure-ground segmentation [17], but how the two dimensions
in Fig. 1B influence perception has not been examined. The goal
of the current study was thus to explore what type of visual
information is contained in the variance of the earliest visual
contrast responses that is so well described by these two
parameters. Specifically, we were interested in whether these
parameters cannot only predict variance in visual activity, but also
‘variance in perception’. In other words, do images with more
similar contrast statistics also lead to more similar perceptual
representations, and perhaps ultimately, to similar images being
considered a single category?

We aimed to answer this question in a data-driven manner, by
investigating 1) which images group by similarity early in visual
processing and 2) whether this grouping matches with perceived
similarity of those images. For the first part of this question, we
obtained reliable evoked responses to individual images. The
advantage of this approach relative to traditional ERP analysis
(which is based on averaging many trials across individual images
within an a priori determined condition) is that it provides much
richer data [20–24] that can be used for model selection. We used
these single-image evoked responses to compute dissimilarities in
‘neural space’, similar to the pattern analysis approach used in
fMRI [25,26]. This allowed us to track, over the course of the
ERP, to what extent the representation of an image is (dis)similar
to all images in the data set.

For the second part of the question, we needed to obtain an
image-specific behavioral judgment of perceived visual similarity.
However, simply judging similarity of natural scenes is problem-
atic, because these images obviously contain rich semantic content:
there are many features of natural scenes that can be similar or

dissimilar, which is likely to lead to different categorization
strategies by different subjects. Also, it is uncertain to what extent
specific semantic tags that are provided by the researcher (e.g.
‘openness’ or ‘naturalness’, [27]), can be uniformly interpreted as a
relevant stimulus dimension that has a linear mapping to
processing in early vision. Therefore, to explore the variance
explained by contrast response statistics in a bottom-up way, we
used stimuli that were simplified model images of natural scenes
(‘dead leaves’, Fig. 2A), which have similar low-level structure as
natural scenes (e.g. 1/f power spectra) but are devoid of semantic
content. These images are created by filling a frame with objects -
much like fallen leaves can fill a forest floor – and are used in
computer vision to study, for example, how the appearance and

Figure 1. Contrast histograms of natural images follow a
Weibull distribution. (A), Three natural images with varying degrees
of details and scene fragmentation. The homogenous, texture-like
image of grass (upper row) contains many edges of various strengths;
its contrast distribution approaches a Gaussian. The strongly segment-
ed image of green leaves against a uniform background (bottom row)
contains very few, strong edges that are highly coherent; its distribution
approaches power law. Most natural images, however, have distribu-
tions in between (middle row). The degree to which images vary
between these two extremes is reflected in the free parameters of a
Weibull fit to the contrast histogram: b (beta) and c (gamma). (B), For
each of 200 natural scenes, the beta and gamma values were derived
from fitting the Weibull distribution to their contrast histogram. Beta
describes the width of the histogram: it varies with the distribution of
local contrasts strengths. Gamma describes the shape of the histogram:
it varies with the amount of scene clutter. Four representative pictures
are shown in each corner of the parameter space. Images with a high
degree of scene segmentation, e.g. a leaf on top of snow, are found in
the lower left corner, whereas highly cluttered images are on the right.
Images with more depth are located on the top, whereas flat images
are found at the bottom. Images are from the McGill Calibrated Colour
Image Database [86].
doi:10.1371/journal.pcbi.1002726.g001

Author Summary

Humans excel in rapid and accurate processing of visual
scenes. However, it is unclear which computations allow
the visual system to convert light hitting the retina into a
coherent representation of visual input in a rapid and
efficient way. Here we used simple, computer-generated
image categories with similar low-level structure as natural
scenes to test whether a model of early integration of low-
level information can predict perceived category similarity.
Specifically, we show that summarized (spatially pooled)
responses of model neurons covering the entire visual field
(the population response) to low-level properties of visual
input (contrasts) can already be informative about differ-
ences in early visual evoked activity as well as behavioral
confusions of these categories. These results suggest that
low-level population responses can carry relevant infor-
mation to estimate similarity of controlled images, and put
forward the exciting hypothesis that the visual system may
exploit these responses to rapidly process real natural
scenes. We propose that the spatial pooling that allows for
the extraction of this information may be a plausible first
step in extracting scene gist to form a rapid impression of
the visual input.

Contrast Responses Predict Perceptual Similarity
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the distribution of these objects influences the low-level structure of
natural scenes [28]. By manipulating properties of the objects in a
controlled manner, we created distinct image categories, and then
tested whether differences between these categories in contrast
statistics matched with behaviorally perceived similarity by letting
human observers perform a same-different categorization task on
all combinations of image categories.

Specifically, we used the space formed by the two Weibull
parameters to compute geometric distances between images in
contrast statistics, and used these distances as quantitative
predictors of dissimilarity [29–31]. We thus tested whether these
parameters can predict the extent to which image categories
induced dissimilar single-image EEG responses (experiment 1) and
whether they match with perceptual categorization at the
behavioral level (experiment 2). We predicted that images with
very different Weibull statistics would appear less similar, i.e. be
less often confused than images from categories with similar
statistics.

By using controlled images that we quantified using a model
originally derived from contrast responses to natural images, we
aim to build a bridge between findings obtained with systematic
manipulation of artificial stimuli and those obtained with more
data-driven natural scene studies. For purpose of comparison, and
to better understand which statistical information is captured by
the Weibull parameters, we also tested two other global contrast
statistics (Fig. 2C). Following [32] we calculated the intercept and
slope of the average power spectrum to parameterize spatial
frequency information, a commonly used measure of low-level
information in scene perception. In addition, we followed [33] to
derive the skewness and kurtosis of the contrast distribution for a

range of spatial scales: these higher-order properties of distribu-
tions have previously been suggested (e.g. [34,35] to reflect low-
level differences between images that are relevant for perceptual
processing.

We find that Weibull statistics explain substantial variance in
evoked response amplitude to the dead leaves images, predicting
clustering-by-category of occipital ERP patterns within 100 ms of
visual processing. In addition, they correlate with human
categorization behavior: specific confusions were made between
categories with similar Weibull statistics. By comparison, Fourier
power spectra and skewness and kurtosis can be used for accurate
classification of image category, but fail to predict neural clustering
and behavioral categorization. These convergent results provide
evidence for relevance of pooled contrast response statistics in
rapid neural computation of perceptual similarity.

Materials and Methods

Ethics statement
The experiments reported here were approved by the Ethical

Committee of the Psychology Department at the University of
Amsterdam; all participants gave written informed consent prior
to participation and were rewarded with study credits or financial
compensation (7 euro/hour).

Stimuli
Gray-scale dead leaves images (5126512 pixels, bit depth 24)

were generated using Matlab. Images contained randomly placed
disks that were manipulated along 4 dimensions (opacity, depth,
size and distribution) to create 16 categories. Disks were either

Figure 2. Example stimuli and computation of contrast statistics. (A), Example images of each of the 16 categories used in the behavioral
and EEG experiment. Images contained randomly placed disks that differed in distribution, opacity, depth and size. Each category contained 16
unique images. (B), Consecutive steps in computing various contrast statistics. Weibull statistics are computed by filtering the image with a range of
contrast filters with LGN-like scale- and gain properties, after which for each image location, the filter containing the minimal reliable response is
selected. Responses of all selected filters are summed in a histogram to which the Weibull function is fitted, from which the beta and gamma
parameters are derived using maximum likelihood estimation. (C), Power spectra parameters (top row) are extracted by taking the Fourier transform,
averaging across directions, and computing the intercept and slope values of a line fitted to the average power spectrum. Higher-order properties of
the contrast distribution (bottom row) are computed by filtering with a single-scale center-surround filter, after which skewness and kurtosis of the
resulting contrast distribution are derived. Weibull statistics (multiscale local contrast) presumably contain information present in Fourier parameters
(scale statistics) as well as local contrast distribution parameters (distribution statistics).
doi:10.1371/journal.pcbi.1002726.g002

Contrast Responses Predict Perceptual Similarity
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opaque or transparent; intensity at the outer edges of the disk was
either constant (leading to a 2D appearance) or decaying (3D
appearance), and disk size was determined by drawing randomly
from a range of small, medium or large diameters (exact settings as
in [28]. Twelve categories were created by systematically varying
these properties of power-law distributed disks. Four more
categories were created using medium-diameter, exponentially
distributed disks that could be 2D or 3D and opaque or
transparent. For each category, 16 images were created using
these category-specific settings: the random placement and use of
ranges of diameter sizes ensured that each of these 16 images was
unique. This procedure thus resulted in a total of unique 256
images, divided into 16 distinct categories, which were used for
experimentation (Fig. 2A).

Computation of contrast statistics. In the Weibull model,
local contrast is computed at multiple spatial scales, after which a
single optimal scale for each image location is selected. Subse-
quently, contrast responses are collected in a histogram that is
summarized using a Weibull fit, yielding two statistical parameters:
beta and gamma (Fig. 2B). For comparison with other contrast
statistics, we computed spatial frequency statistics (using power
spectra) and higher-order statistics (third moments of the contrast
distribution) for various receptive field sizes (Fig. 2C). The
computational steps of each method are described in detail below.

Weibull contrast statistics. We computed image contrast
according to the standard linear-nonlinear model. For the initial
linear filtering step we used contrast filters modeled after well-
known receptive fields of LGN-neurons [36]. As described in detail
in [18] each location in the image was filtered using Gaussian
second-order derivative filters spanning multiple octaves in spatial
scale [37]. Based on our previous result [17] that the beta parameter
was best approximated by a linear summation of X-like receptive
field size output, whereas the gamma parameter correlated highest
with Y-like receptive field size contrast, two separate spatial scale
octave ranges were applied to derive the two summary parameters
in the present multi-scale model. For the beta parameter, a bank of
filters with 5 octave scales (4, 8, 16, 32, 64) standard deviation in
pixels was used; for the gamma parameter, the filter bank consisted
of octave scales 5, 10, 20, 40 and 80. The output of each filter was
normalized with a Naka-Rushton function with 5 semi-saturation
constants between 0.15 and 1.6 to cover the spectrum from linear to
non-linear contrast gain control in LGN.

From the population of gain- and scale-specific filters, one filter
response was selected for each location in the image using
minimum reliable scale selection [38], a spatial scale control
mechanism in which the smallest filter with output higher than
what is expected to be noise for that specific filter is selected. The
rationale behind this approach is that to arrive at a faithful scale-
invariant contrast representation, the visual system selects spatial
scale by minimizing receptive field size while simultaneously
maximizing response reliability. Noise thresholds for each filter
were determined in a separate set of stimuli (1800 natural images
from the ImageNet natural scene database, [39]) and set to half a
standard deviation of the average contrast present in that dataset
for a given scale and gain. Applying the selected filter for each
location in the image resulted in a 5126512 pixel contrast
magnitude map, which was converted in a 256-bin histogram
summarizing the contrast distribution of the image, to which the
Weibull function was fitted by a maximum likelihood estimator
(MLE). The Weibull function is given by:

p(r)~ce
r{m

b

� �c

ð1Þ

where c is a normalization constant and m, ß (beta) and c (gamma)
are the free parameters that represent the origin, scale and shape
of the distribution, respectively. The value of the origin parameter
m is influenced by uneven illumination and generally close to zero
for natural images. To achieve illumination invariance, this value
was estimated and averaged out, leaving only the beta and gamma
values as free parameters for each image.

Fourier power statistics. A two-parameter Fourier statistic
was derived for each image by computing the intercept and slope
of a line fitted to its power spectrum. We determined the power
spectrum of the largest concentric square portion of the image (in
this case, the entire image), excluding its outer edges to prevent
edge artifacts. The cropped image was transformed into the
frequency domain using the Fast Fourier Transform. Slope and
intercept were estimated from the regression line fitted to the log-
log representation of the power law-dependence:

SI (f )~cf {a ð2Þ

The rotationally averaged power-law spectrum SI (f ) is defined as

SI (f )~SD(FI (f ,h)D2Th ð3Þ

where FI (f, h) is the Fourier transform spectrum of the input
image I; (f, h) are the cylindrical polar coordinates in Fourier space
and ˘ æh denotes averaging over h.

Contrast distribution statistics. Following [33], we used
center-surround difference-of-Gaussian (DoG) filters to extract
contrast values. Center receptive field sizes ranged between 2 and
4 pixels, and surround-to-center size ranged between 3 and 9,
resulting in 21 different combinations of center size and surround-
to-center ratio, referred to as receptive-field models. For each
model, a scaling factor was used to set the integrated sensitivity of
the surround to be 85% of that of the center. Per image, contrast
responses were computed by convolving each pixel value with
each of these 21 models separately. Responses were normalized
using center-surround divisive normalization, where the difference
in output of the center and surround is divided by their summed
output. From the response distribution of responses across the
image one skewness and one kurtosis value was derived for each
image and for each receptive field model, resulting in 21 skewness
and kurtosis values per image. Of these 21 values, results are
reported for the skewness and kurtosis values that explained most
EEG variance (center radius of 4 pixels with surround-center ratio
3); see next section (Experiment 1: EEG). This measure, computed
exactly as reported in [33], has two important distinctions with the
Weibull model, namely 1) the method does not incorporate scale
selection; each receptive field model has one specific receptive field
size that is used across the entire image and 2) only one parameter
(skewness or kurtosis) is used to describe the response distribution
that results from contrast filtering, compared to the separate scale
(beta) and shape (gamma) parameters used in the Weibull model.

Experiment 1: EEG
Experimental procedure. Nineteen subjects took part in

this experiment. The dead leaves images were presented on a 19
inch Ilyama monitor, whose resolution was set at 10246768 pixels
with a frame rate of 60 Hz. Subjects were seated 90 cm from the
monitor such that stimuli subtended 11611u of visual angle.
During EEG acquisition, a single image was presented in the
center of the screen on a grey background for 100 ms, on average
every 1500 ms (range 1000–2000 ms; Fig. 3A). Each stimulus was
presented twice, in two separate runs. Stimuli were presented

Contrast Responses Predict Perceptual Similarity
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intermixed with phase-scrambled versions of grayscale natural
images; subjects were instructed to indicate which type of image
they were shown. This instruction was intended to ensure that
subjects attended to the stimuli: the required discrimination
between the dead leaves and phase-scrambled natural images did
not correspond to any distinction between the categories of dead
leaves themselves. Examples of the two types of images were
displayed prior to the experiment. Each run was subdivided in 8
blocks across which response mappings were counterbalanced.
Stimuli were presented using the software package Presentation
(www.neurobs.com).

EEG data acquisition. EEG Recordings were made with a
Biosemi 64-channel Active Two EEG system (Biosemi Instrumen-
tation BV, Amsterdam, NL, www.biosemi.com), with sintered Ag/
AgCl electrodes at scalp positions including the standard 10-10
system along with intermediate positions and two additional
occipital electrodes (I1 and I2), which replaced two frontal
electrodes (F5 and F6). During recording, a CMS/DRL feedback
loop was used as an active ground, followed by offline referencing
to electrodes placed on the earlobes. The Biosemi hardware is
completely DC-coupled, so no high-pass filter is applied during
recording of the raw data. A Bessel low-pass filter was applied

starting at 1/5th of the sample rate. Eye movements were
monitored with a horizontal electro-oculogram (hEOG) placed
lateral to both eyes and a vertical electro-oculogram (vEOG)
positioned above and below the left eye, aligned with the pupil
location when the participants looked straight ahead. Data was
sampled at 256 Hz.

EEG data preprocessing. The raw data was pre-processed
using Brain Vision Analyzer by applying a high-pass filter at
0.1 Hz (12 dB/octave) and a low-pass filter at 30 Hz (24 dB/
octave). Since this low-pass filter has a graded descent, it cannot be
guaranteed that all high-frequency noise is removed; therefore, we
additionally applied two notch filters at 50 (for line noise) and
60 Hz (for monitor noise). Deflections larger than 300 mV were
automatically removed. Trials were segmented into epochs
starting 100 ms before stimulus onset and ending at 500 ms after
stimulus onset. These epochs were corrected for eye movements by
removing the influence of ocular-generated EEG using a
regression analysis based on the two horizontal and vertical
EOG channels [40]. Baseline correction was performed based on
the data between 2 100 ms and 0 ms relative to stimulus onset;
artifacts were rejected using maximal allowed voltage steps of
50 mV, minimal and maximal allowed amplitudes of 2 75 and

Figure 3. Methods and experimental design. (A), Experimental set-up of experiment 1 (EEG experiment). Subjects were presented with
individual images of dead leaves while EEG was recorded. Single-image evoked responses (ERPs) were computed for each electrode, by averaging
two repeated presentations of each individual image. Regression analyses of ERP amplitude on contrast statistics were performed at each time
sample and electrode. (B), Representational dissimilarity matrices (RDMs) were computed at each sample of the ERP. A single RDM displays Euclidean
distance (red = high, blue = low) between multiple-electrode patterns of ERP amplitude between all pairs of stimuli at a specific moment in time. The
(cartoon) inset demonstrates how dissimilarities can cluster by category: all images from one category are in consecutive rows and can be ‘similarly
dissimilar’ to other categories. (C), Experimental set-up of experiment 2 (behavioral experiment). On each trial, subjects were presented with a pair of
stimuli for 50 ms, followed by a mask after an interval of 100 ms. Subjects were presented 8 times with all possible pairings of stimuli and were
instructed to indicate whether stimuli were the same or different. (D), Cartoon example of leave-one-out classification based on contrast statistics.
One stimulus is selected in turn, after which the median (thumbnail) of the remaining stimuli of its category is computed, as well as the median of
other categories (here, just one). Classification accuracy reflects how many stimuli are closer to the median of other categories instead of its own
category in terms of distance in image statistics.
doi:10.1371/journal.pcbi.1002726.g003

Contrast Responses Predict Perceptual Similarity
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75 mV and a lowest allowed activity of 0.50 mV (median rejection
rate across subjects was 7%, with a range of 1%–38%). The
resulting event-related potentials (ERPs) were converted to
Current Source Density (CSD) responses [41]. This conversion
results in a signal that is more localized in space, which has the
advantage of more reliably reflecting activity of neural tissue
underlying the recording electrode [42].

Trials in which the same individual image was presented were
averaged over the two runs, resulting in a single event-related
potential (ERP) for each image and each subject. To address the
concern that regression results (see below) might be artificially high
due to averaging of ERPs over repetitions, we also conducted all
analyses using first-trial estimates only; these are reported in Fig.
S4 and S5; the results were very similar to those obtained with
repetition-averaged ERPs.

Regression on single-image ERPs. To test whether differ-
ences between evoked neural responses could be predicted by
differences in contrast statistics between images, we conducted
regression analyses on the single-image ERPs (Fig. 3A). The
preprocessed ERPs were read into Matlab, where we conducted
linear regression analyses of ERP amplitude on image parameters
using the Statistics Toolbox. For each subject, each channel and
each time-point, two image parameters (Weibull parameters;
Fourier parameters; skewness/kurtosis) were entered together as
linear regressors on ERP amplitude. This analysis results in a
measure of model fit (r2) over time (each sample of the ERP) and
space (each electrode) for each individual subject.

To compare the results between different sets of statistics
directly (within each subject), we used the Akaike information
criterion (AIC, [43] which measures the information contained in
each set of predictors. In this procedure, we transformed the
residual sum of squares (RSS) of the regression analysis based on
each set of statistics into AIC-values using AIC = n*log(RSS/n)+2k
where n = number of images and k is the number of predictors.
AIC can be used for model selection given a set of candidate
models of the same data, where the preferred model has minimum
AIC-value [44].

To test whether the various image parameters explained any
unique variance, we ran an additional regression analysis using a
full model in which all three sets of image statistics were entered
simultaneously (resulting in a 6 parameter model). We compared
the results obtained with the full model with models for which, in
turn, each parameter was left out; by subtracting the r2 values of
each of these partial models from the full model, we quantified
unique variance explained by individual predictors.

To correct for multiple comparisons, the p-values associated
with the regression results were FDR-corrected at a = 0.05, unless
stated otherwise.

Representational similarity analysis. To examine how
variance between individual visual stimuli arises over time and
space, we computed representational dissimilarity matrices
(RDMs; [25]) based on spatial patterns of evoked ERP amplitude.
In this type of analysis, dissimilarity between patterns of activity
evoked by individual images (measured as 1-correlation or
Euclidean distance) is determined across multiple recording sites
simultaneously (e.g., voxels in fMRI, [45]). Here, we computed
RDMs based on ERP amplitude at each time-point, using the
spatial pattern of evoked activity across multiple electrode sites; we
did this for each subject separately. Only electrodes showing
substantial variance across the entire stimulus- and dataset were
included (Fig. S1); these were I1, I2, Iz, O1, O2, Oz, POz, PO7,
PO8, P6 and P8. Based on this multi-electrode data, we computed
(per subject and time-point) for all pairs of images the Euclidean
distance between their evoked ERP amplitude patterns. As a

result, we obtained RDMs containing 2566256 ‘dissimilarity’
values at each time-point of the ERP (Fig. 3B). Within one RDM,
each cell reflects similarity in ERP amplitude patterns of the
corresponding two images indicated by the row- and column
number. We used Euclidean distance to quantify dissimilarity
rather than the 1–correlation measure recommended for fMRI
data [45] because it corresponds more closely to the distance
measure taken for the contrast statistics matrices (see below).

Comparison with distance matrices based on contrast
statistics. To examine whether the dissimilarities between ERP
patterns evoked by individual images could be predicted based on
differences in contrast statistics, we computed pair-wise dissimi-
larity matrices based on the three sets of parameter values (Weibull
statistics; Fourier statistics; distribution statistics). We computed
the sum of the absolute differences between the (normalized)
parameter values of each pair of images (reflecting distance in the
parameter space formed by the image parameters, Fig. 1B),
resulting in one difference value between those two images. The
matrices based on contrast statistics were compared with the
RDMs based on the ERP data using a Mantel test for two-
dimensional correlations [46,47], denoted as rm. We computed
these correlations for the average RDM across subjects as well as
for single subjects RDMs. For the former, 95% confidence
intervals for each correlation were assessed using a percentile
bootstrap on the dissimilarity values [48] with number of
bootstraps = 10.000 (, 40 * number of images).

Experiment 2: Behavior
Behavioral data acquisition. Twelve participants took part

in the behavioral experiment; none of them had participated in the
EEG experiment. The dead leaves images were presented on a 19-
inch Dell monitor with a resolution of 128061024 pixels and a
frame rate of 60 Hz. On each trial, a fixation cross appeared at the
center of the screen; after an interval of 500 ms, a pair of images
was presented simultaneously for 50 ms, separated by a gap of 236
pixels (Fig. 3C). A mask followed after 100 ms, and stayed on
screen for 200 ms. Participants were seated approximately 90 cm
from the monitor; the stimulus display subtended 27611u of visual
angle. Subjects were instructed to indicate if the images were from
the same or a different category by pressing one of two designated
buttons on a keyboard (‘z’ and ‘m’) that were mapped to the left or
the right hand. They completed four blocks of 256 trials each. In
each block, the 256 trials were determined as follows: of the 16
images per category, 15 were paired with a randomly drawn image
from another category (different-category comparisons); the 16th
was paired with a randomly drawn image from the other 15 of its
own category (same-category comparisons). Images were drawn
without replacement, such that each image occurred only once in
each block (with exception of the images that were selected for the
same-category comparisons, which therefore occurred more
often). Every possible different-category comparison thus occurred
twice per block, and the ratio of different-category vs. same-
category comparisons was 15:1.

Before testing, subjects were informed that for most trials the
stimuli were different, and that only some were the same,
preventing them from adopting a balanced response (50-50)
strategy. Also, subjects were shown a few example stimuli and
performed 20 practice trials (none of which appeared in the main
experiment) before starting the actual experiment. Masks were
created by randomly placing four mini-blocks of 16616 pixels
from each of the 256 stimuli in a 5126512 frame. Unique masks
were randomly assigned to each trial. The same mask was
presented at the location of both stimuli. Stimuli were presented
using the Matlab Psychophysics Toolbox [49,50].
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Behavioral data analysis. In total, each possible combina-
tion of the 16 categories was presented 8 times in 4 consecutive
blocks. Trials at which the subject failed to respond (, 1% for all
subjects) within 1500 ms were discarded. Accuracy was deter-
mined by averaging across the four blocks. A mean confusion
matrix was calculated by averaging accuracies across subjects
separately for each specific combination of categories; we also
calculated these matrices for each individual subject. We
correlated both the mean confusion matrix and the individual
matrices with classification accuracy based on contrast statistics
(see below) using the Mantel test, resulting in one ‘mean’ and 12
individual correlation values. For these comparisons, the same-
category comparisons were excluded (the Mantel test requires
zero-values on the diagonal); they are included in the overall
accuracy scores. Confidence intervals were determined using a
percentile bootstrap (with number of bootstraps = 1000), which
results in a 95% confidence interval along with the correlation.

Classification analysis on contrast statistics. To com-
pare the behavioral performance with distance in contrast
statistics, we performed leave-one-out classification analyses based
on the parameter values of each set of contrast statistics (Weibull
statistics; Fourier statistics; skewness/kurtosis). We used a simple
algorithm that determines a single measure of classification
accuracy based on the amount of overlap between different
categories in parameter values. This involved the following steps:
First, the median parameter values of each category were
calculated. In turn, one of the 256 stimuli was selected, after
which a temporary median of other 15 stimuli of its own category
was determined. Next, the difference between its parameter values
(beta and gamma for Weibull statistics; intercept and slope for
Fourier statistics; skewness and kurtosis for distribution statistics)
and the temporary median of its own category was calculated, as
well as the difference with the median of all other categories. If the
difference with its own category was less than the difference with
any other category, this stimulus was counted as a ‘hit’, otherwise
it was assigned a ‘miss’ (a cartoon example is shown in Fig. 3D).
Classification accuracy was determined by counting the percent-
age of hits out of all comparisons. To determine significance,

binomial density probabilities across all combinations in the
dataset were calculated (the likelihood of a hit occurring rather
than a miss) based on which an FDR-threshold was established
that was used to correct the pair-wise classification accuracy values
for multiple comparisons. Using the mean values for each category
rather than the median to determine distances between images
between yielded very similar results as those reported here.

Results

Contrast statistics
If we set out all 256 dead leaves images against the three sets of

image statistics (Weibull parameters, Fourier parameters and
skewness/kurtosis), stimuli cluster by category in all cases, with
Fourier parameters leading to the most separable clusters
(Fig. 4A–C). There were considerable correlations between the
various parameters (Fig. 4D; individual correlations plots in Fig.
S2). Skewness and kurtosis correlated highly (r = 0.91, p, 0.0001),
but other significant correlations are observed as well, for example
between Fourier slope and the Weibull beta parameter (r = 0.57,
p, 0.0001) and also between the two Weibull parameters
(r = 0.48, p, 0.001). A correlation of similar magnitude was also
observed [17] for natural scenes, supporting the notion that the
dead leaves stimuli used here have similar low-level structure as
natural stimuli.

Interestingly, however, the ‘similarity spaces’ formed by each set
of parameters are quite different between the various models. If
Weibull parameters determine the axes of the similarity space
(Fig. 4A), highly cluttered images with many strong edges (e.g. 2D
opaque stimuli with small disks) are located in the upper right
corner (high gamma, high beta); images containing fewer edges
(e.g. with larger disks) are found more on the left (low gamma); and
most of the transparent stimuli, with weak edges, cluster together
in the bottom of the space (low beta). For Fourier intercept and
slope (Fig. 4B), transparent categories are highly separated across
the space: however, most images with strong edges end up in a
similar part of the space (low slope, high intercept). Based on either
skewness or kurtosis (Fig. 4C), a few categories are distinct, but

Figure 4. Stimuli set out against their respective contrast statistics. Each data-point reflects parameter values for a single image, color-coded
by category. Individual images are displayed against their (A), Weibull parameters beta and gamma, (B), Fourier parameters intercept and (increasing
negative) slope and (C), distribution properties skewness and kurtosis. In all cases, clustering by category based on parameter values is evident. (D),
Non-parametric correlations between the six image parameters: Beta (B), Gamma (G), Fourier Intercept (Ic), Fourier Slope (S), Skewness (Sk) and
Kurtosis (Ku).
doi:10.1371/journal.pcbi.1002726.g004
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most tend to cluster together. These qualitative results suggest that
all parameters are informative about clustering of image catego-
ries, but that they index different image properties.

Importantly, they give rise to different predictions about which
categories should lead to similar evoked responses based on
overlapping parameter values. We tested these predictions using
the single-image ERP data.

Experiment 1
Contrast statistics explain variance in occipital

ERPs. Regression of single-image ERP amplitude (per subject,
electrode and time-point) on contrast statistics showed that
Weibull statistics explain a substantial amount of variance between
individual images. Highest values were found at occipital channel
Oz, where explained variance for all subjects reached a maximum
between 100 and 210 ms after stimulus onset; maximal values
ranged between r2 = 0.12–0.80 (Fig. 5A) and were highly
significant (all p, 0.0001, FDR-corrected). For Fourier parameters
(Fig. 5B), somewhat lower values were found (max r2 between
0.08–0.59, 100–210 ms; all p, 0.0001). For skewness and kurtosis
(Fig. 5C), explained variance was much lower and did not reach a
consistent maximum during a specific time frame (max r2 between
0.02–0.23 at 78–421 ms; maximal values were significant for 11
out of 19 subjects).

If we average the explained variance across subjects for each
electrode separately at the time-points of maximal explained
variance (113 ms for Weibull and Fourier statistics, 254 ms for
skewness/kurtosis), we see (insets Fig. 5A–C) that for all three sets
of statistics, explained variance clusters around the midline
occipital channels (Oz). Two weaker clusters were located near
parietal electrodes, likely reflecting a dipole effect: both the early
and late signals appear to originate from early visual areas
(Fig. 5D).

These results demonstrate substantial differences in maximum
explained variance between individual subjects. Inspection of the
ERP recordings of each subject revealed a similarly large
variability in subjects’ signal-to-noise ratio (SNR, measured as
the difference in ERP amplitude relative to pre-stimulus variabil-
ity, reflecting the degree to which an evoked response is present).
Indeed, the rank correlation between SNR and maximal explained
variance by Weibull statistics was r = 0.69, p, 0.0014; see Fig. S3,
which includes examples of subject-specific r2 values alongside
their single-image ERPs). This suggests that the observed
variability in maximum explained variance is related to these
subject-specific differences in SNR, which are in turn likely due to
individual differences in cortical folding, scalp conductivity and
recording conditions.

In an alternative analysis performed on single-trial rather than
single-image data (in which repeated presentations of the same
stimulus were averaged, see Materials and Methods), we found
slightly lower explained variance for all models (maximal r2 values:
0.71 for Weibull statistics, 0.52 for Fourier statistics, and 0.16 for
skewness/kurtosis, respectively; see Fig. S4). Importantly, how-
ever, the relative differences between the sets of image parameters
were fully consistent with those reported here.

Overall, the regression results show that Weibull contrast
statistics, but also Fourier statistics, reliably predict activity evoked
by individual dead leaves images at the individual subject level. To
investigate differences between the contributions of the different
image predictors, we ran several additional analyses that are
described below.

Comparisons between different image parameters. In
order to compare differences in explained variance for Weibull
statistics compared to the other statistics (Fig. 6A), we used

Akaike’s information criterion (AIC) to evaluate the relative
‘goodness of fit’ of each of the three sets of contrast statistics. AIC
is computed from the residuals of regression analyses (see Materials
and Methods) and can be used for model selection given a set of
candidate models of the same data, where the preferred model has
minimum AIC-value. If we compare the mean AIC-value across
individual subjects of Weibull, Fourier and skewness/kurtosis

Figure 5. Regression analysis of EEG data: single subject
results. Explained variance of ERP amplitude at channel Oz over time,
for each individual subject (colored thin lines) and mean across subjects
(black thick line), using as regressors either (A), Weibull parameters beta
and gamma, (B), Fourier parameters intercept and slope and (C),
skewness and kurtosis; single-trial results of these analyses can be
found in Fig. S4. Insets display scalp plots of r2 values for all electrodes
at the time of maximal explained variance averaged over subjects
(113 ms for Weibull/Fourier, 254 ms for skewness/kurtosis. (D), Grand
average ERP amplitude (averaged over all subjects and all images) for
an early and a late time-point of peak explained variance displayed in
A–C.
doi:10.1371/journal.pcbi.1002726.g005
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parameters over time, we find that the model fits start to diverge
around 100 ms, with Weibull statistics leading to the lowest values
(Fig. 6B). It thus appears that Weibull parameters provide a better
fit to the data than the other two sets of statistics. This could be
related to the fact that the Weibull parameters characterize the
histogram of contrast responses at a selected spatial scale, and may
thus contain information reflected in both Fourier power spectra
and higher-order properties of the contrast distribution. Therefore,
we also computed AIC-values for intercept, slope, skewness and
kurtosis combined into one regressor (Fig. 6B, black line); the
obtained values from this regression analysis are however still
higher than those obtained from the Weibull parameters
(significant differences between 117–140 ms, all t(19),2 2.8, all

p, 0.01). At the time-point of (mean) maximal explained variance
(113 ms), the ordering of the different models in terms of AIC-
values is consistent over subjects (Fig. 6C): in all subjects, Weibull
parameters lead to the best model fit, although differences are
minimal for low SNR subjects. Interestingly, for subjects with high
SNR, the distance between AIC-values for the Weibull model
compared to the other contrast statistics appears to increase. These
findings suggest that Weibull statistics capture additional variance
relative to the other contrast statistics parameters considered here.

To demonstrate this in a different way, we computed the unique
variance contributed by each set of contrast statistics (r2

unique) by
comparing partial models with a full model consisting of all 6
parameters (see Materials and Methods). Unique explained

Figure 6. AIC (Akaike information criterion) and unique explained variance analyses at channel Oz. (A), Mean explained variance across
single subjects for Weibull (red), Fourier (blue) and skewness/kurtosis (green), respectively; shaded areas indicate S.E.M. (B), Mean AIC-value across
single subjects computed from the residuals of each of the three regression models, as well as an additional model (black) consisting of Fourier and
skewness/kurtosis values combined, showing that Weibull parameters provide the best fit to the data (low AIC-value); shaded areas indicate S.E.M.
(C), Single subject AIC-values for the models displayed in B at the time-point of maximal explained variance for Weibull and Fourier statistics
(113 ms); subjects are sorted based on independently determined SNR ratio (reported in Fig. S2). (D), Unique explained variance by each set of
contrast statistics. (E), Absolute, non-parametric correlations (Spearman’s r) with ERP amplitude for the individual image parameters: Beta (B), Gamma
(G), Fourier Intercept (Ic), Fourier Slope (S), distribution Skewness (Sk) and Kurtosis (Ku). Absolute values are plotted for convenience; shaded areas
indicate S.E.M. (F), Unique explained variance by each individual parameter. Results for A–E based on single-trial rather than single-image data were
highly similar (Fig. S5).
doi:10.1371/journal.pcbi.1002726.g006
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variance for each set of statistics was low (r2
unique for Weibull

parameters reached a maximum of 0.07 at 109 ms; for Fourier,
max r2

unique was 0.05 at 180 ms; for skewness/kurtosis, max
r2

unique was 0.04 at 203 ms), but clearly highest for the Weibull
parameters in an extended early time interval (, 100–180 ms;
Fig. 6D). Given the substantial correlations between the various
image parameters (reported in Fig. 4D), we also tested the
contribution of each parameter individually. From the correlations
of individual parameters with ERP amplitude (Fig. 6E), it can be
readily seen that out of all parameters, the Weibull beta parameter
correlates highest with the evoked activity in the early time-
interval (max r = 0.57 at 121 ms, p, 0.001 in 18 out of 19
subjects, FDR-corrected); it also has highest unique explained
variance (r2

unique reaching a max of 0.05 at 109 ms, Fig. 6F),
whereas the gamma parameter contributes unique variance
somewhat later in time (max r2

unique was 0.04 at 164 ms), just
before the Fourier parameters (a max of 0.03–0.04, around 175–
180 ms).

Taken together, these additional analyses suggest that the
differences in regression results between the various sets of contrast

statistics reflect reliable and consistent differences in information
about the stimulus carried by these statistics, with Weibull statistics
resulting in the best fit to the differences observed in the neural
data.

Clustering-by-category of ERPs is predicted by Weibull
statistics. The regression results indicate that the Weibull
parameters are predictive of ERP amplitude, but do not reveal
whether any categorical differences between ERPs are reflected in
these parameters. To address this, we constructed representational
dissimilarity matrices (RDMs) based on EEG activity. In this
analysis, we computed RDMs of ERP amplitude using multiple
electrodes as input (see Materials and Methods) for each subject
separately. This approach is akin to performing multi-voxel
pattern analysis in fMRI and calculating the dissimilarity between
these activity patterns, but now comparing ERP amplitude
differences across electrodes instead of voxels. We computed one
RDM for each time-point of the ERP and averaged RDMs over
subjects.

To demonstrate how these matrices can convey information
about categorical properties of evoked responses, we selected the

Figure 7. Results of RDM analysis. (A), Maximum and mean Euclidean distance for the subject-averaged RDM: for both measures, highest
dissimilarity between images was found at 101 ms after stimulus-onset. (B), Mean RDM across subjects at the moment of maximal Euclidean distance.
Each cell of the matrix reflects the dissimilarity (red = high, blue = low) between two individual images, whose category is indexed on the x- and y-
axis. (C), Dissimilarity matrices based on difference in contrast statistics between individual images. Color values indicate the summed difference
between two individual images in beta and gamma (Weibull statistics), intercept and slope (Fourier statistics), skewness and kurtosis (distribution
statistics). (D), Correlation between the RDM and each of the three dissimilarity matrices at each time-point. Highest correlation is found for Weibull
statistics at 109 ms. Shaded areas reflect 95% confidence intervals obtained from a percentile bootstrap on the dissimilarity values.
doi:10.1371/journal.pcbi.1002726.g007
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time-point at which maximal dissimilarities were found (Fig. 7A;
101 ms after stimulus-onset). In this subject-averaged RDM
(Fig. 7B), we observe clustering by category: the matrix appears
to consist of small blocks of 16616 images that are minimally
dissimilar amongst themselves (diagonal values), but that tend to
differ from other categories (off-diagonal values). Moreover,
differences between these blocks show that some categories are
more dissimilar than others. Specifically, opaque categories (upper
left quadrant) differ from one another and from transparent
categories (lower left/upper right quadrant) whereas the transpar-
ent categories themselves tend to be minimally dissimilar (lower
right quadrant).

Next, we tested to what extent these category-specific differ-
ences between images in the ERP were predicted by contrast
statistics. We calculated 2566256 distance matrices for each set of
image parameters, in which we subtracted the parameter values of
each image from the values of each other image (Fig. 7C, see
Materials and Methods). For example, for the first cell in the upper
left corner of the Weibull statistics distance matrix, we summed the
difference in beta and gamma values between image 1 and 2

(bim12 bim2+gim12 gim2), for the cell next to it between image 1 and
3, etc. For the other two sets of statistics, beta and gamma were
replaced by intercept and slope or skewness and kurtosis.

By visual inspection alone, it is clear that distances between
individual images in Weibull statistics are most similar to the ERP
dissimilarities. Inter-matrix correlations (Mantel tests, [44]) reveal
that at nearly all time-points there is a substantially higher
correlation of the RDM of the ERP signal with the distance matrix
based on Weibull, relative to the other two statistics (Fig. 7D).
The highest correlations for Weibull and Fourier are found shortly
after 100 ms (Weibull: rm = 0.67, 109 ms; Fourier: rm = 0.22,
113 ms) and are both significant after FDR-correction (p-
values, 0.001), whereas the correlation between the RDMs and
the skewness/kurtosis distance matrix does not reach significance.
We also correlated the distance matrices based on contrast
statistics with the subject-specific RDMs, confirming this result to
be consistent over subjects; see Fig. S6. RDMs at all ERP time-
points are provided in Video S1 in the form of a short movie clip.

These results show that differences between image categories in
ERP amplitude map onto differences in underlying Weibull

Figure 8. Behavioral results and comparison with classification. (A), Accuracy of behavioral categorization (open circles: single subjects, filled
circle: mean) and of classification based on Weibull parameters, Fourier parameters or skewness and kurtosis. (B), Behavioral confusion matrix,
displaying mean categorization accuracy for specific comparisons of categories. For each pair of categories the percentage of correct answers is
displayed as a grayscale value. (C), Comparison of mean behavioral confusion matrix with classification results based on the three sets of contrast
statistics. (D), Inter-matrix correlations of the classification errors for each set of statistics with the mean behavioral confusion matrix (left, mean) as
well as those of individual participants (right, single subjects). For the mean correlation, error bars indicate 95% confidence intervals obtained using a
percentile bootstrap on values within the mean confusion matrix.
doi:10.1371/journal.pcbi.1002726.g008
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statistics of individual images. Throughout the ERP, this model of
low-level visual responses provides a better prediction of differ-
ences between images in neural response patterns than the other
image parameters considered here. Moreover, the highest
correlation between differences in Weibull statistics and ERP
amplitude is near the time-point of maximal dissimilarity, where
clustering by category in the ERP is clearly present. This clustering
corresponds to the categorical organization in Weibull parameter
space (Fig. 2A), in which transparent categories were largely
overlapping whereas stimuli with strong edges were more
differentiated. In the next experiment, we asked whether this
similarity space could not only predict early differences in ERP
amplitude, but also behaviorally perceived similarity: do image
categories with overlapping parameter values also look more alike?

Experiment 2
Prediction of behavioral confusions. Participants indicat-

ed for each possible combination of the 16 dead leaves categories
whether these were the same or different category. Behavioral
accuracy was high across all subjects (mean 93% correct, range
0.88–0.98), suggesting that subjects were well able to categorize
these stimuli (Fig. 8A). To generate specific predictions about
categorical similarity based on contrast statistics, we conducted
classification analyses using the distance between images in each of
the three similarity spaces, testing how often proximity in
parameter values resulted in classification of an image to another
category than its own (see Materials and Methods and Fig. 3D).
Mean classification accuracy based on distance in contrast statistics
was high for all three sets of contrast statistics, with highest
accuracy for the Fourier parameters (99%), subsequently for the
Weibull parameters (94%) and finally for skewness/kurtosis (93%).
Despite these high accuracies, errors were made in both behavior
and classification: to test whether these errors occurred for specific
combinations of categories, we summarized the average number of
errors for each specific combination of categories in confusion
matrices.

From the mean behavioral confusion matrix (Fig. 8B), it is clear
that subjects systematically confused certain categories more often
than others. Specifically, transparent two- and three- dimensional
images (dark squares in lower right quadrant) are more often
confused than their opaque counterparts, although there were also
some specific errors within opaque categories (upper left quad-
rant). Few errors were made between transparent and opaque
categories. Although mean classification performance based on the
Fourier parameters is highest, it is clear that the pattern of
classification errors based on Weibull statistics most resembles the
pattern of categorical confusions in behavior (Fig. 8C). As
expected, the behavioral confusion matrix correlated significantly
with classification errors made based on Weibull parameters
(rm = 0.46, p, 0.001), whereas classification based on differences in
Fourier parameters or skewness/kurtosis did not correlate with
human performance (rm = 0.07, p = 0.21 and rm = 2 0.20,
p = 0.03, respectively; although significant, a negative correlation
indicates that classification errors are opposed to categorization
errors made by human participants). Correlations of individual
confusion matrices confirm this result across all subjects (Fig. 8D;
range individual Weibull rm-values 0.33–0.46, all p, 0.005, FDR-
corrected).

These results show that perceived similarity of dead leaves
image categories can be predicted based on differences in statistics
of low-level contrast responses. Whereas mean classification
accuracy for all image parameters was high, the different image
parameters yielded different predictions about expected errors if
categorization were to be based on these values. In the case of

Fourier statistics, classification predicted that subjects would
hardly confuse any categories at all, whereas skewness/kurtosis
classification predicted that other categories would be confused
with each other than those that subjects actually judged as similar.
Only the Weibull parameters correlated with specific errors made
by human subjects during rapid categorization.

This suggests that out of the three similarity spaces presented in
Fig. 4, the arrangement of categories in Weibull space
corresponds most closely to the actual perceptual similarity
experienced by human subjects during a rapid categorization task.

Discussion

Low-level contrast statistics, derived from pooling of early visual
responses, can predict similarity of early visual evoked responses as
well as perceptual similarity of model natural scene images. We
show that Weibull statistics, derived from the output of contrast
filters modeled after LGN receptive fields, correlate with perceived
similarity of computationally defined dead leaves categories. These
statistics explain a significant amount of variance in the early visual
ERP signal and correlate with behavioral categorization perfor-
mance. Based on differences in these statistics, we were able to
predict specific dissimilarities in the neural signal as well as specific
category confusions.

Interestingly, if we compare the results of experiment 1 and 2,
we observe that subjects confused categories that were minimally
dissimilar in ERP amplitude, which in turn were minimally
different in Weibull statistics. Conversely, subjects accurately
distinguished categories that were separable in their statistics,
which was mirrored in high ERP dissimilarities. Also, correlations
between Weibull statistics and neural responses were highest
between 100 and 200 ms, well within the time frame that rapid
categorization of natural images is thought to be constrained to
[51].

This work extends recent findings that statistical variations in
low-level properties are important for understanding categorical
generalization over single images [13]. It has been demonstrated
before that behavioral categorization can be predicted using
computational modeling of low-level information: a neural
network consisting of local filters that were first allowed to adapt
to natural scene statistics could predict behavioral performance on
an object categorization task [52], and a computational model
based on texture statistics accurately predicted human natural
scene categorization performance [53]. Here, we expand on these
results by showing that a geometric ‘similarity space’ formed by
low-level contrast statistics can predict a complex pattern of
categorization confusions of model natural scene images.

Implications for processing of real natural scenes
Whether low-level statistics are indeed actively exploited during

scene or object categorization is a topic of considerable debate.
Whereas some studies report that manipulation of low-level
properties influences rapid categorization accuracy [54,55] as well
as early EEG responses [56,57], other studies have shown that not
all early visual activity is obliterated by equation of those
properties [58–60] and, conversely, that early sensitivity to
diagnostic information is revealed in stimuli that do not differ in
low-level statistics [20,61]. We find that, at least for our set of
simplified models of natural scene images, early differences in
ERPs are correlated with low-level contrast statistics that are
themselves also directly predictive of perceptual similarity.

It is however likely that the degree to which low-level properties
are relevant for processing of natural image categories is highly
dependent on stimulus type and context, even within actual
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natural scene stimuli: for example, low-level information may
influence rapid detection of faces to a larger extent than objects
[22] and the effects of low-level statistics on animal detection may
interact with scene category (man-made vs. natural) [62]. In
addition, the present work is very different from these previous
reports in that our experiments did not require formation of a
high-level representation but only a same-different judgment.
There are also notable differences between our ERP effects and
those obtained with standardized object/scene categories: our
maximum explained variance was found at around 100 ms,
whereas those studies report sensitivity starting at 120 ms and
onwards [63–66]. Maximal sensitivity of evoked activity to faces
and objects is found at lateral-occipital and parietal electrodes
(PO, e.g. [58]), whereas our correlations are clustered around
occipital electrode Oz. This suggests that the dead leaves images
may mostly engage mid-level areas of visual processing, such as
those sensitive to textural information, e.g. V2 [24,67–69]. Our
results implicate that clustering of image similarities at this level of
processing can, in principle, already predict perceptual similarity –
in turn, these similarities can be derived from Weibull contrast
statistics. Given that for natural scenes, the Weibull statistics
explain similar amounts of variance in EEG activity as reported
here, we can hypothesize that image similarities as predicted by
Weibull statistics are also present in evoked activity to actual
natural scenes.

Information contained in contrast statistics
If Weibull statistics indeed approximate meaningful global

information in natural images, which image features do they
convey? By manipulating computational image categories in their
perceptual appearance, we were able to get a better understanding
of the information contained in the Weibull parameters. They
appear to index the amount of clutter, i.e. are related to occlusion
and object size. These properties may be relevant for natural scene
categorization: a forest has a higher degree of clutter (high gamma)
and lower mean edge strength (high beta) compared to a beach
scene. An image containing a few strong edges (low beta) that are
sparsely distributed (low gamma) has high probability of coinciding
with a single salient object, for example a single bird against an
empty sky, suggesting that these statistics may be relevant for
object detection in natural scenes. Here, behavioral confusions
(and corresponding dissimilarities in ERP signals) were found
between stimuli without coherent edge information (transparent
stimuli with either large or small disks), or that were highly
cluttered (opaque stimuli with small disks) which were exactly the
categories that overlapped in Weibull parameter values.

For comparison, we computed Fourier power spectra and
higher-order properties of the contrast distribution (skewness and
kurtosis), two sets of statistics that each index different sources of
information in natural images: spatial frequency content and
central moments of the contrast distribution, respectively. Devi-
ations in the power spectra of natural images inform about
variations in contrast across spatial scales: the slope and intercept
parameters describe the ‘spectral signature’ of images [32] which is
diagnostic of scene category [15]. Skewness and kurtosis were
proposed to be relevant for texture perception [35,70] which in
turn can be important for feature detection [53,71] and the
presence of featureless regions of images [34,72]. Our results
confirm that both frequency content and central moments of the
contrast distribution inform about image properties: both lead to
accurate image classification. However, in the present study they
did not predict neural and behavioral categorization patterns,
suggesting that these statistics may not be plausible computations
involved in visual processing of the dead leaves images.

Even though we used controlled, computationally defined image
categories, it is still possible that an image property other that the
contrast statistics tested here will provide a better prediction of the
(neural and behavioral) data, for example one of the manipulations
used to create the image categories (e.g., opacity). However,
neither the observed clustering-by-category of ERPs in the RDM,
nor the pattern of categorization errors in behavior mapped
clearly onto one of the manipulations used to create the categories
(e.g., opaque vs. transparent; as is visible in Fig. 7B, there are also
differences within opaque and transparent categories, and this
complex pattern of clustering is only predicted by Weibull
statistics).

Explaining the advantage of Weibull statistics
Why is the Weibull model better than widely used contrast

statistics in predicting early neural and perceptual similarity?
Although higher order moments of distributions can be diagnostic
of textural differences, they may in practice be difficult for the
visual system to represent [35]. In addition, it has been suggested
that rather than amplitude spectra, phase information derived
from the Fourier transform [73,74], or the interaction between
these two [75,76] contains diagnostic scene information. The
reason that higher-order statistics derived from the phase spectrum
may contain perceptually relevant information [77] is that they
carry edge information. In the Weibull model, contrasts, i.e. non-
oriented edges, are explicitly computed (as the response of LGN-
type neurons) and evaluated at multiple spatial scales. The model
may thus be able to capture information contained both in power
spectra (scale statistics) as well as central moments (distribution
statistics). The Weibull parameters appear to reflect different
aspects of low-level information: the beta parameter varies with
the range of contrast strengths present in the image, reflecting
overall contrast energy, whereas the gamma parameter varies with
the degree of correlation between local contrast values, reflecting
clutter or spatial coherence.

Obviously, the Weibull fit is still a mathematical construct.
However, the two parameters can also be approximated in a more
biologically plausible way: with our previous single-scale model
[17], we demonstrated that simple summation of X- and Y-type
LGN output corresponded strikingly well with the fitted Weibull
parameters. Similarly, if the outputs of the multi-scale filter banks
used here (reflecting the entire range of receptive field sizes of the
LGN) are linearly summed, we again obtain values that correlate
highly with the Weibull parameters obtained from the contrast
histogram at minimal reliable scale (S. Ghebreab, H.S. Scholte,
V.A.F. Lamme, A.W.M Smeulders, under review). This suggests
that Weibull estimation can in fact be reduced to pooling of
neuronal population responses by summation, which is a
biologically realistic operation.

Why would summation of contrast responses of low-level
neurons convey the same information as the Weibull parameters?
This is likely a result of the structure of the world itself:
distributions of contrast in natural images tend to range between
power-law and Gaussian, which is the family of distributions that
the Weibull function can capture [78]. It appears that this statistic
simply provides a good characterization of the dynamic range of
the low-level input to the visual cortex when viewing natural
images. Since our brain developed in a natural world, early visual
processing may take advantage of this regularity in estimating
global properties to arrive at a first impression of scene content.

Outlook
The present results extend our previous findings [17,18] with

natural images to other image types (computational categories)
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and to prediction of behavioral categorization. Interestingly, even
though the subjects in experiment 1 (EEG) were not engaged in
categorization of the dead leaves images, their results generalize to
the behavioral categorization patterns that were found in
experiment 2, suggesting that similarity of bottom-up responses
measured in EEG - in a different person - can be predictive of the
perceived similarity during categorization of these images. This
observation is now restricted to computationally defined catego-
ries. An interesting question for future work is whether in
construction of high-level categorical representations of natural
stimuli - considered a computationally challenging task - the brain
actively exploits the pattern of variability of the population
response to low-level information, estimated from early receptive
field output. Contrary to the classical view of the visual hierarchy
(e.g., [79]) it has been proposed that a rapid, global percept of the
input (gist) precedes a slow and detailed analysis of the scene [80–
83]. Natural image statistics provide a pointer to information that
could be relevant for such a global percept [84,85]. However, the
mechanism by which global information can be rapidly extracted
from low-level properties is not directly evident from natural
image statistics alone. As explained above, in our model, the
statistics are derived from a biologically realistic substrate (the
response of early visual contrast filters). We suggest that to build a
realistic model of natural image categorization, it is essential to
understand how statistics derived from very early, simple low-level
responses can contribute to gist extraction.

In conclusion, our findings suggest that global information
based on low-level contrast can be available very early in visual
processing and that this information can be relevant for judgment
of perceptual similarity of controlled image categories.

Supporting Information

Figure S1 Selection of electrodes (Iz, I1, I2, Oz, O1, O2, POz,
PO7, PO8, P6, P8) that were used as input to compute RDMs
(dissimilarity matrices). Selection was based on standard deviation
in ERP amplitude across the whole data set (all subjects and all
images). Each line corresponds to a single electrode: only
electrodes whose standard deviations crossed the dashed line were
selected.
(TIF)

Figure S2 Correlations of individual image parameters Weibull
beta (A) and gamma (B) with Fourier intercept, Fourier slope,
skewness and kurtosis values.
(TIF)

Figure S3 Left: Correlation between subject-specific signal-to-
noise ratio (SNR) and maximal explained variance (across all
electrodes). SNR was computed by 1) per electrode, averaging the
mean ERP amplitude across the 256 images over all post-stimulus
time-points, 2) dividing the absolute value of this average by the
standard deviation of all pre-stimulus time-points and 3) averaging
the resulting SNR values over electrodes. The SNR-values thus
reflect the degree to which stimulus-related ERP amplitude is
present relative to baseline fluctuations. Right: two examples of
evoked responses (CSD-transformed) for the 256 individual stimuli
and corresponding explained variance values at channel Oz. Top:
example of high SNR single-subject data; an ERP is clearly visible
in individual trials; explained variance based on contrast statistics
is high. Bottom: example of low SNR single-subject data; an
evoked response is hardly discernable in the individual trials;
explained variance based on contrast statistics is low. This result
elegantly shows that if there is no evoked response present in the

EEG signal, there is no stimulus-related variance to be explained
by differences in contrast statistics.
(TIF)

Figure S4 Explained variance values at channel Oz as reported
in Fig. 5A–C, but now computed based on non-averaged single-
trial ERPs (compared to single-image ERPs that are averaged over
repeats). As regressors, we used either (A), Weibull beta and
gamma, (B), Fourier intercept and slope and (C), skewness and
kurtosis. Colored thin lines: r2 values for individual subjects. Black
thick line: mean r2 across subjects.
(TIF)

Figure S5 AIC and unique variance analyses at channel Oz as
reported in Fig. 6, but now computed based on non-averaged
single-trial ERPs (compared to single-image ERPs that are
averaged over repeats). (A), Mean explained variance across
subjects for Weibull (red), Fourier (blue) and skewness/kurtosis
(green); shaded areas indicate S.E.M. (B), Mean AIC-value across
single subjects computed from the residuals of each of the three
regression models, as well as an additional model (black) consisting
of Fourier and skewness/kurtosis values combined, shaded areas
indicate S.E.M. (C), Single subject AIC-values at the time-point of
maximal explained variance for Weibull and Fourier statistics
(113 ms); subjects are sorted based on SNR ratio (reported in Fig.
S2). (D), Unique explained variance by each set of contrast
statistics. (E), Absolute, non-parametric correlations (Spearman’s
r) with ERP amplitude for the individual image parameters: Beta
(B), Gamma (G), Fourier Intercept (Ic), Fourier Slope (S),
distribution Skewness (Sk) and Kurtosis (Ku). Absolute values
are plotted for convenience; shaded areas indicate S.E.M. (F),
Unique explained variance by each individual image parameter.
(TIF)

Figure S6 Single-subject correlations of dissimilarity matrices
(RDMs) of ERPs with distance matrices based on the three sets of
contrast statistics: (A), Weibull parameters, (B), Fourier parameters
and (C), skewness and kurtosis.
(TIF)

Video S1 Representational dissimilarity matrices at each sample
in time of the ERP, starting 50 ms before until 350 ms after
stimulus-onset. Dissimilarity between stimuli is measured as
Euclidean distance (red = maximal, blue = minimal values in entire
data set) between ERP patterns across occipital electrodes (see
Materials and Methods). Categories are labeled on the x- and y-
axis; each cell of the matrix indexes the dissimilarity between two
individual stimuli. Differences between images suddenly emerge
around 90 ms after stimulus-onset and disappear again about
60 ms later. These differences cluster in 16616 blocks, suggesting
that categorical information is present in this time period. Later in
time, weaker differences arise, but not as large as before,
suggesting that category-specific dissimilarities between stimuli
are evoked early in time.
(MPG)
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