Understanding the activity of Zn-Cu sites in methanol synthesis

Batyrev, E.D.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Contents

1 Introduction 5
1.1 Methanol 5
1.2 Methanol economy 5
1.3 Commercial catalysts for methanol synthesis 7
1.4 Nature of the active site 9
1.5 Surface and structural approach to the active sites 11
1.5.1 Classical characterization techniques 12
1.5.1.1 Thermogravimetry and N\textsubscript{2}O chemisorption 12
1.5.1.2 In situ X-ray Diffraction 12
1.5.1.3 Extended X-ray Absorption Fine Structure 14
1.5.1.4 Small Angle Neutron Scattering 15
1.5.2 Surface sensitive techniques 15
1.5.2.1 Scanning Tunneling Microscopy 16
1.5.2.2 Scanning Tunneling Spectroscopy 17
1.5.2.3 X-ray Photoelectron Spectroscopy 17
1.5.2.4 Temperature Programmed Desorption 18
1.6 Scope of the thesis 19
References 22

2 The effect of the reduction temperature on the structure of Cu/ZnO/SiO\textsubscript{2} catalysts for methanol synthesis 25
2.1 Introduction 25
2.2 Experimental 27
2.3 Results and discussion 28
2.3.1 X-ray Diffraction 28
2.3.2 Electron Microscopy 31
2.3.3 Thermogravimetry 32
2.3.4 N\textsubscript{2}O chemisorption 33
2.3.5 ICP-AES analysis 37
2.4 Comparison with LEIS results 38
2.5 Conclusions 39
References 40

3 Dynamic Cu/Zn interaction in SiO\textsubscript{2} supported methanol synthesis catalysts unraveled by in situ X-ray Absorption Spectroscopy 43
3.1 Introduction 44
3.2 Experimental 45
3.2.1 Preparation of the catalysts 45
3.2.2 X-ray Absorption Spectroscopy 46
3.3 Results and discussion 47
3.3.1 Calcined CZS catalyst 47
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1.1</td>
<td>Cu K-Edge</td>
<td>47</td>
</tr>
<tr>
<td>3.3.1.2</td>
<td>Zn K-edge</td>
<td>50</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Reduction and passivation of the calcined samples</td>
<td>56</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Reduction of CZS at 473, 573, and 673 K</td>
<td>56</td>
</tr>
<tr>
<td>3.3.2.1.1</td>
<td>Cu K-Edge</td>
<td>56</td>
</tr>
<tr>
<td>3.3.2.1.2</td>
<td>Zn K-Edge</td>
<td>59</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>Passivation and re-reduction of the reduced samples</td>
<td>64</td>
</tr>
<tr>
<td>3.3.2.2.1</td>
<td>CZS-R473 passivated in N$_2$O</td>
<td>64</td>
</tr>
<tr>
<td>3.3.2.2.2</td>
<td>CZS-R673 passivated in N$_2$O</td>
<td>64</td>
</tr>
<tr>
<td>3.3.2.2.3</td>
<td>CZS-R573 passivated in air</td>
<td>66</td>
</tr>
<tr>
<td>3.3.2.2.4</td>
<td>CZS-R900 passivated in N$_2$O and air ex situ</td>
<td>67</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Re-reduced catalysts under methanol synthesis conditions</td>
<td>70</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Proposed catalyst structure and nature of the active interface</td>
<td>72</td>
</tr>
<tr>
<td>3.4</td>
<td>Conclusions</td>
<td>75</td>
</tr>
<tr>
<td>3.5</td>
<td>Supporting information</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>79</td>
</tr>
</tbody>
</table>

4 Detection of hydrogen–copper clustering in Zn$_{1-x}$Cu$_x$O methanol synthesis catalysts using neutron scattering methods

4.1 Introduction

4.2 Experimental

4.3 Results

4.3.1 Preliminary experiments

4.3.2 SANS study on samples with H→D substitution

4.4 Experiments with catalysts H65, H63, D65, and D63

4.5 Summary

4.6 References

5 Modification of the ZnO (0001)-Zn surface under reducing conditions

5.1 Introduction

5.2 Zinc oxide

5.3 Experimental

5.4 Results and discussion

5.4.1 Scanning Tunneling: Microscopy and Spectroscopy

5.4.2 Reduction at 1 bar H$_2$

5.4.3 X-ray Photoelectron Spectroscopy

5.4.4 Thermal Desorption Spectroscopy

5.5 Conclusions

5.6 References
6 Exploring the activated state of Cu/ZnO (0001)-Zn, a model catalyst for methanol synthesis

6.1 Introduction 117
6.2 Experimental 119
 6.2.1 Instrumentation 119
 6.2.2 Preparation of the model Cu/ZnO catalyst 119
 6.2.3 Annealing of Cu/ZnO(0001)-Zn system in UHV 120
 6.2.4 Reduction of the model Cu/ZnO(0001)-Zn catalyst 120
 6.2.5 TDS of the hydrogenated Cu/ZnO 121
6.3 Results and discussion 121
 6.3.1 Scanning Tunneling Probe: Microscopy and Spectroscopy 122
 6.3.1.1 Growth of Cu on ZnO(0001)-Zn surface 122
 6.3.1.2 Annealing the Cu/ZnO(0001)-Zn system in UHV 123
 6.3.1.3 Reduction in H₂ 125
 6.3.2 X-ray Photoelectron Spectroscopy 127
 6.3.3 Thermal Desorption Spectroscopy 129
6.4 Conclusions 131

References 132

Summary 135

Samenvatting 137

List of publications 139

Acknowledgements 140