Measurement of the ZZ production cross section and limits on anomalous neutral triple gauge couplings in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

DOI
10.1103/PhysRevLett.108.041804

Publication date
2012

Document Version
Final published version

Published in
Physical Review Letters

Link to publication

Citation for published version (APA):
https://doi.org/10.1103/PhysRevLett.108.041804

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Measurement of the ZZ Production Cross Section and Limits on Anomalous Neutral Triple Gauge Couplings in Proton-Proton Collisions at √s = 7 TeV with the ATLAS Detector

G. Aad et al.*

(ATLAS Collaboration)

(Received 23 October 2011; published 25 January 2012)

A measurement of the ZZ production cross section in proton-proton collisions at √s = 7 TeV using data corresponding to an integrated luminosity of 1.02 fb−1 recorded by the ATLAS experiment at the LHC is presented. Twelve events containing two Z boson candidates decaying to electrons and/or muons are observed, with an expected background of 0.3 ± 0.3(stat)±0.3(syst) events. The cross section measured in a phase-space region with good detector acceptance and for dilepton masses within the range 66 to 116 GeV is σ^{ZZ→ee} = 19.4^{+6.2}_{−5.2}(stat)±0.7(syst) ± 0.7(lumi) fb. The resulting total cross section for on-shell ZZ production, σ^{ZZ→l+l−} = 8.5^{+2.7}_{−2.3}(stat)±0.4(syst) ± 0.3(lumi) pb, is consistent with the standard model expectation of 6.5^{+0.3}_{−0.2} pb calculated at the next-to-leading order in QCD. Limits on anomalous neutral triple gauge boson couplings are derived.

DOI: 10.1103/PhysRevLett.108.041804

The production of pairs of Z bosons at the LHC is of great interest since it provides an excellent opportunity to test the predictions of the electroweak sector of the standard model at the TeV energy scale; moreover it is the irreducible background to the search for the Higgs boson in the H → ZZ decay channel. In the standard model, ZZ production proceeds at leading order (LO) via t-channel quark-antiquark interactions; the ZZ and ZZγ neutral triple gauge boson couplings (nTGCs) are absent; hence there is no contribution from s-channel q̄q annihilation at tree level. At the one-loop level, fermion triangles generate nTGCs of O(10−4) [1]. Many models of physics beyond the standard model predict values of nTGCs at the level of 10−4 to 10−3 [2]. The signature of nonzero nTGCs is an increase of the ZZ cross section at high ZZ invariant mass and high transverse momentum of the Z bosons [3]. ZZ production has been studied in e+e− collisions at LEP [4,5] and in p̄p collisions at the Tevatron [6,7]. No deviation of the measured cross section from the standard model expectation has been observed, and limits on anomalous nTGCs have been set [5,6].

This Letter presents the first measurement of ZZ production in proton-proton collisions at a center-of-mass energy √s of 7 TeV, and limits on the anomalous nTGCs. The cross section for on-shell ZZ production (i.e., in the zero-width approximation) is predicted at next-to-leading order (NLO) in QCD to be 6.5^{+0.3}_{−0.2} pb [9]; this includes a ∼6% contribution from gluon fusion. Candidate ZZ events are reconstructed in the ZZ → ℓ+ℓ−ℓ+ℓ− decay channel, where ℓ can be an electron or muon. Although this channel constitutes only ∼0.5% of the total ZZ cross section, its final state with four high transverse-momentum, isolated leptons has a very high expected signal to background ratio of ∼30.

To reduce systematic uncertainties, the cross section is measured within a phase-space that corresponds closely to the experimental acceptance; this is termed the “fiducial” cross section. The fiducial phase-space definition requires the invariant mass of both lepton pairs to be between 66 and 116 GeV and all four leptons to be within the pseudorapidity [10] range |η| < 2.5 and have transverse momentum pT > 15 GeV. The four-momenta of all photons present after the simulation of the parton shower which are within ΔR = √Δϕ2 + Δη2 < 0.1 of a lepton are summed into the four-momentum of that lepton. The total ZZ cross section in the on-shell approximation is obtained from the fiducial cross section using the known Z → ℓ+ℓ− branching ratio and a correction factor for the kinematic and geometrical acceptance.

Anomalous nTGCs for on-shell ZZ production can be parametrized by two CP-violating (f′V) and two CP-conserving (fV) complex parameters (V = Z, γ) which are zero in the standard model [3]. To ensure partial-wave unitarity, a form-factor parametrization is introduced to cause the couplings to vanish at high parton center-of-mass energy √s: fV = fV0/(1 + √s/Λ2)n. Here, Λ is the energy scale at which physics beyond the standard model will be directly observable, fV0 are the low-energy approximations of the couplings, and n is the form-factor power. Following Ref. [3], n = 3 and Λ = 2 TeV are chosen, so that expected limits are within the values provided by unitarity at LHC energies. The results with energy cutoff Λ = ∞ are also presented as a comparison in the unitarity violation scheme.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
The ATLAS detector [11] consists of inner tracking devices surrounded by a superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer with a toroidal magnetic field. The inner detector, in combination with the 2 T field from the solenoid, provides precision tracking of charged particles for $|\eta| < 2.5$. It consists of a silicon pixel detector, a silicon strip detector, and a straw tube tracker that also provides transition radiation measurements for electron identification. The calorimeter system covers the pseudorapidity range $|\eta| < 4.9$. It is composed of sampling calorimeters with either liquid argon or scintillating tiles as the active media. In the region $|\eta| < 2.5$ the electromagnetic liquid argon calorimeter is finely segmented and plays an important role in electron identification. The muon spectrometer has separate trigger and high-precision tracking chambers which provide muon identification and measurement in $|\eta| < 2.7$.

A three-level trigger system selects events to be recorded for offline analysis. The events used in this analysis were selected with single-lepton triggers with nominal transverse-momentum thresholds of 10 GeV for electrons and 18 GeV for muons. The efficiencies of the single-lepton triggers have been determined as a function of p_T for each channel.

Events are required to contain a primary vertex formed from at least three associated tracks. The vertex with the largest sum of the p_T^2 computed from the associated tracks is selected as the primary vertex.

Signal events are characterized by four high-p_T, isolated electrons or muons, in three channels: $e^+e^-e^+e^-$, $\mu^+\mu^-\mu^+\mu^-$, and $e^+e^-\mu^+\mu^-$. Lepton candidates are required to be consistent with originating from the primary vertex. Muons are identified by matching tracks (or track segments) reconstructed in the muon spectrometer to tracks reconstructed in the inner detector [13]. Their momentum is calculated by combining the information from the two systems and correcting for the energy deposited in the calorimeters. Only muons with $p_T > 15$ GeV and $|\eta| < 2.5$ are considered. In order to reject muons from the decay of heavy quarks, isolated muons are selected by requiring the scalar sum of the transverse momenta (Σp_T) of other tracks with $p_T > 1$ GeV inside a cone of size $\Delta R = 0.2$ around the muon to be no more than 15% of the muon p_T. The overall reconstruction, identification, and isolation efficiency, measured in data using a large sample of $Z \rightarrow \mu^+\mu^-$ events, varies as a function of p_T from 92% at 15 GeV to 95% at 45 GeV.

Electrons are reconstructed from a cluster in the electromagnetic calorimeter matched to a track in the inner detector [13]. Electron candidates are required to pass the "medium" identification criteria described in Ref. [13], to have a transverse momentum (measured in the calorimeter) of at least 15 GeV, and have a pseudorapidity of $|\eta| < 2.47$. They must be isolated, using the same criterion as for muons, calculating the Σp_T around the electron track. Electron candidates within $\Delta R = 0.1$ of any selected muon are rejected, and if two electron candidates are within $\Delta R = 0.1$ of each other the one with the lower p_T is rejected. The overall reconstruction, identification, and isolation efficiency varies as a function of p_T from 63% at 15 GeV to 81% at 45 GeV.

Selected events are required to have exactly four leptons, and to have passed a single-muon or single-electron trigger. To ensure high trigger efficiency, at least one of these leptons must have $p_T > 20$ GeV (25 GeV) for a muon (electron) and match to a muon (electron) reconstructed online by the trigger system within $\Delta R < 0.1$ (0.15).

Same-flavor, oppositely-charged lepton pairs are combined to form Z candidates. An event must contain two such pairs. In the $e^+e^-e^+e^-$ and $\mu^+\mu^-\mu^+\mu^-$ channels, ambiguities are resolved by choosing the pairing which results in the smaller value of the sum of the two $|m_{e^+e^-} - m_{\mu^+\mu^-}|$ values. Figure 1 shows the correlation between the invariant mass of the leading (higher p_T) lepton pair and the subleading (lower p_T) lepton pair. The events cluster in the region where both masses are around m_Z. Events are required to contain two Z candidates with invariant masses satisfying $66 \text{ GeV} < m_{e^+e^-} < 116 \text{ GeV}$.

![Figure 1](color online). The mass of the leading lepton pair versus the mass of the subleading lepton pair. The events observed in the data are shown as solid circles and the ZZ signal prediction from simulation as boxes. The large dashed box indicates the signal region defined by the requirements on the lepton-pair masses.
The reconstruction efficiency for ZZ events is determined from a detailed Monte Carlo simulation. The LO generator PYTHIA [14] with the MRST modified LO parton density function (PDF) set [15] is used to model $pp \rightarrow ZZ \rightarrow \ell^+\ell^-\ell^+\ell^-$ events, where ℓ includes electrons, muons, and τ leptons. The PYTHIA simulation includes the interference terms between the Z and γ^* diagrams; the mass threshold for the Z/γ boson is set to 12 GeV. The detector response is simulated [16] with a program based on GEANT4 [17]. Additional inelastic pp events are included in the simulation, distributed so as to reproduce the number of collisions per bunch crossing in the data. The simulation is also corrected with scale factors, and the lepton momentum resolution adjusted, to reproduce the lepton reconstruction and identification efficiencies measured in data.

The overall efficiencies of the reconstruction and selection criteria for events generated within the fiducial phase space are $(40 \pm 3)\%$, $(79 \pm 2)\%$, and $(57 \pm 2)\%$ for $e^+e^-\mu^+\mu^-$, $\mu^+\mu^-\mu^+\mu^-$, and $e^+e^-\mu^+\mu^-\mu^-$, respectively. The dominant systematic uncertainties arise from electron identification (6.6% in the $e^+e^-\mu^+\mu^-$ final state, 3.1% in the $e^+e^-\mu^+\mu^-\mu^-$ final state) and from the muon reconstruction efficiency (2.0% in $\mu^+\mu^-\mu^+\mu^-$ and 1.0% in $e^+e^-\mu^+\mu^-\mu^-$).

Background to the ZZ signal originates from events with a Z (or W^\pm) boson decaying to leptons plus additional jets or photons ($W/Z + X$), from top-quark production and from other diboson final states. Such events may contain electrons or muons from the decay of heavy-flavored hadrons, or muons from in-flight decay of pions and kaons; jets or photons may be misidentified as electrons. The majority of these background leptons are rejected by the isolation requirement.

To estimate the background contribution from four-lepton events in which one lepton originates from a jet, a sample of events containing three leptons passing all selection criteria plus one “leptonlike jet” is identified; such events are denoted $\ell\ell\ell j$. For muons, the leptonlike jets are muon candidates that fail the isolation requirement. For electrons, the leptonlike jets are clusters in the electromagnetic calorimeter matched to inner detector tracks that fail either or both of the full electron selection and the isolation requirement. The events are otherwise required to pass the full event selection, treating the leptonlike jet as if it were a fully identified lepton. This event sample is dominated by $Z + X$ events. The background is then estimated by scaling this control sample by a measured factor f which is the ratio of the probability for a jet to satisfy the full lepton criteria to the probability to satisfy the leptonlike jet criteria. The background in which two selected leptons originate from jets is treated similarly, by identifying a data sample with two leptons and two leptonlike jets; such events are denoted $\ell\ell jj$. To avoid double counting in the background estimate, and to take into account the expected ZZ contribution in the control region, $N(ZZ)$, the total number of background events $N(BG)$ is calculated as:

$$N(BG) = N(\ell\ell\ell j)f - N(\ell\ell jj)f^2 - N(ZZ).$$

The factor f is measured in a sample of data selected with single-lepton triggers with criteria applied to suppress isolated leptons from W^\pm and Z bosons, and corrected for the remaining small contribution of true leptons using simulation. It is measured independently in η and p_T and the values combined assuming they are uncorrelated. A similar analysis is performed on Monte Carlo simulations of background processes; the larger of the statistical uncertainty on f determined from the data and the difference between data and simulation is taken as the systematic uncertainty in each p_T (or η) bin. This results in a systematic uncertainty which varies as a function of p_T from 57% (85%) at 15 GeV to 55% (77%) at 45 GeV for electrons (muons).

The numbers of expected and observed events after applying all selection criteria are shown in Table I. The expected number of signal events is determined from the PYTHIA simulation normalized to the NLO calculation using MCFM [9] with the MSTW2008 [18] NLO PDF set. The normalization factor, calculated within the phase-space of the fiducial cross section measurement, is 1.4. The expected numbers of signal events include contributions of 1.6% from $ZZ \rightarrow \ell^+\ell^-\ell^+\ell^-$ events generated outside the fiducial phase space and 0.3% from events where one of the Z bosons decays to τ leptons. Twelve ZZ candidates are observed in data, with a background expectation of $0.3 \pm 0.3(\text{stat})^{+0.4}_{-0.3}(\text{syst})$, corresponding to a p value of 10^{-7} equivalent to a one-sided Gaussian significance of 5σ. In the four-muon channel, 8 events are observed where $3.3^{+0.4}_{-0.3}$ signal plus background events are expected. The probability of the expected number fluctuating up to 8 or more is 3.2%.

The transverse-momentum distribution and the invariant mass distribution of the combined four-lepton system for the selected candidates are shown in Fig. 2.

The ZZ fiducial cross section is determined using a maximum likelihood fitting method to combine the three

<table>
<thead>
<tr>
<th>Channel</th>
<th>Observed</th>
<th>BG(data-driven)</th>
<th>Expected ZZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^+e^-e^-\mu^+\mu^-$</td>
<td>2</td>
<td>$0.01^{+0.03-0.05}_{-0.01}$</td>
<td>$1.53 \pm 0.03 \pm 0.10$</td>
</tr>
<tr>
<td>$\mu^+\mu^-\mu^+\mu^-$</td>
<td>8</td>
<td>$0.3 \pm 0.3 \pm 0.3$</td>
<td>$3.03 \pm 0.04 \pm 0.06$</td>
</tr>
<tr>
<td>$e^+e^+\mu^+\mu^-$</td>
<td>2</td>
<td>$<0.01^{+0.03}_{-0.01}$</td>
<td>$4.37 \pm 0.04 \pm 0.14$</td>
</tr>
<tr>
<td>$\ell^+\ell^-\ell^+\ell^-$</td>
<td>12</td>
<td>$0.3 \pm 0.3^{+0.04}_{-0.03}$</td>
<td>$8.9 \pm 0.1 \pm 0.3$</td>
</tr>
</tbody>
</table>
The result is consistent within errors with the NLO standard model total cross section for this process of 6.5$^{+0.3}_{-0.2}$ pb [9].

Limits on anomalous nTGCs are determined using the total number of observed events only. The ZZ production yield dependency on couplings is parametrized using fully simulated events generated with SHERPA [20] subsequently reweighted using the leading-order matrix element [3] within the framework of Ref. [21]. The reweighting procedure uses simulated samples with standard model as well as non-standard-model coupling values to ensure adequate coverage of all kinematic regions. One dimensional 95% confidence intervals for the anomalous nTGCs are determined using a maximum profile likelihood fit to the observed number of events. The systematic errors are included as nuisance parameters. The resulting limits for each coupling, determined assuming real couplings and with the other couplings fixed at their standard model value, are listed in Table II. The present results are dominated by statistical uncertainties: limits derived using statistical uncertainties alone differ from those in Table II by less than 0.01. These limits are comparable with, or are more stringent than, those derived from measurements at LEP [5] and the Tevatron [6]; it should be noted that limits from LEP do not use a form factor, and those from the Tevatron use $\Lambda = 1.2$ TeV.

In summary, the ZZ production cross section has been measured in proton-proton collisions at $\sqrt{s} = 7$ TeV using

\begin{table}[h]
\centering
\begin{tabular}{c|ccccc}
\hline
Λ & f^2_{20} & f^2_{20} & f^2_{50} & f^2_{50} \\
\hline
2 TeV & $[-0.15, 0.15]$ & $[-0.12, 0.12]$ & $[-0.15, 0.15]$ & $[-0.13, 0.13]$ \\
∞ & $[-0.08, 0.08]$ & $[-0.07, 0.07]$ & $[-0.08, 0.08]$ & $[-0.07, 0.07]$ \\
\hline
\end{tabular}
\caption{One dimensional 95\% confidence intervals for anomalous neutral gauge boson couplings, where the limit for each coupling assumes the other couplings fixed at their standard model value. Limits are presented for form-factor scales of $\Lambda = 2$ TeV and $\Lambda = \infty$ and include both statistical and systematic uncertainties; the statistical uncertainties are dominant.}
\end{table}
the ATLAS detector. Both the fiducial cross section within
the detector acceptance and the total cross section have
been determined. The latter is in agreement with the stan-
dard model expectation. Limits on anomalous nTGCs have
been derived.

We thank CERN for the very successful operation of the
LHC, as well as the support staff from our institutions
without whom ATLAS could not be operated efficiently.
We acknowledge the support of ANPCyT, Argentina;
YerPhI, Armenia; ARC, Australia; BMWF, Austria;
ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP,
Brazil; NSERC, NRC and CFI, Canada; CERN;
CONICYT, Chile; CAS, MOST and NSFC, China;
COCLICENCIAS, Colombia; MSMT CR, MPO CR and
VSC CR, Czech Republic; DNRF, DNSRC and
Lundbeck Foundation, Denmark; ARTEMIS, European
Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS,
Georgia; BMBF, DFG, HGF, MPG and AvH Foundation,
Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and
Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS,
Japan; CNRST, Morocco; FOM and NWO, Netherlands;
RCN, Norway; MNISW, Poland; GRICES and FCT,
Portugal; MERSYS (MECTS), Romania; MES of Russia
and ROSATOM, Russian Federation; JINR; MSTD,
Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia;
DST/NRF, South Africa; MICINN, Spain; SRC and
Wallenberg Foundation, Sweden; SER, SNSF and
Cantons of Bern and Geneva, Switzerland; NSC, Taiwan;
TAEK, Turkey; STFC, the Royal Society and Leverhulme
Trust, United Kingdom; DOE and NSF, United States of
America. The crucial computing support from all WLCG
partners is acknowledged gratefully, in particular, from
CERN and the ATLAS Tier-1 facilities at TRIUMF
(Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3
(France), KIT/GridKA (Germany), INFN-CNAF
(Italy), NL-T1 (Netherlands), PIC (Spain), ASGC
(Taiwan), RAL (UK) and BNL (USA) and in the Tier-2
facilities worldwide.

(2000).

Abdallah et al. (DELPHI), Eur. Phys. J. C 30, 447 (2003);
M. Acciarri et al. (L3), Phys. Lett. B 465, 363 (1999); G.

[5] The LEP Collaborations ALEPH, DELPHI, L3, OPAL,
and the LEP Electroweak Working Group, (2006) arXiv:
hep-ex/0612034.

[6] V.M. Abazov et al. (D0), Phys. Rev. Lett. 100, 131801
(2008).

(2008); V.M. Abazov et al. (D0), Phys. Rev. Lett. 101,
171803 (2008); (), Phys. Rev. D 84, 011103 (2011);

[8] Throughout this paper Z should be taken to mean Z/γ.

[10] ATLAS uses a right-handed coordinate system with its
origin at the nominal interaction point in the center of
the detector and the z axis along the beam pipe. The x axis
points from the interaction point to the center of the LHC
ring, and the y axis points upwards. Cylindrical coordi-
nates (r, φ) are used in the transverse plane, φ being the
azimuthal angle around the beam pipe. The pseudorapidity
η is defined in terms of the polar angle θ as η = −
In(θ/2).

Collaboration, Report No. ATLAS-CONF-2011-116,
http://cdsweb.cern.ch/record/1376384.

060.

(2008).

[18] A.D. Martin, W.J. Stirling, R.S. Thorne, and G. Watt,

Schumann, F. Siegert, and J. Winter, J. High Energy
Phys. 02 (2009) 007.

G. Aad,47 B. Abbott,110 J. Abdallah,1 A. A. Abdelalim,48 A. Abdesselam,117 O. Abdinov,10 B. Abi,111 M. Abolins,87
J. Adelman,174 M. Adlerholz,98 S. Adomeit,97 P. Adragna,74 T. Adye,128 S. Aefsky,22 J.A. Aguilar-Saavedra,123b,b
M. Aharrouch,80 S. P. Ahlen,21 F. Ahles,47 A. Ahmad,147 M. Ahsan,40 G. Aielli,132a,132b T. Akdogan,18a
T. P.A. Åkesson,78 G. Akimoto,154 A. V. Akimov,93 A. Akiyama,66 M. S. Alam,1 M. A. Alam,75 J. Albert,168
S. Albrand,44 M. Aleksa,29 I. N. Aleksovand,64 F. Alessandria,88a C. Alexa,152 G. Alexander,152 G. Alexandre,48
T. Alexopoulos,9 M. Altheob,20 M. Aliiev,15 G. Alimonti,88a J. Alison,119 M. Aliyev,10 P. P. Allport,72
S. E. Allwood-Spiers,52 J. Almond,81 A. Aloisio,101a,101b R. Alon,170 A. Alonso,78 B. Alvarez Gonzalez,87
Laboratoire de Physique Corpusculaire, Clermont Université et Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
Nevis Laboratory, Columbia University, Irvington, New York, USA
Niels Bohr Institute, University of Copenhagen, København, Denmark
INFN Gruppo Collegato di Cosenza, Italy
Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
Physics Department, University of Texas at Dallas, Richardson, Texas, USA
DESY, Hamburg and Zeuthen, Germany
Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
Department of Physics, Duke University, Durham, North Carolina, USA
SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
INFN Laboratori Nazionali di Frascati, Frascati, Italy
Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
Section de Physique, Université de Genève, Geneva, Switzerland
INFN Sezione di Genova, Italy
Dipartimento di Fisica, Università di Genova, Genova, Italy
E.Andronikashvili Institute of Physics, Georgian Academy of Sciences, Tbilisi, Georgia
High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
Department of Physics, Hampton University, Hampton, Virginia, USA
Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
Faculty of Science, Hiroshima University, Hiroshima, Japan
Department of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa City, Iowa, USA
Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
INFN Sezione di Lecce, Italy
Dipartimento di Fisica, Università del Salento, Lecce, Italy
Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
Department of Physics, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
f Also at Department of Physics, California State University, Fresno, CA, USA

Also at Fermilab, Batavia, IL, USA

Also at Department of Physics, University of Coimbra, Coimbra, Portugal.

Also at Università di Napoli Parthenope, Napoli, Italy.

Also at Institute of Particle Physics (IPP), Canada.

Also at Department of Physics, Middle East Technical University, Ankara, Turkey.

Also at Louisiana Tech University, Ruston, LA, USA

Also at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.

Also at Manhattan College, New York, NY, USA

Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at High Energy Physics Group, Shandong University, Shandong, China.

Also at Section de Physique, Université de Genève, Geneva, Switzerland.

Also at Departamento de Física, Universidade de Minho, Braga, Portugal.

Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA

Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.

Also at California Institute of Technology, Pasadena, CA, USA

Also at Institute of Physics, Jagiellonian University, Krakow, Poland

Also at Department of Physics, Oxford University, Oxford, United Kingdom.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA

Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.

Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.