Search for new physics in the dijet mass distribution using 1 fb-1 of pp collision data at $\sqrt{s} = 7$ TeV collected by the ATLAS detector

DOI
10.1016/j.physletb.2012.01.035

Publication date
2012

Document Version
Final published version

Published in
Physics Letters B

Citation for published version (APA):
Search for new physics in the dijet mass distribution using 1 fb⁻¹ of pp collision data at √s = 7 TeV collected by the ATLAS detector

ATLAS Collaboration

1. Introduction

The Standard Model (SM) description of high energy proton–proton (pp) collisions is based on the framework of quantum chromodynamics (QCD) in the perturbative regime, where the most energetic collisions result from the 2 → 2 scattering of a pair of partons (quarks or gluons). Partons emerging from the collision shower and hadronise, in the simplest case producing two jets of particles, a “dijet”, that may be reconstructed to determine the dijet invariant mass, mjj, the mass of the two-parton system.

Previous studies of dijet mass distributions [1–6] have shown that these analyses are sensitive to the highest mass scales accessible with hadronic final states. In the present study, the dijet mass distribution is examined in a search for resonances due to new phenomena localised near a given mass, employing a data-driven background estimate that does not rely on detailed QCD calculations.

In addition to new physics benchmarks used in previous ATLAS dijet analyses, namely excited quarks (q⁺) [7,8], and axigluons [9–11], the present study includes a third hypothetical object: the colour octet scalar resonances. Any of these objects could produce a peak in the dijet spectrum in the vicinity of their mass.

The present study is based on pp collisions at a centre-of-mass (CM) energy of 7 TeV produced at the CERN Large Hadron Collider (LHC), measured by the ATLAS detector. This data set corresponds to an integrated luminosity of 1.0 fb⁻¹ recorded between March and June 2011. The most stringent limits set previously by the ATLAS Collaboration were based on the full 2010 data sample, corresponding an integrated luminosity of 36 pb⁻¹ [6].

Excited quarks were excluded below 2.15 TeV, and axigluons below 2.10 TeV. The CMS Collaboration has recently completed a dijet resonances analysis in 1.0 fb⁻¹ of 2011 data, excluding excited quarks below 2.49 TeV and axigluons below 2.47 TeV, along with other limits [13].

A detailed description of the ATLAS detector is available in [14]. The detector is instrumented over almost the entire solid angle around the pp collision point with layers of tracking detectors, calorimeters, and muon chambers. Jet measurements are made using a finely segmented calorimeter system designed to detect the high energy jets that are the focus of this study with high efficiency and excellent energy resolution. ATLAS has a three-level trigger system, with the first level trigger (L1) being based on custom-built hardware and the two higher level triggers (HLT) being realised in software.

ATLAS uses a right-handed coordinate system with the z-axis along the beam pipe. The x-axis points to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle. The pseudorapidity is defined in terms of the polar angle θ as η = −ln tan(θ/2). Transverse momentum and energy are defined as pT = p sin θ and E_T = E sin θ, respectively.

The dijet mass, mjj, is derived from the vectorial sum of the four-momenta of the two highest pT jets in the event. Kinematic criteria based on momentum and angular variables are applied to increase the sensitivity to centrally produced high mass resonances.

The angular distribution for 2 → 2 parton scattering is predicted by QCD in the CM frame of the colliding partons, which moves along the beamline due to the differing momentum fractions (Bjorken x) of the colliding partons. If E is the jet energy and p_z is the z-component of the jet’s momentum, the rapidity of the
jet is given by $y \equiv \frac{1}{2} \ln \left(\frac{1 + x}{1 - x} \right)$. The rapidities of the two highest p_T jets are denoted by y_1 and y_2, and the corresponding rapidity of these partons in their mutual CM frame is $y^* = \frac{1}{2}(y_1 - y_2)$.

2. Jet reconstruction and event selection

Individual jets are reconstructed using the anti-k_t jet clustering algorithm [15,16] with the distance parameter $R = 0.6$. The inputs to this algorithm are clusters [17] of calorimeter cells with energy depositions significantly above the measured noise. Jet four-momenta are constructed as the vectorial sum of clusters of cells, treating each cluster as an (E, \vec{p}) four-vector with zero mass, assuming that the corresponding particle stems from the primary vertex.

The jet four-momenta are then corrected [18] as a function of η and p_T for various effects, the largest of which are the hadronic shower response and detector material distribution. This is done using a calibration scheme based on Monte Carlo (MC) studies including full detector simulation, and validated with extensive test-beam [19] and collision data [20–22] studies. Measured dijet mass distributions are not corrected for detector resolution, which, in terms of mass smearing, is $\sigma_{\text{sm}} \approx 5\%$ at $m_{jj} \approx 1$ TeV, drops to 4.5% at 2 TeV, and asymptotically approaches 4% at m_{jj} of 5 TeV and above.

The event selection starts with the first-level trigger, which selects events that have at least one large transverse energy deposition in the calorimeters, with the transverse energy threshold selecting events that have at least one large transverse energy deposition significantly above the measured noise. Jet four-momenta are constructed as the vectorial sum of clusters of cells, treating each cluster as an (E, \vec{p}) four-vector with zero mass, assuming that the corresponding particle stems from the primary vertex.

The jet four-momenta are then corrected [18] as a function of η and p_T for various effects, the largest of which are the hadronic shower response and detector material distribution. This is done using a calibration scheme based on Monte Carlo (MC) studies including full detector simulation, and validated with extensive test-beam [19] and collision data [20–22] studies. Measured dijet mass distributions are not corrected for detector resolution, which, in terms of mass smearing, is $\sigma_{\text{sm}} \approx 5\%$ at $m_{jj} \approx 1$ TeV, drops to 4.5% at 2 TeV, and asymptotically approaches 4% at m_{jj} of 5 TeV and above.

The event selection starts with the first-level trigger, which selects events that have at least one large transverse energy deposition in the calorimeters, with the transverse energy threshold increasing over the period of the data-taking as the instantaneous luminosity of the LHC pp collisions increased.

The current data set has been recorded using a jet trigger that was usually not prescaled. The chosen trigger has a nominal jet p_T threshold of 180 GeV. After applying all other analysis cuts, m_{jj} is required to be greater than 717 GeV in order to attain a trigger efficiency of at least 99% over the full range of the dijet mass distribution.

Events are required to have a primary collision vertex defined by at least five charged-particle tracks. Events with a poorly measured jet p_T [23] with p_T greater than 30% of the p_T of the next-to-leading jet are vetoed, to avoid cases where such a jet would cause incorrect identification of the leading jets. This rejects less than 0.002% of the events.

Additional kinematic criteria are applied, requiring that the two leading jets each satisfy $|\eta_{\text{jet}}| < 2.8$ and that the rapidity in the parton CM frame satisfies $|y^*| < 0.6$. These criteria favour central collisions and have been shown, based on studies of expected signals and QCD background, to optimise the analysis sensitivity.

A final selection is made to avoid the calorimeter region from -0.1 to 0.1 in η and from -0.9 to -0.5 in ϕ, which was in large part affected by readout problems for most of the data used in these studies. Events with jets in this region are discarded. This rejects less than 3.7%.

3. Comparing data to a smooth background

The observed dijet mass distribution after all selection cuts is shown in Fig. 1. As in the previous ATLAS studies, the m_{jj} spectrum is fit to the smooth functional form

$$f(x) = p_1(1 - x)^{p_2} x^{p_3} e^{p_4 \ln x},$$

where $x \equiv m_{jj}/\sqrt{s}$ and the p_i are fit parameters. This ansatz has been shown empirically to accurately model the steeply falling QCD dijet mass spectrum [3–6]. The m_{jj} bins are of variable width, increasing from ~ 50 to ~ 200 GeV for dijet masses from 0.85 to 4.5 TeV, respectively, to optimise the performance of the resonance search algorithm discussed in the next section.

The bottom plot of Fig. 1 shows the significance, in standard deviations, of the difference between the data and the prediction in each bin. These are purely statistical, and based on Poisson distributions. The contents of a given bin are used to determine the p-value – the probability of the background fluctuating higher than the observed excess, or lower than the observed deficit. The p-value is transformed to a significance, in terms of an equivalent number of standard deviations (the z-value). Where there is an excess (deficit) in data in a given bin, the significance is plotted as positive (negative). In mass bins with small expected number of events, where the observed number of events is similar to the expectation, the Poisson probability of a fluctuation at least as high (low) as the observed excess (deficit) can be greater than 50%, as a result of the asymmetry of the Poisson distribution. Such bins present no statistical interest and, for simplicity, bars are not drawn for them.

To determine the degree of consistency between data and the fitted background, the p-value of the fit is obtained by calculating the χ^2 from the data, and comparing this result to the χ^2 distribution obtained from pseudoexperiments. The resulting p-value is 0.96, showing that there is good agreement between the data and the functional form.

4. Search for resonances

As a more sensitive test, the BUMPHunter algorithm [24,25] is used to establish the presence or absence of a resonance in the dijet mass spectrum. To optimise the sensitivity of this algorithm, the m_{jj} binning strategy is to establish a minimum width for resonances to be considered physical. To this end, the relatively narrow $q^\ast m_{jj}$ template from full MC simulation [26], described below for subsequent studies, has been used to establish the binning. If the width of the resonance is defined as $\pm \sigma_{m_{jj}}$, the greatest sensitivity at the minimum width is achieved by setting the bin width to $\sigma_{m_{jj}}$, half the resonance width. The final result of this procedure is that the variable bin sizes are typically 6.5% to 7.0% of m_{jj} in width, somewhat wider than detector resolution due to the finite natu-
eral width of \(q^* \), which varies between about 3% and 3.5% of the \(q^* \) mass.

In the current implementation, the BUMPHEUR algorithm searches for the signal window with the most significant excess of events above background. Starting with a two-bin window, the algorithm increases the signal window and shifts its location until all possible bin ranges, up to half the mass range spanned by the data, have been tested. The most significant departure from the smooth spectrum (“bump”) is defined by the set of bins that have the smallest probability of arising from a background fluctuation assuming Poisson statistics.

The BUMPHEUR algorithm accounts for the so-called “look elsewhere effect” (or “trials factor effect”) [27] by performing a series of pseudoexperiments to determine the probability that random fluctuations in the background-only hypothesis would create an excess as significant as the one observed anywhere in the spectrum. Variable width binning reduces the penalty due to this effect, while retaining sensitivity.

To prevent any new physics signal from biasing the background estimate, if the biggest local excess from the background fit has a \(p \)-value smaller than 0.01, this region is excluded and a new background fit is performed. No such exclusion is needed for this data set.

The most significant discrepancy identified by the BUMPHEUR algorithm in the observed dijet mass distribution reported in Fig. 1 is a 2-bin excess in the interval 1.16 to 1.35 TeV. The probability of observing such an excess or larger somewhere in the mass spectrum for a background only hypothesis is 0.82. This test shows that there is no evidence for a resonance signal in the \(m_{jj} \) spectrum.

5. New physics models

Exclusion limits are set on three new physics scenarios expected to give rise to resonant dijet production.

For the first of these, excited quarks, \(q^* \), a \(q \bar{q} \rightarrow q^* \) production model [7,8] is used, with the assumption of spin 1/2 and quark-like SM couplings constants. The compositeness scale (\(\Lambda \)) is set to the \(q^* \) mass. Signal events are produced using the Pythia event generator [28], a leading-order parton-shower MC generator, with the MRST2007LO [29] parton distribution functions (PDFs), with settings established by the ATLAS default MC10 [30] Monte Carlo tune. The renormalization and factorization scales are set to the mean \(p_T \) of the two leading partons for each event. Pythia is also used to decay the excited quarks to all possible SM final states, which are predominantly \(gg \), but also \(qW, qZ, \) and \(q\gamma \). The generated events are passed through the detailed simulation of the ATLAS detector [26], which uses the GEANT4 package [31] for simulation of particle transport, interactions, and decays. The simulated events are then reconstructed in the same way as the data to produce predicted dijet mass distributions that can be compared with the observed distributions.

The second model is axigluon production [9-11] via an interaction given by the Lagrangian

\[
\mathcal{L}_{\text{Axigluon}} = g_{\text{QCD}} q A_{\mu} A^\mu q, \tag{2}
\]

where \(g_{\text{QCD}} = 4\pi \alpha_s \) is the QCD coupling constant and \(A_{\mu} \) is the axigluon field representing a massive state with axial coupling to quarks. Parity conservation prevents the axigluon from coupling to two gluons. Parton-level events are generated, at leading-order approximation, using the CalcHEP Monte Carlo package [32], for chosen masses, \(m \), of the axigluon. The MRST2007LO PDF set was used. The axigluon dijet mass has longer tails at high and low masses than the \(q^* \) distribution, but these two shapes are interchangeable within the range 0.7 m to 1.3 m for all masses of interest. Since the axigluon tails outside this range are well below the SM background, the predicted signal may be analyzed by cutting events beyond this range and accounting for the reduced acceptance. The axigluon MC prediction for \(\sigma \times A \), the production cross section within the acceptance, is defined to include these cuts by applying them at the level of CalcHEP generation, along with the kinematic cuts in \(p_T \) and rapidity. In the limit setting analysis, these axigluon results are compared to the observed \(\sigma \times A \) limits from the \(q^* \) analysis. This method is discussed in more detail in Section 6.

The third resonant hypothesis, the colour octet scalar (s8) model, is a prototype for many possible exotic coloured resonances [12]. Colour octon resonances can couple to gluons, which have large parton luminosity at the LHC. One possible interaction is

\[
\mathcal{L}_{s8} = g_{\text{QCD}} d^{ABC}_{\text{oct}} q A_{\mu} A_{\nu} F_{\mu\nu}^B \mu^C, \tag{3}
\]

where \(d^{ABC}_8 \) is the colour octet scalar field, \(A_\mu \) is the scalar coupling (assumed to be unity), and \(g_{\text{QCD}} \) is the SU(3) isoscalar factor; \(\Lambda_s \) is the new physics scale which is set to the resonance mass, \(M_{s8} \). This model leads to a very simple event topology, with two gluons in the initial and final states, yielding high \(p_T \) dijets. MADGRAPH 5 [33] is used to generate parton level events at leading-order approximation. Pythia with CTEQ5L1 PDFs is used in this generation, with the ATLAS MC09 tune [34]. These samples are processed through the full ATLAS detector simulation.

The observed limits on s8 are less strict than the corresponding \(q^* \) limits, in part because the s8 signal is much wider than \(q^* \). Much of this width increase is due to final state radiation, which is larger for gluon-jets than for quark-jets. In addition, the initial state for s8 production contains gluons, which have small parton density at high mass. Thus, s8 are much more likely to be off-mass-shell than \(q^* \).

6. Model dependent limit setting

In the absence of any observed significant discrepancy from the zero-signal hypothesis, the Bayesian method documented in [6] is used to set 95% credibility level (CL) upper limits.

Bayesian credible intervals are set by defining a posterior probability density function for the observed mass spectrum, obtained by a fit to the background functional form and a signal shape derived from MC simulations. A prior probability density constant in all positive values of signal mass, \(M_{s8} \). This model leads to a very simple event topology, with two gluons in the initial and final states, yielding high \(p_T \) dijets. MADGRAPH 5 [33] is used to generate parton level events at leading-order approximation. Pythia with CTEQ5L1 PDFs is used in this generation, with the ATLAS MC09 tune [34]. These samples are processed through the full ATLAS detector simulation.

The observed limits on s8 are less strict than the corresponding \(q^* \) limits, in part because the s8 signal is much wider than \(q^* \). Much of this width increase is due to final state radiation, which is larger for gluon-jets than for quark-jets. In addition, the initial state for s8 production contains gluons, which have small parton density at high mass. Thus, s8 are much more likely to be off-mass-shell than \(q^* \).

Limits are determined on \(\sigma \times A \) for a hypothetical new particle decaying into dijets. The acceptance includes all reconstruction steps and analysis cuts described above, and assumes that the trigger is fully efficient. (The efficiency is greater than 99% for all analyses.)

The effects of systematic uncertainties due to the knowledge of the luminosity and of the jet energy scale (JES) are included. The luminosity uncertainty for the 2011 data is 3.7% [35]. The systematic uncertainty on the JES is taken from the 2010 data [18] analysis, and is adapted to the 2011 analysis taking into account in particular the new event pileup conditions (described below). The JES uncertainty shifts resonance peaks by less than 4%. The background parameterization uncertainty is taken from the fit results, as described in [6]. The effect of the jet energy resolution (JER) uncertainty is found to be negligible. All of these uncertainties are incorporated into the fit by varying all sources according
to Gaussian probability distributions and convolving them with the Bayesian posterior probability distribution. Credibility intervals are then calculated numerically from the resulting convolutions. No uncertainties are associated with the theoretical model of new physics, as in each case the model is a benchmark that incorporates a specific choice of model parameters, of PDF set, and of MC tune. Previous ATLAS studies have already explored the impact of different MC tunes and PDF sets on the q^* theoretical prediction [4].

In 2011, the instantaneous luminosity has risen to a level where corrections must be made for multiple pp collisions occurring in the same bunch crossing ("pileup"), whose presence affects the measurement of calorimeter energy depositions associated with the hard-scattering event under study. All simulated samples used in this analysis include a Poisson distributed number of MC minum bias events added to the hard interaction to account for "in-time" pileup caused by additional collisions in the same bunch crossing. Further account must be taken of "out-of-time" pileup originating from collisions in bunches preceding or following the one of interest, due to the long response time of the liquid argon calorimeters. With the 50 ns bunch spacing in the LHC for these data, up to 12 preceding bunches and 1–2 following bunches contribute to out-of-time pileup. Although the conditions modelled in MC are realistic, they may not perfectly match the data due to bunch train structure and instantaneous luminosity variations in the LHC. The MC events are therefore reweighted to remove these residual differences. Following this procedure the pileup description in MC is sufficiently good that no additional uncertainty on the JES is required for jets with $p_T > 100$ GeV.

The resulting limits are shown in Fig. 2. For excited quarks, the acceptance $|A|$ ranges from 37 to 51% for m_{q^*} varying from 0.8 to 5.0 TeV, and is never lower than 47% above masses of 1.1 TeV. The main impact on the acceptance comes from the rapidity requirements. Using the theoretical prediction for q^* production described above, the expected mass limit at 95% CL is 2.81 TeV, and the observed limit is 2.99 TeV.

The axigluon results are obtained from the $\sigma \times A$ limits determined from the q^* analysis. The axigluon theoretical prediction is derived from the cross section provided by CalcHEP at each simulated mass, m, within the restricted mass range 0.7 to 1.3 tm, after applying the kinematic selections. Using the axigluon theoretical $\sigma \times A$ thus defined, the expected axigluon mass limit at 95% CL is 3.07 TeV, and the observed limit is 3.32 TeV. This method has been confirmed by full simulation of axigluon samples at three mass points, showing that the differences between parton level and full simulation are negligible compared to the effects of other uncertainties.

Fig. 2(b) shows the limits on the accepted cross section $\sigma \times A$ for colour octet resonances. The expected mass limit at 95% CL is 1.77 TeV, and the observed limit is 1.92 TeV. Since the colour octet scalar cross section decreases much more rapidly with m than those for excited quark and axigluon production, the resulting limits are considerably lower.

For all three models used in these studies, if systematic uncertainties had not been included the exclusion limits would be approximately 60 GeV higher.

7. Model independent limit setting

In addition to specific theoretical models, limits are set to a collection of hypothetical signals that are assumed to be Gaussian-distributed in m_{jj} with mean (m_C) ranging from 0.9 to 4.0 TeV and standard deviation (σ_C) from 5% to 15% of the mean.

Systematic uncertainties are treated using the same methods as applied in model dependent limit setting. The only difference for the Gaussian analysis arises from the decay of the dijet final state not being simulated. In place of this, it is assumed that the dijet signal distribution is Gaussian in shape, and the JES is adjusted by modelling it as an uncertainty of 4% in the central value of the Gaussian signal.

The resulting limits on $\sigma \times A$ for the Gaussian template model are shown in Fig. 3. Relative to previous studies [6] they are substantially improved in the region above 900 GeV. These results may be utilised to set limits on new physics models beyond those considered in these studies, using the procedure described in Appendix A.
Appendix A. Setting limits on new models

The following procedure is appropriate for resonances that are approximately Gaussian near the core, and with tails that are well below the background. For convenience, the results of Fig. 3 are provided in Table 2.

(1) For a MC sample generated with the mass of the hypothetical new particle set to \(M \), compute an initial acceptance including the branching ratio into dijets. Then apply the kinematic cuts on the parton \(\eta, p_T \), and \(|y^*| \) used in this analysis.

(2) Approximate the reduction of acceptance due to the calorimeter (temporary) readout problem by eliminating events where a parton enters the readout problem by eliminating events where a parton enters the calorimeter...

Table 2

The 95% CL upper limit on \(\sigma \times A \) [pb] for the Gaussian “model-independent” scenario. The symbols \(m_G \) and \(\sigma_c/m_c \) are, respectively, the mean mass and standard deviation of the Gaussian.

<table>
<thead>
<tr>
<th>(m_G) (GeV)</th>
<th>Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>0.69</td>
<td>0.83</td>
</tr>
<tr>
<td>950</td>
<td>0.67</td>
<td>0.84</td>
</tr>
<tr>
<td>1000</td>
<td>0.63</td>
<td>0.82</td>
</tr>
<tr>
<td>1050</td>
<td>0.61</td>
<td>0.76</td>
</tr>
<tr>
<td>1100</td>
<td>0.53</td>
<td>0.73</td>
</tr>
<tr>
<td>1150</td>
<td>0.51</td>
<td>0.67</td>
</tr>
<tr>
<td>1200</td>
<td>0.50</td>
<td>0.62</td>
</tr>
<tr>
<td>1250</td>
<td>0.48</td>
<td>0.58</td>
</tr>
<tr>
<td>1300</td>
<td>0.43</td>
<td>0.51</td>
</tr>
<tr>
<td>1350</td>
<td>0.39</td>
<td>0.41</td>
</tr>
<tr>
<td>1400</td>
<td>0.24</td>
<td>0.27</td>
</tr>
<tr>
<td>1450</td>
<td>0.17</td>
<td>0.19</td>
</tr>
<tr>
<td>1500</td>
<td>0.15</td>
<td>0.17</td>
</tr>
<tr>
<td>1550</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>1600</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>1650</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>1700</td>
<td>0.095</td>
<td>0.097</td>
</tr>
<tr>
<td>1750</td>
<td>0.073</td>
<td>0.078</td>
</tr>
<tr>
<td>1800</td>
<td>0.059</td>
<td>0.067</td>
</tr>
<tr>
<td>1850</td>
<td>0.055</td>
<td>0.062</td>
</tr>
<tr>
<td>1900</td>
<td>0.054</td>
<td>0.062</td>
</tr>
<tr>
<td>1950</td>
<td>0.052</td>
<td>0.064</td>
</tr>
<tr>
<td>2000</td>
<td>0.054</td>
<td>0.062</td>
</tr>
<tr>
<td>2100</td>
<td>0.053</td>
<td>0.061</td>
</tr>
<tr>
<td>2200</td>
<td>0.052</td>
<td>0.058</td>
</tr>
<tr>
<td>2300</td>
<td>0.047</td>
<td>0.052</td>
</tr>
<tr>
<td>2400</td>
<td>0.039</td>
<td>0.044</td>
</tr>
<tr>
<td>2500</td>
<td>0.030</td>
<td>0.035</td>
</tr>
<tr>
<td>2600</td>
<td>0.024</td>
<td>0.030</td>
</tr>
<tr>
<td>2700</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>2800</td>
<td>0.016</td>
<td>0.013</td>
</tr>
<tr>
<td>2900</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>3000</td>
<td>0.007</td>
<td>0.008</td>
</tr>
<tr>
<td>3200</td>
<td>0.006</td>
<td>0.006</td>
</tr>
<tr>
<td>3400</td>
<td>0.005</td>
<td>0.006</td>
</tr>
<tr>
<td>3600</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>3800</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>4000</td>
<td>0.004</td>
<td>0.005</td>
</tr>
</tbody>
</table>
region -0.1 to 1.5 in η, and -0.9 to -0.5 in ϕ. (Indicatively, the acceptance of q^* is reduced by a factor 0.92.) (3) Smeared the signal mass distribution to reflect the detector resolution. In the absence of a better detector simulation tool, use the mass resolution given in Section 2, which is derived from full ATLAS simulation. (4) Since a Gaussian signal shape has been assumed in determining the limit, any long tails in the reconstructed m_{jj} should be removed in the sample under study. The recommendation (based on optimization using q^* templates) is to retain events with m_{jj} between 0.8 M and 1.2 M. The mean mass, m, of this truncated signal should be calculated. (5) The fraction of MC events surviving the first four steps determines the modified acceptance, A. (6) From Table 2 select m_C so that $m_C = m$. If the exact value of m is not among the listed values of m_C, check the limit for the two values of m_C that are directly above and below m, and use the larger of the two limits to be conservative. (7) To retain enough of the information in the full signal template, and at the same time reject tails that would invalidate the Gaussian approximation, the following truncation procedure is recommended. For this mass point, choose a value of σ_C/m_C such that the width $2\sigma_C$ is well contained in the (truncated) mass range. For the q^* a good choice is empirically found to be $\sigma_C = (1.2M - 0.8M)/5$. This σ_C corresponds to a Gaussian distribution contained within the truncation interval of [0.8 M, 1.2 M], since the interval [0.8 M, 1.2 M] corresponds to $[m_C - 2.5\sigma_C, m_C + 2.5\sigma_C]$. For the q^* case a good choice is $\sigma_C = (1.2M - 0.8M)/5$ so that 95% of the Gaussian spans $4 \times (0.4/5)M$. Use this value to pick the closest σ_C/m_C value, rounded up to be conservative. (8) Compare the tabulated 95% CL upper limit corresponding to the chosen m_C and σ_C/m_C values to the $\sigma \times A$ obtained from the theoretical cross section of the model multiplied by the acceptance defined in step (5) above.

Open access

This article is published Open Access at scien​encedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References
