A life-history perspective on the demographic drivers of structured population dynamics in changing environments

Koons, D.N.; Iles, D.T.; Schaub, M.; Caswell, H.

DOI
10.1111/ele.12628

Publication date
2016

Document Version
Other version

Published in
Ecology Letters

Citation for published version (APA):
First published 11 July 2016

David N. Koons, David T. Iles, Michael Schaub and Hal Caswell

This article corrects:

A life-history perspective on the demographic drivers of structured population dynamics in changing environments.
Volume 19, Issue 9, 1023–1031, Article first published online: 11 July 2016

During the review process of our manuscript, it was recommended that we cancel the denominator of eqn S1.1 because, in the case where absolute abundances are replaced with normalized abundances (\hat{n}_t), the denominator sums to one. But one should not simplify symbolic equations based on unique numerical situations until the final stages of calculation. Doing so prematurely can yield incorrect solutions to the sensitivity of $k_{\text{realized},t}$ to changes in each unique demographic parameter.

As such, lines 6–19 of Appendix S1 should be replaced with the following text:

“Given that the realized finite population growth rate at any time step can be expressed as

$$\lambda_{\text{realized},t} = \frac{S_{fj} \times (1 - \gamma) \times n_{fj} + \rho_i \times n_{Afj} + S_{jz} \times \gamma \times n_{jz} + S_{jz} \times n_{Afj}}{n_{jz} + n_{Afj}}$$

(S1.1)

In turn, this allows for straightforward calculation of the first derivatives of $\lambda_{\text{realized},t}$ with respect to changes in each unique demographic parameter on the right-hand side of eqn S1.1 using symbolic calculus (e.g. with R, Matlab, or Maple). Alternatively, one could use matrix calculus, which would be particularly useful for models of larger dimension (Caswell 2007). Below, we provide the solutions to single time-step sensitivities of the realized population growth rate to change in underlying vital rates and normalized abundances for the 2-stage model.”

For the same reason, the code in Appendix S2 on line 1 of page 6 should be replaced with:

\[
gr <- \text{expression}(((S_j* (1 - gamma) * n_j) + (rho * n_a) + (S_j * gamma * n_j) + (S_a * n_a)) / (n_j + n_a))
\]

Fortunately, the solutions to the sensitivities shown in Appendix S1 and all corresponding results presented in our paper are not affected by this clerical error because we correctly based our calculations on the complete version of eqn S1.1 (that shown here and that immediately preceding eqn S1.1 in the printed version of the paper).

ACKNOWLEDGEMENTS

We thank P Williams for pointing out this clerical error.