Observation of a New χb State in Radiative Transitions to \(Y(1S)\) and \(Y(2S)\) at ATLAS

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.108.152001

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Observation of a New χ_b State in Radiative Transitions to $Y(1S)$ and $Y(2S)$ at ATLAS

G. Aad et al.*

(ATLAS Collaboration)

(Received 21 December 2011; revised manuscript received 18 February 2012; published 9 April 2012)

The $\chi_b(nP)$ quarkonium states are produced in proton-proton collisions at the Large Hadron Collider at $\sqrt{s} = 7$ TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb$^{-1}$, these states are reconstructed through their radiative decays to $Y(1S,2S)$ with $Y \rightarrow \mu^+\mu^-$. In addition to the mass peaks corresponding to the decay modes $\chi_b(1P,2P) \rightarrow Y(1S)\gamma$, a new structure centered at a mass of 10.530 ± 0.005(stat) ± 0.009(syst) GeV is also observed, in both the $Y(1S)\gamma$ and $Y(2S)\gamma$ decay modes. This structure is interpreted as the $\chi_b(3P)$ system.

DOI: 10.1103/PhysRevLett.108.152001 PACS numbers: 14.40.Pq, 12.38.7c, 13.20.Gd, 14.65.Fy

Measurements of the properties of heavy quark-antiquark bound states, or quarkonia, provide a unique insight into the nature of quantum chromodynamics close to the strong decay threshold. For the $b\bar{b}$ system, the quarkonium states with parallel quark spins ($s = 1$) include the S-wave Y and the P-wave χ_b states, where the latter each comprise a closely spaced triplet of $J = 0, 1, 2$ spin states: χ_{b0}, χ_{b1}, and χ_{b2}. The $\chi_b(1P)$ and $\chi_b(2P)$, with spin-weighted mass barycenters of 9.90 and 10.26 GeV, respectively, can be readily produced in the radiative decays of $Y(2S)$ and $Y(3S)$ and have been studied experimentally [1].

In this Letter, χ_b quarkonium states are reconstructed with the ATLAS detector through the radiative decay modes $\chi_b(nP) \rightarrow Y(1S)\gamma$ and $\chi_b(nP) \rightarrow Y(2S)\gamma$, in which $Y(1S, 2S) \rightarrow \mu^+\mu^-$ and the photon is reconstructed either through conversion to e^+e^- or by direct calorimetric measurement. Previous experiments have measured the $\chi_b(1P)$ and $\chi_b(2P)$ through these decay modes [2]. The $\chi_b(3P)$ state has not previously been observed. It is predicted to have an average mass of approximately 10.52 GeV, with hyperfine mass splitting between the triplet states of 10–20 MeV [3,4].

The ATLAS detector [5] is a general-purpose particle physics detector with a forward-backward symmetric cylindrical geometry and near 4π coverage in solid angle. The inner tracking detector (ID) consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field and by high-granularity liquid-argon sampling electromagnetic calorimeters. An iron-scintillator tile calorimeter provides hadronic coverage in the central rapidity range. The end cap and forward regions are instrumented with liquid-argon calorimeters for both electromagnetic and hadronic measurements. The muon spectrometer surrounds the calorimeters and consists of a system of precision tracking chambers and detectors for triggering, inside a toroidal magnetic field.

The data sample used for this measurement was recorded by the ATLAS experiment during the 2011 LHC proton-proton collision run at a center-of-mass energy $\sqrt{s} = 7$ TeV. The integrated luminosity of the data sample, which includes only data-taking periods where all relevant detector subsystems were operational, is 4.4 fb$^{-1}$. A set of muon triggers designed to select events containing muon pairs or single high transverse momentum muons was used to collect the data sample.

In this analysis, each muon candidate must satisfy standard muon quality requirements [6]. It must have a track, reconstructed in the muon spectrometer, combined with a track reconstructed in the ID with transverse momentum $p_T > 4$ GeV and pseudorapidity $|\eta| < 2.3$. The dimuon selection requires a pair of oppositely charged muons, which are fitted to a common vertex. A very loose vertex quality requirement [$|\chi^2|$ per degree of freedom (d.o.f.) < 20] is used and no mass or momentum constraints are applied to the fit. The dimuon candidate is also required to have $p_T > 12$ GeV and rapidity $|y| < 2.0$. The invariant mass distribution, $m_{\mu\mu}$, of dimuon candidates is shown in Fig. 1. Those candidates with masses in the ranges 9.25 < $m_{\mu\mu}$ < 9.65 GeV and 9.80 < $m_{\mu\mu}$ < 10.10 GeV are selected as $Y(1S) \rightarrow \mu^+\mu^-$ and $Y(2S) \rightarrow \mu^+\mu^-$ candidates, respectively. The asymmetric mass window (evident from Fig. 1) for $Y(2S)$ candidates is chosen in order to reduce contamination from the $Y(3S)$ peak and continuum background contributions.

The reconstruction of photons in ATLAS is described in Ref. [7]. Further details related to this particular analysis are described below.

Converted photons are reconstructed from two oppositely charged ID tracks intersecting at a conversion vertex, with the opening angle between the two tracks at this vertex constrained to be zero. For tracks with signals in

*Full author list given at the end of the article.
the transition radiation tracker, the transition radiation should be consistent with an electron hypothesis. In order to be reliably reconstructed, each conversion electron track must have a minimum transverse momentum of 500 MeV. It is also required to have at least four silicon detector hits and not to be associated to either of the two muon candidates. To reduce background contamination, the conversion candidate vertex is required to be at least 40 mm from the beam axis and have a vertex \(\chi^2 \) probability of greater than 0.01. The converted photon impact parameter with respect to the dimuon vertex is required to be less than 2 mm.

Electromagnetic calorimeter energy deposits not matched to any track are classified as unconverted photons. This analysis uses the “loose” photon selection described in Ref. [7], with a minimum photon transverse energy of 2.5 GeV. The loose photon selection includes a limit on the fraction of the energy deposit in the hadronic calorimeter as well as a requirement that the transverse width of the shower be consistent with the narrow shape expected for an electromagnetic shower.

To check that an unconverted photon originates from the same vertex as the \(Y \), and to improve the mass resolution of the reconstructed \(\chi_b \), the polar angle of the photon is corrected using the procedure described in Ref. [8]. The corrected polar angle is determined using the measurement of the photon direction from the longitudinal segmentation of the calorimeter and the constraint from the dimuon vertex position. Photons incompatible with having originated from the dimuon vertex are rejected by means of a loose cut on the fit result (\(\chi^2 \) per d.o.f. <200).

The converted (unconverted) photon candidates are required to be within \(|\eta| < 2.30 (2.37)\). Unconverted photons must also be outside the transition region between the barrel and the end cap calorimeters, \(1.37 < |\eta| < 1.52\).

The \(\chi_b \) candidates are formed by associating a reconstructed \(Y \rightarrow \mu^+ \mu^- \) candidate with a reconstructed photon. The invariant mass difference \(\Delta m = m(\mu^+ \mu^-) - m(\mu^+ \mu^-) \) is calculated to minimize the effect of \(Y \rightarrow \mu^+ \mu^- \) mass resolution. In order to compare the \(\Delta m \) distributions of both \(\chi_b(nP) \rightarrow Y(1S)\gamma \) and \(\chi_b(nP) \rightarrow Y(2S)\gamma \) decays, the variable \(\tilde{m}_k = \Delta m + m_{Y(kS)} \) is defined, where \(m_{Y(kS)} \) are the world average masses [9] of the \(Y(kS) \) states. Requirements of \(p_T(\mu^+ \mu^-) > 20 \text{ GeV} \) and \(p_T(\mu^+ \mu^-) > 12 \text{ GeV} \) are applied to \(Y \) candidates with unconverted and converted photon candidates, respectively. These thresholds are
chosen in order to optimize signal significance in the $\chi_b(1P, 2P)$ peaks.

Figure 2(a) shows the m_1 distribution for unconverted photons and Fig. 2(b) shows the m_1 and m_2 distributions for converted photons. In addition to the expected peaks for $\chi_b(1P, 2P) \rightarrow Y(1S, 2S)\gamma$, structures are observed at an invariant mass of approximately 10.5 GeV. These additional structures are interpreted as the radiative decays of the previously unobserved $\chi_b(3P)$ states, $\chi_b(3P) \rightarrow Y(1S)\gamma$ and $\chi_b(3P) \rightarrow Y(2S)\gamma$.

Separate fits are performed to the m_k distributions of the selected $\mu^+\mu^-\gamma$ candidates reconstructed from converted and unconverted photons to extract mass information from the observed $\chi_b(3P)$ signals. The higher threshold for unconverted photons (2.5 GeV, versus 1 GeV for converted photons) prevents the reconstruction of the soft photons from $\chi_b(2P, 3P)$ decays into $Y(2S)$.

An unbinned extended maximum likelihood fit is performed to the $m_1 = \Delta m + m_{Y(1S)}$ distribution of the selected unconverted $\mu^+\mu^-\gamma$ candidates. The three peaks in the distribution are each modeled by a Gaussian probability density function (PDF) with an independent normalization parameter N_n, mean value m_n, and width parameter σ_n. The background distribution is parametrized by the PDF $N_B\exp(A\Delta m + B\Delta m^{-2})$ where $N_B, A,$ and B are all free parameters. The three mean values $m_{n=1,2,3}$ determined by the fit are shown in Table I. The mean value m_3 is an estimate of the mass barycenter of the observed $\chi_b(3P)$ signal.

Likewise, the $m_1 = \Delta m + m_{Y(1S)}$ and $m_2 = \Delta m + m_{Y(2S)}$ distributions for the sample of $\mu^+\mu^-\gamma$ candidates reconstructed from converted photons are fitted using an unbinned extended maximum likelihood method. A simultaneous fit is performed on the m_1 and m_2 distributions for the $\chi_b(nP) \rightarrow Y(1S)\gamma$ (for $n = 1, 2, 3$) and $\chi_b(nP) \rightarrow Y(2S)\gamma$ (for $n = 2, 3$ only) signals, with the distributions modeled by three signal components [two of which are shared between the $Y(1S)$ and $Y(2S)$ distributions] and two background distributions.

In the Δm distribution for the converted photon candidates the typical mass resolution is found to be in the range 16–20 MeV, of similar magnitude to the hyperfine splittings, motivating the need for multiple signal components for each of the $\chi_b(nP)$ peaks. For $n = 1, 2$, the radiative branching fractions of the $J = 0$ states are suppressed with respect to the $J = 1, 2$ states [9] and therefore a $J = 0$ component is not included in the fit. Similar behavior is assumed for the $n = 3$ case. Each of the three peaks ($n = 1, 2, 3$) is therefore parametrized by a doublet of Crystal Ball (CB) [10] functions (corresponding to $J = 1, 2$ states) with resolution σ and radiative tail parameters common to all peaks. For $n = 1$ and $n = 2$, the peak mass values and hyperfine splittings are fixed to the world averages [9] for the respective χ_b states (see Table I). For $n = 3$, the hyperfine mass splitting is fixed to the theoretically predicted value of 12 MeV [4], while the average mass is left as a free parameter. The unknown relative normalization of the $J = 1$ and $J = 2$ CB peaks is taken to be equal and treated as a systematic uncertainty (for all doublets) for the baseline fit.

In order to take into account energy loss from the photon conversion electrons due to bremsstrahlung and other processes, the measured values of Δm in the m_1 and m_2 distributions are scaled by a common parameter $\lambda = 0.961 \pm 0.003$, which determines the energy scale and is derived from the fit to the $\chi_b(1P, 2P)$ signals. The background components of the Δm distributions for the $Y(1S)\gamma$ and $Y(2S)\gamma$ final states are each modeled by the PDF $N_B^m(\Delta m - q_0^m)^{A_k}\exp[B_k(\Delta m - q_0^0)]$ for $\Delta m > q_0^0$ and zero otherwise, where $N_B^m, q_0^m, A_k,$ and B_k ($k = 1, 2$) are all free parameters. The mean value m_3 determined by the fit is shown in Table I.

In the fit using unconverted photons, the signal is refitted using an alternative (two Gaussians) model for each of the three χ_b states, resulting in a negligible change in the peak positions. Alternative fits to the background are also used, either including constraints on the Δm distribution using dimuon pairs from the low-mass ($8.0 \text{ GeV} < m_{\mu\mu} < 8.8 \text{ GeV}$) sideband or different background PDFs. The systematic uncertainty on the $\chi_b(3P)$ mass barycenter from the modeling of the background distribution is determined to be ± 21 MeV. The systematic uncertainty associated with the unconverted photon energy scale is estimated to be $\pm 2\%$ on the Δm position, corresponding to a systematic uncertainty on m_3 of ± 22 MeV. The uncertainties due to background modeling and photon energy scale comprise the dominant sources of systematic uncertainty.

For the fit using converted photons, alternative signal and background models are compared, and various

<table>
<thead>
<tr>
<th>State</th>
<th>Model predictions [3,4]/MeV</th>
<th>Unconverted photons</th>
<th>Converted photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_b(1P)$</td>
<td>9900</td>
<td>9910 ± 6(stat) ± 11(syst)</td>
<td>Fixed to $\chi_{b1} = 9892.78$ and $\chi_{b2} = 9912.21$ [9]</td>
</tr>
<tr>
<td>$\chi_b(2P)$</td>
<td>10260</td>
<td>10246 ± 5(stat) ± 18(syst)</td>
<td>Fixed to $\chi_{b1} = 10255.46$ and $\chi_{b2} = 10268.65$ [9]</td>
</tr>
<tr>
<td>$\chi_b(3P)$</td>
<td>10525</td>
<td>10541 ± 11(stat) ± 30(syst)</td>
<td>10530 ± 5(stat) ± 9(syst)</td>
</tr>
</tbody>
</table>

TABLE I. The fitted mass of the $\chi_b(nP)$ signals for both converted and unconverted photons. The systematic uncertainty on the mass of candidates reconstructed with unconverted photons is determined in the same way for all three states. Also included are theoretical predictions [3,4] for the spin-averaged masses of the χ_b states.
The mass barycenter for the \(\tilde{J} \) modes of deviations in each of the unconverted and converted photon analyses for the doublets. Background modeling variations, decoupled fits to the \(\tilde{m}_1 \) and \(\tilde{m}_2 \) distributions, and individually released constraints on the mass position of the \(n = 1 \) doublets each result in deviations of the order of \(\pm 5 \) MeV or smaller. Furthermore, if the constraints on the masses of the \(n = 1 \) peaks are released, the values obtained from the fit are consistent with expectations [9], within statistical errors and uncertainty in the relative contributions from \(J = 1 \) and \(J = 2 \) states. The effect of symmetrizing the \(Y(2S) \) mass window is studied and found to have a negligible effect on the fitted \(\chi_b(3P) \) masses while increasing background contamination. The resulting shifts in \(\tilde{m}_3 \) for these independent variations are added in quadrature to provide an estimate of the systematic uncertainty.

The \(\chi_b(3P) \) signal significance is assessed from \(\log(L_{\text{max}}/L_0) \), where \(L_{\text{max}} \) and \(L_0 \) are the likelihood values from the nominal fit and from a fit with no \(\chi_b(3P) \) signal included, respectively. The fit is repeated with each of the systematic variations in the model, as discussed above, and the likelihood ratio reevaluated. The signfiicance of the \(\chi_b(3P) \) signal is found to be in excess of 6 standard deviations in each of the unconverted and converted photon selections independently.

The mass barycenter for the \(\chi_b(3P) \) signal, determined from the fit using unconverted photon candidates is

\[
\tilde{m}_3 = 10.541 \pm 0.011(\text{stat}) \pm 0.030(\text{syst}) \text{ GeV}.
\]

The mass barycenter for the \(\chi_b(3P) \) signal, determined from the fit using converted photon candidates is

\[
\tilde{m}_3 = 10.530 \pm 0.005(\text{stat}) \pm 0.009(\text{syst}) \text{ GeV}.
\]

The measured mass barycenters of the \(\chi_b(1P) \), \(\chi_b(2P) \), and \(\chi_b(3P) \) systems are summarized in Table 1. The results of the converted and unconverted photon analyses for the \(\chi_b(3P) \) are found to be compatible. Given the substantially smaller systematic uncertainties in the conversion measurement, the final mass determination for \(\tilde{m}_3 \) is quoted solely on the basis of this analysis.

In conclusion, the production of the heavy quarkonium states \(\chi_b(nP) \) in proton-proton collisions at \(\sqrt{s} = 7 \text{ TeV} \) is observed through the reconstruction of the radiative decay modes of \(\chi_b(nP) \rightarrow Y(1S, 2S)\gamma \). Mass peaks corresponding to \(\chi_b(1P, 2P) \) decays are observed, together with additional structures at higher mass, which are consistent with theoretical predictions for \(\chi_b(3P) \rightarrow Y(1S)\gamma \) and \(\chi_b(3P) \rightarrow Y(2S)\gamma \). These observations are interpreted as the \(\chi_b(3P) \) multiplet, the mass barycenter of which is measured to be \(10.530 \pm 0.005(\text{stat}) \pm 0.009(\text{syst}) \text{ GeV} \).

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNU, and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, Gif, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNI, Sweden; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, U.S. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.), and BNL (U.S.), and in the Tier-2 facilities worldwide.

(ATLAS Collaboration)

1 University at Albany, Albany, New York, USA
2 Department of Physics, University of Alberta, Edmonton AB, Canada
3 Department of Physics, Ankara University, Ankara, Turkey
3a Department of Physics, Dumlupinar University, Kutahya, Turkey
3b Department of Physics, Gazi University, Ankara, Turkey
3c Department of Physics, TOBB University of Economics and Technology, Ankara, Turkey
4 Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
4 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5 Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
6 Department of Physics, Bogazici University, Istanbul, Turkey
7 Institute of Physics, Humboldt University, Berlin, Germany
8 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
13 Department of Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
15 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
16 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18a Physics Department, Bogazici University, Istanbul, Turkey
18c Division of Physics, Dogus University, Istanbul, Turkey
18 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
19 Department of Physics, Humboldt University, Berlin, Germany
22 Institute of Physics, University of Belgrade, Belgrade, Serbia
22 Vinca Institute of Nuclear Sciences, Belgrade, Serbia
24 Department of Physics and Technology, University of Bergen, Bergen, Norway
24 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
25 Physics Department, University of Arizona, Tucson, Arizona, USA
25 Department of Physics, University of Arizona, Tucson, Arizona, USA
25 High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
25 Department of Physics, University of Arizona, Tucson, Arizona, USA
26 Department of Physics, University of Bern, Bern, Switzerland
26 Vinca Institute of Nuclear Sciences, Belgrade, Serbia
26 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
27 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
28a Department of Physics, Bogazici University, Istanbul, Turkey
28c Division of Physics, Dogus University, Istanbul, Turkey

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA

120 Petersburg Nuclear Physics Institute, Gatchina, Russia

121a INFN Sezione di Pisa, Italy

121b Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

122 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

123a Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal

123b Departamento de Fisica Teorica y del Cosmos y CAFPE, Universidad de Granada, Granada, Portugal

124 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic

125 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic

126 Czech Technical University in Prague, Praha, Czech Republic

127 State Research Center Institute for High Energy Physics, Protvino, Russia

128 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

129 Physics Department, University of Regina, Regina SK, Canada

130 Ritsumeikan University, Kusatsu, Shiga, Japan

131a INFN Sezione di Roma I, Italy

131b Dipartimento di Fisica, Università La Sapienza, Roma, Italy

132a INFN Sezione di Roma Tor Vergata, Italy

132b Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

133a INFN Sezione di Roma Tre, Italy

133b Dipartimento di Fisica, Università Roma Tre, Roma, Italy

134a Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca, Morocco

134b Centre National de l'Energie des Sciences Techniques Nucléaires, Rabat, Morocco

134c Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco

134d Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco

134e Faculté des Sciences, Université Mohammed V, Rabat, Morocco

135 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France

136 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA

137 Department of Physics, University of Washington, Seattle, Washington, USA

138 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

139 Department of Physics, Shinshu University, Nagano, Japan

140 Fachbereich Physik, Universität Siegen, Siegen, Germany

141 Department of Physics, Simon Fraser University, Burnaby BC, Canada

142 SLAC National Accelerator Laboratory, Stanford, California, USA

143a Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic

143b Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

144a Department of Physics, University of Johannesburg, Johannesburg, South Africa

144b School of Physics, University of the Witwatersrand, Johannesburg, South Africa

145a Department of Physics, Stockholm University, Sweden

145b The Oskar Klein Centre, Stockholm, Sweden

146 Physics Department, Royal Institute of Technology, Stockholm, Sweden

147 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, New York, USA

148 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

149 School of Physics, University of Sydney, Sydney, Australia

150 Institute of Physics, Academia Sinica, Taipei, Taiwan

151 Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel

152 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

153 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

154 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

155 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

156 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

157 Department of Physics, University of Toronto, Toronto ON, Canada

158a TRIUMF, Vancouver BC, Canada

158b Department of Physics and Astronomy, York University, Toronto ON, Canada

159 Institute of Pure and Applied Sciences, University of Tsukuba, I-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan

160 Science and Technology Center, Tufts University, Medford, Massachusetts, USA

161 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

162 Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA

163a INFN Gruppo Collegato di Udine, Italy

163b ICTP, Trieste, Italy

152001-16