Search for a Standard Model Higgs boson in the mass range 200-600 GeV in the H→ZZ→ℓ+ℓ−qq¯ decay channel with the ATLAS detector

DOI
10.1016/j.physletb.2012.09.020

Publication date
2012

Document Version
Final published version

Published in
Physics Letters B

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Search for a Standard Model Higgs boson in the mass range 200–600 GeV in the $H \rightarrow ZZ \rightarrow \ell^+\ell^-q\bar{q}$ decay channel with the ATLAS detector

ATLAS Collaboration

A search for a heavy Standard Model Higgs boson decaying via $H \rightarrow ZZ \rightarrow \ell^+\ell^-q\bar{q}$, where $\ell = e$ or μ, is presented. The search uses a data set of pp collisions at $\sqrt{s} = 7$ TeV, corresponding to an integrated luminosity of 4.7 fb$^{-1}$ collected in 2011 by the ATLAS detector at the CERN LHC. No significant excess of events above the estimated background is found. Upper limits at 95% confidence level on the production cross section between 1.2 and 12 times the SM cross section are derived. A Standard Model Higgs boson with a mass in the range between 50 and 600 GeV is excluded at 95% CL. The corresponding expected exclusion range is 351 GeV $\leq m_H \leq$ 404 GeV at 95% CL.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.
The Higgs boson production cross sections and decay branching ratios as well as their uncertainties, are taken from Refs. [18,19]. The predicted cross sections for the gluon fusion processes are based on calculations to next-to-next-to-leading order (NNLO) in QCD [20–25], and also include QCD soft-gluon resummations up to next-to-next-to-leading logarithms [26] and NLO electroweak (EW) corrections [27,28]. These results are compiled in Refs. [29–31] and assume factorisation between QCD and EW corrections. The cross sections for the vector-boson fusion processes are calculated with full NLO QCD and EW corrections [32–34] and approximate NNLO QCD corrections [35]. The uncertainty in the production cross section due to the choice of the QCD scale is \(\pm_{\frac{1}{2}}\%\) for the gluon fusion process and \(\pm_{\frac{1}{2}}\%\) for the vector-boson fusion process [18,19]. The uncertainty in the production cross section due to uncertainties in the PDFs and \(a_t\) is \(\pm_{\frac{1}{2}}\%\) for the gluon-initiated process and \(\pm_{\frac{1}{2}}\%\) for quark-initiated processes [36–40]. The Higgs boson decay branching ratio [41] to the four-fermion final state is calculated with PROPHETVAP [42,43]. The combined production cross section and decay branching ratio for the \(H \rightarrow ZZ \rightarrow 4\ell+q\bar{q}\) channel ranges from \(140 \pm 20\) fb for \(m_H = 200\) GeV to \(10 \pm 2\) fb for \(m_H = 600\) GeV.

The cross section calculations do not take into account the width of the Higgs boson, which increases from 1.4 GeV at \(m_H = 200\) GeV to 120 GeV at \(m_H = 600\) GeV, and which is implemented through a relativistic Breit–Wigner line shape applied at the event generator level. It has been suggested [19,44–46] that effects related to off-shell Higgs boson production and interference with other SM processes may become sizeable for the highest masses (\(m_H > 400\) GeV) considered in this search. Currently, in the absence of a full calculation for the different production mechanisms, a conservative estimate of the possible size of such effects is included as a signal normalisation systematic uncertainty parameterised as a function of \(m_H\) as \(1.5 \times m_H^{-4}\) [GeV], for \(m_H \geq 300\) GeV [19].

The \(Z+\text{light-jets}\) background is modelled with the ALPGEN generator [47] with the CT10Q2 PDF set [48], interfaced to HERWIG [49] for parton showers and hadronisation, while SHERPA [50] with the CT10Q2 PDF set is used for \(Z+\text{heavy-flavour}\) events. Top quark production, both \(t\bar{t}\) and single-top, is modelled using the MC@NLO generator [51] with the CT10 PDF set [38], interfaced to HERWIG for parton showers and hadronisation.

The SM \(ZZ\) process is an irreducible background for \(H \rightarrow ZZ\). The \(q\bar{q} \rightarrow ZZ\) process (also \(WZ\)) is modelled using HERWIG with the MRSTMCAL PDF set, interfaced to PHOTOS and TAUOLA. Alternative samples with PYTHIA and MC@NLO are used for systematics studies: HERWIG and PYTHIA use only leading-order matrix elements, but they can generate off-shell vector bosons, while MC@NLO generates only on-shell bosons. The \(q\bar{q} \rightarrow ZZ\) production cross section has been calculated up to NLO in QCD [52]. Due to the large gluon flux at the LHC, NLO gluon pair quark-box diagrams (\(gg \rightarrow ZZ\)) are significant and the \(q\bar{q}\) cross section is increased by \(6\%\) to account for this additional contribution [53].

Those simulations that use HERWIG for hadronisation use JIMMY [54] for the modelling of the underlying event, while PYTHIA and SHERPA implement their own underlying event model.

3. Event selection

The ATLAS detector [55] has a forward–backward symmetric cylindrical geometry. An inner tracking detector immersed in a 2 Tesla axial magnetic field covers \(|\eta| < 2.5\) with silicon detectors and straw tubes. A liquid-argon electromagnetic calorimeter is divided into barrel (\(|\eta| < 1.475\)), endcap (1.375 < \(|\eta| < 3.1\)), and forward (3.1 < \(|\eta| < 4.9\)) regions. Hadronic calorimeters (using liquid argon or scintillating tiles as active materials) surround the electromagnetic calorimeter and cover \(|\eta| < 4.9\). A muon spectrometer measures the deflection of muon tracks in the field of three large toroidal magnets and covers \(|\eta| < 2.7\). A three-level trigger system selects events to be recorded for offline analysis.

The offline selection starts with the reconstruction of either a \(Z \rightarrow ee\) or a \(Z \rightarrow \mu\mu\) lepton pair. Electron and muon candidates must satisfy \(p_T > 20\) GeV and \(|\eta| < 2.5\), in addition to standard ATLAS quality requirements [56–58], and must also be isolated from surrounding tracks. Electrons within a pair are required to have opposite charge, but this requirement is not imposed for electrons because larger energy losses from showering in material in the inner tracking detector lead to higher charge misidentification probabilities. The invariant mass of the lepton pair \(m_{\ell\ell}\) must lie within the range 83–99 GeV, and events with any additional selected electrons or muons are rejected to reduce background from \(WZ\) production where both bosons decay leptonically.

\[H \rightarrow ZZ \rightarrow \ell^+\ell^-q\bar{q} \] decays contain a pair of jets from \(Z \rightarrow q\bar{q}\) decay. Events are thus required to contain at least two jets with \(p_T > 25\) GeV and \(|\eta| < 2.5\). Jets are reconstructed with the anti-\(k_t\) algorithm [59] with radius parameter \(R = 0.4\). They are calibrated using energy- and \(\eta\)-dependent correction factors based on MC simulation and validated with data [60]; this calibration includes effects of energy from additional proton–proton interactions. Jets within \(\Delta R = 0.4\) of an electron or in which less than \(75\%\) of the momentum of the associated tracks originates from the primary vertex are rejected. The missing transverse momentum, with magnitude \(E_{\text{T}}^{\text{miss}}\), is the (negative) vectorial sum of the transverse momenta of all cells in the calorimeters with \(|\eta| < 4.9\), calibrated appropriately based on their identification as electrons, photons, \(\tau\) leptons, jets, or unassociated calorimeter cells, and all selected muons in the event [61]. Calorimeter deposits associated with muons are subtracted from \(E_{\text{T}}^{\text{miss}}\) to avoid double counting. Since no high-\(p_T\) neutrinos are present in the signal, events are required to satisfy \(E_{\text{T}}^{\text{miss}} < 50\) GeV, which primarily reduces the background from \(t\bar{t}\) production.

Jets originating from \(b\)-quarks can be discriminated from other jets (“tagged”) based on the relatively long lifetime of hadrons containing \(b\)-quarks. This discrimination is important for this analysis because about \(21\%\) of signal events contain \(b\)-jets from \(Z \rightarrow bb\) decay, while \(b\)-jets are produced less often (\(\sim 2\%\)) in the dominant \((Z \rightarrow \ell\ell) +\text{jets}\) background. A jet is tagged by taking the set of tracks associated with the jet and looking for either a secondary vertex or for tracks that have a significant impact parameter with respect to the primary event vertex [62]. This information is combined into a single discriminating variable and a selection is applied that gives an efficiency of about \(70\%\) (\(20\%\)) for identifying true \(b\)-jets (\(c\)-jets) with a light-quark jet rejection of about \(130\) [63,64]. To optimise the expected sensitivity, the analysis is divided into “tagged” and “untagged” subchannels, containing events with exactly two and with fewer than two \(b\)-tags, respectively. Events with more than two \(b\)-tags (\(< 3\%\) of the data sample with two \(b\)-tags) are rejected.
Events are required to have at least one candidate $Z \rightarrow q\bar{q}$ decay with dijet invariant mass m_{jj} within 70–105 GeV in order to be consistent with a Z boson decay. This selection is asymmetric around the Z boson mass to account for non-Gaussian tails extending to lower masses. The jets forming a candidate must also be separated by $\Delta R > 0.7$, as the phase space region with jets close together is poorly modelled by MC simulation. For untagged events, all pairs of jets formed from the three highest-p_T jets are considered. All such pairs are retained with unit weight, leading to the possibility of multiple candidates per event. The fraction of untagged events with multiple pairs retained is 13–16% (2–5%) for the low-m_H (high-m_H) selection defined below. For tagged events, the two tagged jets are used to form the dijet invariant mass; their energies are scaled up by 5% to take into account the average energy scale difference between heavy- and light-quark jets. The resulting dijet invariant mass distributions are well described by the MC simulation, as shown in Fig. 1.

The selection criteria above define the “low-m_H” selection, which is applied when searching for a Higgs boson with $m_H < 300$ GeV. For higher Higgs boson masses, the Z bosons from the $H \rightarrow ZZ$ decay have large momenta in the laboratory reference frame, decreasing the opening angles between their decay products. Accordingly, in addition to the low-m_H selection, the following requirements are applied for $m_H \geq 300$ GeV: the two jets must have $p_T > 45$ GeV and the azimuthal difference between the two leptons ($\Delta \phi_{\ell\ell}$) and the two jets ($\Delta \phi_{jj}$) must both be less than $\pi/2$. These criteria define the “high-m_H” selection.

Following this event selection, an $H \rightarrow ZZ \rightarrow \ell^+\ell^- q\bar{q}$ signal should appear as a peak in the invariant mass distribution of the $\ell\ell jj$ system, with $m_{\ell\ell jj}$ around m_H. To improve the Higgs boson mass resolution, the energies of the jets forming each dijet pair are scaled event-by-event by a single multiplicative factor to set the dijet invariant mass m_{jj} to the nominal mass of the Z boson. The selection is improved by a factor of 2.4 at $m_H = 200$ GeV; the improvement decreases with increasing m_H due to the increase in the natural width of the Higgs boson. The total efficiency for the selection of signal events is about 8% over most of the mass range.

4. Background estimates

The main background to this analysis is Z boson production in association with jets ($Z + jets$). The shapes of the relevant kinematic distributions for this background are taken from MC simulation, with a small data-driven correction for the low-m_H untagged selection, while the normalisations for all selections are derived directly from data.

The flavour composition of the $Z + jets$ sample is determined from three exclusive MC samples containing at least one true b-jet, at least one true c-jet, and all light jets, respectively. The relative normalisations of the three components are adjusted by fitting the distribution of the MC b-tagging discriminant to data.

To set the overall $Z + jets$ normalisation, the $m_{\ell\ell jj}$ distribution is compared between data and MC simulation for events in which the dijet invariant mass m_{jj} is in sidebands of the Z boson mass: 40–70 GeV or 105–150 GeV (see Figs. 2(a) and 2(b)). The numbers of events in the sidebands, after subtraction of the contribution from other background sources, are then used to derive scale factors to correct the normalisation of the $Z + jets$ MC simulation to that observed in the data. The scale factors are determined for the untagged channel separately for the low- and high-m_H selections; the results agree within statistical uncertainties. In the tagged channel, there are too few events in the sidebands to determine the scale factor for the high-m_H selection, hence the low-m_H scale factor is used for both selections. Since the top quark background is not negligible, the $Z + jets$ MC normalisations are determined in a simultaneous fit to the $Z + jets$ control region and the corresponding top quark control region (see below). The overall data to MC scale factors for $Z + jets$ are approximately 0.9 for light-jets, 1.9 for c-jets, and 1.5 for b-jets.

In the m_{jj} sidebands of the untagged low-m_H selection, the $Z + jets$ MC simulation is about 3% above the data at $m_{\ell\ell jj} = 100$ GeV and about 1% below it at $m_{\ell\ell jj} = 300$ GeV (see Fig. 2(a)). Since similar results are seen for both the low and high mass sidebands, a linear fit to the ratio of data to MC simulation in the $m_{\ell\ell jj}$ sideband distribution is used to correct the prediction in the signal region. For the high-m_H untagged selection and the tagged selections no difference between the data and MC distributions is seen within statistical uncertainties. Thus, no correction is applied to these samples, but similar fits to the one described above are used to evaluate systematic uncertainties on the $Z + jets m_{\ell\ell jj}$ shape.

The second most significant background is top quark production, which is most important in the tagged channel. The shapes of the relevant kinematic distributions are taken from MC simulation and the normalisation from data, using the top quark control region defined by the $m_{t\bar{t}}$ sidebands 60–76 GeV or 106–150 GeV, with the E_T^{miss} selection reversed. Figs. 2(c) and 2(d) show the m_{jj} distributions for these control regions for the untagged and tagged selections respectively; good agreement is found after scaling up the MC prediction by about 5% for the untagged selection and 20% for the tagged selection. The contribution to this background from the production of single top quarks is negligible.
As in Ref. [8], the small irreducible background from diboson (ZZ and WZ) production is estimated directly from MC simulation. The background due to multijet events in which jets are misidentified as isolated electrons is estimated from data using a sample of events containing electron candidates that fail the selection requirements but pass loosened requirements. The multijet background to the muon channel was found to be negligible. The background from W+jets production was also found to be negligible.

5. Systematic uncertainties

The theoretical uncertainties on the Higgs boson production cross section from Refs. [18,19] are 15–20% for the gluon fusion process and 3–9% for the vector-boson fusion process, depending on the Higgs boson mass. As mentioned in Section 2, an additional uncertainty $\propto m_H^3$ is applied for $m_H \geq 300$ GeV. The selection efficiency uncertainty due to the production process modelling is estimated by varying parameters of the signal MC simulation, including the amount of initial- and final-state radiation, the factorisation and normalisation scales, and the underlying event model; a further comparison uses PYTHIA instead of POWHEG. This procedure gives a 3% (12%) uncertainty for the low- ($\ell\ell$) sideband. The uncertainty on the procedure used to determine the normalisation of the Z+jets background, described in Section 4, is evaluated by comparing the scale factors obtained from the upper or lower sideband separately. It is taken as the difference between the scale factors or the statistical uncertainty, whichever is larger. This procedure gives 1.7% for the low-m_H untagged selection, 2.2% for the high-m_H untagged selection, and 5.5% for both tagged selections. The uncertainty in the flavour composition of the Z+jets background is estimated by varying the relative fraction of $Z+c$-jets by $\pm 30\%$ as determined by altering the selection criteria applied in the fitting procedure described in Section 4. An uncertainty due to the modelling of the $m_{\ell\ell}$ shape as described in Section 4 is also applied. Additional uncertainties on the shape of the Z+jets background are estimated by finding variations of the MC m_{jj} and Z boson p_T distributions that sufficiently cover any differences between MC simulation and data in the $m_{\ell\ell}$ sidebands. The uncertainty on the procedure used to determine the normalisation of the $t\bar{t}$ background is derived from the statistical uncertainties on the normalisation scale factors. It is found to be 2.7% for the untagged selection and 4.0% for the tagged selection. The diboson cross sections have a combined 5% QCD scale and PDF uncertainty [19]; adding an additional 10% uncertainty, corresponding to the maximum difference seen between MC@NLO and K-factor scaled PYTHIA results, yields an overall uncertainty of 11% on the diboson background normalisation. A 50% systematic uncertainty is assigned to the normalisation of the multijet background in the electron channel by comparing the result of fitting the $m_{\ell\ell}$ distribution before and after the requirement of at least two jets. An overall 3.9% uncertainty from the integrated luminosity [65,66] is added to the uncertainties on all MC processes that are not normalised from data (i.e. excluding Z+jets and top quark production), correlated across all samples.
Table 1
The expected numbers of signal and background candidates in the $H \rightarrow ZZ \rightarrow \ell^+\ell^-q\bar{q}$ channel, along with the numbers of candidates observed in data, for an integrated luminosity of 4.7 fb$^{-1}$. The low-m_H analysis is applied when searching for a Higgs boson with $m_H < 300$ GeV and the high-m_H analysis for $m_H \geq 300$ GeV. The first error indicates the statistical uncertainty, the second error the systematic uncertainty.

<table>
<thead>
<tr>
<th></th>
<th>Untagged</th>
<th>Tagged</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low-m_H</td>
<td>High-m_H</td>
</tr>
<tr>
<td>$Z +$ jets</td>
<td>36 190 ± 80 ± 640</td>
<td>1450 ± 14 ± 35</td>
</tr>
<tr>
<td>Top</td>
<td>85 ± 3 ± 10</td>
<td>7.1 ± 0.7 ± 0.8</td>
</tr>
<tr>
<td>Multijet</td>
<td>15 ± 0 ± 8</td>
<td>0.2 ± 0.0 ± 0.1</td>
</tr>
<tr>
<td>ZZ</td>
<td>348 ± 3 ± 47</td>
<td>25 ± 1 ± 3</td>
</tr>
<tr>
<td>WZ</td>
<td>434 ± 4 ± 70</td>
<td>45 ± 1 ± 7</td>
</tr>
<tr>
<td>Total background</td>
<td>37070 ± 80 ± 670</td>
<td>1530 ± 14 ± 37</td>
</tr>
<tr>
<td>Data</td>
<td>36 898</td>
<td>1444</td>
</tr>
<tr>
<td>Signal $m_H = 200$ GeV</td>
<td>118 ± 2 ± 19</td>
<td>6.4 ± 0.4 ± 1.3</td>
</tr>
<tr>
<td>$m_H = 400$ GeV</td>
<td>24.3 ± 0.7 ± 4.1</td>
<td>40.5 ± 0.5 ± 6.4</td>
</tr>
<tr>
<td>$m_H = 500$ GeV</td>
<td>18.5 ± 0.2 ± 3.1</td>
<td>2.0 ± 0.1 ± 0.5</td>
</tr>
<tr>
<td>$m_H = 600$ GeV</td>
<td>6.3 ± 0.1 ± 1.1</td>
<td>0.7 ± 0.0 ± 0.2</td>
</tr>
</tbody>
</table>

Fig. 3. The invariant mass of the $\ell\ell jj$ system for both the untagged (a, c) and tagged (b, d) channels, for the low-m_H (top row) and high-m_H (bottom row) selections. The hatched band represents the systematic error on the total background prediction. Examples of the expected Higgs boson signal for $m_H = 200$ and 400 GeV are also shown; in the untagged plots (a, c), the signal has been scaled up by a factor of five to make it more visible.

Contributions to systematic uncertainties also arise from detector effects, including the lepton and jet trigger and identification efficiencies, the energy or momentum calibration and resolution of the leptons and jets, and the b-tagging efficiency and mistag rates. These detector-related uncertainties are applied to all MC processes. The dominant uncertainty on the tagged sample comes from the b-tagging efficiency and corresponds to an average uncertainty of 9% on the signal [63,64]. For the untagged sample, the uncertainties on the jet energy scale and resolution contribute 3% and 4% respectively to the uncertainty on the signal [60].

The normalisations of the $Z +$ jets and top quark backgrounds are redetermined for each systematic variation following the procedures described in Section 4.

6. Results

Table 1 shows the numbers of candidates observed in data for each of the four selections compared with the background expectations. Fig. 3 shows the $m_{\ell\ell}$ distributions for both the tagged and untagged channels for the low- and high-m_H selections.
We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DFRF, DSNRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, MPG and AVH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RENCA, Norway; MNNSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR, MSTD, Serbia; MSSR, Slovakia; ARES and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

P. lengo, O. Igonkina, Y. Ikegami, M. Ikeno, D. Iladis, N. Ilic, T. Ince,
J. Inigo-Golfin, P. Ioannou, M. Iodice, K. Iordanidou, V. Ippolito,
A. Irles Quiles, C. Isaksson, M. Ishino, M. Ishitsuka, R. Ishmukhametov,
C. Isserlin, S. Istin, A.V. Ivashin, W. Iwasaki, H. Iwasaki, J.M. Izen,
V. Izzo, B. Jackson, J.N. Jackson, P. Jackson, M.R. Jaekel, V. Jain,
K. Jakobs, S. Jakobsen, T. Jakoubek, J. Jakubek, D.K. Jana,

R. Kwee, A. La Rosa, L. LaRota, D. Levin, L.J. Levinson, A. Lewis,
G.H. Lewis, A.M. Leyko, M. Leyton, B. Li, H. Li.

J. Kroll, J. Kroseberg, J.Krstic, U. Kruchock, T. Kruker,
N. Krumnack, V. Kostyukhin, S. Kotov, V.M. Kotov, A. Kotwal,
C. Koukouchakis, R. Koutsou, R. Kowalewski, T.Z. Kowalski,
V. Kozanecki, A.S. Kozhin, V. Kral, V. Klassen,
M. Krasny, A. Krasznahorkay, J. Kraus, J.K. Kraus,
S. Kreiss, J. Krejci, J. Kretzschmar, N. Krieger, P. Krieger,
K. Kroening, H. Kroha, J. Kroo, J. Kroeseberg, J. Krstic,
U. Kruchonak, H. Kruger, T. Krucker, N. Krummack,
Z.V. Krumshteyn, A. Kruth, T. Kubota, S. Kuday, S. Kuehn,
A. Kugel, H. Kuhl, D. Kuhn, V. Kukhtin, Y. Kulchitsky,
S. Kuleshov, C. Kummer, M. Kunz, J. Kunke, A. Cupo,
H. Kurashige, M. Kurata, Y.A. Kurochkin, V. Kus,
E.S. Kuwertz, H. Kuwahara, G. Kwaag, R. Kwasniewski,
S. Lamanna, L. Lamport, V. Larko, O. Lartey,
M. Larondeau, L. Larsson, C. Larrinaga,
J. Laven, M. Lavesson, A. Lazzaro, A. Lee,
H. Lebedev, S. Lebedev, V. Lefebvre, F. Legger,
C. Leggett, M. Lehmacher, G. Lehmann, M.A.L. Leite,
R. Leitner, D. Lellouch, B. Lemmer, V. Lendermann,
K.J.C. Leney, T. Lenz, G. Lenzen, B. Lenzi, K. Leonhardt,
S. Leontsinis, F. Lepold, C. Leroy, J.-R. Lessard,
C.G. Lester, C.M. Lester, J. Levêque, D. Levin,
L.J. Levinson, A. Lewis, G.H. Lewis, A.M. Leyko,
M. Leyton, B. Li, H. Li.

J. Kishimoto, D. Kisielewska, T. Kittelmann, E. Kladiva,
M. Klein, U. Klein, K. Kleinknecht, M. Klemetti,
P. Klimek, A. Klimentov, R. Klingenberg, J.A. Klinger,
F. Kluit, S. Kluth, N.S. Knecht, E. Knerner,
B.R. Ko, T. Kobayashi, M. Kobel, P. Kodys,
K. Könecke, A.C. König, S. Koenig,
L. Köpke, F. Koetsveld, P. Koevesarki,
T. Koffas, E. Koffeman, T. Kohno, Z. Kohut,
T. Kohriki, T. Kohri, G.M. Kolachev,
H. Kolanoski, V. Kolesnik, I. Kolletson,
J. Koll, M. Kollefrath, A.A. Komar,
Y. Komori, T. Kondo, T. Kono, A.I. Kononov,
R. Konoplich, N. Konstantinidis, S. Koperny,
K. Korcyl, K. Kordas, J.A. Klinger, E.B. Klinkby,
P. F.Klokk104, S.Klous105, E.E. Kluge,
T. Kluge, A. Koutsman, R. Kowal.

P. Kluit, S. Kluth, N.S. Knecht, E. Knerner,
B.R. Ko, T. Kobayashi, M. Kobel, P. Kodys,
K. Könecke, A.C. König, S. Koenig,
L. Köpke, F. Koetsveld, P. Koevesarki,
T. Koffas, E. Koffeman, T. Kohno, Z. Kohut,
T. Kohriki, T. Kohri, G.M. Kolachev,
H. Kolanoski, V. Kolesnik, I. Kolletson,
J. Koll, M. Kollefrath, A.A. Komar,
Y. Komori, T. Kondo, T. Kono, A.I. Kononov,
R. Konoplich, N. Konstantinidis, S. Koperny,
K. Korcyl, K. Kordas, J.A. Klinger, E.B. Klinkby,
P. F.Klokk104, S.Klous105, E.E. Kluge,
T. Kluge, A. Koutsman, R. Kowal.
<table>
<thead>
<tr>
<th>Institution</th>
<th>City, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics Department, Lancaster University, Lancaster, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, The University of Michigan, Ann Arbor, MI, United States</td>
<td></td>
</tr>
<tr>
<td>Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States</td>
<td></td>
</tr>
<tr>
<td>INFN Sezione di Napoli; Departamento di Scienze Fisiche, Università di Napoli, Napoli, Italy</td>
<td></td>
</tr>
<tr>
<td>Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States</td>
<td></td>
</tr>
<tr>
<td>Department of Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, Virginia Commonwealth University, Charlottesville, VA, United States</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, Rice University, Houston, TX, United States</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, Northern Illinois University, DeKalb, IL, United States</td>
<td></td>
</tr>
<tr>
<td>Budker Institute of Nuclear Physics, Novosibirsk, Russia</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, New York University, New York, NY, United States</td>
<td></td>
</tr>
<tr>
<td>Ohio State University, Columbus, OH, United States</td>
<td></td>
</tr>
<tr>
<td>Faculty of Science, Okayama University, Okayama, Japan</td>
<td></td>
</tr>
<tr>
<td>Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, Oklahoma State University, Stillwater, OK, United States</td>
<td></td>
</tr>
<tr>
<td>Palacky University, RCPITM, Olomouc, Czech Republic</td>
<td></td>
</tr>
<tr>
<td>Center for High Energy Physics, University of Oregon, Eugene, OR, United States</td>
<td></td>
</tr>
<tr>
<td>LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France</td>
<td></td>
</tr>
<tr>
<td>Graduate School of Science, Osaka University, Osaka, Japan</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, University of Oslo, Oslo, Norway</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, Oxford University, Oxford, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>INFN Sezione di Pavia; Departamento di Fisica, Università di Pavia, Pavia, Italy</td>
<td></td>
</tr>
<tr>
<td>Department of Physics, University of Pennsylvania, Philadelphia, PA, United States</td>
<td></td>
</tr>
<tr>
<td>Petersburg Nuclear Physics Institute, Gatchina, Russia</td>
<td></td>
</tr>
<tr>
<td>INFN Sezione di Pisa; Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy</td>
<td></td>
</tr>
<tr>
<td>Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States</td>
<td></td>
</tr>
<tr>
<td>INFN Sezione di Roma; Dipartimento di Fisica, Università La Sapienza, Roma, Italy</td>
<td></td>
</tr>
</tbody>
</table>
Also at Section de Physique, Université de Genève, Geneva, Switzerland.

Also at Departamento de Física, Universidade de Minho, Braga, Portugal.

Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

Also at California Institute of Technology, Pasadena, CA, United States.

Also at Institute of Physics, Jagiellonian University, Krakow, Poland.

Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.

Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.

Also at Department of Physics, Oxford University, Oxford, United Kingdom.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.

* Deceased.