Search for strong gravity signatures in same-sign dimuon final states using the ATLAS detector at the LHC

DOI
10.1016/j.physletb.2012.02.049

Publication date
2012

Document Version
Final published version

Published in
Physics Letters B

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Search for strong gravity signatures in same-sign dimuon final states using the ATLAS detector at the LHC

ATLAS Collaboration

Abstract

A search for microscopic black holes has been performed in a same-sign dimuon final state using 1.3 fb$^{-1}$ of proton–proton collision data collected with the ATLAS detector at a centre of mass energy of 7 TeV at the CERN Large Hadron Collider. The data are found to be consistent with the expectation from the Standard Model and the results are used to derive exclusion contours in the context of a low scale gravity model.

1. Introduction

Models introducing extra dimensions can provide a solution to the hierarchy problem, the fact that the Planck scale $M_{\text{Pl}} \sim 10^{16}$ TeV is much larger than the electroweak scale. In some models of extra dimensions, the gravitational field can propagate into $(n+4)$ dimensions, where n is the number of extra dimensions, while the Standard Model particles are restricted to four-dimensional space–time. Therefore, the gravitational field as measured in four dimensions is reduced in strength from the fundamental gravitational field. As a result, the Planck scale in $(n+4)$ dimensions M_D would be much smaller than the Planck scale in four dimensions M_{Pl}, and possibly comparable to the electroweak scale. An example of such a model of extra dimensions is the ADD model, which is a model of large flat extra dimensions [1–3].

If extra dimensions exist and M_D is in the TeV range, microscopic black holes with masses at the TeV scale could be produced at the Large Hadron Collider [4–8]. Black holes are expected to be produced when the classical impact parameter of two colliding partons is smaller than the higher-dimensional horizon radius corresponding to a black hole with mass equal to the invariant mass of the colliding parton system. This letter considers higher-dimensional Schwarzschild solutions, as well as Kerr solutions for black holes with initial angular momentum equal to the relative angular momentum between the two colliding partons; parton spin is ignored [9].

The production of black holes at the LHC would occur with a continuous mass distribution ranging from approximately the reduced Planck scale M_D to the proton–proton centre of mass energy of 7 TeV. The classical approximations used for black hole production and the semi-classical approximations for decay are expected to be valid only for masses well above the higher-dimensional Planck scale. A lower threshold M_{TH} is thus applied to the black hole mass to reduce the contributions from regions where the models are invalid. The production cross section is set to zero if the parton–parton centre of mass energy is below M_{TH}.

Once produced, a black hole starts to evaporate in a manner described by Hawking radiation [10] which determines the energy and multiplicity distributions of the emitted particles. The relative multiplicities of the emitted particles are determined by the number of degrees of freedom of each particle type and the decay modes of emitted unstable particles. Black hole events should therefore have a high multiplicity of high-p_T particles which is the characteristic feature exploited in this analysis. Models with rotating and non-rotating black holes are considered in this letter. The multiplicity of high-p_T particles is lower for rotating black holes [11]. No graviton initial-state radiation or emission from the black hole is considered. As a result of the emission of Hawking radiation, the mass of the produced black hole decreases. When the mass of the black hole approaches M_D, quantum gravity effects become important. In the final stage of the black hole decay, the classical evaporation is no longer a good
description. In such cases where the black hole mass is near the Planck scale, the burst model adopted by the BlackMax event generator [9,12] is used to model the final part of the decay.

A search for microscopic black holes in a multijet final state is presented in Ref. [13]. In this analysis, events are selected containing two muons of the same charge. This channel is expected to have low Standard Model backgrounds while retaining good signal acceptance. Isolated muons (i.e. muons with very little activity around them in the detector) can be produced directly from the black hole or from the decay of heavy particles such as W or Z bosons. Muons from the semi-leptonic decays of heavy-flavour hadrons produced from the black hole can have several other particles nearby and can therefore be non-isolated. In order to maintain optimal acceptance for a possible signal, only one of the muons is required to be isolated in this analysis, thereby typically increasing the acceptance in the signal region by 50%.

The decay of the black hole to multiple high-pT objects is used to divide the observed events into background-rich and potentially signal-rich regions. This is done by using the number of high-pT charged particle tracks as the criterion to assign events to each region. As will be quantified below, black hole events typically have a high number of tracks per event (N_{trk}), while Standard Model processes have sharply falling track multiplicity distributions. In the background-rich region, where only small signal contributions are expected, data and Monte Carlo simulations are used to estimate the number of events after selections. This background estimate is validated by comparing to data. The expected number of events from Standard Model processes in the signal-rich region is then compared with the measured number, and a constraint on the contribution from black hole decays is inferred.

The backgrounds from Standard Model processes are divided into two categories: processes where the two muons come from correlated decay chains and processes that produce same-sign dimuons in uncorrelated decay chains. Same-sign dimuon events in correlated decay chains are produced primarily in the decays of t¯t events and bb events. In t¯t events, the most likely case is that the leading isolated muon arises from the decay of a W-boson from one of the top-quarks, and the other muon of same charge comes from the semi-leptonic decay of a b-quark from the other top-quark. In bb events, the leading muon arises from the semi-leptonic decay of one b-quark, and the other muon from the sequential decay b → cX → μX’. Same-sign dimuons can also be produced due to B0B0 mixing. The backgrounds from t¯t and bb, and those from gauge boson pair production such as WZ are estimated from Monte Carlo samples.

Dimuon events in uncorrelated decay chains arise predominantly from the W + jets process, where the leading isolated muon comes from W-boson decay and the other muon from a π/K decay-in-flight, or the semi-leptonic decay of a b or c hadron in the remainder of the event. This background also has contributions from the Z + jets process, and from low-pT dijet events. The background from uncorrelated decay chains is estimated from data. In the signal-rich region, the dominant backgrounds come from t¯t events and from muons produced in uncorrelated decays.

The rest of this letter is organised as follows. After a brief description of the ATLAS detector in Section 2, the data set and Monte Carlo samples are described in Section 3. The event selection and the procedures to determine the backgrounds and their uncertainties are explained in Sections 4 and 5 respectively. The results and their interpretation are discussed in Section 6.

2. The ATLAS detector

The ATLAS detector [14] covers nearly the entire solid angle1 around the collision point with layers of tracking detectors, calorimeters and muon chambers. The inner detector is immersed in a 2 T magnetic field along the z-axis and provides charged particle tracking in the range |η| < 2.5. The silicon pixel detector covers the vertex region and typically provides three measurements per track, followed by the silicon microstrip tracker (SCT) which provides measurements from eight strip layers. The silicon detectors are complemented by the transition radiation tracker (TRT) which provides more than 30 straw-tube measurements per track and improves the momentum resolution.

The calorimeter system covers the pseudorapidity range |η| < 4.9. Lead-liquid argon (LAr) electromagnetic sampling calorimeters cover the range |η| < 3.2, with an additional thin LAr presampler covering |η| < 1.8 to correct for energy loss in material upstream of the calorimeters. Hadronic calorimetry is provided by a scintillator-tile calorimeter over |η| < 1.7 and two copper/LAr end-cap calorimeters over 1.75 < |η| < 3.2. The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeters for electromagnetic and hadronic measurements respectively up to |η| < 4.9.

The muon spectrometer consists of separate trigger and high-precision tracking chambers which measure the deflection of muon tracks in a magnetic field with a bending integral of approximately 2 to 8 Tm. The magnetic field is generated by three superconducting air-core toroid magnet systems. The tracking chambers cover the region |η| < 2.7 with three layers of monitored drift tubes and cathode strip chambers in the innermost region of the end-cap muon spectrometer. The muon trigger system covers the range |η| < 2.4 with resistive plate chambers in the barrel, and thin gap chambers in the endcap regions.

3. Data and Monte Carlo samples

The data used in this analysis were collected between March and July 2011 at the LHC operating at a centre of mass energy of 7 TeV. The total integrated luminosity after detector and data-quality requirements is 1.3 fb−1, with an uncertainty of 3.7% [15,16]. The data were recorded with a single muon trigger with the threshold at 20 GeV on the muon’s transverse momentum. The muon trigger efficiency reaches the plateau regime for transverse momenta above 25 GeV. The plateau efficiency is 75% in the barrel and 88% in the endcap for muons reconstructed offline. In this analysis it is required that at least one of the selected muons with p_{T} above 20 GeV matches the trigger criteria. During the considered data-taking period, the LHC configuration was such that the mean number of primary proton–proton interactions per bunch crossing was close to 6. The effect of this “pile-up” is taken into account in the analysis.

Several Monte Carlo samples are used both for signal modelling and background estimation. These samples are processed with the ATLAS full detector simulation [17] which is based on the GEANT4 toolkit [18]. The simulated events are then reconstructed with the same software chain as the data. The effect of pile-up is modelled by overlaying simulated minimum bias events onto the original

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis coinciding with the axis of the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe, referred to the x-axis. The pseudorapidity is defined in terms of the polar angle θ (with respect to the z-axis) as η = −ln(tan(θ/2)).
hard-scattering event. Monte Carlo events are then re-weighted so that the reconstructed vertex multiplicity distribution agrees with the data.

Background Monte Carlo samples are generated for \(t\bar{t} \), as well as for \(bb \) and \(cc \) processes. The latter are considered together in the following and referred to as \(b/c \) for simplicity. The \(t\bar{t} \) events are generated with MC@NLO [19,20] with an assumed top-quark mass of 172.5 GeV, and with the next-to-leading order CTEQ66 [21] parton distribution function (PDF) set. Fragmentation and hadronisation of the events is done with HERWIG [22] using JIMMY [23] for the underlying event model. The \(b/c \) Monte Carlo sample is generated and hadronised with PYTHIA [24] using the ATLAS AMBT1 tune [25]. It is produced with a filter at the generator level requiring two muons with \(p_T > 10 \) GeV each. The diboson samples (WZ and ZZ) are generated with HERWIG. They are filtered to have at least one electron or muon with \(p_T > 10 \) GeV. The single top background in the \(Wt \)-channel is estimated with AcerMC [26]. The single top backgrounds in the \(t\bar{t} \)-channel and \(s \)-channel are included in the background estimate derived from data. The \(b/c \), diboson and single top samples are all generated using the MRST2007 PDF [27]. Samples of W + jet and Z + jet events produced using Alpgen [28] are also used for cross-checks.

Signal Monte Carlo samples are generated using BLACKMAX 2.01 and hadronised with PYTHIA using the ATLAS AMBT1 tune. The samples are produced with the CTEQ66 PDF set with the mass of the black hole used as the QCD scale. For the signal samples, \(M_D \) is varied between 0.5 TeV and 2.5 TeV and \(M_{TH} \) is varied between 3 TeV and 5 TeV. In each case, samples are generated with 2, 4 and 6 extra directions.

4. Event selection

Events passing the single muon trigger are required to have at least one primary vertex with at least five associated tracks with \(p_T^{\text{track}} > 400 \) MeV. If the event has multiple primary vertices, the vertex with the largest \(\sum(p_T^{\text{track}})^2 \) is identified as the “hard-scattering vertex”.

Tracks found in the inner detector (ID) are selected using the following criteria:

\[
p_T^{\text{track}} > 1 \text{ GeV}, \quad N_{\text{pixel}} \geq 1, \quad N_{\text{SCT}} \geq 6, \quad |

\eta| < 2.4, \quad |d_0| < 1.5 \text{ mm}, \quad |z_0 \sin \theta| < 1.5 \text{ mm},
\]

where \(N_{\text{pixel}} \) and \(N_{\text{SCT}} \) are the number of hits\(^2\) from the pixel and the SCT detectors, respectively, that are associated with the track, and \(d_0 \) and \(z_0 \) are the transverse and longitudinal impact parameters measured with respect to the hard-scattering vertex. Muon candidates are reconstructed from tracks measured in the muon spectrometer (MS). The MS tracks are then matched with ID tracks using a procedure that takes material effects into account. The parameters for the resulting matched muon candidates are obtained by a statistical combination of the measurements in the MS and the ID.

At least two muons passing these selections are required in each event. Both must come from the hard-scattering vertex and satisfy \(|

\eta| < 2.4. The muon with the highest transverse momentum is required to have \(p_T > 25 \) GeV. This leading muon is also required to be isolated by requiring that the sum of transverse momenta of ID tracks in a cone in \(\eta - \phi \) space of radius \(\Delta R = 0.2 \) around the muon is less than \(0.2 \times p_T \) of the muon. The muon with the next highest transverse momentum is required to have \(p_T > 15 \) GeV and the same charge as the leading muon. No isolation requirement is made on this second muon. The two muons are required to satisfy \(\Delta R = 0.2 \) to explicitly ensure that the isolated muon is not close to the second muon. The leading muon is required to have small impact parameter significance by imposing \(|d_0/a(a_0)| < 3 \). The impact parameter is calculated with respect to the hard-scattering vertex in the event.

The track multiplicity is constructed by counting the number of ID tracks associated to the hard-scattering vertex which satisfy \(p_T > 10 \) GeV and \(|

\eta| < 2.4). By definition, the track count includes the two muon candidates. A signal-rich region is defined by selecting events with at least ten such tracks, while events with less than ten tracks are used to validate the prediction of the expected backgrounds.

All selections except the trigger are applied to the Monte Carlo events. To account for the trigger efficiency, the Monte Carlo events are weighted with the efficiency measured from data, while the differences in muon reconstruction and identification between data and simulation are accounted for by applying \(p_T \) and \(\eta \) dependent scale factors [29,30] to the Monte Carlo events when calculating the acceptance. This is important when the sub-leading muon provides the trigger as the trigger efficiency varies with \(p_T \) in the region between 20 and 25 GeV.

The tracking efficiency in data is well reproduced by the Monte Carlo simulation [31]. This is confirmed by additional studies of tracking performance in a dense environment [32]. No corrections to the Monte Carlo are therefore applied.

5. Background estimation

The two components of the background from correlated and uncorrelated particle decays are determined using a mixture of Monte Carlo simulation and techniques using data.

5.1. Correlated background estimates

The correlated background arises from processes such as \(t\bar{t} \) production where, for example, the isolated muon comes from top decay \((t \to bW \to b\mu\nu) \) and the other (non-isolated) from the antitop decay \((\bar{t} \to bW \to b\mu\nu) \). The background from \(t\bar{t} \) production is estimated from Monte Carlo simulation. The approximate next-to-next-to-leading-order production cross section of 165 pb [33–35] is used to normalise the Monte Carlo prediction. This cross section is in agreement with the measurement of the \(t\bar{t} \) cross section at ATLAS [36]. The sources of systematic uncertainty on the \(t\bar{t} \) background described in Ref. [37] are considered and the uncertainty from each source is shown in Table 1. The sources considered are the choice of generator, the amount of initial and final state radiation (ISR/FSR), the top-quark mass, and the theoretical uncertainty on the predicted production cross section. The largest contribution to the uncertainty is 9.6% on the cross section which arises from variations in the renormalisation and factorisation scales (5.6%) and the PDF uncertainty (4%). The uncertainty due to the choice of generator is evaluated by comparing the predictions of MC@NLO with those of POWHEG [38] interfaced to PYTHIA. The POWHEG samples are generated using the MRST2007 PDF set. The uncertainty due to the top-quark mass is obtained by generating \(t\bar{t} \) samples with top mass \(\pm 2.5 \) GeV from the nominal choice of 172.5 GeV. The ISR/FSR uncertainty is determined by using the AcerMC generator interfaced to PYTHIA, and by varying the ISR and FSR \(\alpha_{QCD} \), the ISR and FSR cutoff. There is also an additional 2.6% uncertainty on the \(t\bar{t} \) estimate from trigger weight and muon reconstruction efficiency scale factors.

The background from \(b/c \) production is estimated in two steps. In the first step, the background is determined in the \(N_{\text{trk}} < 10 \)

\(^2\) A hit is a signal above threshold in a particular detector element.
This yields 6480 events. The flavour rich sample is selected by inverting the isolation and identification procedure in the method is validated by varying the fit range, testing the extrapolation is assigned to the missing transverse momentum (E_T^{miss}) in data gives the Carlo sample. Applying this ratio to the heavy-flavour rich sample.

80 GeV. The backgrounds from diboson ($W+/ZZ$) and single-top ($W+/ZZ$) backgrounds.

<table>
<thead>
<tr>
<th>Source</th>
<th>Muon + fake (%)</th>
<th>tt (%)</th>
<th>b/c (%)</th>
<th>Signal (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement statistics</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtraction of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t\bar{t} + b/c + Wt +$ diboson</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISR/FSR</td>
<td>7.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-quark mass</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross section</td>
<td>$^{3.6}_{-2.6}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monte Carlo generator</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luminosity</td>
<td>3.7</td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ reco/Trig</td>
<td>2.6</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDF (acceptance)</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rescaled truth acceptance</td>
<td>14.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio (nominal/inverted)</td>
<td>8.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extrapolation to $N_{\text{trk}} \geq 10$</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>20.4</td>
<td>14.4</td>
<td>100.4</td>
<td>15.1</td>
</tr>
</tbody>
</table>

(Background) region using a heavy-flavoured enriched data sample to normalise the Monte Carlo prediction. In the second step, the estimated background is extrapolated from $N_{\text{trk}} < 10$ to $N_{\text{trk}} \geq 10$ using Monte Carlo.

To estimate b/c production in the background region, a heavy-flavour rich sample is selected by inverting the isolation and impact parameter significance requirements on the leading muon. This yields 6480 events. The b/c Monte Carlo sample is used to measure the ratio of events passing the nominal muon selection to those passing the inverted selection. The ratio is 0.33 \pm 0.03 where the uncertainty comes from the limited size of the Monte Carlo sample. Applying this ratio to the heavy-flavoured rich sample in data gives the b/c estimate in the background region. The shapes of the kinematic distributions for the b/c background, such as p_T of the muons are also obtained from the heavy-flavoured rich sample.

The N_{trk} distribution in the Monte Carlo is then fit with an exponential to determine the fraction of events with $N_{\text{trk}} \geq 10$. The method is validated by varying the fit range, testing the extrapolation procedure in the $t\bar{t}$ Monte Carlo, as well as by relaxing the p_T requirements on the muons to enhance the statistics of the b/c Monte Carlo. Based on these studies, a 100% systematic uncertainty due to the extrapolation is assigned to the b/c background in the signal region.

The backgrounds from diboson ($W+/ZZ$) and single-top processes are estimated from the corresponding Monte Carlo samples and are found to be negligible.

5.2. Uncorrelated background estimate

The uncorrelated background arises when the second muon is not a true muon (fake), or is a muon from K or π decay, or from events where there is no correlation between the production mechanisms of the two muons. The background from uncorrelated decays is estimated by first measuring the probability for a track to be reconstructed as a muon in a control sample from data. This ‘fake’ probability is then applied to data events with one muon and one or more tracks to obtain a prediction for μ + fake dimuon events.

The control sample consists of W-boson + track events. Events are selected with at least one isolated muon with $p_T > 25$ GeV and missing transverse momentum (E_T^{miss}) satisfying 25 GeV < E_T^{miss} < 80 GeV. E_T^{miss} is constructed from the sum of all cells contained in calorimeter clusters and is corrected for the presence of muons in the event. The transverse mass calculated from the muon and the E_T^{miss} is required to be between 50 GeV and 120 GeV. These events are also required to have at least one track in addition to the muon, with $p_T > 15$ GeV and the same charge as the muon. If an event has more than one such track, then all tracks are considered for the measurement. The events are also required to have less than ten tracks to remove possible signal contributions.

A subset of the W-boson + track control sample is then selected by requiring an additional muon passing the analysis selection criteria with $p_T > 15$ GeV and of the same charge as the first selected muon. Using this subset, the fraction of events where a second muon is present is determined directly from data. This fraction contains contributions from fakes, K or π decay, and heavy-flavoured decays. To avoid double-counting, the contributions from the correlated decays from $t\bar{t}$, b/c, and diboson processes are estimated from Monte Carlo (as described) and subtracted. The per-track rate is measured in three p_T bins; for $p_T < 20$ GeV the rate is $(4.4 \pm 0.2) \times 10^{-3}$; for $20 < p_T < 60$ GeV the rate is $(3.7 \pm 0.1) \times 10^{-3}$, and for $p_T > 60$ GeV the rate is $(3.7 \pm 2) \times 10^{-3}$. This rate is applied to all events in data with one muon and at least one track of the same charge with $p_T > 15$ GeV. If more than one track is found, then each track is considered in calculating a total probability for the event to be reconstructed as a dimuon event. The uncertainty on the background estimate from the nominal fake rate measurement due to measurement statistics is 4.1%.

To determine the systematic uncertainty, shown in Table 1, the amount of subtracted $t\bar{t} + b/c + Wt +$ diboson background is varied up and down by 1σ. The corresponding variation in the fake estimate is 20% which is taken as the systematic uncertainty on this background.

This method is verified by using the $W +$ jet and single-top Monte Carlo samples as pseudo-data to measure the rate and then make a prediction. Similar studies on fake muon probability, with different selection criteria, are reported in Ref. [39] and show consistent results.

The background estimation is tested in events with the same selections as the signal region except the track multiplicity which is required to be $N_{\text{trk}} < 10$. The prediction from the Standard Model is shown in Table 2, along with the number of observed events in data in the background region. The contribution from the signal in the background region has been checked to be less than 0.1% of backgrounds for various choices of the signal parameters. The event rates observed in the background region agree with the prediction within the uncertainties.

6. Results and interpretation

Figs. 1 and 2 show the p_T distributions of both muons and the track multiplicity in all same-sign dimuon events respectively before applying the N_{trk} requirement. The prediction for a sam-
The leading (left) and sub-leading (right) muon p_T distributions for same-sign dimuon events before the N_{trk} cut. The background histograms are stacked. The signal expectation for a non-rotating black hole model with parameters $M_0 = 800$ GeV, $M_{\text{TH}} = 4$ TeV, and six extra dimensions is overlaid for illustrative purposes. The bottom panels show the ratio of data to the expected background (points) and the total systematic uncertainty on the background (shaded area).

The track multiplicity distribution for same-sign dimuon events. The region with $N_{\text{trk}} \geq 10$ is selected as the signal region. The background histograms are stacked. The signal expectation for a non-rotating black hole model with parameters $M_0 = 800$ GeV, $M_{\text{TH}} = 4$ TeV, and six extra dimensions is overlaid for illustrative purposes. The bottom panel shows the ratio of data to the expected background (points) and the total systematic uncertainty on the background (shaded area).

Table 3

<table>
<thead>
<tr>
<th>Process Events</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>b/c</td>
<td>$0.77 \pm 0.77^{\text{syst}}$</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>$29.2 \pm 1.1^{\text{(syst)}} \pm 1.1^{\text{lumi}}$</td>
</tr>
<tr>
<td>μ + fake</td>
<td>$25.6 \pm 0.3^{\text{stat}} \pm 0.5^{\text{syst}}$</td>
</tr>
<tr>
<td>Other backgrounds</td>
<td>$0.25 \pm 0.11^{\text{syst}}$</td>
</tr>
<tr>
<td>Predicted</td>
<td>$55.8 \pm 0.3^{\text{stat}} \pm 0.67^{\text{syst}} \pm 1.1^{\text{lumi}}$</td>
</tr>
<tr>
<td>Observed</td>
<td>60</td>
</tr>
<tr>
<td>Signal $M_{\text{TH}} = 4$ TeV</td>
<td>$72.1 \pm 4.5^{\text{syst}}$</td>
</tr>
</tbody>
</table>

σ is the cross section, BR the branching ratio to dimuons, and A the acceptance of non-Standard Model contributions in this final state in the signal region. The CLs method [40] is used to derive these limits assuming Gaussian uncertainties on the predicted background and signal, and Poissonian fluctuations on the observed number of events. The observed 95% confidence level upper limit on $\sigma \times BR \times A$ is 0.016 pb. This result is compatible with the expected limit of 0.016 pb, which is determined from pseudo-experiments using simulation. The 1σ and 2σ ranges on the expected limit are from 0.012 to 0.022 pb and from 0.008 to 0.029 pb respectively. The $BR \times A$ for the signal model shown in Table 3 is 3%, and typically varies between 1% and 6% for the signal models considered here.

Limits on the reduced Planck mass (M_{P}) and the minimum mass of the black hole (M_{TH}) for several models are set using the BlackMax generator and the CTEQ66 PDF. The signal yield is affected by the PDF choice due to two distinct effects: the change in the production cross section and the change in signal acceptance. The signal cross section obtained from MRST2007 is typically 40% to 50% higher than that from CTEQ66 for $M_{\text{P}} = 1$ TeV, $M_{\text{TH}} = 4$ TeV. This difference is somewhat larger than the uncertainty on the cross section from the CTEQ66 PDF error sets. At the large values of M_{TH} near the quoted limits, the invariant mass of the incoming partons is large and the PDFs are therefore used in a range of parton momentum fraction x where they are not well constrained. The theoretical uncertainty on the production cross section is potentially very large. For these reasons, no theoretical uncertainty on the signal cross section is assigned, that is, the exclusion limits are set for the exact benchmark models as implemented in the BlackMax generator: using CTEQ66 rather than...
The non-smoothness of the exclusion contours reflects the discrete character of the Monte Carlo grid in the (M_D, M_{TH}) plane. The signal acceptance is measured using kinematic properties obtained from the event generator (truth). This truth level acceptance is compared to the acceptance from full detector simulation for a smaller set of points which are representative of the model parameters probed in this analysis. To account for the difference in acceptances, the truth level acceptance is scaled by a constant factor of 0.7 ± 0.1 which is determined by comparing truth to fully simulated points. Therefore the uncertainty on the signal prediction consists of the following components: the uncertainty due to rescaling of truth acceptance, the uncertainty due to the finite Monte Carlo samples (see Table 1), the uncertainty due to the PDF, the experimental uncertainty on acceptance on the luminosity of the data sample, the uncertainty on acceptance due to the PDF, the experimental uncertainty on acceptance due to muon trigger and identification efficiencies and a statistical uncertainty due to the finite Monte Carlo samples (see Table 1).

Fig. 3 shows the expected and observed exclusion contours for rotating and non-rotating black holes for 2 and 6 extra dimensions. The semi-classical approximations used for black hole production are expected to be valid only for large slopes. It can be seen that if this ratio is greater than three, the limit on M_{TH} is larger than half the centre-of-mass energy.

In view of the rapidly falling PDFs in this region, further significant improvements on these limits are not expected until the LHC energy is increased. For example, moving from M_{TH} = 4.7 TeV to M_{TH} = 5 TeV changes the signal cross section from 0.24 pb to 0.06 pb (for non-rotating black holes in models with M_D = 500 GeV and six extra dimensions). It is also worth noting that the exclusion contours are dependent on the model considered, and this analysis is not expected to be sensitive to black hole models with decays to low multiplicity final states such as quantum black holes [41].

In summary, a search for extra dimensions in the same-sign dimuon final state has been performed using 1.3 fb^{-1} of data recorded with the ATLAS detector in 7 TeV proton–proton collisions at the LHC. No excess of events over the Standard Model prediction is observed and exclusion contours are obtained in the plane of the reduced Planck scale M_D and the threshold M_{TH} for black hole production. A model independent limit of 0.018 pb on any new physics contribution in the signal region with the described selection is set.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; STFC, Belarus; CNPq, and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DAE, DST and IND, India; INFN, Italy; FOD and MSMT, Czech Republic; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN–CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original authors and source are credited.

References

ATLAS Collaboration

1 University at Albany, Albany, NY, United States
2 Department of Physics, University of Alberta, Edmonton, AB, Canada
3 (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Dumlupinar University, Kastbagai; (c) Department of Physics, Gazi University, Ankara; (d) Division of Physics, TOBB University of Economics and Technology, Ankara; (e) Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
4 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
6 Department of Physics, University of Arizona, Tucson, AZ, United States
7 Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
8 Physics Department, University of Athens, Athens, Greece
9 Physics Department, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Institut de Física d’Altes Energies and Departamento de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12 (a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
19 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, Universität Bonn, Bonn, Germany
21 Department of Physics, Boston University, Boston, MA, United States
22 Department of Physics, Brandeis University, Waltham, MA, United States
23 (a) Universidad Federal de Rio De Janeiro COPPE/EUR, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
24 Physics Department, Brookhaven National Laboratory, Upton, NY, United States
25 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest; (c) West University in Timisoara, Timisoara, Romania
26 Departamento de Fisica, Universidad de Buenos Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa, ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
31 (a) Departamento de Fisica, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Fisica, Universidad Técnica Federico Santa María, Valparaíso, Chile
32 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) High Energy Physics Group, Shandong University, Shandong, China
33 Laboratoire de Physique Corpusculaire, Clermont Université et Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
34 Nevis Laboratory, Columbia University, Irvington, NY, United States
35 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
36 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavacata di Rende, Italy
37 Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas, TX, United States
40 Physics Department, University of Texas at Dallas, Richardson, TX, United States
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
44 Physics Department, Duke University, Durham, NC, United States
45 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Facultad für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland