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Figure–Ground Segregation in a Recurrent
Network Architecture

Pieter R. Roelfsema1, Victor A. F. Lamme1,2, Henk Spekreijse1,
and Holger Bosch3

Abstract

& Here we propose a model of how the visual brain segregates
textured scenes into figures and background. During texture
segregation, locations where the properties of texture elements
change abruptly are assigned to boundaries, whereas image
regions that are relatively homogeneous are grouped together.
Boundary detection and grouping of image regions require
different connection schemes, which are accommodated in a
single network architecture by implementing them in different
layers. As a result, all units carry signals related to boundary

detection as well as grouping of image regions, in accordance
with cortical physiology. Boundaries yield an early enhance-
ment of network responses, but at a later point, an entire
figural region is grouped together, because units that respond
to it are labeled with enhanced activity. The model predicts
which image regions are preferentially perceived as figure or as
background and reproduces the spatio-temporal profile of
neuronal activity in the visual cortex during texture segregation
in intact animals, as well as in animals with cortical lesions. &

INTRODUCTION

The visual brain segregates scenes into objects and
background, as a first processing step on the way to
perception. A wide range of cues is exploited to detect
boundaries between objects and the visual background.
General ly, locations at which the image changes
abruptly are assigned to object boundaries, whereas
image regions that are relatively homogeneous are
grouped together. Texture segregation provides a well-
known example. Consider the image of Figure 1A, which
consists of line elements with a homogeneous orienta-
tion, except in a square region where orientation is
orthogonal. This square is perceived as coherent figural
region superimposed on a background that may even
appear to continue behind it. It is our aim to propose a
neural network architecture that combines two elemen-
tary processes that underlie texture segregation. First,
the network detects boundaries between figure and
background. Second, it groups together image elements
of the figure, to obtain a coherent representation of the
figural region. We will discuss that these two processes
impose conflicting constraints on the architecture of
network connections, a problem that will be referred
to as the ‘‘grouping–segmentation paradox.’’

The first process that is essential for texture segrega-
tion is boundary detection. Boundaries are defined by

abrupt changes in the properties of the texture ele-
ments. Many studies on boundary detection have fo-
cused on the detection of singletons, individual texture
elements that pop out because they differ from the
surrounding elements in one of a number of elementary
features (Nothdurft, 1992; Theeuwes, 1992; Moraglia,
1989). An orientation singleton, for example, is a figure
that consists of a single line element superimposed on a
background with a different orientation. Neurophysio-
logical correlates of singleton detection have been un-
covered in various visual areas, for image elements that
differ from the background in their orientation (Kastner,
Nothdurft, & Pigarev, 1997; Zipser, Lamme, & Schiller,
1996; Lamme, 1995; Sillito, Grieve, Jones, Cudeiro, &
Davis, 1995; Knierim & Van Essen, 1992; Allman, Miezin,
& McGuinness, 1985), color (Schein & Desimone, 1990;
Zeki, 1980), or direction of motion (Zipser et al., 1996;
Lamme, 1995; Born & Tootell, 1992; Lagae, Gulyas,
Raiguel, & Orban, 1989; Tanaka et al., 1986; Allman
et al., 1985). These studies compared neuronal responses
to (1) image elements in isolation, (2) image elements
surrounded by similar neighbors, and (3) image elements
with dissimilar neighbors that pop out. Responses to
image elements presented in isolation are generally
strongest. These are followed by responses to elements
that pop out, which are in turn stronger than responses
to elements with similar neighbors.

These results inspired models of boundary detection
that assume that neurons with adjacent receptive fields
are interconnected with inhibitory connections, that
are strongest among neurons with a similar feature
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preference (Li, 1999; Stemmler, Usher, & Neibur, 1995;
Malik & Perona, 1990; Grossberg & Mingolla, 1985). In
such a connection scheme, neuronal responses to
elements in the middle of a homogeneous region are
inhibited maximally, and inhibition is weaker for re-
sponses to boundaries and singletons. Note that this
scheme predicts that responses to the middle region of
a figure (as in Figure 1A) are also maximally suppressed,
because here the neighboring elements have a similar
orientation, and provide strong inhibition. This predic-
tion seems to be in conflict with our percept of the

figure, which is entirely in the foreground. More impor-
tantly, it is also contradicted by cortical physiology.
Responses to the middle of a textured square are en-
hanced, even in the primary visual cortex (Zipser et al.,
1996; Lamme, 1995) (Figure 1B,C). Firing rates are
enhanced homogeneously, for the entire figural region.
Thus, the entire figure is grouped together by a process
that demarcates neuronal responses to the figural ele-
ments by labeling them with an enhanced firing rate.
How can such a labeling operation be implemented in
the visual cortex?

Figure 1. Correlates of figure–
ground segregation in area V1
of the macaque monkey. (A)
Left: Square figure that segre-
gates from the background on
the basis of a difference in
orientation. The circle indicates
a receptive field of a neuron in
area V1. Right: Stimulus that
only contains background. The
texture elements inside the
receptive field are identical for
the two stimuli. (B) Responses
of a group of V1 neurons to the
figure (thick line) and back-
ground (thin line). Responses
to the figure are strongest,
although the segments in the
receptive field are the same. (C)
Subtracting the response to the
background from the response
to the figure isolates the
response enhancement. Note
that the figural response
enhancement occurs after the
peak response (modified from
Lamme et al., 1999).
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Neurons that respond to a single coherent image
region typically have a similar feature preference. Thus,
the labeling operation could be implemented by spread-
ing the rate enhancement among neurons with a similar
feature preference (Roelfsema, Lamme, & Spekreijse,
2000), a process sometimes referred to as region-filling
(Tanimoto, 1985) or coloring (Ullman, 1984). Such a
process would eventually label the figural region in its
entirety, and need not cross its boundaries, because here
the feature preference of the activated neurons changes
abruptly. Note, however, that this requires an excitatory
interaction between neurons tuned to similar features.

We refer to these apparently conflicting constraints
on the architecture of network connections is as the
grouping–segmentation paradox. On the one hand,
neurons that respond to similar image elements should
support each other, to promote each other’s coselec-
tion. This is important for the grouping of similar image
elements into coherent regions. On the other hand,
neurons that respond to similar image elements should
inhibit each other, to allow boundary detection and pop
out. It is our aim to propose a hierarchical neural
network model that combines both connection schemes
to resolve the paradox.

The model is composed of several areas, resembling
the hierarchical organization of the visual cortex (Figure
2). Each model area consists of two layers, a feedforward
and a feedback layer. Neurons in the feedforward layer
inhibit each other if they have a similar feature prefer-
ence. Thereby, boundaries and singletons are detected
in an initial feedforward sweep of activity though the
network. Neurons in the feedback layers rather excite
each other if they have a similar feature preference.
Feedback groups entire figural regions together by
labeling them with the rate enhancement. The model

accounts for the timing of boundary detection and
region filling that is observed in cortical physiology.
Moreover, the model also explains the effects of lesions
in higher visual cortical areas on texture segregation.

RESULTS

A Recurrent Model for Texture Segregation

The model does not attempt to simulate the details of
receptive field properties in the various visual cortical
areas. Such details would not only make the model
unnecessarily complicated, but might even distract from
the essence of the connection scheme. The model
should rather be regarded as a computational recipe that
combines boundary detection and grouping of figural
regions in a single network architecture. Therefore, only
two features are used, which will be referred to as ‘‘left
oblique’’ and ‘‘right oblique.’’ These features could be
replaced by others, and more features could be added
without changing the overall behavior of the network.

The overall layout of the proposed model resembles
the organization of the visual cortex. It consists of
several hierarchical levels corresponding loosely to areas
V1, V2, V4, TEO, and TE (e.g., Olshausen, Anderson, &
Van Essen, 1993; Burt & Adelson, 1983). The size of
receptive fields increases in higher areas and the num-
ber of neurons decreases. Thus, higher areas represent
the image at a coarser resolution. Each area is subdi-
vided into two layers, a feedforward and a feedback layer
(Figure 2A). Feedforward layers propagate activity to
higher areas through feedforward connections (Figure 2,
connection type 1) and feedback layers propagate
activity in the opposite direction (connection types 2
and 3). Within each of the areas, the two layers can

Figure 2. Architecture of the
connections in the model.
(A) The model is composed of
five areas, which are named
after the areas of the temporal
stream of the monkey brain.
Each area contains units tuned
to the left diagonal and right
diagonal orientations, which
are segregated into a feedfor-
ward (FF) and a feedback layer
(FB). (B) Inter-areal connec-
tions. Units of the feedforward
layer excite units with the same
feature specificity in higher
areas (connection type 1).
Feedback connections excite
units with a similar feature
selectivity (connection type 3),
and inhibit units with the
opposite feature selectivity (connection type 2). (C) Intra-areal connections. In the feedforward pathway, neighboring units inhibit each other if
they have a similar feature preference (connection type 4). This lateral inhibition results in an enhanced response to boundaries and singletons.
Units in the feedforward and feedback layers with overlapping receptive fields are reciprocally interconnected with excitatory connections
(connection types 5 and 6).
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interact through interlaminar connections (connection
types 5 and 6).

The Feedforward Pathway

At each level of the feedforward pathway, boundaries
and singletons are detected. Neurons inhibit other cells
with adjacent receptive fields that have a similar feature
preference (Li, 1999; Stemmler et al., 1995; Malik &
Perona, 1990; Grossberg & Mingolla, 1985) (connection
type 4). To indicate the implications of this connection
scheme it will first be shown how the network behaves
if it consists of only the feedforward pathway (connec-
tion types 1 and 4 in Figure 2). Figure 3A illustrates
the response of such a feedforward network to a
textured square on a background with an orthogonal

orientation. The image activates V1 neurons that re-
spond to the figure with a left oblique orientation, as
well as neurons that respond to the orthogonal sur-
round. These two groups of neurons are shown in
separate maps in Figure 3A, but would in reality be
intermingled in a single retinotopic map. Neurons that
have their receptive field on the boundary between
figure and background have the strongest responses,
because they receive less inhibition from their neigh-
bors. This boundary enhancement occurs for neurons
tuned to both orientations and it can therefore also be
seen if the activity in the two maps is summed together
(right panel in Figure 3A). Note, however, that the
summed activity in area V1 evoked by the interior of
the figure is as strong as the summed activity evoked
by the background.

Figure 3. The activity profile of
the feedforward layers, in the
absence of feedback. (A) Left:
Figure with a left diagonal
orientation superimposed on a
background with an orthogonal
orientation. Middle: Units of
model area V1 that are tuned to
the left and right oblique
respond to the figure and
background, respectively. Gray
levels indicate different
response strengths; light shades
correspond to regions of high
activity, and dark shades to
regions of low activity. Units
tuned to either orientation
respond most strongly to the
edges. Right: The enhancement
of responses to the edges is
clear if activity is summed across
the two features. (B) Response
in the feedforward layers of the
various model areas, summed
across both features. Higher
areas represent the image at a
lower spatial resolution, and the
edges are not represented
individually. The response
enhancement is strongest in
area V4, where the figure fills
only a few receptive fields.
(C) Response to a larger figure.
Now the maximal response
enhancement occurs at a higher
hierarchical level.
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The situation is different for higher areas, which
contain a representation of the same image, but at a
coarser resolution. If the hierarchy is ascended, the
interior of the figure is gradually filled in (Figure 3B,C)
until an area is reached where the entire figure fills just
one or a few receptive fields. Here, neurons that are
activated by the figure respond strongly, because they
have very few activated neighbors with the same feature
preference and they therefore receive little lateral inhib-
ition. In other words, at this level the figure is repre-
sented as if it is a singleton. Thus, responses evoked by
the figure are strongest at a level where its size is
comparable to the size of the receptive fields and large
figures evoke maximal responses at higher hierarchical
levels than small figures (Figure 3B,C).

The Feedback Pathway

The feedback pathway ensures that responses to the
entire figural region are enhanced relative to responses
to the background. Each figure yields a maximal re-
sponse at one of the hierarchical levels of the feedfor-
ward pathway. Activity in the feedforward pathway
reaches the feedback pathway through the interlaminar
connections (connection type 5 in Figure 2). The en-
hanced response to the figure is subsequently fed back
to neurons at lower hierarchical levels that also respond
to the figure. Feedback neurons excite neurons at the
next lower layer with a similar feature preference, but
inhibit neurons with the opposite feature preference
(connection types 2 and 3, respectively; see Hahnloser,
Douglas, Mahowald, & Hepp, 1999; Chey, Grossberg, &
Mingolla, 1997; Finkel & Edelman, 1989, for similar
connection schemes).

Higher areas represent the image at a courser reso-
lution. This implies that the spatial resolution of the
feedback signal in any area is coarser than the resolution

of the feedforward signal. Physiological data on the
topography of cortico-cortical connections indicate that
feedback projections are indeed somewhat spatially
diffuse (Salin & Bullier, 1995). Thus, a mechanism is
required in the feedback pathway to prevent the en-
hanced activity evoked by the figure from spilling over
to the background. In the model, this is accomplished
by a multiplicative interaction between feedforward and
feedback (e.g., Grossberg, 1999; Fukushima, 1988). This
ensures that only neurons that receive bottom-up sup-
port from the feedforward pathway are influenced by
feedback. In other words, feedback is gated by feed-
forward activation (see Methods), as is illustrated in
Figure 4. Suppose that a left oblique figure on an
orthogonal background is shown and that the maximal
response enhancement in the feedforward pathway
occurs at hierarchical level N. This enhanced activity
enters into the feedback pathway through interlaminar
connections. Neurons of the feedback layer at level
N that are tuned to the left oblique propagate the
enhanced activity to similarly tuned neurons at level
N ¡ 1. In the feedback layer of level N ¡ 1, only those
neurons that have their receptive field on the figural
region can be influenced by this enhanced feedback,
because they receive bottom-up support from neurons
in the feedforward layer that have overlapping receptive
field (through connections of type 5 in Figure 2). The
enhanced feedback cannot spill over to neurons that are
tuned to this orientation and that have a receptive field
on the background (small cells in Figure 4A), since these
cells do not receive bottom-up support. Physiological
evidence supports such gating of feedback by feedfor-
ward activation. Most neurons can only be influenced by
contextual stimuli that are positioned outside their
receptive field, if there is another stimulus inside their
receptive field that drives the cell (Zipser et al., 1996;
Kapadia, Ito, Gilbert, & Westheimer, 1995; Sillito et al.,

Figure 4. Interaction between
feedforward and feedback. In
the feedback layer of level N,
only a single unit is activated by
the left diagonal orientation
(A). This unit responds more
strongly than units at the same
level that are tuned to the
orthogonal orientation (B), due
to the lateral inhibition in the
feedforward pathway. The
response enhancement is
propagated to neurons of the
feedback layer of level N ¡ 1
that are also tuned to the left
oblique (A, thick connections).
The feedback projection is
somewhat diffuse. However,
only neurons at level N ¡ 1 that receive bottom up support from the feedforward layer can benefit from the enhanced feedback. Feedback
connections to cells that do not receive bottom up support have no effect (stippled connections). The feedback signal for the right diagonal
orientation is gated similarly (B), but this feedback signal is weaker (thinner connections).
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1995; Knierim & Van Essen, 1992; Tanaka et al., 1986;
Allman et al., 1985). In principle, such contextual effects
can be mediated through lateral connections as well as
through feedback connections. Recent studies suggest
that at least some of these contextual effects indeed
depend on feedback connections (Hupé et al., 1998;

Lamme, Supèr, & Spekreijse, 1998). Moreover, a similar
gating by feedforward activation occurs for response
modulations that are caused by visual attention. Atten-
tion has strongest effects on neurons that have an
appropriate stimulus in their receptive field, but hardly
influences cells that do not receive bottom up activation

Figure 5. Spatio-temporal pat-
tern of response enhancement
in area V1 of the model and the
macaque monkey. (A) The
input on the left was presented.
After 65 msec, the model
exhibits a response enhance-
ment that is confined to the
boundary between figure and
background. After 190 msec,
responses to the entire figural
region are enhanced due to
feedback from higher areas.
(B) Thick curves show the total
response (left + right orienta-
tion) of model V1 units. Units
had a receptive field on the
boundary between figure and
background (left) or in the
interior of the figure (right).
Thin curves show the response
to the background. (C) Thick
curves show population
responses in macaque area V1
to the figure boundary (left), or
to the interior of a figure
(right). Thin curves, response
to the background. Arrows
indicate the latency at which the
response enhancement became
significant (modified from
Lamme et al., 1999).
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(McAdams & Maunsell, 1999; Treue & MartÓnez Trujillo,
1999). These attentive effects have to be attributed to
feedback connections.

The enhancement of the response to the figure at
level N ¡ 1 is subsequently fed back to the next lower
level and eventually also reaches area V1. In each of the
areas, feedback initially influences neurons in the feed-
back layers, but these effects are also propagated to the
feedforward layers, through the interlaminar connec-
tions (connection type 6 in Figure 2). The interlaminar
connections from the feedback layer to the feedforward
layer are indirectly excitatory, because they reduce the
impact of lateral inhibition (see Methods), a connection
scheme was chosen to avoid strong excitatory loops,
which may result in an uncontrolled amplification of
activity (Crick & Koch, 1998).

The temporal profile of the response enhancement in
the feedforward layer of area V1 of the full network
(that includes the feedback layers) is illustrated in
Figure 5. Initially, the activity profile across V1 resem-
bles the pattern that is obtained in the absence of
feedback. Lateral inhibition within the feedforward
pathway enhances responses to the boundaries, but
responses to the interior of the figure are not yet
enhanced (Figure 5A,B). It takes additional time before
the effects of feedback are expressed, because the
feedforward pathway first has to propagate the activity
to higher areas. Enhanced feedback reaches neurons in

the feedforward layers of area V1 that respond to
the interior of the figure at a latency of approximately
100 msec and is maintained thereafter. Responses to the
entire figure are now homogeneously enhanced. Note
that the very same units that would exhibit an enhanced
responses to a boundary also enhance their responses
to the interior of a figure, albeit at a later point in time.

For comparison, Figure 5C reproduces data of Lamme,
Rodriguez-Rodriguez, & Spekreijse (1999), which were
obtained in area V1 of monkeys involved in a texture
segregation task. Also in macaque area V1, responses to
the boundaries between figure and background are
enhanced first, at a latency of approximately 70 msec.
Thereafter, responses to the interior of the figure are
enhanced, at a latency of about 110 msec. Thus, an
architecture for texture segregation in which boundary
detection is performed by the feedforward sweep and
feedback groups image regions together reproduces the
main features of physiological data in area V1.

Lesions in Extrastriate Areas

Lesions in various visual areas of cats (De Weerd,
Sprague, Vandenbussche, & Orban, 1994) and monkeys
(Huxlin, Saunders, Marchionini, Pham, & Merigan, 2000;
De Weerd, Desimone, & Ungerleider, 1996; Merigan,
1996; Merigan, Nealey, & Maunsell, 1993) have been
shown to interfere with the perception of the shape of

Figure 6. The effect of lesions
in higher visual areas on activity
in area V1. (A) Magnitude of
response enhancement in
macaque area V1 to an image
containing a square figure that
is defined by an orientation
difference. Responses at
different positions along a line
(left panel) are shown next to
each other. Middle: Profile of
response enhancement (figure
response minus background
response) in control animals.
Right: Profile of response
enhancement in an animal with
a lesion that included (parts of)
areas V3, V3a, V4, V4t, MT, MST,
FST, PM, DP, and 7a. The lesion
reduced the response enhance-
ment to the interior of the
figure, while the response
enhancement to boundaries
was maintained (modified from
Lamme et al., 1998). (B)
Response profile of the model
to a similar stimulus configura-
tion. Middle: profile of response
enhancement in area V1 of the
complete model. Right: V1
response profile of a model in
which all areas above area V1
were removed.
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texture defined figures. Remarkably, such lesions need
not impair the detection of singletons (Merigan et al.,
1993). These psychophysical results are supported by a
recent physiological study, which showed that single-
tons can still be detected by neurons in area V1 when
area V2 is silenced pharmacologically (Hupé, James,
Girard, & Bullier, 2001). These findings are in accord-
ance with the proposed connection scheme, since a
disruption of feedback to area V1 should impair group-
ing of image regions, but spare the detection of boun-
daries and singletons.

There is also physiological data that supports the
involvement of feedback connections in the grouping
of coherent image regions. A recent study (Lamme et al.,
1998) investigated the effect of a relatively large extras-
triate lesion on neuronal correlates of texture segrega-
tion in macaque area V1. Such a lesion does not change
feedforward processing in area V1, but removes many of
the neurons that provide feedback. Figure 6A compares
the spatio-temporal profile of the response enhance-
ment in area V1 of monkeys with an extrastriate lesion to
that of control monkeys. The neurons that were tested
had their receptive fields at various locations along an

imaginary line across the figure, and background re-
sponses were subtracted from figure responses in order
to isolate the response enhancement (gray area in
Figure 5C). Boundary detection occurs both in animals
with and without the lesion, at a relatively early latency
(Figure 6A). In control animals, the interior of the figure
is subsequently filled in with the rate enhancement.
Filling of the figure interior does not occur in animals
with an extensive extrastriate lesion. The model readily
reproduces these results if all visual areas are removed,
except area V1. As expected, boundary detection occurs
in the complete as well as in the lesioned model, but the
response enhancement to the interior of the figure is
absent in the model with a lesion (Figure 6B).

V1 Responses to Complex Shapes

We next investigated the network’s response to more
complex shapes. Candidate objects are extracted in the
feedforward pathway through lateral inhibition. The
relative magnitude of responses to figure and back-
ground therefore depends on the local shape of the
object, as is indicated schematically in Figure 7E.

Figure 7. Response to com-
plex objects in model area V1.
(A–C) Sustained response pro-
file (at 230 msec) across model
area V1 to a U shape (A), a plus
shape (B), and a figure with a
hole (C). (D) Spatio-temporal
response profile in model area
V1 along an imaginary line
in (A). Note the transient
response enhancement to the
center of the U shape. (E) The
relative amount of lateral
inhibition that is generated in
the feedforward pathway can be
approximated by counting the
number of active neighbors that
share a unit’s feature prefer-
ence. At straight boundaries,
inhibitory input to units that
respond to figure and back-
ground is balanced (five active
neighbors with a similar
tuning). Inhibition is weaker
at convex corners (three
neighbors), and stronger at
concave corners (six or seven
neighbors).
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Neurons that have their receptive field on a homoge-
neous region are maximally inhibited, whereas neurons
with a receptive field close to a boundary receive less
inhibition, as was discussed above. This holds for
neurons that respond to the figure, as well as for
neurons that respond to the background. The response
enhancement on the two sides of a straight boundary is
therefore balanced. At corners, however, the strength
of lateral inhibition differs between figure and back-
ground. At convex corners, neurons that respond to the
figure receive less inhibition than those that respond to
the background (Figure 7E). Thus, if a convex figure
such as a square is presented, responses to the figure
are at least as strong as responses to the background, at
each image location and at each hierarchical network
level. At concavities, the opposite is true and the
neurons that respond to the figure receive the stron-
gest inhibition. This results in a relative enhancement
of responses to the background. However, such an
inappropriate enhancement of background responses
only occurs in lower visual areas. In higher areas, the
figure is eventually represented by the activity of a few
neurons and local concavities are lost due to the
reduced spatial resolution. Therefore, responses to
the figure are always strongest at these higher hierarchi-
cal levels. In the network, feedback from these higher
areas eventually also overcomes the inappropriate en-
hancement of background responses in lower areas, as
is illustrated in Figure 7A–C. It is essential that feed-
back is gated by feedforward activation during the
propagation of feedback to lower visual areas, because
details of the figure can be filled in successively at lower
hierarchical network levels, until the figure’s shape,
including its concavities, is represented faithfully at
the lowest level. The small receptive fields of area V1
allow the network to represent the figural region at a
maximal spatial resolution.

The resolution of a conflict between higher and
lower areas is illustrated in Figure 7D, which shows
the spatio-temporal response profile of area V1 along
a line in an image containing a U-shaped figure
(Figure 7A). Initially, responses to the boundaries are
enhanced in area V1, since these are extracted locally.
Thereafter, the model attempts to fill in the regions
between boundaries. Note that the response to the
interior of the U is enhanced transiently. This re-
sponse enhancement is caused by excitatory feedback
from neurons in areas V2 and V4, where responses to
the opening of the U are strongly enhanced. Indeed,
this opening is initially extracted as a candidate object,
since its size matches the size of the receptive fields in
these areas. However, the enhancement of responses
to the opening disappears eventually, because the
respective V2 and V4 neurons are overruled by feed-
back from higher areas that contain the correct assign-
ment of figure and background. When feedback of
these higher areas is propagated down to area V1, the

response enhancement is restricted to the actual
figure (Figure 7D).

DISCUSSION

The present model illustrates a general scheme for
combining a grouping operation that binds image ele-
ments into coherent regions, with boundary detection
and pop out, in a single network architecture. Only two
features, right and left oblique, were used in the simu-
lations. However, these features could be replaced by
others and more features could be added, without
changing the results. It is likely that the mechanisms
that are at work during texture segregation on the basis
of orientation contrast are similar those responsible for
the segregation by other cues. Indeed, the spatio-
temporal profile of the figural response enhancement
is relatively independent of the feature that differenti-
ates between foreground and background (Zipser et al.,
1996). However, not all feature contrasts permit pop
out, and the effortless segregation of image regions
(Julesz, 1981; Treisman & Gelade, 1980). The differences
between feature contrasts that do and do not permit
effortless detection of boundaries have been addressed
in previous modeling studies (Malik & Perona, 1990;
Bergen & Adelson, 1988; Caelli, 1985).

The location and shape of the figural region is labeled
at all hierarchical levels of the model by an enhance-
ment of neuronal firing rates. This raises the question of
how such a spatial profile of enhanced activity can be
read out by other areas of the visual cortex. It is not
immediately obvious how other areas could distinguish
between figural image regions, and image regions that
yield stronger neuronal responses for another reason,
for example, because they have a higher contrast. We
would like to suggest an attractive possibility for read
out, which relies on an additional population of neu-
rons whose firing rate does not depend on figure–
ground relationships (nonmodulated cells; Zipser et al.,
1996; Lamme, 1995). The shape and spatial extent of
the figure can be read out by comparing the activity of
these nonmodulated neurons to the activity of neurons
that do exhibit the response enhancement. Thus, neu-
rons in other areas can obtain a relatively pure signal
reflecting figural shape if they receive excitatory input
from the modulated cells and inhibitory input from the
nonmodulated cells. This connection scheme compen-
sates for changes in contrast, since contrast changes
affect the responses of nonmodulated and modulated
cells equally. Another advantage of this type of coding is
that the figural region is represented at a high spatial
resolution (e.g., in area V1; Figure 7A–C) if the activity
of the modulated cells is compared to the activity of
nonmodulated cells, but that the neuronal responses
also remain available for the extraction of more local
features, such as the location, orientation, and depth of
individual line elements.
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In a relatively elaborate modeling approach, Gross-
berg and Mingolla (1985, 1993), Grossberg (1994), and
Cohen and Grossberg (1984) suggested that boundaries
and surface properties are represented by separate
neural systems, localized in different functional compart-
ments of areas V1 and V2, which are distinguished on
the basis of their cytochrome oxidase staining (Living-
stone & Hubel, 1988). In the present model, the con-
nection schemes that mediate boundary detection and
grouping of image regions are rather implemented in
different layers, and the signals that reflect both pro-
cesses are carried by the very same neurons, in accord-
ance with physiology. The same connection scheme is
reiterated at every hierarchical network level, which
keeps the number of parameters that control the net-
work’s behavior at a minimum. In spite of its minimal
complexity, the model accurately reproduces the spatio-
temporal profile of activity in cortical areas during
texture segregation in intact animals as well as in animals
with extrastriate lesions.

The network has to solve two problems, singleton
detection and grouping of coherent image regions, at
the same time. The constraints that these two problems
impose on the architecture of the network connections
are apparently conflicting, a conflict that we referred to
as the grouping–segmentation paradox. The first prob-
lem is that the network has to make a choice: Which of
the regions should be designated as foreground and
which one as background? The Gestalt psychologists
(e.g., Koffka, 1935) have described rules of perceptual
organization that guide this choice in human observers.
One rule states that if the image plane is subdivided into
two regions that have different sizes, then the smaller
region is more likely to be perceived as figure and the
larger as background. Another, related rule states that
convex image regions are more likely to be perceived as
figural, and concave regions as background (Gibson,
1994; Kanizsa & Gerbino, 1976; Koffka, 1935). These
Gestalt rules are implemented in the feedforward layers
of the network, where neighboring neurons tuned to
similar features inhibit each other (Li, 1999; Stemmler
et al., 1995; Malik & Perona, 1990; Grossberg & Mingolla,
1985). Inhibition is weakest for neurons that respond to
singletons, namely, image components surrounded by
dissimilar neighbors. A singleton is therefore favored as
the figure because it evokes the strongest activity.
Physiological data indicate that inhibitory interactions
among neurons tuned to similar features occur in multi-
ple areas, including areas V11 (Kastner et al., 1997;
Zipser et al., 1996; Lamme, 1995; Sillito et al., 1995;
Knierim & Van Essen, 1992; Allman et al., 1985), V4
(Schein & Desimone, 1990; Zeki, 1980), MT (Born &
Tootell, 1992; Lagae et al., 1989; Tanaka et al., 1986;
Allman et al., 1985), and MST (Tanaka et al., 1986), areas
that represent the visual field at various spatial resolu-
tions. In the model, these inhibitory interactions also
account for the detection of larger figural regions. The

figure pops out at a hierarchical level where its size best
matches the size of the receptive fields.

Recent psychophysical research uncovered that the
probability of perceiving a region as figural also in-
creases if that region has a familiar shape (Peterson,
Harvey, & Weidenbacher, 1991). To account for this
dependence, the feedforward pathway of our model
would have to be modified, by including shape-selective
neurons, which are indeed abundant in higher visual
areas such as area IT (Tanaka, 1995). Previous studies
demonstrated that such a bias a favor of familiar shapes
can be incorporated in a neural network, if shape
selective neurons provide excitatory feedback to neu-
rons in lower areas that have a similar tuning (Vecera &
O’Reilly, 1998; Fukushima, 1988). We note that such a
connection scheme complies with the proposed archi-
tecture, in which feedback connections are between
neurons with a similar feature preference.

The second problem that is solved by the network is
the identification of the entire figural region, which has
to be grouped together. This appeals to another Gestalt
rule stating that image elements with similar features are
grouped together by the visual system (Rock & Palmer,
1990). Grouping is achieved in the feedback pathway,
which labels the entire figure with an enhanced neuro-
nal response, in accordance with cortical physiology
(Lamme et al., 1999; Zipser et al., 1996; Lamme, 1995).
Two major assumptions were made regarding the spe-
cificity of feedback interactions. First, it was assumed
that feedback to neurons that are tuned to similar
features is predominantly excitatory, whereas feedback
to neurons with a different feature preference is inhib-
itory (see also Hahnloser et al., 1999; Chey et al., 1997;
Finkel & Edelman, 1989). In contrast, Rao and Ballard
(1999) suggested the opposite connection scheme in a
related model. In their model, feedback rather sup-
presses the activity of neurons with a similar tuning,
and we conjecture that such a layout of connections
would not reproduce the enhancement of responses to
the interior of a figure, as is observed in physiology. To
our knowledge, there are no data regarding the func-
tional specificity of feedback connections, so this dis-
agreement awaits to be resolved experimentally. Second,
it was assumed that the feedback projection is gated by
feedforward activation. Areas that represent the image at
a relatively course resolution feed back to areas that
contain a more fine-grained representation. Gating pre-
vents the excitatory feedback to spread beyond the
region that is occupied by the figure, and as a result,
lower areas demarcate the region occupied by the figure
at an ever-increasing resolution. Physiological studies on
contextual effects as well as studies on the effects of
visual attention on neuronal responses support such a
gating process. Influences from outside the classical
receptive field are particularly strong for neurons
that are well-driven by the visual stimulus, and much
weaker for cells that receive little bottom up activation
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(McAdams & Maunsell, 1999; Treue & MartÓnez Trujillo,
1999; Zipser et al., 1996; Kapadia et al., 1995; Sillito et al.,
1995; Knierim & Van Essen, 1992; Schein & Desimone,
1990; Allman et al., 1985).

In conclusion, the assignment of different roles to
feedforward, horizontal, and feedback connections
allows the present model to resolve the grouping–
segmentation paradox and to account for neurophysio-
logical and psychophysical data on texture segregation
in subjects with and without cortical lesions. There is
some physiological data implying functional differences
between these types of connections (Shao & Burkhal-
ter, 1996). A recent study blocked the activity in one
cortical region by cooling, and assessed the effects on
other areas (Vanduffel, Payne, Lomber, & Orban,
1997). The activity in higher areas was strongly re-
duced, but cooling had much weaker effects on lower
areas. This indicates that feedforward connections
provide the visual drive for their postsynaptic targets,
whereas feedback connections have a more subtle,
modulator effect (Lamme & Roelfsema, 2000; Crick &
Koch, 1998; Hupé et al., 1998). Nevertheless, our
understanding of the strength and feature selectivity
of feedforward, lateral, and feedback connections is far
from complete. We predict that further knowledge
about the functional differences between connection
types will advance our understanding of important
problems in visual perception, of which the grouping–
segmentation paradox is but an example.

METHODS

The network is composed of five areas. Each area is
subdivided into feedforward and feedback layers. The
receptive fields of neighboring neurons are overlapping
(by 25%), in all areas higher than V1. Area V1 contains
64 £ 64 units tuned to the left oblique orientation, and
the same number of units tuned to the opposite ori-
entation. In higher areas, the image is represented with
a decreasing resolution, since at each hierarchical level
the number of units is reduced by a factor of four (Burt
& Adelson, 1983).

The activity of the network units is described by
continuous variables, which would correspond to the
mean activity of a group of functionally similar neurons
in physiology. Activity in the feedforward pathway is
updated according to the following two equations:

t 1
d
dt

FF A
L;i ˆ ¡FF A

L;i ‡ w1 f 0:2
15

X

j2U

FF A
L¡1; j

Á !

¡
w4

P

k2V
FF A

L; k

1 ‡ w6FBA
L;i

¡ 3FAA
L;i …1†

t 2
d
dt

FAA
L;i ˆ ¡FAA

L;i ‡ FF A
L;i …2†

where FFL,i
A indicates the activity of unit i with feature

preference A in the feedforward layer of area L. f is a
squashing function:

f …x†u
s ˆ 0:5…1 ‡ tanh…s…x ¡ u††† …3†

The connections (w1 –w6) are numbered in the equa-
tions as in Figure 2. Feedforward input (connection type
1) is provided by U, a neighborhood in area L ¡ 1 with
eight units that define the unit’s receptive field. In the
lowest area (V1), however, U corresponds to a single
pixel in the input. Lateral inhibition (connection type 4)
is provided by a neighborhood V, which contains eight
units in feedforward layer that have the same feature
selectivity. A further source of input is unit FBL,i

A , the
corresponding unit of the feedback layer (connection
type 6). Unit FBL,i

A does not directly excite FFL,i
A but

influences it indirectly, by reducing the impact of lateral
inhibition. Thereby, recurrent excitation between layers
is avoided (Crick & Koch, 1998). The slope of the initial
response transient to a newly presented image is
determined by t 1, a time constant that was set to 10.
After this transient response, the activity of the neurons
is reduced by a local inhibitory process, FAL,i

A , which has
a longer time constant t 2 (t 2 was set to 50). This local
inhibitory process was included to model the transient
responses of visual cortical neurons, but it is not
important for figure–ground segmentation.

Each unit in the feedback path has a corresponding
unit in the feedforward path from which it receives
excitatory input (connection type 5). Activity in the
feedback pathway is updated according to:

t 3
d
dt

FBA
L;i ˆ ¡0:5FBA

L;i

‡ f 0:65
35 FFA

L;i w5 ‡
X

j2W

w3FBA
L‡1; j ¡ w2FBA.

L‡1; j

± ²
Á !Á !

…4†

where W corresponds to a neighborhood in the next
higher area that contains eight units with a similar
feature preference (connection type 3) and eight units
with the opposite feature preference (connection type
2). Feedback from neurons with the same feature
preference (A) is excitatory, whereas feedback from
neurons with the opposite feature preference (A• ) is
inhibitory. Note that FFL,i

A , the corresponding neuron of
the feedforward pathway, has a dual effect on FBL,i

A , since
it activates the unit and also gates the input from the
next higher level through a multiplicative interaction.
The time constant of the feedback pathway, t 3, is larger
than that of the feedforward pathway and equals 50.
Connection weights were as follows: w1 = 1.5, w2 = 2.5,
w3 = 1.5, w4 = 1.5, w5 = 1, and w6 = 1.

The model was updated synchronously in the simu-
lations. All simulations were performed with a single set
of parameters as indicated above (the entire model is
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controlled by a total of 13 parameters). A reasonable fit
to the data was obtained if each time step of the model
was set to 1.25 msec. In the figures, 40 msec was added
to all data points to account for delays before area V1
(Nowak, Munk, Girard, & Bullier, 1995), since the retina
and LGN were not included in the model.
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Note

1. The interactions among V1 neurons that are tuned to the
same orientation also depend on the relative location of their
receptive fields. Neurons tuned to the same orientation
typically inhibit each other, but they excite each other if they
are tuned to collinear configurations (Kapadia et al., 2000). The
detection of singletons and boundaries is possible in such a
scheme as long as the total inhibitory input from neurons
tuned to the same orientation exceeds the excitatory input
(see also Li, 1999).
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