Observation of a New χ_b State in Radiative Transitions to $\Upsilon(1S)$ and $\Upsilon(2S)$ at ATLAS

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.108.152001

Citation for published version (APA):
Aad, G., et al., U., Bentvelsen, S., Colijn, A. P., de Jong, P., de Nooij, L., ... Vreeswijk, M. (2012). Observation of a New χ_b State in Radiative Transitions to $\Upsilon(1S)$ and $\Upsilon(2S)$ at ATLAS. Physical Review Letters, 108(15), [152001]. https://doi.org/10.1103/PhysRevLett.108.152001

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Observation of a New χ_b State in Radiative Transitions to $Y(1S)$ and $Y(2S)$ at ATLAS

G. Aad et al.*
(ATLAS Collaboration)

(Received 21 December 2011; revised manuscript received 18 February 2012; published 9 April 2012)

The $\chi_b(nP)$ quarkonium states are produced in proton-proton collisions at the Large Hadron Collider at $\sqrt{s} = 7$ TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb$^{-1}$, these states are reconstructed through their radiative decays to $Y(1S, 2S)$ with $Y \rightarrow \mu^+ \mu^-$. In addition to the mass peaks corresponding to the decay modes $\chi_b(1P, 2P) \rightarrow Y(1S)\gamma$, a new structure centered at a mass of 10.530 ± 0.005 (stat) ± 0.009 (syst) GeV is also observed, in both the $Y(1S)\gamma$ and $Y(2S)\gamma$ decay modes. This structure is interpreted as the $\chi_b(3P)$ system.

Measurements of the properties of heavy quark-antiquark bound states, or quarkonia, provide a unique insight into the nature of quantum chromodynamics close to the strong decay threshold. For the $b\bar{b}$ system, the quarkonium states with parallel quark spins ($s = 1$) include the S-wave Y and the P-wave χ_b states, where the latter each comprise a closely spaced triplet of $J = 0, 1, 2$ spin states: χ_{b0}, χ_{b1}, and χ_{b2}. The $\chi_b(1P)$ and $\chi_b(2P)$, with spin-weighted mass barycenters of 9.90 and 10.26 GeV, respectively, can be readily produced in the radiative decays of $Y(2S)$ and $Y(3S)$ and have been studied experimentally [1].

In this Letter, χ_b quarkonium states are reconstructed with the ATLAS detector through the radiative decay modes $\chi_b(nP) \rightarrow Y(1S)\gamma$ and $\chi_b(nP) \rightarrow Y(2S)\gamma$, in which $Y(1S, 2S) \rightarrow \mu^+ \mu^-$ and the photon is reconstructed either through conversion to $e^+ e^-$ or by direct calorimetric measurement. Previous experiments have measured the $\chi_b(1P)$ and $\chi_b(2P)$ through these decay modes [2]. The $\chi_b(3P)$ state has not previously been observed. It is predicted to have an average mass of approximately 10.52 GeV, with hyperfine mass splitting between the triplet states of 10–20 MeV [3,4].

The ATLAS detector [5] is a general-purpose particle physics detector with a forward-backward symmetric cylindrical geometry and near 4π coverage in solid angle. The inner tracking detector (ID) consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field and by high-granularity liquid-argon sampling electromagnetic calorimeters. An iron-scintillator tile calorimeter provides hadronic coverage in the central rapidity range. The end cap and forward regions are instrumented with liquid-argon calorimeters for both electromagnetic and hadronic measurements. The muon spectrometer surrounds the calorimeters and consists of a system of precision tracking chambers and detectors for triggering, inside a toroidal magnetic field.

The data sample used for this measurement was recorded by the ATLAS experiment during the 2011 LHC proton-proton collision run at a center-of-mass energy $\sqrt{s} = 7$ TeV. The integrated luminosity of the data sample, which includes only data-taking periods where all relevant detector subsystems were operational, is 4.4 fb$^{-1}$. A set of muon triggers designed to select events containing muon pairs or single high transverse momentum muons was used to collect the data sample.

In this analysis, each muon candidate must satisfy standard muon quality requirements [6]. It must have a track, reconstructed in the muon spectrometer, combined with a track reconstructed in the ID in transverse momentum $p_T > 4$ GeV and pseudorapidity $|\eta| < 2.3$. The dimuon selection requires a pair of oppositely charged muons, which are fitted to a common vertex. A very loose vertex quality requirement [x^2 per degree of freedom (d.o.f.) < 20] is used and no mass or momentum constraints are applied to the fit. The dimuon candidate is also required to have $p_T > 12$ GeV and rapidity $|y| < 2.0$. The invariant mass distribution, $m_{\mu\mu}$, of dimuon candidates is shown in Fig. 1. Those candidates with masses in the ranges 9.25 < $m_{\mu\mu}$ < 9.65 GeV and 9.80 < $m_{\mu\mu}$ < 10.10 GeV are selected as $Y(1S) \rightarrow \mu^+ \mu^-$ and $Y(2S) \rightarrow \mu^+ \mu^-$ candidates, respectively. The asymmetric mass window (evident from Fig. 1) for $Y(2S)$ candidates is chosen in order to reduce contamination from the $Y(3S)$ peak and continuum background contributions.

The reconstruction of photons in ATLAS is described in Ref. [7]. Further details related to this particular analysis are described below.

Converted photons are reconstructed from two oppositely charged ID tracks intersecting at a conversion vertex, with the opening angle between the two tracks at this vertex constrained to be zero. For tracks with signals in...
the transition radiation tracker, the transition radiation should be consistent with an electron hypothesis. In order to be reliably reconstructed, each conversion electron track must have a minimum transverse momentum of 500 MeV. It is also required to have at least four silicon detector hits and not to be associated to either of the two muon candidates. To reduce background contamination, the conversion candidate vertex is required to be at least 40 mm from the beam axis and have a vertex χ^2 probability of greater than 0.01. The converted photon impact parameter with respect to the dimuon vertex is required to be less than 2 mm.

Electromagnetic calorimeter energy deposits not matched to any track are classified as unconverted photons. This analysis uses the “loose” photon selection described in Ref. [7], with a minimum photon transverse energy of 2.5 GeV. The loose photon selection includes a limit on the fraction of the energy deposit in the hadronic calorimeter as well as a requirement that the transverse width of the shower be consistent with the narrow shape expected for an electromagnetic shower.

To check that an unconverted photon originates from the same vertex as the Y, and to improve the mass resolution of the reconstructed χ_b, the polar angle of the photon is corrected using the procedure described in Ref. [8]. The corrected polar angle is determined using the measurement of the photon direction from the longitudinal segmentation of the calorimeter and the constraint from the dimuon vertex position. Photons incompatible with having originated from the dimuon vertex are rejected by means of a loose cut on the fit result (χ^2 per d.o.f. <200).

The converted (unconverted) photon candidates are required to be within $|\eta| < 2.30$ (2.37). Unconverted photons must also be outside the transition region between the barrel and the end cap calorimeters, $1.37 < |\eta| < 1.52$.

The χ_b candidates are formed by associating a reconstructed $Y \rightarrow \mu^+ \mu^-$ candidate with a reconstructed photon. The invariant mass difference $\Delta m = m(\mu^+ \mu^-) - m(\mu^+ \mu^-)$ is calculated to minimize the effect of $Y \rightarrow \mu^+ \mu^-$ mass resolution. In order to compare the Δm distributions of both $\chi_b(nP) \rightarrow Y(1S)\gamma$ and $\chi_b(nP) \rightarrow Y(2S)\gamma$ decays, the variable $m_k = \Delta m + m_Y(kS)$ is defined, where $m_Y(kS)$ are the world average masses [9] of the $Y(kS)$ states. Requirements of $p_T(\mu^+ \mu^-) > 20$ GeV and $p_T(\mu^+ \mu^-) > 12$ GeV are applied to Y candidates with unconverted and converted photon candidates, respectively. These thresholds are

FIG. 1 (color online). The invariant mass of selected dimuon candidates. The shaded regions A and B show the selections for $Y(1S)$ and $Y(2S)$ candidates, respectively.

FIG. 2 (color online). (a) The mass distribution of $\chi_b \rightarrow Y(1S)\gamma$ candidates for unconverted photons reconstructed from energy deposits in the electromagnetic calorimeter ($\chi^2_{1\sigma}/$d.o.f. = 0.85). (b) The mass distributions of $\chi_b \rightarrow Y(kS)\gamma$ ($k = 1, 2$) candidates formed using photons which have converted and been reconstructed in the ID ($\chi^2_{1\sigma}/$d.o.f. = 1.3). Data are shown before the correction for the energy loss from the photon conversion electrons due to bremsstrahlung and other processes. The data for decays of $\chi_b \rightarrow Y(1S)\gamma$ and $\chi_b \rightarrow Y(2S)\gamma$ are plotted using circles and triangles, respectively. Solid lines represent the total fit result for each mass window. The dashed lines represent the background components only.
chosen in order to optimize signal significance in the \(\chi_b(1P, 2P) \) peaks.

Figure 2(a) shows the \(\vec{m}_1 \) distribution for unconverted photons and Fig. 2(b) shows the \(\vec{m}_1 \) and \(\vec{m}_2 \) distributions for converted photons. In addition to the expected peaks for \(\chi_b(1P, 2P) \rightarrow Y(1S, 2S) \gamma \) structures are observed at an invariant mass of approximately 10.5 GeV. These additional structures are interpreted as the radiative decays of the previously unobserved \(3c \) distribution of approximately \(10.5 \text{ GeV} \). These additional structures are interpreted as the radiative decays of the previously unobserved \(\chi_b(3P) \) states, \(\chi_b(3P) \rightarrow Y(1S) \gamma \) and \(\chi_b(3P) \rightarrow Y(2S) \gamma \).

Separate fits are performed to the \(m_k \) distributions of the selected \(\mu^+ \mu^- \gamma \) candidates reconstructed from converted and unconverted photons to extract mass information from the observed \(\chi_b(3P) \) signals. The higher threshold for unconverted photons (2.5 GeV, versus 1 GeV for converted photons) prevents the reconstruction of the soft photons from \(\chi_b(2P, 3P) \) decays into \(Y(2S) \).

An unbinned extended maximum likelihood fit is performed to the \(\vec{m}_1 = \Delta m + m_{Y(1S)} \) distribution of the selected unconverted \(\mu^+ \mu^- \gamma \) candidates. The three peaks in the distribution are each modeled by a Gaussian probability density function (PDF) with an independent normalization parameter \(N_n \), mean value \(\vec{m}_n \), and width parameter \(\sigma_n \). The background distribution is parametrized by the PDF \(N_B \exp[A \Delta m + B \Delta m^2] \) where \(N_B, A, \) and \(B \) are all free parameters. The three mean values \(\vec{m}_{n=1,2,3} \) determined by the fit are shown in Table I. The mean value \(\vec{m}_1 \) is an estimate of the mass barycenter of the observed \(\chi_b(3P) \) signal.

Likewise, the \(\vec{m}_1 = \Delta m + m_{Y(1S)} \) and \(\vec{m}_2 = \Delta m + m_{Y(2S)} \) distributions for the sample of \(\mu^+ \mu^- \gamma \) candidates reconstructed from converted photons are fitted using an unbinned extended maximum likelihood method. A simultaneous fit is performed on the \(\vec{m}_1 \) and \(\vec{m}_2 \) distributions for the \(\chi_b(nP) \rightarrow Y(1S) \gamma \) (for \(n = 1, 2, 3 \)) and \(\chi_b(nP) \rightarrow Y(2S) \gamma \) (for \(n = 2, 3 \) only) signals, with the distributions modeled by three signal components [two of which are shared between the \(Y(1S) \) and \(Y(2S) \) distributions] and two background distributions.

In the \(\Delta m \) distribution for the converted photon candidates the typical mass resolution is found to be in the range 16–20 MeV, of similar magnitude to the hyperfine splittings, motivating the need for multiple signal components for each of the \(\chi_b(nP) \) peaks. For \(n = 1, 2 \), the radiative branching fractions of the \(J = 0 \) states are suppressed with respect to the \(J = 1, 2 \) states [9] and therefore a \(J = 0 \) component is not included in the fit. Similar behavior is assumed for the \(n = 3 \) case. Each of the three peaks \((n = 1, 2, 3)\) is therefore parametrized by a doublet of Crystal Ball (CB) [10] functions (corresponding to \(J = 1, 2 \) states) with resolution \(\sigma \) and radiative tail parameters common to all peaks. For \(n = 1 \) and \(n = 2 \), the peak mass values and hyperfine splittings are fixed to the world averages [9] for the respective \(\chi_b \) states (see Table I). For \(n = 3 \), the hyperfine mass splitting is fixed to the theoretically predicted value of 12 MeV [4], while the average mass is left as a free parameter. The unknown relative normalization of the \(J = 1 \) and \(J = 2 \) CB peaks is taken to be equal and treated as a systematic uncertainty (for all doublets) for the baseline fit.

In order to take into account energy loss from the photon conversion electrons due to bremsstrahlung and other processes, the measured values of \(\Delta m \) in the \(\vec{m}_1 \) and \(\vec{m}_2 \) distributions are scaled by a common parameter \(\lambda = 0.961 \pm 0.003 \), which determines the energy scale and is derived from the fit to the \(\chi_b(1P, 2P) \) signals. The background components of the \(\Delta m \) distributions for the \(Y(1S) \gamma \) and \(Y(2S) \gamma \) final states are each modeled by the PDF \(N_k^\chi(\Delta m - q_0)^{\lambda_k} \exp[B_k(\Delta m - q_0^0)] \) for \(\Delta m > q_0^0 \) and zero otherwise, where \(N_k^\chi, q_0^0, \lambda_k, \) and \(B_k \) (\(k = 1, 2 \)) are all free parameters. The mean value \(\vec{m}_2 \) determined by the fit is shown in Table I.

In the fit using unconverted photons, the signal is refitted using an alternative (two Gaussians) model for each of the three \(\chi_b \) states, resulting in a negligible change in the peak positions. Alternative fits to the background are also used, either including constraints on the \(\Delta m \) distribution using dimuon pairs from the low-mass (8.0 GeV < \(m_{\mu \mu} \) < 8.8 GeV) sideband or different background PDFs. The systematic uncertainty on the \(\chi_b(3P) \) mass barycenter from the modeling of the background distribution is determined to be ±21 MeV. The systematic uncertainty associated with the unconverted photon energy scale is estimated to be ±2% on the \(\Delta m \) position, corresponding to a systematic uncertainty on \(\vec{m}_2 \) of ±22 MeV. The uncertainties due to background modeling and photon energy scale comprise the dominant sources of systematic uncertainty.

For the fit using converted photons, alternative signal and background models are compared, and various

<table>
<thead>
<tr>
<th>State</th>
<th>Model predictions [3, 4] [MeV]</th>
<th>Unconverted photons</th>
<th>Converted photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi_b(1P))</td>
<td>9900</td>
<td>9910 ± 6(stat) ± 11(syst)</td>
<td>Fixed to (\chi_b^1 = 9892.78) and (\chi_b^2 = 9912.21) [9]</td>
</tr>
<tr>
<td>(\chi_b(2P))</td>
<td>10260</td>
<td>10246 ± 5(stat) ± 18(syst)</td>
<td>Fixed to (\chi_b^1 = 10255.46) and (\chi_b^2 = 10268.65) [9]</td>
</tr>
<tr>
<td>(\chi_b(3P))</td>
<td>10525</td>
<td>10541 ± 11(stat) ± 30(syst)</td>
<td>10530 ± 5(stat) ± 9(syst)</td>
</tr>
</tbody>
</table>
The mass barycenter for the gible effect on the fitted/C7 J/C31 errors and uncertainty in the relative contributions from the fit are consistent with expectations [9], within statistical/C31 b/C31 b measurement, the final mass determination for each result in deviations of the order of ±5 MeV or smaller. Furthermore, if the constraints on the masses of the n = 1, 2 peaks are released, the values obtained from the fit are consistent with expectations [9], with statistical errors and uncertainty in the relative contributions from J = 1 and J = 2 states. The effect of symmetrizing the Y(2S) mass window is studied and found to have a negligible effect on the fitted /C31 b masses while increasing background contamination. The resulting shifts in /C31 b for these independent variations are added in quadrature to provide an estimate of the systematic uncertainty.

The /C31 bð3PÞ signal significance is assessed from logðLmax=L0Þ, where Lmax and L0 are the likelihood values from the nominal fit and a fit with no /C31 bð3PÞ signal included, respectively. The fit is repeated with each of the systematic variations in the model, as discussed above, and the likelihood ratio reevaluated. The significance of the /C31 bð3PÞ signal is found to be in excess of 6 standard deviations in each of the unconverted and converted photon selections independently.

The mass barycenter for the /C31 bð3PÞ signal, determined from the fit using unconverted photon candidates is

\[
\bar{m}_3 = 10.541 \pm 0.011\text{(stat)} \pm 0.030\text{(syst)} \text{ GeV.}
\]

The mass barycenter for the /C31 bð3PÞ signal, determined from the fit using converted photon candidates is

\[
\bar{m}_3 = 10.530 \pm 0.005\text{(stat)} \pm 0.009\text{(syst)} \text{ GeV.}
\]

The measured mass barycenters of the /C31 bð1PÞ, /C31 bð2PÞ, and /C31 bð3PÞ systems are summarized in Table I. The results of the converted and unconverted photon analyses for the 3P signal are found to be compatible. Given the substantially smaller systematic uncertainties in the conversion measurement, the final mass determination for /C31 b is quoted solely on the basis of this analysis.

In conclusion, the production of the heavy quarkonium states /C31 bðnPÞ in proton-proton collisions at \(\sqrt{s} = 7\) TeV is observed through the reconstruction of the radiative decay modes of /C31 bðnPÞ → Y(1S, 2S)γ. Mass peaks corresponding to /C31 bð1P, 2PÞ decays are observed, together with additional structures at higher mass, which are consistent with theoretical predictions for /C31 bð3PÞ → Y(1S)γ and /C31 bð3PÞ → Y(2S)γ. These observations are interpreted as the /C31 bð3PÞ multiplet, the mass barycenter of which is measured to be 10.530 ± 0.005(stat) ± 0.009(syst) GeV.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNR, DNSRC, and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSTRT, Greece; ISF, MINerva, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRSRT, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSY (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, U.S. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.), and BNL (U.S.), and in the Tier-2 facilities worldwide.

18d Department of Physics, Istanbul Technical University, Istanbul, Turkey
19a INFN Sezione di Bologna, Bologna, Italy
19b Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, University of Bonn, Bonn, Germany
21 Department of Physics, Boston University, Boston, Massachusetts, USA
22 Department of Physics, Brandeis University, Waltham, Massachusetts, USA
23 Univ. São Paulo (USP), São Paulo, Brazil
23a Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
23b Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
23c Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
23d Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
24 Physics Department, Brookhaven National Laboratory, Upton, New York, USA
25a National Institute of Physics and Nuclear Engineering, Bucharest, Romania
25b University Politehnica Bucharest, Bucharest, Romania
25c West University in Timisoara, Timisoara, Romania
26 Departamento de Fisica, Universidade de Sao Carlos, Sao Carlos, Brazil
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
31a Departamento de Fisica, Pontificia Universidad Católica de Chile, Santiago, Chile
31b Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
31c Instituto de High Energy Physics, Chinese Academy of Sciences, Beijing, China
31d Department of Modern Physics, University of Science and Technology of China, Anhui, China
31e Department of Physics, Nanjing University, Nanjing, China
32 High Energy Physics Group, Shandong University, Shandong, China
33 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
34 Nevis Laboratory, Columbia University, Irvington, New York, USA
35 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
36 INFN Gruppo Collegato di Cosenza, Italy
37 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas, Texas, USA
40 Physics Department, University of Texas at Dallas, Richardson, Texas, USA
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham, North Carolina, USA
45 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 INFN Laboratori Nazionali di Frascati, Frascati, Italy
47 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
48 Section de Physique, Université de Genève, Geneva, Switzerland
49 INFN Sezione di Genova, Italy
50a Dipartimento di Fisica, Università di Genova, Genova, Italy
50b E. Andronikashvili Institute of Physics, Georgian Academy of Sciences, Tbilisi, Georgia
50c High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
51 Il Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
52 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
53 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
54 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
55 Department of Physics, Hampton University, Hampton, Virginia, USA
56 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
57 Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
58 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
59 Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
60 Faculty of Science, Hiroshima University, Hiroshima, Japan
61 Department of Physics, Indiana University, Bloomington, Indiana, USA
62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa City, Iowa, USA
Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Instituto de Fisica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
INFN Sezione di Lecce, Italy
Dipartimento di Fisica, Universitá del Salento, Lecce, Italy
Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teórica C-15, Universidad Autónoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA
Department of Physics, McGill University, Montreal QC, Canada
Department of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor, Michigan, USA
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
INFN Sezione di Milano, Italy
Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik, München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science, Nagoya University, Nagoya, Japan
INFN Sezione di Napoli, Italy
Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
Department of Physics, New York University, New York, New York, USA
Ohio State University, Columbus, Ohio, USA
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
Palacký University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA
LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
INFN Sezione di Pavia, Italy
Dipartimento di Fisica Nucleare teorica, Universita di Pavia, Pavia, Italy
<table>
<thead>
<tr>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA</td>
<td>USA</td>
</tr>
<tr>
<td>Petersburg Nuclear Physics Institute, Gatchina, Russia</td>
<td>Russia</td>
</tr>
<tr>
<td>INFN Sezione di Pisa, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Laboratorio de Instrumentacion y Fisica Experimental de Particulas - LIP, Lisbon, Portugal</td>
<td>Portugal</td>
</tr>
<tr>
<td>Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Czech Technical University in Prague, Prague, Czech Republic</td>
<td>Czech Technical University in Prague, Prague, Czech Republic</td>
</tr>
<tr>
<td>State Research Center Institute for High Energy Physics, Protvino, Russia</td>
<td>Russia</td>
</tr>
<tr>
<td>Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Physics Department, University of Regina, Regina SK, Canada</td>
<td>Canada</td>
</tr>
<tr>
<td>INFN Sezione di Roma I, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Dipartimento di Fisica, Universitá La Sapienza, Roma, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>INFN Sezione di Roma Tor Vergata, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Dipartimento di Fisica, Universitá di Roma Tor Vergata, Roma, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>INFN Sezione di Roma Tre, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Dipartimento di Fisica, Universitá di Roma Tre, Roma, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca, Morocco</td>
<td>Morocco</td>
</tr>
<tr>
<td>Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat, Morocco</td>
<td>Morocco</td>
</tr>
<tr>
<td>Faculté des Sciences Semliai, Université Cadi Ayyad, LPHEA-Marakech, Morocco</td>
<td>Morocco</td>
</tr>
<tr>
<td>Faculté des Sciences, Université Mohamed Premier and LPTPM, Ouaja, Morocco</td>
<td>Morocco</td>
</tr>
<tr>
<td>Faculté des Sciences, Université Mohammed V, Rabat, Morocco</td>
<td>Morocco</td>
</tr>
<tr>
<td>DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France</td>
<td>France</td>
</tr>
<tr>
<td>Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA</td>
<td>USA</td>
</tr>
<tr>
<td>Department of Physics, University of Washington, Seattle, Washington, USA</td>
<td>USA</td>
</tr>
<tr>
<td>Department of Physics, Shinshu University, Nagano, Japan</td>
<td>Japan</td>
</tr>
<tr>
<td>Fachbereich Physik, Universität Siegen, Siegen, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>Department of Physics, Simon Fraser University, Burnaby BC, Canada</td>
<td>Canada</td>
</tr>
<tr>
<td>SLAC National Accelerator Laboratory, Stanford, California, USA</td>
<td>USA</td>
</tr>
<tr>
<td>Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic</td>
<td>Slovak Republic</td>
</tr>
<tr>
<td>Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic</td>
<td>Slovakia</td>
</tr>
<tr>
<td>Department of Physics, University of Johannesburg, Johannesburg, South Africa</td>
<td>South Africa</td>
</tr>
<tr>
<td>School of Physics, University of the Witwatersrand, Johannesburg, South Africa</td>
<td>South Africa</td>
</tr>
<tr>
<td>Department of Physics, Stockholm University, Sweden</td>
<td>Sweden</td>
</tr>
<tr>
<td>The Oskar Klein Centre, Stockholm, Sweden</td>
<td>Sweden</td>
</tr>
<tr>
<td>Physics Department, Royal Institute of Technology, Stockholm, Sweden</td>
<td>Sweden</td>
</tr>
<tr>
<td>Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, New York, USA</td>
<td>USA</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>School of Physics, University of Sydney, Sydney, Australia</td>
<td>Australia</td>
</tr>
<tr>
<td>Institute of Physics, Academia Sinica, Taipei, Taiwan</td>
<td>Taiwan</td>
</tr>
<tr>
<td>Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel</td>
<td>Israel</td>
</tr>
<tr>
<td>Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel</td>
<td>Israel</td>
</tr>
<tr>
<td>Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece</td>
<td>Greece</td>
</tr>
<tr>
<td>International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan</td>
<td>Japan</td>
</tr>
<tr>
<td>Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan</td>
<td>Japan</td>
</tr>
<tr>
<td>Department of Physics, Tokyo Institute of Technology, Tokyo, Japan</td>
<td>Japan</td>
</tr>
<tr>
<td>Department of Physics, University of Toronto, Toronto ON, Canada</td>
<td>Canada</td>
</tr>
<tr>
<td>TRIUMF, Vancouver BC, Canada</td>
<td>Canada</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, York University, Toronto ON, Canada</td>
<td>Canada</td>
</tr>
<tr>
<td>Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tempodai,Tsukuba, Ibaraki 305-8571, Japan</td>
<td>Japan</td>
</tr>
<tr>
<td>Science and Technology Center, Tufts University, Medford, Massachusetts, USA</td>
<td>USA</td>
</tr>
<tr>
<td>Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia</td>
<td>Colombia</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA</td>
<td>USA</td>
</tr>
<tr>
<td>INFN Gruppo Collegato di Udine, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>ICTP, Trieste, Italy</td>
<td>Italy</td>
</tr>
</tbody>
</table>