Search for new physics in the dijet mass distribution using 1 fb-1 of pp collision data at $\sqrt{s} = 7$ TeV collected by the ATLAS detector

DOI
10.1016/j.physletb.2012.01.035

Publication date
2012

Document Version
Final published version

Published in
Physics Letters B

Citation for published version (APA):
Search for new physics in the dijet mass distribution using 1 fb⁻¹ of pp collision data at \(\sqrt{s} = 7 \) TeV collected by the ATLAS detector

ATLAS Collaboration

1. Introduction

The Standard Model (SM) description of high energy proton–proton (pp) collisions is based on the framework of quantum chromodynamics (QCD) in the perturbative regime, where the most energetic collisions result from the 2 → 2 scattering of a pair of partons (quarks or gluons). Partons emerging from the collision shower and hadronise, in the simplest case producing two jets of particles, a “dijet”, that may be reconstructed to determine the dijet invariant mass, \(m_{jj} \), the mass of the two-parton system.

Previous studies of dijet mass distributions [1–6] have shown that these analyses are sensitive to the highest mass scales accessible with hadronic final states. In the present study, the dijet mass distribution is examined in a search for resonances due to new physics: excited quarks are excluded for masses below 299 TeV, axigluons are excluded for masses below 3.32 TeV, and colour octet scalar resonances are excluded for masses below 1.92 TeV.

Invariant mass distributions of jet pairs (dijets) produced in LHC proton–proton collisions at a centre-of-mass energy \(\sqrt{s} = 7 \) TeV have been studied using a data set corresponding to an integrated luminosity of 1.0 fb⁻¹ recorded in 2011 by ATLAS. Dijet masses up to \(\sim 4 \) TeV are observed in the data, and no evidence of resonance production over background is found. Limits are set at 95% C.L. for several new physics hypotheses: excited quarks are excluded for masses below 299 TeV, axigluons are excluded for masses below 3.32 TeV, and colour octet scalar resonances are excluded for masses below 1.92 TeV. © 2012 CERN. Published by Elsevier B.V. All rights reserved.
jet is given by \(y \equiv \frac{1}{2} \ln \left(\frac{1 + x}{1 - x} \right) \). The rapidities of the two highest \(p_T \) jets are denoted by \(y_1 \) and \(y_2 \), and the corresponding rapidity of these partons in their mutual CM frame is \(y^* = \frac{1}{2} (y_1 - y_2) \).

2. Jet reconstruction and event selection

Individual jets are reconstructed using the anti-\(k_T \) jet clustering algorithm [15,16] with the distance parameter \(R = 0.6 \). The inputs to this algorithm are clusters [17] of calorimeter cells with energy depositions significantly above the measured noise. Jet four-momenta are constructed as the vectorial sum of clusters of cells, treating each cluster as an \((E, \vec{p}) \) four-vector with zero mass, assuming that the corresponding particle stems from the primary vertex.

The jet four-momenta are then corrected [18] as a function of \(\eta \) and \(p_T \) for various effects, the largest of which are the hadronic shower response and detector material distribution. This is done using a calibration scheme based on Monte Carlo (MC) studies including full detector simulation, and validated with extensive test-beam [19] and collision data [20–22] studies. Measured dijet mass distributions are not corrected for detector resolution, which, in terms of mass smearing, is \(\sigma_{\text{sm}}/m_{jj} \approx 5\% \) at \(m_{jj} \approx 1 \text{ TeV} \), drops to 4.5\% at 2 TeV, and asymptotically approaches 4\% at \(m_{jj} \) of 5 TeV and above.

The event selection starts with the first-level trigger, which selects events that have at least one large transverse energy deposition in the calorimeters, with the transverse energy threshold selecting events that have at least one large transverse energy deposition significantly above the measured noise. Jet four-momenta are constructed as the vectorial sum of clusters of cells, treating each cluster as an \((E, \vec{p}) \) four-vector with zero mass, assuming that the corresponding particle stems from the primary vertex.

The event selection starts with the first-level trigger, which selects events that have at least one large transverse energy deposition in the calorimeters, with the transverse energy threshold increasing over the period of the data-taking as the instantaneous luminosity of the LHC pp collisions increased.

To achieve the highest possible effective integrated luminosity, the current data set has been recorded using a jet trigger that was usually not prescaled. The chosen trigger has a nominal jet \(p_T \) threshold of 180 GeV. After applying all other analysis cuts, \(m_{jj} \) is required to be greater than 717 GeV in order to attain a trigger efficiency of at least 99\% over the full range of the dijet mass distribution.

Events are required to have a primary collision vertex defined by at least five charged-particle tracks. Events with a poorly measured jet [23] with \(p_T \) greater than 30\% of the \(p_T \) of the next-to-leading jet are vetoed, to avoid cases where such a jet would cause incorrect identification of the two leading jets. This rejects less than 0.002\% of the events.

Additional kinematic criteria are applied, requiring that the two leading jets each satisfy \(|\eta_{jj}| < 2.8 \) and that the rapidity in the parton CM frame satisfies \(|y^*| < 0.6 \). These criteria favour central collisions and have been shown, based on studies of expected signals and QCD background, to optimise the analysis sensitivity.

A final selection is made to avoid the calorimeter region from \(-0.1 \) to 1.5 in \(\eta \) and from \(-0.9 \) to \(-0.5 \) in \(\phi \), which was in large part affected by readout problems for most of the data used in these studies. Events with jets in this region are discarded. This requirement reduces the data set by 3.7\%.

3. Comparing data to a smooth background

The observed dijet mass distribution after all selection cuts is shown in Fig. 1. As in the previous ATLAS studies, the \(m_{jj} \) spectrum is fit to the smooth functional form

\[
 f(x) = p_1 (1 - x)^p_2 x^{p_3} e^{p_4 \ln x},
\]

where \(x \equiv m_{jj}/\sqrt{s} \) and the \(p_i \) are fit parameters. This ansatz has been shown empirically to accurately model the steeply falling QCD dijet mass spectrum [3–6]. The \(m_{jj} \) bins are of variable width, increasing from \(\sim 50 \) to \(\sim 200 \text{ GeV} \) for dijet masses from 0.85 to 4.5 TeV, respectively, to optimise the performance of the resonance search algorithm discussed in the next section.

The bottom plot of Fig. 1 shows the significance, in standard deviations, of the difference between the data and the prediction in each bin. These are purely statistical, and based on Poisson distributions. The contents of a given bin are used to determine the \(p \)-value – the probability of the background fluctuating higher than the observed excess, or lower than the observed deficit. The \(p \)-value is transformed to a significance, in terms of an equivalent number of standard deviations (the \(z \)-value). Where there is an excess (deficit) in data in a given bin, the significance is plotted as positive (negative). In mass bins with small expected number of events, where the observed number of events is similar to the expectation, the Poisson probability of a fluctuation at least as high (low) as the observed excess (deficit) can be greater than 50\%, as a result of the asymmetry of the Poisson distribution. Such bins present no statistical interest and, for simplicity, bars are not drawn for them.

To determine the degree of consistency between data and the fitted background, the \(p \)-value of the fit is obtained by calculating the \(\chi^2 \) from the data, and comparing this result to the \(\chi^2 \) distribution obtained from pseudoexperiments. The resulting \(p \)-value is 0.96, showing that there is good agreement between the data and the functional form.

4. Search for resonances

As a more sensitive test, the BUMPHunter algorithm [24,25] is used to establish the presence or absence of a resonance in the dijet mass spectrum. To optimise the sensitivity of this algorithm, the \(m_{jj} \) binning strategy is to establish a minimum width for resonances to be considered physical. To this end, the relatively narrow \(\sigma^* \) \(m_{jj} \) template from full MC simulation [26], described below for subsequent studies, has been used to establish the binning. If the width of the resonance is defined as \(\pm \sigma^* \), the greatest sensitivity at the minimum width is achieved by setting the bin width to \(\sigma^* \), half the resonance width. The final result of this procedure is that the variable bin sizes are typically 6.5\% to 7.0\% of \(m_{jj} \) in width, somewhat wider than detector resolution due to the finite natu-
ral width of q^*, which varies between about 3% and 3.5% of the q^* mass.

In the current implementation, the BUMPHunter algorithm searches for the signal window with the most significant excess of events above background. Starting with a two-bin window, the algorithm increases the signal window and shifts its location until all possible bin ranges, up to half the mass range spanned by the data, have been tested. The most significant departure from the smooth spectrum ("bump") is defined by the set of bins that have the smallest probability of arising from a background fluctuation assuming Poisson statistics.

The BUMPHunter algorithm accounts for the so-called "look elsewhere effect" (or "trials factor effect") [27] by performing a series of pseudoexperiments to determine the probability that random fluctuations in the background-only hypothesis would create an excess as significant as the one observed anywhere in the spectrum. Variable width binning reduces the penalty due to this effect, while retaining sensitivity.

To prevent any new physics signal from biasing the background estimate, if the biggest local excess from the background fit has a p-value smaller than 0.01, this region is excluded and a new background fit is performed. No such exclusion is needed for this data set.

The most significant discrepancy identified by the BUMPHunter algorithm in the observed dijet mass distribution reported in Fig. 1 is a 2-bin excess in the interval 1.16 to 1.35 TeV. The probability of observing such an excess or larger somewhere in the mass spectrum for a background only hypothesis is 0.82. This test shows that there is no evidence for a resonance signal in the m_{jj} spectrum.

5. New physics models

Exclusion limits are set on three new physics scenarios expected to give rise to resonant dijet production.

For the first of these, excited quarks, q^*, a $qg \rightarrow q^*$ production model [7,8] is used, with the assumption of spin 1/2 and quark-like SM coupling constants. The compositeness scale (Λ) is set to the q^* mass. Signal events are produced using the Pythia event generator [28], a leading-order parton-shower MC generator, with the MRST2007LO* [29] parton distribution functions (PDF's), with settings established by the ATLAS default MC10 [30] Monte Carlo tune. The renormalization and factorization scales are set to the mean p_T of the two leading partons for each event. Pythia is also used to decay the excited quarks to all possible SM final states, which are predominantly qg, but also qW, qZ, and $q\gamma$. The generated events are passed through the detailed simulation of the ATLAS detector [26], which uses the GEANT4 package [31] for simulation of particle transport, interactions, and decays. The simulated events are then reconstructed in the same way as the data to produce predicted dijet mass distributions that can be compared with the observed distributions.

The second model is axigluon production [9–11] via an interaction given by the Lagrangian

$$\mathcal{L}_{\text{Ax}} = g_{\text{QCD}} A_{\mu}^{\alpha} A_{\mu}^{\beta} \frac{1}{3} Tr F_{\mu\nu}^{\alpha\beta} q q,$$

where $g_{\text{QCD}} = 4\pi\alpha_s$ is the QCD coupling constant and A_{μ}^{α} is the axigluon field representing a massive state with axial coupling to quarks. Parity conservation prevents the axigluon from coupling to two gluons. Parton-level events are generated, at leading-order approximation, using the CALCHEP Monte Carlo package [32], for chosen masses, m, of the axigluon. The MRST2007LO* PDF set was used. The axigluon dijet mass has longer tails at high and low masses than the q^* distribution, but these two shapes are interchangeable within the range $0.7m$ to $1.3m$ for all masses of interest. Since the axigluon tails outside this range are well below the SM background, the predicted signal may be analyzed by cutting events beyond this range and accounting for the reduced acceptance. The axigluon MC prediction for $\sigma \times A$, the production cross section within the acceptance, is defined to include these cuts by applying them at the level of CALCHEP generation, along with the kinematic cuts in p_T and rapidity. In the limit setting analysis, these axigluon results are compared to the observed $\sigma \times A$ limits from the q^* analysis. This method is discussed in more detail in Section 6.

The third resonant hypothesis, the colour octet scalar (s_8) model, is a prototype for many possible exotic coloured resonances [12]. Colour octon resonances can couple to gluons, which have large parton luminosity at the LHC. One possible interaction is

$$\mathcal{L}_{\text{qg}} = g_{\text{QCD}}^{\alpha\beta\gamma} A_8^{\alpha} A_8^{\beta} \frac{1}{3} Tr F_{\mu\nu}^{\beta} F^{\alpha}_{\mu\nu},$$

where A_8^{α} is the colour octet scalar field, κ_8 is the scalar coupling (assumed to be unity), and $g_{\text{QCD}}^{\alpha\beta\gamma}$ is the SU(3) isoscalar factor; Λ_8 is the new physics scale which is set to the resonance mass, M_{s_8}. This model leads to a very simple event topology, with two gluons in the initial and final states, yielding high p_T dijets. MAdGRAPH 5 [33] is used to generate parton level events at leading-order approximation. Pythia with CTEQ6L1 PDF's is used in this generation, with the ATLAS MC09' tune [34]. These samples are processed through the full ATLAS detector simulation.

The observed limits on s_8 are less strict than the corresponding q^* limits, in part because the s_8 signal is much wider than q^*. Much of this width increase is due to final state radiation, which is larger for gluon-jets than for quark-jets. In addition, the initial state for s_8 production contains gluons, which have small parton density at high mass. Thus, s_8 are much more likely to be off-mass-shell than q^*.

6. Model dependent limit setting

In the absence of any observed significant discrepancy from the zero-signal hypothesis, the Bayesian method documented in [6] is used to set 95% credibility-level (CL) upper limits.

Bayesian credibility intervals are set by defining a posterior probability density from the Poisson likelihood function for the observed mass spectrum, obtained by a fit to the background functional form and a signal shape derived from MC simulations. A prior probability density constant in all positive values of signal cross section, and zero at negative values, is used. The posterior probability is then integrated to determine the 95% CL for a given range of models, usually parameterised by the mass of the resonance.

Limits are determined on $\sigma \times A$ for a hypothetical new particle decaying into dijets. The acceptance includes all reconstruction steps and analysis cuts described above, and assumes that the trigger is fully efficient. (The efficiency is greater than 99% for all analyses.)

The effects of systematic uncertainties due to the knowledge of the luminosity and of the jet energy scale (JES) are included. The luminosity uncertainty for the 2011 data is 3.7% [35]. The systematic uncertainty on the JES is taken from the 2010 data [18] analysis, and is adapted to the 2011 analysis taking into account in particular the new event pileup conditions (described below). The JES uncertainty shifts resonance peaks by less than 4%. The background parameterization uncertainty is taken from the fit results, as described in [6]. The effect of the jet energy resolution (JER) uncertainty is found to be negligible. All of these uncertainties are incorporated into the fit by varying all sources according
to Gaussian probability distributions and convolving them with the Bayesian posterior probability distribution. Credibility intervals are then calculated numerically from the resulting convolutions. No uncertainties are associated with the theoretical model of new physics, as in each case the model is a benchmark that incorporates a specific choice of model parameters, of PDF set, and of MC tune. Previous ATLAS studies have already explored the impact of different MC tunes and PDF sets on the q* theoretical prediction [4].

In 2011, the instantaneous luminosity has risen to a level where corrections must be made for multiple pp collisions occurring in the same bunch crossing ("pileup"), whose presence affects the measurement of calorimeter energy deposits associated with the hard-scattering event under study. All simulated samples used in this analysis include a Poisson distributed number of MC minimum bias events added to the hard interaction to account for "in-time" pileup caused by additional collisions in the same bunch crossing. Further account must be taken of "out-of-time" pileup originating from collisions in bunches preceding or following the one of interest, due to the long response time of the liquid argon calorimeters. With the 50 ns bunch spacing in the LHC for these data, up to 12 preceding bunches and 1–2 following bunches contribute to out-of-time pileup. Although the conditions modelled in MC are realistic, they may not perfectly match the data due to bunch train structure and instantaneous luminosity variations in the LHC. The MC events are therefore reweighted to remove these residual differences. Following this procedure the pileup description in MC is sufficiently good that no additional uncertainty on the JES is required for jets with \(p_T > 100 \) GeV.

The resulting limits are shown in Fig. 2. For excited quarks, the acceptance \(\mathcal{A} \) ranges from 37 to 51\% for \(m_{q^*} \) varying from 0.8 to 5.0 TeV, and is never lower than 47\% above masses of 1.1 TeV. The main impact on the acceptance comes from the rapidity requirements. Using the theoretical prediction for \(q^* \) production described above, the expected mass limit at 95\% CL is 2.81 TeV, and the observed limit is 2.99 TeV.

The axigluon results are obtained from the \(\sigma \times \mathcal{A} \) limits determined from the \(q^* \) analysis. The axigluon theoretical prediction is derived from the cross section provided by CalcHEP at each simulated mass, \(m \), within the restricted mass range 0.7 to 1.3 TeV, after applying the kinematic selections. Using the axigluon theoretical \(\sigma \times \mathcal{A} \) thus defined, the expected axigluon mass limit at 95\% CL is 3.07 TeV, and the observed limit is 3.32 TeV. This method has been confirmed by full simulation of axigluon samples at three mass points, showing that the differences between parton level and full simulation are negligible compared to the effects of other uncertainties.

Fig. 2(b) shows the limits on the accepted cross section \(\sigma \times \mathcal{A} \) for colour octet resonances. The expected mass limit at 95\% CL is 1.77 TeV, and the observed limit is 1.92 TeV. Since the colour octet scalar cross section decreases much more rapidly with \(m \) than those for excited quark and axigluon production, the resulting limits are considerably lower.

For all three models used in these studies, if systematic uncertainties had not been included the exclusion limits would be approximately 60 GeV higher.

7. Model independent limit setting

In addition to specific theoretical models, limits are set to a collection of hypothetical signals that are assumed to be Gaussian-distributed in \(m_{jj} \) with mean \(\langle m_{jj} \rangle \) ranging from 0.9 to 4.0 TeV and standard deviation \(\sigma_{m_{jj}} \) from 5\% to 15\% of the mean.

Systematic uncertainties are treated using the same methods as applied in model dependent limit setting. The only difference for the Gaussian analysis arises from the decay of the dijet final state not being simulated. In place of this, it is assumed that the dijet signal distribution is Gaussian in shape, and the JES is adjusted by modelling it as an uncertainty of 4\% in the central value of the Gaussian signal.

The resulting limits on \(\sigma \times \mathcal{A} \) for the Gaussian template model are shown in Fig. 3. Relative to previous studies [6] they are substantially improved in the region above 900 GeV. These results may be utilised to set limits on new physics models beyond those considered in these studies, using the procedure described in Appendix A.
8. Conclusion

The dijet mass spectrum measured by the ATLAS experiment has been examined in a search for resonances from new phenomena, using 1.0 fb$^{-1}$ of 7 TeV pp collision data taken in 2011. The observed distribution, which extends up to masses of \approx 4 TeV, is in agreement with a smooth function representing the SM expectation. No evidence for the production of new resonances is found. 95% CL mass limits using Bayesian methodology have been derived in the context of several models of new physics, as summarized in Table 1. For excited quarks and axigluons, the current results exceed the limits obtained by ATLAS with the 2010 data by approximately one TeV. Exclusion limits on colour octet scalar resonances have been established for the first time in ATLAS. The limits reported in this Letter are the most stringent to date.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMIT CR, MPO CR and VSC CR, Czech Republic; DLRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3–CNRS, CEA-DSMI/IRFU, France; GNAS, Georgia; BMWF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRIECES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Appendix A. Setting limits on new models

The following procedure is appropriate for resonances that are approximately Gaussian near the core, and with tails that are well below the background. For convenience, the results of Fig. 3 are provided in Table 2.

(1) For a MC sample generated with the mass of the hypothetical new particle set to m_G, compute an initial acceptance including the branching ratio into dijets. Then apply the kinematic cuts on the parton p_T and $|y|$ used in this analysis. (2) Approximate the reduction of acceptance due to the calorimeter (temporary) readout problem by eliminating events where a parton enters the

<table>
<thead>
<tr>
<th>Model</th>
<th>Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excited quark q^*</td>
<td>2.81</td>
<td>2.99</td>
</tr>
<tr>
<td>Axigluon</td>
<td>3.07</td>
<td>3.32</td>
</tr>
<tr>
<td>Colour octet scalar</td>
<td>1.77</td>
<td>1.92</td>
</tr>
</tbody>
</table>

Table 2

The 95% CL upper limit on $\sigma \times A$ [pb] for the Gaussian “model-independent” scenario. The symbols m_G and σ_G are, respectively, the mean mass and standard deviation of the Gaussian.

<table>
<thead>
<tr>
<th>m_G (GeV)</th>
<th>$\sigma_\text{G}/m_\text{G}$</th>
<th>5%</th>
<th>7%</th>
<th>10%</th>
<th>15%</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>0.69</td>
<td>0.83</td>
<td>0.99</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>950</td>
<td>0.67</td>
<td>0.84</td>
<td>1.1</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0.63</td>
<td>0.82</td>
<td>1.2</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>1050</td>
<td>0.61</td>
<td>0.76</td>
<td>1.1</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>1150</td>
<td>0.53</td>
<td>0.73</td>
<td>1.0</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>0.51</td>
<td>0.67</td>
<td>0.93</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td>0.48</td>
<td>0.58</td>
<td>0.73</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td>0.43</td>
<td>0.51</td>
<td>0.58</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>1350</td>
<td>0.39</td>
<td>0.41</td>
<td>0.42</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>0.24</td>
<td>0.27</td>
<td>0.31</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>1450</td>
<td>0.17</td>
<td>0.19</td>
<td>0.25</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>0.15</td>
<td>0.17</td>
<td>0.21</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>1550</td>
<td>0.15</td>
<td>0.15</td>
<td>0.17</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>0.14</td>
<td>0.13</td>
<td>0.13</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>1650</td>
<td>0.11</td>
<td>0.12</td>
<td>0.12</td>
<td>0.13</td>
<td></td>
</tr>
</tbody>
</table>
region -0.1 to 1.5 in η, and -0.9 to -0.5 in ϕ. (Indicatively, the acceptance of q^* is reduced by a factor 0.92.) (3) Smear the signal mass distribution to reflect the detector resolution. In the absence of a better detector simulation tool, use the mass resolution given in Section 2, which is derived from full ATLAS simulation. (4) Since a Gaussian signal shape has been assumed in determining the limits, any long tails in the reconstructed m_{jj} should be removed in the sample under study. The recommendation (based on optimization using q^* templates) is to retain events with m_{jj} between 0.8M and 1.2M. The mean mass, m, of this truncated signal should be calculated. (5) The fraction of MC events surviving the first four steps determines the modified acceptance, A. (6) From Table 2 select m_{C} so that $m_{C} = m$. If the exact value of m is not among the listed values of m_{C}, check the limit for the two values of m_{C} that are directly above and below m, and use the larger of the two limits to be conservative. (7) To retain enough of the information in the full signal template, and at the same time reject tails that would invalidate the Gaussian approximation, the following truncation procedure is recommended. For this mass point, choose a Gaussian distribution contained within the truncation interval of $[0.8M, 1.2M]$, since the interval $[0.8M, 1.2M]$ corresponds to $[m_{C} - 2.5\sigma_{C}, m_{C} + 2.5\sigma_{C}]$. For the q^* case a good choice is $\sigma_{C} = (1.2M - 0.8M)/5$. This σ_{C} corresponds to a Gaussian distribution contained within the truncation interval of $[0.8M, 1.2M]$, since the interval $[0.8M, 1.2M]$ corresponds to $[m_{C} - 2.5\sigma_{C}, m_{C} + 2.5\sigma_{C}]$. The mean mass, m, and the tabulated 95% CL upper limit corresponding to the chosen m_{C} and σ values to the $\sigma \times A$ obtained from the theoretical cross section of the model multiplied by the acceptance defined in step (5) above.

Open access

This article is published Open Access at sciedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver, BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada

Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison, WI, United States

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven, CT, United States

Yerevan Physics Institute, Yerevan, Armenia

Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas – LIP, Lisboa, Portugal.
b Also at Faculdade de Ciencias and CFPNL, Universidade de Lisboa, Lisboa, Portugal.
c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
d Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
e Also at TRIUMF, Vancouver, BC, Canada.
f Also at Department of Physics, California State University, Fresno, CA, United States.
g Also at Faculty of Physics and Applied Computer Science, AGH – University of Science and Technology, Krakow, Poland.
h Also at Fermilab, Batavia, IL, United States.
i Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
j Also at Università di Napoli Parthenope, Napoli, Italy.
k Also at Institute of Particle Physics (IPP), Canada.
l Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
m Also at Louisiana Tech University, Ruston, LA, United States.
n Also at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.
o Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
p Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
q Also at Manhattan College, New York, NY, United States.
r Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.
s Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
t Also at High Energy Physics Group, Shandong University, Shandong, China.
u Also at Section de Physique, Université de Genève, Geneva, Switzerland.
w Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
x Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
y Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
z Also at California Institute of Technology, Pasadena, CA, United States.

a Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
b Also at Department of Physics, Oxford University, Oxford, United Kingdom.
c Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
d Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.
e Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.
f Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.
g Also at Department of Physics, Nanjing University, Jiangsu, China.

* Deceased.