Holography out of equilibrium
Smolic, M.

Citation for published version (APA):
Smolic, M. (2013). Holography out of equilibrium

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
2PI Effective Action of $\mathcal{N} = 4$ SYM

In the preceding chapters, we used holography to investigate the dissipative hydrodynamic behaviour of a fairly complicated boundary theory dual to an EMD theory in the bulk. In particular, we were able to go to first derivative order away from equilibrium. In this chapter we further our attempts to study nonequilibrium phenomena, by studying $\mathcal{N} = 4$ SYM in a nonequilibrium setting using the $n$PI effective action technique.

4.1 Introduction

Our current understanding of phenomena in thermal equilibrium is extensive, but many of the processes which give deeper insights into our fundamental understanding of nature begin far away from equilibrium. There is abundant experimental data concerning the early stages of heavy-ion collisions, which requires the development of a nonequilibrium theoretical framework to allow for correct interpretation of the data. Furthermore, we might be able to make contact with the study of black hole formation and evaporation (see, for example [94]) by using the AdS/CFT correspondence, which we discussed in chapter 1. As mentioned before, this widely studied correspondence postulates an exact equivalence between string theory on the $\text{AdS}_5 \times S^5$ background and $(3+1)$-dimensional $\mathcal{N} = 4$ super Yang-Mills theory (SYM). It is the best understood example of a gauge/gravity theory duality, i.e. of holography, a groundbreaking hypothesis which says that any gravitational theory should have a description in terms of a QFT with no gravity in one less dimension. It is precisely this $\mathcal{N} = 4$ SYM which we wish to study further in a nonequilibrium setting. This is a very special theory from many perspectives, both because of the duality but also because intrinsically it has a lot of supersymmetry, and is considered the simplest QFT [95]. Thus, many things which are difficult to compute in conventional theories may be simpler to handle in this theory.
The problem of studying nonequilibrium phenomena is two-fold, because we not only need to take into account quantum fluctuations, but we also need to deal with a very large number of degrees of freedom. Classical statistical field theory simply is not good enough, and standard perturbative approaches based on small deviations from equilibrium are not applicable: secular, time-dependent terms may appear which invalidate the perturbative expansion. For example, in [96] it was argued that for $SU(N)$ Yang-Mills on a sphere, the high temperature phase of the theory is intrinsically non-perturbative. In recent years, so-called $n$PI effective action techniques have been developed [97, 98, 99, 100, 101], allowing us to use nonperturbative approximations to get a handle on nonequilibrium dynamics, in the hope of ensuring non-secular and universal behaviour (meaning that the initial conditions do not affect the late-time behaviour). Of particular interest is the precise time evolution of quantum fields whose initial state is far from equilibrium. Relevant references relating to far-from-equilibrium quantum fields and thermalization include [102, 103, 104, 105, 106, 107, 108, 109, 110, 111]. For a comprehensive review on progress in nonequilibrium QFT, see [112] and the references therein, and the book [116].

Now, one can avoid having to calculate the full $n$PI effective action due to a useful equivalence hierarchy, which states that for a $q$-loop approximation all $n$PI descriptions with $n \geq q$ are equivalent, so only the $q$PI effective action is required. Thus, for example, a self-consistent description to two-loop order requires a 2PI effective action. For theories involving scalars and fermions, observing the approach to thermal equilibrium requires the three-loop 2PI effective action since the two-loop level involves an infinite number of spurious conserved quantities [112]. Furthermore, previous transport coefficient computations in QED and QCD have highlighted a number of issues with the 2PI approach in the context of gauge theories, which are resolved by going to 3PI level [101, 113, 115, 121, 123, 124, 126, 127, 128]. Nevertheless, we would like to present here the two-loop 2PI computation for $\mathcal{N} = 4$ SYM, since this is already a highly nontrivial computation; our results may be viewed as a nontrivial stepping stone towards the full 3PI result.

This chapter is arranged as follows. In section 4.2 we elaborate on the 2PI effective action and the evolution equations which stem from it, and also present our results: we give the 2PI effective action of $\mathcal{N} = 4$ SYM to two-loop order in the symmetric phase, and also write down the evolution equations of the 2-point correlators for the scalars, gluons, fermions and ghosts within the theory, in the nonequilibrium realm. We also include a sample calculation of the scalar evolution equation result. In section 4.3 we discuss the issues which arise when the 2PI approach is applied to gauge theories. In section 4.4 we give the discussion and conclusions. The appendix gives the remaining evolution equation results for fermions, gauge fields and ghosts within the framework of $\mathcal{N} = 4$ SYM.
4.2 The $n$PI effective action approach

In order to study nonequilibrium quantum field theory, one first needs to specify an initial state at some time $t_0$, which is usually done by specifying a density matrix $\rho_{D}(t_0)$ which is not a thermal equilibrium density matrix. Equivalently one can specify all initial $n$-point correlation functions, although in practice one often supplies only the lowest correlation functions at $t_0$. The time evolution of this initial state (i.e. these initial correlation functions) is then encoded in the functional path integral with classical action $\tilde{S}$ (note that this tilde notation for the action is introduced to distinguish it from the two-point function $S(x, y)$ discussed later). For example, in the case of a real scalar field $\varphi$, the nonequilibrium generating functional for correlation functions is

$$Z[J_1, J_2, \cdots ; \rho_{D}] = \text{Tr} \left\{ \rho_{D}(0) T_C e^{i \int_x J_1(x) \Phi(x) + \frac{1}{2} \int_{xy} J_2(x, y) \Phi(x) \Phi(y) + \cdots} \right\}, \quad (4.1)$$

where $\Phi(x)$ denote Heisenberg field operators. $T_C$ denotes time-ordering along the time path $C$ and in what follows, $\int_x \equiv \int_C dx^0 \int d^dx$. It turns out that the extension to the nonequilibrium realm is done precisely via the introduction of this finite, closed real-time contour $C$, known as the Schwinger-Keldysh contour, given in Figure 4.1.

We call the top part of the contour, the forward piece, $C^+$, and the bottom backward piece $C^-$. Time ordering along the contour is largely intuitive: we want any time on $C^-$ to be later than any time on $C^+$, so we use normal time ordering on the forward piece, and antitemporal time ordering along the backward piece. Time integration along the contour is given by

$$\int_C dx^0 = \int_{0,C^+} dx^0 + \int_t^{0,C^-} dx^0 = \int_{0,C^+} dx^0 - \int_{t,0,C^-} dx^0. \quad (4.2)$$

In (4.1) we have included $n$ source terms $J_1(x), J_2(x, y), \cdots$. Now, the standard prescription for writing down a 1PI (one particle irreducible) effective action involves
introducing only the $J_1$ source term when setting up the generating functional, but in order to extend this to the so-called "$n$PI" ($n$ particle irreducible) effective action, we need to introduce $n$ source terms. In practice, an equivalence hierarchy exists between $n$PI effective actions, and means that one can avoid having to calculate the effective action for arbitrarily large $n$. In our analysis of $\mathcal{N} = 4$ SYM we will be interested in a two-loop approximation, which amounts to calculating the 2PI effective action of the theory. Studies of simpler theories, such as in [104] - [115], indicate that the three-loop 2PI effective action is necessary to see thermalization. For instance, in [113, 114, 115] transport coefficients were computed correctly at leading order using the three-loop effective action. There are known difficulties in using the 2PI approach for gauge theories in the description of transport coefficients [121], and much progress in this direction has been made by extending the analysis to the 3PI effective action approach [123, 124, 126, 127]. This is also likely necessary for $\mathcal{N} = 4$ SYM, and these issues should be addressed, but as a first step we present the two-loop 2PI effective action. In (4.1) this would amount to including only the sources $J_1(x)$ and $J_2(x,y)$, so that we can rewrite the two-source generating functional as

$$Z[J_1, J_2; \rho_D] = \int d\varphi^+ d\varphi^- \langle \varphi^+ | \rho_D(0) | \varphi^- \rangle \times \int_{\varphi^+}^{\varphi^-} D' \varphi e^{(i \tilde{S}[\varphi] + \int_x J_1(x) \varphi(x) + \frac{1}{2} \int_{xy} J_2(x,y) \varphi(x) \varphi(y))},$$

(4.3)

where $\varphi^\pm$ are eigenstates of the Heisenberg field operators at initial time, namely $\Phi(t = 0, \vec{x}) | \varphi^\pm \rangle = \varphi^\pm (\vec{x}) | \varphi^\pm \rangle$. It follows from (4.3) that the structure of the nonequilibrium partition function is very similar to the zero temperature and thermal case, apart from the additional piece coming from the initial conditions, and the time ordering along $\mathcal{C}$ replacing the original time ordering along only $\mathcal{C}^+$. In principle, barring the initial conditions, we should be able to do our calculations at zero temperature, and easily transform our results to fit the nonequilibrium case by introducing the Schwinger-Keldysh contour. Indeed, notice that in (4.3) the second integral is basically just the vacuum generating functional for connected Green’s functions for a scalar field theory with classical action $\tilde{S}[\varphi]$, in the presence of two source terms,

$$Z[J_1, J_2] = e^{iW[J_1, J_2]} = \int D\varphi e^{(i \tilde{S}[\varphi] + \int_x J_1(x) \varphi(x) + \frac{1}{2} \int_{xy} J_2(x,y) \varphi(x) \varphi(y))}. \tag{4.4}$$

Now, in order to obtain the equations of motion of the correlation functions of such a simple scalar field theory, thereby fully describing it, one first extracts the effective action $\Gamma$ from $\tilde{S}$ by performing suitable Legendre transforms. In addition to the Legendre transform of the generating functional necessary to obtain the 1PI effective action, we simultaneously perform a second Legendre transform to get the required
4.2. THE NPI EFFECTIVE ACTION APPROACH

2PI effective action, namely

\[
\Gamma[\phi, S] = W[J_1, J_2] - \int_x \frac{\delta W[J_1, J_2]}{\delta J_1(x)} J_1(x) - \int_{xy} \frac{\delta W[J_1, J_2]}{\delta J_2(x, y)} J_2(x, y)
\]

\[
= W[J_1, J_2] - \int_x \phi(x) J_1(x) - \frac{1}{2} \int_{xy} J_2(x, y) \phi(x) \phi(y) - \frac{1}{2} \operatorname{Tr} S J_2. \quad (4.5)
\]

Here \(\phi(x)\) is the scalar field expectation value given by

\[
\phi(x) = \frac{\delta W[J_1, J_2]}{\delta J_1(x)}, \quad (4.6)
\]

and \(S(x, y)\) is the connected two-point function. An \(n\)PI effective action would require \(n\) simultaneous Legendre transforms of this type. Finally, first order functional derivatives of this effective action with respect to the appropriate correlation functions (in the absence of sources) then provide the corresponding equations of motion via the so-called “stationarity conditions”,

\[
\frac{\delta \Gamma[\phi, S]}{\delta \phi} = 0, \quad \frac{\delta \Gamma[\phi, S]}{\delta S} = 0. \quad (4.7)
\]

We briefly extend this introduction on the 2PI effective action in the next section. For more on the 2PI effective action of scalar and fermion fields, see \([97, 98, 99]\) and the excellent review \([112]\), as well as the references therein.

4.2.1 The 2PI effective action

The standard prescription for writing down a 1PI effective action involves introducing only one source term when setting up the generating functional, but in order to extend our analysis to 2PI effective actions, we need to introduce a second source term. In addition to the Legendre transform of the generating functional necessary to obtain the 1PI effective action, we can then perform a second Legendre transform to get the required 2PI effective action. For the case of a real, \(N\)-component scalar field \(\phi_a (a = 1, \ldots, N)\), which has classical action \(S[\phi]\), and in the presence of the two source terms, \(\sim J_{1,a}(x)\) and \(\sim J_{2,ab}(x, y)\), we can write the 2PI effective action in the useful form

\[
\Gamma[\phi, S] = \tilde{S}[\phi] + \frac{i}{2} \operatorname{Tr} \ln S^{-1} + \frac{i}{2} \operatorname{Tr} S^{-1}_0(\phi) S + \Gamma_2[\phi, S] + \text{const}, \quad (4.8)
\]

where we have split the one-loop result from the rest, so that \(\Gamma_2[\phi, S]\) corresponds to two-loop and higher corrections to \(\Gamma[\phi, S]\). As before, \(\phi\) and \(S\) refer to the macroscopic field and the propagator respectively. The constant is arbitrary and is absorbed into the normalization. We may calculate the equation of motion for \(S_{ab}(x, y)\) using \(\Gamma[\phi, S]\), namely

\[
S_{ab}^{-1}(x, y) = S_{0,ab}^{-1}(x, y; \phi) - i J_{2,ab}(x, y) - 2i \frac{\delta \Gamma_2[\phi, S]}{\delta S_{ab}(x, y)}. \quad (4.9)
\]
Now, as we have mentioned before, the method of calculating the 2PI effective action is equivalent to first performing a Legendre transform with respect to \( J_{1,a}(x) \) and then subsequently Legendre transforming the 1PI effective action thus obtained with respect to \( J_{2,ab}(x,y) \). Due to the presence of the additional source term \( \sim J_{2,ab}(x,y) \) the 1PI effective action \( \Gamma^1[\phi] \) obtained via the first Legendre transform is not the standard 1PI effective action, where \( J_2 = 0 \). Instead, it corresponds to a theory with a modified classical action \( \tilde{S}^1[\phi] \), where

\[
\tilde{S}^1[\phi] = \tilde{S}[\phi] + \frac{1}{2} \int_{xy} J_{2,ab}(x,y) \varphi_a(x) \varphi_b(y),
\]

and is given by \( \Gamma^1[\phi] = W[J_1, J_2] - \int_x \phi_a(x) J_{1,a}(x) \). Thus, it is straightforward to determine quantities like the exact inverse propagator \( S^{-1}_{ab}(x,y) \) and \( \Gamma^1[\phi] \) to one-loop order by doing standard computations:

\[
\frac{\delta^2 \Gamma^1[\phi]}{\delta \varphi_a(x) \delta \varphi_b(y)} = -iS^{-1}_{ab}(x,y) = i \left[ S^{-1}_{0,ab}(x,y) - i J_{2,ab}(x,y) - \Sigma^1_{ab}(x,y) \right],
\]

\[
\Gamma^1(1 \text{ loop})[\phi] = \tilde{S}^1[\phi] + \frac{i}{2} \text{Tr ln } \left[ S^{-1}_{0}(\phi) - i J_2 \right],
\]

where \( iS^{-1}_{0,ab}(x,y; \phi) = \frac{\delta^2 \tilde{S}[\phi]}{\delta \varphi_a(x) \delta \varphi_b(y)} \) and \( \Sigma^1_{ab}(x,y) \) is the proper self-energy. As usual, only 1PI diagrams contribute to the proper self-energy. Indeed, the standard results for \( J_2 = 0 \) are obtained from (2.5) by replacing \( \tilde{S}^1[\phi] \rightarrow S[\phi] \) and \( S^{-1}_0(\phi) - i J_2 \rightarrow S^{-1}_0(\phi) \).

So, comparing (4.9) to the exact expression in (4.11) we arrive at the conclusion that

\[
\Sigma_{ab}(x,y; \phi, S) \equiv 2i \frac{\delta \Gamma_2[\phi, S]}{\delta S_{ab}(x,y)} = \Sigma^1_{ab}(x,y; \phi).
\]

It is precisely this relation which tells us that only 2PI diagrams contribute to \( \Gamma_2[\phi, S] \), and allows us to call \( \Gamma[\phi, S] \) a “2PI" effective action. Since the proper self-energy only has contributions from 1PI diagrams, it is not possible for \( \Gamma_2[\phi, S] \) to have contributions from diagrams with parts “joined” by two propagators \( SS \), since \( \frac{\delta \Gamma_2}{\delta S} \) would yield a diagram with parts “joined” by one propagator \( S \), which is one particle reducible.

In practise, \( \Gamma_2[\phi, S] \) is computed as follows. In the classical action \( \tilde{S}(\varphi) \), shift the field \( \varphi(x) \) by \( \phi(x) \). The interaction part of this new action \( \tilde{S}(\varphi + \phi) \), which we will call \( \tilde{S}_{int}(\phi; \varphi) \) will contain terms which are cubic and higher in \( \varphi \), and some of these terms will depend on \( \phi(x) \). \( \Gamma_2[\phi, S] \) is then given by all the two-particle irreducible vacuum graphs with the vertices determined by \( \tilde{S}_{int}(\phi; \varphi) \) and the propagators given by \( S(x,y) \), where

\[
\begin{align*}
S &= \left( S_{0}^{-1} - i J_2 \right)^{-1} + \left( S_{0}^{-1} - i J_2 \right)^{-1} \Sigma \left( S_{0}^{-1} - i J_2 \right)^{-1} \\
&\quad + \left( S_{0}^{-1} - i J_2 \right)^{-1} \Sigma \left( S_{0}^{-1} - i J_2 \right)^{-1} \Sigma \left( S_{0}^{-1} - i J_2 \right)^{-1} + \cdots.
\end{align*}
\]
The above is obtained by inverting \((4.9)\) (with \((4.12)\)). Due to the anticommuting nature of the fermions, the 2PI effective action for fermionic fields looks as follows,

\[
\Gamma[\psi, \triangle] = \tilde{S}[\psi] - i \text{Tr} \ln \triangle^{-1} - i \text{Tr} \triangle^{-1}_0(\psi) \triangle + \Gamma_2[\psi, \triangle] + \text{const},
\]

(4.14)

where \(\triangle^{-1}_{0,ij}\) is the classical inverse fermion propagator \((i, j\) are flavour indices) and \(\psi\) is the shift of the fermionic field.

The gauge field 2PI effective action will mirror the form of the scalar result, and ghosts will follow the form of the fermionic fields.

Now we move on to discuss the evolution equations of various fields within a given theory, which arise from the 2PI formulation.

### 4.2.2 Evolution equations

In the case of a simple scalar field theory, the fields of interest would be the one-point \((\phi)\) and two-point field \((S)\). We will limit ourselves to the case of a vanishing field expectation value (i.e. \(\phi = 0\)). Our analysis here will mostly focus on scalars, but some comments will be made along the way concerning fermionic fields as well. For more on the discussion of evolution equations, see [106, 112].

Now, as discussed before, we obtain the equations of motion for the fields by using the stationarity conditions. In section 4.2.1 we already wrote down the equation of motion for a scalar two-point field, namely

\[
S^{-1}(x,y) = S^{-1}_0(x,y) - \Sigma^{(s)}(x,y;S) - iJ_2(x,y).
\]

(4.15)

We get the self-energy \(\Sigma^{(s)}(x,y;G)\) by either directly using \((4.12)\) and doing a functional differentiation, or by working out the one-loop corrections to the propagator in the usual way (by cutting that propagator line on each of the 2PI diagrams at our disposal). Note that the superscript \((s)\) refers to scalars (and similarly, throughout this chapter, the superscripts \((gl)\)=gluon, \((f)\)=fermion and \((gh)\)=ghost).

We are ultimately dealing with initial value problems, so we rewrite the equation of motion in a more suitable way by convoluting with \(S\):

\[
\int_z S^{-1}_0(x,z) S(z,y) - \int_z [\Sigma^{(s)}(x,z) + iJ_2(x,y)] S(z,y) = \delta_C(x - y),
\]

(4.16)

where \(\int_z S^{-1}(x,z) S(z,y) = \delta(x - y)\). As a next step, we plug in the value of \(S^{-1}_0\), which is theory dependent. For a scalar field theory with classical propagator defined by \(iS^{-1}_0(x - y) = (\partial^2 + m^2)\delta(x - y)\), we get

\[
(\partial^2 + m^2)S(x,y) - i \int_z \Sigma^{(s)}(x,z) S(z,y) = i\delta(x - y).
\]

(4.17)
A very similar line of argument leads us to an evolution equation for fermions,
\[ \int z \Delta^{-1}_0(x,z) \Delta(z,y) - \int z [\Sigma^{(f)}(x,z) + i J_2(x,y)] \Delta(z,y) = \delta_C(x - y). \] (4.18)

For a fermion propagator given by \( i \Delta^{-1}_{0,\alpha\beta}(x,y) = i \bar{\sigma}^\mu_{\alpha\beta} \partial_\mu \delta(x - y) \), the equation becomes
\[ \bar{\sigma}^\mu_{\alpha\beta} \partial_\mu \Delta(y,x) - \int z \Sigma^{(f)}(x,z) \Delta(y,z) = \delta^\gamma_{\alpha} \delta_C(x - y). \] (4.19)

In the above we have set the source \( J_2(x,y) \) to zero.

In order to get a more tangible physical interpretation from such equations of motion, we decompose the two-point functions in a special way. We first discuss the scalar case. We begin by splitting the two-point function \( S(x,y) \) into a spectral function \( \rho^{(s)}(x,y) \) and a statistical propagator \( F^{(s)}(x,y) \), namely
\[ S_C(x,y) = F^{(s)}(x,y) - \frac{i}{2} \rho^{(s)}(x,y) \text{sign}_C(x^0 - y^0), \] (4.20)

where
\[ \rho^{(s)}(x,y) = \langle \Phi(x) \Phi(y) \rangle, \quad F^{(s)}(x,y) = \langle \Phi(x) \Phi(y) \rangle. \]

This decomposition becomes clear once we write out the time-ordering of the propagator explicitly:
\[ S_C(x,y) = \theta_C(x^0 - y^0) \langle \Phi(x) \Phi(y) \rangle + \theta_C(y^0 - x^0) \langle \Phi(y) \Phi(x) \rangle \]
\[ = \frac{1}{2} \langle \Phi(x), \Phi(y) \rangle \left( \theta_C(x^0 - y^0) + \theta_C(y^0 - x^0) \right) \]
\[ - \frac{i}{2} \langle \Phi(x), \Phi(y) \rangle \left( \theta_C(x^0 - y^0) - \theta_C(y^0 - x^0) \right), \]
where \( \theta_C(x^0 - y^0) + \theta_C(y^0 - x^0) = 1 \) and \( \theta_C(x^0 - y^0) - \theta_C(y^0 - x^0) = \text{sign}_C(x^0 - y^0) \).

Due to the fact that \( F^{(s)}(x,y) \) and \( \rho^{(s)}(x,y) \) are both real, their evolution equations are more manageable and have physical interpretations. The spectral function involves the spectrum of the theory while the statistical propagator deals with occupation numbers. In fact, for a real scalar field, we can show that
\[ F^{(s)}(x,y) = F^{(s)}(y,x) \] and \( \rho^{(s)}(x,y) = -\rho^{(s)}(y,x). \] (4.21)

In addition, the spectral function also comprises the equal-time commutation relations in
\[ \rho^{(s)}(x,y) |_{x^0 = y^0} = 0, \quad \partial_\alpha \rho^{(s)}(x,y) |_{x^0 = y^0} = \delta(\vec{x} - \vec{y}). \] (4.22)
Now, we also want to decompose the self-energy in a similar way, so we first separate it into local and non-local parts

\[ \Sigma^{(s)}(x,y) = \delta_{\mathcal{C}}(x,y)\Sigma^{(0)(s)}(x) + \tilde{\Sigma}^{(s)}(x,y). \] (4.23)

We absorb the local part into a generalized “mass” term, and use an identity equivalent to the propagator case for the non-local part, so that

\[ \tilde{\Sigma}_{\mathcal{C}}^{(s)}(x,y) = \Sigma_{\mathcal{F}}^{(s)}(x,y) - \frac{i}{2}\Sigma_{\rho}^{(s)}(x,y)\text{sign}_{\mathcal{C}}(x^0 - y^0). \] (4.24)

The above discussion applies for bosonic degrees of freedom, but we can do a very similar decomposition for fermionic degrees of freedom. There is a subtle difference, though: in order to keep the same form for the decomposition, i.e.

\[ \triangle_{\mathcal{C}}(x,y) = F^{(f)}(x,y) - \frac{i}{2}\rho^{(f)}(x,y)\text{sign}_{\mathcal{C}}(x^0 - y^0), \] (4.25)

we notice that the field commutator will now correspond to the statistical propagator, and the anti-commutator to the spectral function:

\[ \rho^{(f)}(x,y) = i\langle\{\Psi(x), \bar{\Psi}(y)\}\rangle, \]
\[ F^{(f)}(x,y) = \frac{1}{2}\langle[\Psi(x), \bar{\Psi}(y)]\rangle. \] (4.26)

The need for this reversal becomes clear when we study the explicit form of the time-ordered fermion propagator, namely

\[ \triangle_{\mathcal{C}} = \theta_{\mathcal{C}}(x^0 - y^0)\langle\Psi(x)\bar{\Psi}(y)\rangle - \theta_{\mathcal{C}}(y^0 - x^0)\langle\bar{\Psi}(y)\Psi(x)\rangle. \] (4.27)

It is precisely the anti-commuting nature of the fermionic fields which gives rise to the minus sign in the expression above, and consequently to the structure of the spectral and statistical components. Again, as for the scalar case, we can define the fermion self-energy as

\[ \tilde{\Sigma}_{\mathcal{C}}^{(f)}(x,y) = \Sigma_{\mathcal{F}}^{(f)}(x,y) - \frac{i}{2}\Sigma_{\rho}^{(f)}(x,y)\text{sign}_{\mathcal{C}}(x^0 - y^0). \] (4.28)

From now on, we will drop the barred notation in the non-local part of the self-energy.

Armed with these decompositions, we now rewrite our evolution equations for propagators into evolution equations for \( F^{(s)}, \rho^{(s)}, F^{(f)} \) and \( \rho^{(f)} \):

Scalar:

\[ (\partial_x^2 - \Sigma^{(0)(s)}(x; S))\rho^{(s)}(x,y) = \int_{y^0}^{x^0} dz^0 \int d^3z\Sigma_{\rho}^{(s)}(z,x)\rho(z,y), \]
\[ (\partial_x^2 - \Sigma^{(0)(s)}(x; S))F^{(s)}(x,y) = \int_{y^0}^{x^0} dz^0 \int d^3z\Sigma_{\rho}^{(s)}(z,x)F^{(s)}(z,y). \]
CHAPTER 4. 2PI EFFECTIVE ACTION OF $N = 4$ SYM

\[- \int_0^y dz^0 \int d^3z \Sigma^{(s)}_F(x, z) \rho^{(s)}(z, y),\]

\[(4.29)\]

Fermion:

\[
\begin{align*}
(i \sigma^\mu_{\dot{a} \dot{b}} \partial_\mu + \Sigma^{(f)(0)}_{\dot{a} \dot{b}}(x; \triangle)) \rho^{(f)\dot{a} \dot{b}}(x, y) &= \int_{x^0}^{y^0} dz^0 \int d^3z \Sigma^{(f)}_{\rho, \dot{a} \dot{b}}(x, z) \rho^{(f)\dot{a} \dot{b}}(z, y), \\
(i \sigma^\mu_{\dot{a} \dot{b}} \partial_\mu + \Sigma^{(f)(0)}_{\dot{a} \dot{b}}(x; \triangle)) F^{(f)\dot{a} \dot{b}}(x, y) &= \int_{x^0}^{y^0} dz^0 \int d^3z \Sigma^{(f)}_{\rho, \dot{a} \dot{b}}(x, z) F^{(f)\dot{a} \dot{b}}(z, y) \\
&\quad - \int_0^{y^0} dz^0 \int d^3z \Sigma^{(f)}_{F, \dot{a} \dot{b}}(x, z) \rho^{(f)\dot{a} \dot{b}}(z, y).
\end{align*}\]

\[(4.30)\]

For details of the derivation of these equations we urge the reader to consult the excellent review [112].

Now that we have written down evolution equations in terms of $F$, $\rho$, $\Sigma_F$ and $\Sigma_\rho$, we need to determine how to evaluate $\Sigma_F$ and $\Sigma_\rho$ for a specific theory (in our case, we will eventually be interested in studying $N = 4$ SYM). We give an expanded analysis for scalars.

We begin by noticing that the presence of the contour $C$, as given in Figure 4.1, gives rise to different propagator components, because fields can live on either $C^+$ or $C^-$. We can write these different components by again considering the time-ordering of the propagator:

\[
S_C(x, y) = \theta_C(x^0 - y^0)\langle \Phi(x) \Phi(y) \rangle + \theta_C(y^0 - x^0)\langle \Phi(y) \Phi(x) \rangle
\]

\[
\equiv \theta_C(x^0 - y^0)S^>(x, y) + \theta_C(y^0 - x^0)S^<(x, y),
\]

which yields

\[
S^{+-}(x, y) = \langle \Phi(x) \Phi(y) \rangle \equiv S^>(x, y),
\]

\[
S^{++}(x, y) = \langle \Phi(y) \Phi(x) \rangle \equiv S^<(x, y),
\]

\[
S^{++}(x, y) = \theta(x^0 - y^0)S^>(x, y) + \theta(y^0 - x^0)S^<(x, y),
\]

\[
S^{--}(x, y) = \theta(x^0 - y^0)S^<(x, y) + \theta(y^0 - x^0)S^>(x, y).
\]

Now, from before we know that

\[
F^{(s)}(x, y) = \frac{1}{2}\{|\Phi(x), \Phi(y)|\} = \frac{1}{2}(S^>(x, y) + S^<(x, y)),
\]

\[
\rho^{(s)}(x, y) = i\langle [\Phi(x), \Phi(y)] \rangle = i(S^>(x, y) - S^<(x, y)),
\]

\[(4.31)\]
so in terms of \{+−\}-components

\[
F^{(s)}(x, y) = \frac{1}{2}[S^{−+}(x, y) + S^{++}(x, y)], \\
ρ^{(s)}(x, y) = i[S^{−−}(x, y) − S^{−+}(x, y)],
\]

\[\Longrightarrow S^{−+}(x, y) = F^{(s)}(x, y) − \frac{i}{2}ρ^{(s)}(x, y), \]

\[S^{−−}(x, y) = F^{(s)}(x, y) + \frac{i}{2}ρ^{(s)}(x, y).\]

We can do a similar thing for the non-local part of the self-energy. This can be written as

\[Σ^<(s) (x, y) ≡ \theta_C(x^0 − y^0)Σ^{(s)}>(x, y) + \theta_C(y^0 − x^0)Σ^{(s)}<(x, y). \quad (4.32)\]

This gives

\[Σ^{(s)++}(x, y) = \theta(x^0 − y^0)Σ^{(s)}>(x, y) + \theta(y^0 − x^0)Σ^{(s)}<(x, y), \]

\[Σ^{(s)−−}(x, y) = \theta(x^0 − y^0)Σ^{(s)}<(x, y) + \theta(y^0 − x^0)Σ^{(s)}>(x, y), \]

\[Σ^{(s)−+}(x, y) = −Σ^{(s)}>(x, y), \]

\[Σ^{(s)+−}(x, y) = −Σ^{(s)}<(x, y).\]

The minus signs in the definitions of \(Σ^{(s)+−}(x, y)\) and \(Σ^{(s)+−}(x, y)\) come from the contour, and have to be put in by hand. So,

\[Σ^<(s)_{F}(x, y) = \frac{1}{2}[Σ^{(s)}>(x, y) + Σ^{(s)}<(x, y)] = \frac{1}{2}[-Σ^{(s)+−}(x, y) − Σ^{(s)+−}(x, y)], \]

\[Σ^<(s)_{P}(x, y) = i[Σ^{(s)}>(x, y) − Σ^{(s)}<(x, y)] = i[-Σ^{(s)+−}(x, y) + Σ^{(s)+−}(x, y)].\]

What we will have at our disposal is a vacuum calculation of \(Σ^{(s)}(x, y)\). We can use this to obtain the various \{+−\}-components of \(Σ^{(s)}(x, y)\) in the nonequilibrium case. We do this by noting that

\[Σ^{(s)+−}(x, y) = −Σ^{(s)(vac)}|_{P^{−−}(x,y)}, \]

\[Σ^{(s)+−}(x, y) = −Σ^{(s)(vac)}|_{P^{++}(x,y)}.\]

This requires some clarification. Firstly, the minus sign is due to the contour. \(P^{−−}(x, y)\) means that wherever a propagator \(P\) (of any type) appears in the self-energy, replace it by the \{+−\}-component if the argument of that propagator is \((x, y)\), and by the \{−−\} component if the argument is \((y, x)\) (and correspondingly for \(P^{++}(x, y)\)). As an example, assume that the vacuum scalar self-energy for some theory is given by

\[Σ^{(s)}(x, y) = S(x, y)S(y, x). \quad (4.33)\]

Then

\[Σ^{(s)+−}(x, y) = −(S^{−−}(x, y)S^{−−}(y, x)),\]
\[
\Sigma^{(s)+}(x, y) = - (S^{(s)+}(x, y) S^{(s)+}(y, x)).
\]

Note that in this scalar case \( S(x, y) = S(y, x) \) so this is a trivial example, but the principle holds for theories with fermions where we have to distinguish between \( \Delta(x, y) \) and \( \Delta(y, x) \). Now all that is left is to substitute in the definitions of the \(+ -\)-components of the propagators in terms of \( F^{(s)}(x, y) \) and \( \rho^{(s)}(x, y) \), and the evolution equations will only contain \( F^{(s)}(x, y) \) and \( \rho^{(s)}(x, y) \).

We may do a similar analysis for a fermions, gauge bosons and ghosts, but do not include the details here.

Now that we have set up the basics, we would like to apply them to a special theory, namely \( \mathcal{N} = 4 \) super Yang-Mills. All of the comments regarding scalars in the previous sections can be extended to gluons, and all those involving fermions can be extended naturally to ghosts. Our goal is to write down the 2PI effective action and the evolution equations for this theory, which we do in the next two sections respectively.

### 4.2.3 Two-loop 2PI effective action of \( \mathcal{N} = 4 \) SYM

\( \mathcal{N} = 4 \) super Yang-Mills (SYM) has an \( SU(N) \) colour gauge symmetry and corresponding gauge field \( A_\mu \), and also contains four spinors \( \lambda_i \), where \( i = 1, \ldots, 4 \) transforming under the global \( SU(4) \) symmetry, and six scalars \( \varphi^m \), where \( m = 1, \ldots, 6 \), transforming under \( SO(6) \). In order to quantize this theory properly we need to gauge-fix, which we do using the Faddeev-Popov procedure. Together with the gauge-fixing term \(- \frac{1}{2\xi} \text{Tr}(\partial_\mu A^\mu)^2\) and ghost term \( \text{Tr}(\bar{\eta} \gamma^\mu (\nabla_\mu \eta)) \) (with ghost fields labelled by \( \eta \) and anti-ghosts by \( \bar{\eta} \)), the \( \mathcal{N} = 4 \) SYM action is given by

\[
\tilde{S}_{\text{SYM}} = \tilde{S}^0_{\text{SYM}} + \tilde{S}^\text{int}_{\text{SYM}},
\]

where

\[
\tilde{S}^0_{\text{SYM}} = \int_x \text{Tr} \left( \frac{1}{4} A_\mu \partial^2 A^\mu + \frac{1}{2} \varphi_m \partial^2 \varphi^m + i \lambda^i \partial_\mu \lambda_i^\mu - \bar{\eta} \partial^2 \eta \right),
\]

and

\[
\tilde{S}^\text{int}_{\text{SYM}} = \int_x \text{Tr} \left( -ig (\partial_\mu A_\nu A^\mu A^\nu - \partial_\nu A_\mu A^\mu A^\nu) + \frac{1}{2} g^2 (A_\mu A_\nu A^\mu A^\nu - A_\mu A_\nu A^\nu A^\mu) 
\right.
\]

\[
- ig (\partial_\mu \varphi_m A^\mu \varphi^m - \partial_\nu \varphi_m \varphi^m A^\mu) + g^2 (A_\mu \varphi_m A^\mu \varphi_m - \varphi_m A_\mu A^\mu A^\mu)
\]

\[
+ \frac{1}{2} g^2 (\varphi_m \varphi_n \varphi^m \varphi^n - \varphi_m \varphi_n \varphi^m \varphi^n) - g (\lambda^i \sigma_{\alpha \beta} A_\mu \lambda^\beta_i - \lambda^i \sigma_{\alpha \beta} \bar{\lambda}^\beta_i A_\mu)
\]

\[
+ \frac{1}{2} ig (\lambda^i \lambda_{\alpha j} (\bar{\sigma}_m)^{-1})^{ij} \varphi_m - \lambda^i (\bar{\sigma}_m)^{-1} \varphi_m \lambda_{\alpha j} - \lambda^i \lambda^j (\bar{\sigma}_m)^{ij} \varphi_m
\]

\[
+ \bar{\lambda}^i (\bar{\sigma}_m)^{ij} \varphi_m \lambda_{\alpha j} + ig (\partial_\mu \bar{\eta} A_\mu \eta - \partial_\mu \eta A_\mu) \Bigg) .
\]

In the above, \( \nabla_\mu \) is the covariant derivative, with \( \nabla_\mu \eta = \partial_\mu \eta + ig [A_\mu, \eta] \), and we work in the Feynman ‘t Hooft gauge where \( \xi = 1 \). The free gluon, scalar, fermion and ghost
propagators (denoted $D_0, S_0, \triangle_0$, and $G_0$ respectively) are given by
\[
D_0(x,y) = \frac{i 4\pi^2}{(x-y)^2} = S_0(x,y) = -G_0(x,y), \quad \triangle_{0,\alpha\beta}(x-y) = i\sigma^\mu_{\alpha\beta} \partial_\mu D_0(x,y).
\]

(4.37)

The 2PI effective action of $\mathcal{N} = 4$ SYM is given by
\[
\Gamma[\tilde{\varphi}, \tilde{A}, \tilde{\lambda}, \tilde{\eta}, S, D, \triangle, G] = \tilde{S}_{\text{SYM}}[\tilde{\varphi}, \tilde{A}, \tilde{\lambda}, \tilde{\eta}]
+ \frac{i}{2} \text{Tr} \ln S^{-1} + \frac{i}{2} \text{Tr} S^{-1}_0 S + \frac{i}{2} \text{Tr} \ln D^{-1} + \frac{i}{2} \text{Tr} D^{-1}_0 D
- i\text{Tr} \ln \triangle^{-1} - i\text{Tr} \triangle^{-1}_0 \triangle - i\text{Tr} \ln G^{-1} - i\text{Tr} G^{-1}_0 G
+ \Gamma_2[\tilde{\varphi}, \tilde{A}, \tilde{\lambda}, \tilde{\eta}, S, D, \triangle, G],
\]

(4.38)

where the $S, D, \triangle$ and $G$ are full scalar, gluon, fermion and ghost propagators respectively, and $\tilde{\varphi}, \tilde{A}, \tilde{\lambda}, \tilde{\eta}$ are the respective field expectation values defined analogously to (4.6). The first nine terms above represent the 2PI effective action to one loop order, while $\Gamma_2[\tilde{\varphi}, \tilde{A}, \tilde{\lambda}, \tilde{\eta}, S, D, \triangle, G]$ is the higher loop contribution. $\Gamma_2[\tilde{\varphi}, \tilde{A}, \tilde{\lambda}, \tilde{\eta}, S, D, \triangle, G]$ is obtained by shifting each of the fields in $\tilde{S}_{\text{SYM}}$ by the respective field expectation value, and using the vertices obtained from this shifted action to build the higher loop 2PI diagrams. We will be working in the symmetric phase, i.e. we set all field expectation values to zero.

At two-loop order, the eight diagrams given in Figure 4.2 contribute to $\Gamma_2$ in (4.38). The wavy lines correspond to gluons, straight lines to scalars, arrowed lines to fermions and dashed arrowed lines to ghosts. We will label the eight diagrams according to the propagators they contain. Thus, starting from the top row in Figure 4.2 and going from left to right, we have $S^2$, $DS$, $D^2$, $S^2D$, $\triangle \triangle D$, $\triangle ^2 S$, and $G \bar{G} D$ and dashed arrowed lines to ghosts. We will label the eight diagrams according to the propagators they contain. Thus, starting from the top row in Figure 4.2 and going from left to right, we have $S^2$, $DS$, $D^2$, $S^2D$, $\triangle \triangle D$, $\triangle ^2 S$, and $G \bar{G} D$. Thus,
\[
\Gamma_2[S, D, \triangle, G]_{\text{SYM}} = \Gamma_{S^2} + \Gamma_{DS} + \Gamma_{D^2} + \Gamma_{D^3} + \Gamma_{S^2D} + \Gamma_{\triangle \triangle D} + \Gamma_{\triangle ^2 S} + \Gamma_{G \bar{G} D},
\]
and

\[ \Gamma_{S2} = -15g^2(N^3 - N) \int_x S^2(x, x), \]
\[ \Gamma_{DS} = -6g^2(N^3 - N) \int_x D^\mu(x, x)S(x, x), \]
\[ \Gamma_{D^2} = \frac{1}{2} g^2(N^3 - N) \int_x \left( D^\mu(x, x)D^\nu(x, x) - D^\mu(x, x)D^\nu(x, x) \right), \]
\[ \Gamma_{D^3} = -ig^2(N^3 - N) \times \]
\[ \int_{xy} \left( \partial_\mu \partial_\nu D_{\nu\kappa}(x, y) \right) \left( D^\mu(x, y)D^{\mu\kappa}(x, y) - D^\mu(x, y)D^{\mu\kappa}(x, y) \right) \]
\[ + \partial_\mu D^\kappa(x, y) \left( \partial_\nu D_\kappa(x, y)D^{\mu\kappa}(x, y) - \partial_\nu D_\kappa(x, y)D^{\mu\kappa}(x, y) \right) \]
\[ + \partial_\mu D^\nu(x, y) \left( \partial_\kappa D_\nu(x, y)D^{\mu\kappa}(x, y) - \partial_\kappa D_\nu(x, y)D^{\mu\kappa}(x, y) \right) \],
\[ \Gamma_{S^2D} = -6ig^2(N^3 - N) \int_{xy} D^{\mu\nu}(x, y) \left( \partial_\mu \partial_\nu S(x, y)\partial_\mu S(x, y) - \partial_\mu \partial_\nu S(x, y)S(x, y) \right), \]
\[ \Gamma_{\Delta \Delta D} = -4ig^2(N^3 - N)\sigma^{\mu}_{a\beta} \sigma^{\nu}_{\kappa\rho} \int_{xy} \triangle^{a\kappa}(x, y)\triangle^{\beta \rho}(x, y)D_{\mu
u}(x, y), \]
\[ \Gamma_{\Delta^2 S} = -24ig^2(N^3 - N)\epsilon_{a\beta\epsilon\delta\kappa} \int_{xy} \triangle^{a\kappa}(x, y)\triangle^{\beta \delta}(x, y)S(x, y), \]
\[ \Gamma_{GGD} = ig^2(N^3 - N) \int_{xy} \partial_\mu G(y, x)\partial_\nu G(x, y)D_{\mu
u}(x, y), \] (4.39)

where we emphasize again that all the propagators above are full. As a check, we can evaluate the two-loop 2PI effective action of \( \mathcal{N} = 4 \) SYM obtained above to \( \mathcal{O}(g^2) \), by substituting the free propagators when evaluating each of the diagrams. Due to the conformal and supersymmetric nature of \( \mathcal{N} = 4 \) SYM, we expect the effective action to vanish, and it does. This is a first check that our effective action is indeed correct.

### 4.2.4 Evolution equations of \( \mathcal{N} = 4 \) SYM

Having determined which diagrams contribute to the two-loop 2PI effective action of \( \mathcal{N} = 4 \) SYM, we can use the stationarity conditions to write down the equations of motion for each of the fields in our theory. This involves writing down the self energy \( \Sigma(x, y) \) for each propagator in the usual way (by cutting that propagator line on each of the 2PI diagrams at our disposal). As mentioned in the beginning of section 4.2, barring the initial conditions, we should be able to do our calculations in the vacuum, and easily transform our results to fit the nonequilibrium case by introducing the Schwinger-Keldysh contour.

For scalars, the equations of motion are given by (4.29) in section 4.2.2, and the discussion in that section follows through here. Namely, these are integro-differential evolution equations for the scalar statistical propagator \( F^{(s)}(x, y) \) and the scalar spectral function \( \rho^{(s)}(x, y) \), defined in (4.20). The preference in using \( F^{(s)}(x, y) \) and \( \rho^{(s)}(x, y) \) is that they are both real, which makes their evolution equations intrinsically more manageable, and more importantly they have handy physical interpretations. The quan-
4.2. THE NPI EFFECTIVE ACTION APPROACH

Quantities $\Sigma_f^{(s)}(x,y)$ and $\Sigma_\rho^{(s)}(x,y)$ within (4.29) arise from the splitting in (4.24). When considering the evolution equations for the other fields in $\mathcal{N} = 4$ SYM, we perform a similar splitting of the two-point functions and corresponding self-energies, and label them by the superscripts $(gl)$, $(f)$ and $(gh)$, but we will first deal with the scalar version.

Of course, the scalar evolution equations in (4.29) are quite general. In order for them to apply specifically to $\mathcal{N} = 4$ SYM, we need to write down the quantities $\Sigma_f^{(s)}$ and $\Sigma_\rho^{(s)}$ in the context of this theory, which is what we do next.

Calculating $\Sigma_f^{(s)}$ and $\Sigma_\rho^{(s)}$ for $\mathcal{N} = 4$ SYM

We begin by working out the one-loop corrections to the scalar propagator, which we obtain by cutting a scalar line in the two-loop diagrams of Figure 4.2. The contributing diagrams are shown in Figure 4.3. We again label these by the propagators they contain, but now we put the loop propagators in brackets. Thus, in Figure 4.3 we label the diagrams from left to right as $S(D)S$, $S(S)S$, $S(DS)S$ and $S(\Delta^2)S$. We include the external lines at this point, because it is simpler to evaluate these diagrams first, and then truncate them to get just the "loop" part of the correction, which is in principle what we need. Note that in the following we suppress adjoint indices.

Thus, the scalar corrections are

\[ S(D)S = -2ig^2N \int_z D_\mu^0(z,z)S(x,z)S(y,z), \]
\[ S(S)S = -10iN \int_z S(x,z)S(y,z)S(z,z), \]
\[ S(DS)S = 2g^2N \int_{zw} D^{\mu\nu}(z,w) \left( \partial_\mu^z S(x,z)(\partial_\nu^w S(z,w)S(w,y) - S(z,w)\partial_\nu^w S(w,y)) 
+ S(x,z)(\partial_\mu^z S(z,w)\partial_\nu^w S(w,y) - \partial_\mu^z \partial_\nu^w S(z,w)S(w,y)) \right), \]
\[ S(\Delta^2)S = 2N\epsilon_{\alpha\beta}\epsilon_{\dot{\alpha}\dot{\beta}} \int_{zw} (S(x,z)S(w,y) + S(x,w)S(z,y)) \times \left( \Delta^{\dot{\alpha}\dot{\beta}}(z,w)\Delta^{\dot{\alpha}\dot{\beta}}(z,w) + \Delta^{\dot{\alpha}\dot{\beta}}(w,z)\Delta^{\dot{\alpha}\dot{\beta}}(w,z) \right). \]

In terms of free propagators, the total scalar correction is given by

\[ \Sigma^{(s)}_{\text{free}} = S(D)S^{(0)} + S(S)S^{(0)} + S(DS)S^{(0)} + S(\Delta^2)S^{(0)} \]
CHAPTER 4. 2PI EFFECTIVE ACTION OF $\mathcal{N} = 4$ SYM

\[ = -4ig^2N \int_z D^2_{(0)}(x,z)D_{(0)}(y,z). \]  

(4.40)

Within our evolution equations, we need to use the truncated forms of these corrections (i.e. without the external propagator lines). We thus need to truncate each of the expressions above, which we do by pre- and post-multiplying the expressions by the relevant propagator inverse. This gives,

\[
\text{trunc} (S(D)S) \equiv \Sigma_{S(D)S}(x,z) = -2ig^2N \delta(x - z),
\]

\[
\text{trunc} (S(S)S) \equiv \Sigma_{S(S)S}(x,z) = -10ig^2N \delta(x - z)S(x, x),
\]

\[
\text{trunc} (S(DS)S) \equiv \Sigma_{S(DS)S}(x,z) = -2g^2N \left[ 4\partial_\mu \partial_\nu S(x, z)D^{\mu\nu}(x, z) \right. \\
+ 2\partial_\mu S(x, z)\partial_\nu D^{\mu\nu}(x, z) \\
+ \left. 2\partial_\nu S(x, z)\partial_\mu D^{\mu\nu}(x, z) \right. \\
+ \left. S(x, z)\partial_\mu \partial_\nu D^{\mu\nu}(x, z) \right],
\]

(4.41)

\[
\text{trunc} \left( S(\Delta^2)S \right) \equiv \Sigma_{S(\Delta^2)S}(x,z) = 4\epsilon_{\alpha\beta\epsilon\beta\kappa}N \\
\times \left( \Delta^{\alpha\beta}(x,z)\Delta^{\beta\kappa}(x,z) + \Delta^{\alpha\beta}(z,x)\Delta^{\beta\kappa}(z,x) \right).
\]

(4.42)

Now that we have evaluated the vacuum self-energies, we want to write down $\Sigma^{(s)}_{\rho}$ and $\Sigma^{(s)}_F$ which feature in the scalar evolution equations (??). The two diagrams which contribute in the vacuum scalar case are the non-local ones, namely (4.41) and (4.42). Thus, for the vacuum case:

\[
\Sigma^{(s)(\text{vac})}(x,z) = \Sigma_{S(DS)S}(x,z) + \Sigma_{S(\Delta^2)S}(x,z).
\]

(4.43)

Now,

\[
\Sigma^{(s)+}(x,z) = -\Sigma^{(s)(\text{vac})}(x,z)|_{P^+(x,z)} \\
= -\Sigma_{S(DS)S}(x,z)|_{P^+(x,z)} - \Sigma_{S(\Delta^2)S}(x,z)|_{P^+(x,z)},
\]

\[
\Sigma^{(s)-}(x,z) = -\Sigma^{(s)(\text{vac})}(x,z)|_{P^-(x,z)} \\
= -\Sigma_{S(DS)S}(x,z)|_{P^-(x,z)} - \Sigma_{S(\Delta^2)S}(x,z)|_{P^-(x,z)}.
\]

We now evaluate these quantities (i.e. write them i.t.o. $\rho^{(s)}$ and $F^{(s)}$). For the first one we explicitly show the substitution:

\[
-\Sigma_{S(DS)S}(x,z)|_{P^+(x,z)} = 2g^2N \\
\times \left[ 4\partial_\mu \partial_\nu S^{++}(x,z)D^{\mu\nu+}(x,z) \right]
\]
\[+2\partial^x_\mu S^+-(x,z)\partial^x_\nu D^{\mu\nu-}(x,z)\]
\[+2\partial^x_\nu S^+-(x,z)\partial^x_\mu D^{\mu\nu-}(x,z)\]
\[\partial^x(\partial^\nu(\partial^\mu D^{\mu\nu-}(x,z)\bigg]\]

\[= 2g^2N \times \]
\[\bigg[4\partial^x_\nu\partial^x_\mu \left( F^{(s)}(x,z) + \frac{i}{2}\rho^{(s)}(x,z) \right) \]
\[\times \left( F^{(gl)}{\nu}\mu(x,z) + \frac{i}{2}\rho^{(gl)}{\nu}\mu(x,z) \right) \]
\[+ 2\partial^x_\nu \left( F^{(s)}(x,z) + \frac{i}{2}\rho^{(s)}(x,z) \right) \]
\[\times \partial^x_\mu \left( F^{(gl)}{\nu}\mu(x,z) + \frac{i}{2}\rho^{(gl)}{\nu}\mu(x,z) \right) \]
\[+ 2\partial^x_\nu \left( F^{(s)}(x,z) + \frac{i}{2}\rho^{(s)}(x,z) \right) \]
\[\times \partial^\nu \partial^\mu \left( F^{(gl)}{\nu}\mu(x,z) + \frac{i}{2}\rho^{(gl)}{\nu}\mu(x,z) \right) \]

\[= 2g^2N \times \]
\[\bigg[4 \left( \partial^x_\nu\partial^x_\mu F^{(s)}(x,z)F^{(gl)}{\nu}\mu(x,z) \right) \]
\[+ \frac{i}{2} \partial^x_\nu\partial^x_\mu F^{(s)}(x,z)\rho^{(gl)}{\nu}\mu(x,z) \]
\[+ \frac{i}{2} \partial^x_\nu\partial^x\rho^{(s)}(x,z)F^{(gl)}{\nu}\mu(x,z) \]
\[+ \frac{1}{4} \partial^x_\nu\partial^x\rho^{(s)}(x,z)\rho^{(gl)}{\nu}\mu(x,z) \]
\[+ 2 \left( \partial^x_\mu F^{(s)}(x,z)\partial^x_\nu F^{(gl)}{\nu}\mu(x,z) \right) \]
\[+ \frac{i}{2} \partial^x_\mu F^{(s)}(x,z)\partial^x_\nu\rho^{(gl)}{\nu}\mu(x,z) \]
\[+ \frac{i}{2} \partial^x_\mu\rho^{(s)}(x,z)\partial^x_\nu F^{(gl)}{\nu}\mu(x,z) \]
\[+ \frac{1}{4} \partial^x_\mu\rho^{(s)}(x,z)\partial^x_\nu\rho^{(gl)}{\nu}\mu(x,z) \]
\[+ 2 \left( \partial^x_\nu F^{(s)}(x,z)\partial^x_\mu F^{(gl)}{\nu}\mu(x,z) \right) \]
\[+ \frac{i}{2} \partial^x_\nu F^{(s)}(x,z)\partial^x_\mu\rho^{(gl)}{\nu}\mu(x,z) \]
\[+ \frac{i}{2} \partial^x_\nu\rho^{(s)}(x,z)\partial^x_\mu F^{(gl)}{\nu}\mu(x,z) \]
\[-\Sigma_{S(\Delta z)}|p^{+}(x,z)\rangle = -4\epsilon_{\alpha\beta}\epsilon_{\beta\delta}N \times (\Delta^\alpha^\delta + (x,z)\Delta^\beta^\delta + (x,z) + \Delta^\alpha^\delta + (z,x)\Delta^\beta^\delta + (z,x))
\]
\[= -4\epsilon_{\alpha\beta}\epsilon_{\beta\delta}N \times \left\{ F(f)^{\alpha\delta}(x,z)F(f)^{\beta\delta}(x,z) + \frac{i}{2}F(f)^{\alpha\delta}(x,z)\rho^{(f)}^{}\rho^{(f)}^{}(x,z) + \frac{i}{2}\rho^{(f)}^{}(x,z)F(f)^{\beta\delta}(x,z) - \frac{1}{4}\rho^{(f)}^{}(x,z)\rho^{(f)}^{}\rho^{(f)}^{}(x,z) + F(f)^{\alpha\delta}(z,x)F(f)^{\beta\delta}(z,x) - \frac{i}{2}F(f)^{\alpha\delta}(z,x)\rho^{(f)}^{}\rho^{(f)}^{}(z,x) - \frac{i}{2}\rho^{(f)}^{}(z,x)F(f)^{\beta\delta}(z,x) - \frac{1}{4}\rho^{(f)}^{}(z,x)\rho^{(f)}^{}\rho^{(f)}^{}(z,x) \right\},\]
\[
(4.44)
\]
\[-\Sigma_{S(\nabla S)}|p^{+}(x,z)\rangle = 2g^2N \times \left\{ 4\partial^\gamma_\mu \partial^\gamma_\mu S^{+}(x,z)D^{\mu+}(x,z) + 2\partial^\gamma_\mu S^{+}(x,z)\partial^\mu_\nu D^{\nu+}(x,z) + 2\partial^\gamma_\mu S^{+}(x,z)\partial^\mu_\nu D^{\nu+}(x,z) + S^{+}(x,z)\partial^\gamma_\mu \partial^\gamma_\mu D^{\nu+}(x,z) \right\}
\]
\[= 2g^2N \times \left\{ 4\left( \partial^\gamma_\mu \partial^\gamma_\mu F^{(s)}(x,z)F^{(g)}^\mu^\nu(x,z) - \frac{i}{2}\partial^\gamma_\mu \partial^\gamma_\mu (s)F^{(s)}(x,z)\rho^{(s)}^{}F^{(g)}^\mu^\nu(x,z) \right) + 2\left( \partial^\gamma_\mu F^{(s)}(x,z)\partial^\gamma_\mu F^{(g)}^\mu^\nu(x,z) - \frac{i}{2}\partial^\gamma_\mu F^{(s)}(x,z)\partial^\gamma_\mu \rho^{(s)}F^{(g)}^\mu^\nu(x,z) - \frac{1}{4}\partial^\gamma_\mu \rho^{(s)}(x,z)\partial^\gamma_\mu \rho^{(s)}F^{(g)}^\mu^\nu(x,z) \right) \right\},\]
\[
(4.45)
\]
which, upon substitution of (4.44) yields
\[ + F^{(s)}(x, z) \partial_\gamma^x \partial_\mu^x F^{(g \ell)}_{\mu\nu}(x, z) - \frac{i}{2} F^{(s)}(x, z) \partial_\gamma^x \partial_\mu^x F^{(g \ell)}_{\mu\nu}(x, z) \]
\[ - \frac{i}{2} F^{(s)}(x, z) \partial_\gamma^x \partial_\mu^x F^{(g \ell)}_{\mu\nu}(x, z) - \frac{1}{4} \rho^{(s)}(x, z) \partial_\gamma^x \partial_\mu^x F^{(g \ell)}_{\mu\nu}(x, z) \bigg] , \]
\[ (4.46) \]
\[ - \Sigma_{S(\Delta^2)S | p^--(x, z)} = -4 \epsilon_{\alpha \beta} \epsilon_{\dot{\beta} \dot{\alpha}} N \times \]
\[ \left( \Delta^{a\dot{a}++}(x, z) \Delta^{\dot{\beta}\dot{\beta}++}(x, z) + \Delta^{a\dot{a}+}(x, z) \Delta^{\dot{\beta}\dot{\beta}+}(z, x) \right) \]
\[ \times \left( \Delta^{a\dot{a}+}(x, z) \Delta^{\dot{\beta}\dot{\beta}+}(x, z) + \Delta^{a\dot{a}+}(z, x) \Delta^{\dot{\beta}\dot{\beta}+}(z, x) \right) \]
\[ = -4 \epsilon_{\alpha \beta} \epsilon_{\dot{\beta} \dot{\alpha}} N \times \]
\[ \left[ F^{(f)a\dot{a}}(x, z) F^{(f)\dot{\beta}\dot{\beta}}(x, z) - \frac{i}{2} F^{(f)a\dot{a}}(x, z) \rho^{(f)\dot{\beta}\dot{\beta}}(x, z) \right] \]
\[ - \frac{i}{2} \rho^{(f)a\dot{a}}(x, z) F^{(f)\dot{\beta}\dot{\beta}}(x, z) - \frac{1}{4} \rho^{(f)a\dot{a}}(x, z) \rho^{(f)\dot{\beta}\dot{\beta}}(x, z) \]
\[ + F^{(f)a\dot{a}}(z, x) F^{(f)\dot{\beta}\dot{\beta}}(z, x) + \frac{i}{2} F^{(f)a\dot{a}}(z, x) \rho^{(f)\dot{\beta}\dot{\beta}}(z, x) \]
\[ + \frac{i}{2} F^{(f)a\dot{a}}(z, x) F^{(f)\dot{\beta}\dot{\beta}}(z, x) - \frac{1}{4} \rho^{(f)a\dot{a}}(z, x) \rho^{(f)\dot{\beta}\dot{\beta}}(z, x) \bigg] . \]
\[ (4.47) \]

Recall that, in the above, for the gluons, fermions and ghosts in the theory we perform a similar splitting of the two-point functions and corresponding self-energies as given for scalars in (4.20) and (4.24), and label them by the superscripts \((g\ell), (f)\) and \((gh)\) respectively. Now, from before we know that
\[ \Sigma^{(s)}(x, z) = -\frac{1}{2} \left[ \Sigma^{(s)++}(x, z) + \Sigma^{(s)+-}(x, z) \right] , \]
\[ \Sigma^{(s)}(x, z) = i \left[ \Sigma^{(s)+-}(x, z) - \Sigma^{(s)++}(x, z) \right] , \]
which, upon substitution of (4.44) yields
\[ \Sigma^{(s)}(x, z) = -g^2 N \left[ 8 \partial_\gamma^x \partial_\mu^x F^{(s)}(x, z) F^{(g \ell)}_{\mu\nu}(x, z) - 2 \partial_\gamma^x \partial_\mu^x F^{(s)}(x, z) \rho^{(g \ell)}_{\mu\nu}(x, z) \right] \]
\[ + 4 \partial_\gamma^x \partial_\mu^x F^{(s)}(x, z) \partial_\gamma^x \partial_\mu^x F^{(g \ell)}_{\mu\nu}(x, z) - 2 \rho^{(s)}(x, z) \partial_\gamma^x \partial_\mu^x F^{(g \ell)}_{\mu\nu}(x, z) \]
\[ + 4 \partial_\gamma^x \partial_\mu^x F^{(s)}(z, x) \partial_\gamma^x \partial_\mu^x F^{(g \ell)}_{\mu\nu}(x, z) - 2 \partial_\gamma^x \partial_\mu^x \rho^{(s)}(x, z) \partial_\gamma^x \partial_\mu^x F^{(g \ell)}_{\mu\nu}(x, z) \]
\[ + 2 F^{(s)}(x, z) \partial_\gamma^x \partial_\mu^x F^{(g \ell)}_{\mu\nu}(x, z) - \frac{1}{2} \rho^{(s)}(x, z) \partial_\gamma^x \partial_\mu^x F^{(g \ell)}_{\mu\nu}(x, z) \]
\[ - \epsilon_{\alpha \beta} \epsilon_{\dot{\beta} \dot{\alpha}} \left( 4 F^{(f)a\dot{a}}(x, z) F^{(f)\dot{\beta}\dot{\beta}}(x, z) - \rho^{(f)a\dot{a}}(x, z) \rho^{(f)\dot{\beta}\dot{\beta}}(x, z) \right) \]
\[ + 4 F^{(f)a\dot{a}}(z, x) F^{(f)\dot{\beta}\dot{\beta}}(z, x) - \rho^{(f)a\dot{a}}(z, x) \rho^{(f)\dot{\beta}\dot{\beta}}(z, x) \bigg] , \]
\[ (4.48) \]
\[ \Sigma_\rho^{(s)}(x,z) = -g^2 N \left[ 8 \left( \partial_\mu \partial_\rho^{(s)} F(x,z) \rho^{(gl)}_{\mu
u}(x,z) - 2 \partial_\rho^{(s)} \partial_\mu \rho^{(s)}(x,z) F^{(gl)}_{\mu
u}(x,z) \right) \\
+ 4 \left( \partial_\mu^{(s)} F(x,z) \partial_\rho^{(s)} \rho^{(gl)}_{\mu
u}(x,z) - \partial_\mu \rho^{(s)}(x,z) \partial_\rho F^{(gl)}_{\mu
u}(x,z) \right) \\
+ \left( 4 \partial_\mu^{(s)} F(x,z) \partial_\rho^{(s)} \rho^{(gl)}_{\mu
u}(x,z) - \partial_\rho \rho^{(s)}(x,z) \partial_\mu F^{(gl)}_{\mu\nu}(x,z) \right) \\
+ 2E^{(s)}(x,z) \partial_\rho^{(s)} \rho^{(gl)}_{\mu
u}(x,z) + 2\rho^{(s)}(x,z) \partial_\rho^{(s)} \rho^{(gl)}_{\mu\nu}(x,z) \\
- 4\epsilon_{\alpha\beta} \epsilon_{\beta\delta} \left( F_{(f)\alpha\delta}(x,z) \rho_{(f)\beta\gamma}(x,z) + \rho_{(f)\alpha\delta}(x,z) F_{(f)\beta\gamma}(x,z) \\
- F_{(f)\alpha\delta}(z,x) \rho_{(f)\beta\gamma}(z,x) - \rho_{(f)\alpha\delta}(z,x) F_{(f)\beta\gamma}(z,x) \right) \right]. \tag{4.49} \]

And as a final comment, we have
\[ \Sigma^{(s)(0)}(x; S) = \Sigma_{S(D)S}(x,x) + \Sigma_{S(S)S}(x,x). \tag{4.50} \]

We can also write down the evolution equations for the statistical propagators and spectral functions of these fields. For gluons, the equations are
\[ \left( g^\alpha_x \partial_x^2 - \Sigma^{(0)(gl)}_{\alpha\beta}(x;D) \right) F^{(gl)}_{\mu\nu}(x,y) = \int_0^x d\zeta \int d^3 z \Sigma^{(gl)}_{\rho,\gamma}(x,z) F^{(gl)}_{\mu\nu}(z,y) \\
- \int_y^0 d\zeta \int d^3 z \Sigma^{(gl)}_{\rho,\gamma}(x,z) \rho^{(gl)}_{\mu\nu}(z,y), \tag{4.51} \]

The fermion equations are
\[ \left( i\sigma^\mu_{\alpha\beta} \partial_\mu + \Sigma^{(0)(f)}_{\alpha\beta}(x;\Delta) \right) F_{(f)\beta\gamma}(x,y) = \int_0^x d\zeta \int d^3 z \Sigma_{\rho,\beta}(x,z) F_{(f)\beta\gamma}(z,y) \\
- \int_y^0 d\zeta \int d^3 z \Sigma_{\rho,\beta}(x,z) \rho_{(f)\beta\gamma}(z,y), \tag{4.52} \]

Finally, the ghost equations are
\[ \left( \partial_x^2 - \Sigma^{(0)(gh)}_{gh}(x;G) \right) F^{(gh)}(x,y) = \int_0^y d\zeta \int d^3 z \Sigma^{(gh)}_{\rho}(x,z) \rho^{(gh)}(z,y) \\
- \int_0^x d\zeta \int d^3 z \Sigma^{(gh)}_{\rho}(x,z) F^{(gh)}(z,y), \tag{4.53} \]
4.3 Issues related to the 2PI approach for gauge theories

As mentioned before, due to a useful equivalence hierarchy a self consistent description to q-loop order requires a qPI effective action. Thus, working to two-loop order requires a 2PI effective action. A number of issues arise when the 2PI approach is applied to gauge theories. In particular, when using the 2PI approach to calculate transport coefficients in theories such as QED and QCD, it becomes clear that the importance of a diagram does not necessarily correlate with its loop order (we refer to [101, 113, 115, 121, 123, 124, 126, 127, 128] for full discussions). Soft and collinear momenta within gauge theories lead to enhancements which eliminate regular loop counting. In fact, one would need to include an infinite series of 2PI “ladder” diagrams to recover the leading order “on-shell” results for transport coefficients within QED or QCD (a manifestation of the Landau-Pomeranchuk-Migdal (LPM) effect [129, 130, 131, 132, 133]). In addition to such collinear contributions, one also has to deal with “pinch singularities” when calculating transport coefficients. These again produce an infinite set of diagrams which also need to be resummed. It turns out that the coupled integral equations which allow the resummation of the collinear and pinching terms and yield the complete leading order result for the transport coefficients (as obtained via kinetic theory), can be derived directly from the three-loop 3PI effective action. Since transport coefficients characterize equilibration in systems which are locally close to equilibrium and homogeneous on rather large scales, being able to compute them is the first step towards more advanced nonequilibrium calculations.

Thus, it appears that if we wish to make even the most basic transport coefficient computations for $\mathcal{N} = 4$ SYM we need to begin with the 3PI effective action to three-loops. In fact, even in simpler scalar field theories involving scalars and fermions a two-loop 2PI approximation (Hartree, or similarly leading order large $N$ approximation) will not allow us to see thermalization, due to the presence of an infinite number of spurious conserved quantities [112], and in order to study properly nonequilibrium evolution we would need to include the three-loop contribution. As a first step towards the full three-loop (3PI) result (which would be applicable to physical computations like that of transport coefficients), we begin by considering the two-loop computation. At this level, we require the 2PI effective action for self-consistency. Even to this order the evolution equations we obtain (given in appendix 4.A.1) are fairly complicated, and even though our current result may not yet allow for nontrivial physical predictions, we consider our calculation the first nontrivial and necessary step on the way to a three-loop computation.
4.4 Discussion and conclusions

In this chapter we used the $n$PI effective action approach to write down the two-loop 2PI effective action of $\mathcal{N} = 4$ SYM in the symmetric phase. We then wrote down the evolution equations for the two-point correlators of scalars, gluons, fermions and ghosts in the theory. A particularly pleasing property of $\mathcal{N} = 4$ SYM is that it is a finite theory, so no renormalization is required. $n$PI effective actions enable us to set up a very efficient nonperturbative approximation scheme for nonequilibrium QFT, in the hope that we may bypass the usual problems of secularity and non-universality experienced by the standard perturbative approaches.

An important step in understanding the nonequilibrium dynamics of quantum fields is to understand how systems which are initially far from equilibrium approach thermal equilibrium at late times. We want to understand thermalization in QFT’s which have a holographic dual, in particular $\mathcal{N} = 4$ SYM. Much work has been done in studying transport coefficients using the $n$PI approach with the result that for gauge theories such as QED and QCD, one needs to use the three-loop 3PI formalism in order to reproduce the leading order results obtained from kinetic theory\cite{123,124,126,127}. Thus, a first step in extending our results would be to push our calculation to three-loop order, which requires a 3PI effective action for self-consistency. The next step would then be to consider various initial conditions and solve the equations of motion, thereby allowing one to explore thermalization in this theory. Arguably the simplest possibility is to consider gaussian initial conditions and solve the equations of motion numerically (any such solution would have to be numerical, due to the extremely nonlinear and coupled nature of the evolution equations). One could then move on to more complicated initial conditions, since physical initial conditions may not be gaussian. In particular, since $\mathcal{N} = 4$ SYM is a supersymmetric conformal field theory, supersymmetric initial conditions may simplify things. Since the 2PI effective action in general has a gauge dependence\cite{100,122,125}, it would be interesting to see the dependence of our results on gauge fixing, especially when the calculation has been pushed to 3PI three-loop order. Resummed 2PI and 3PI effective actions in gauge theories have been used in\cite{123,124,126,127,128} when calculating transport coefficients to ensure explicitly gauge invariant results, and further investigation into such a scheme for $\mathcal{N} = 4$ SYM would aid in a generalization to nonabelian gauge theories. Transport coefficients of $\mathcal{N} = 4$ SYM have been computed in\cite{117} using kinetic theory and a comparison of this result with the result from the 3PI approach would provide a first check of the method. Exploring thermalization in this theory and comparing it to that in QCD would potentially give insights as to why the RHIC data seems to be well-described by the strongly coupled $\mathcal{N} = 4$ theory. It would also be interesting to investigate the implications for black hole formation and evaporation, since, through holography, the process of thermalization is expected to be mapped to horizon formation on the gravitational side. In the context of holography, a similar formulation was developed in\cite{118,119,120}, but instead for gauge invariant operators without the $n$PI technique.
4.A Appendix

4.A.1 Evolution equations for gluons, fermions and ghosts of $\mathcal{N} = 4$ SYM

In this appendix we write down the explicit expressions for $\Sigma_F$ and $\Sigma_\rho$ corresponding to the gluons, fermions and ghosts of $\mathcal{N} = 4$ SYM.

The corrections to the gluon propagator in $\mathcal{N} = 4$ SYM are given by the six diagrams in Figure 4.4. Thus, we have

$$\Sigma_F^{(gl)}(x,z) = g^2 N \times$$

$$\left[ \sigma_{\alpha \beta} \sigma^\xi_{\rho \sigma} \left( 8 F^{(f)\alpha \rho}(x,z) F^{(f)\xi \beta}(z,x) + 2 \rho^{(f)\alpha \rho}(x,z) \rho^{(f)\xi \beta}(z,x) \right) ight.$$

$$\left. + 12 \partial_\tau^\rho F^{(s)}(x,z) \partial^\xi_{\rho \sigma}(x,z) - 3 \partial_\tau^\rho F^{(s)}(x,z) \partial^\xi_{\rho \sigma}(x,z) \right]$$

$$\left. - 12 \partial_\tau^\rho F^{(s)}(x,z) \partial^\xi_{\rho \sigma}(x,z) + 3 \partial_\tau^\rho F^{(s)}(x,z) \partial^\xi_{\rho \sigma}(x,z) \right]$$

$$\left. - 2 \partial^\xi_{\rho \sigma} F^{(gh)}(x,z) \partial_\tau^\rho F^{(gh)}(z,x) - \frac{1}{2} \partial^\xi_{\rho \sigma} F^{(gh)}(x,z) \rho^{(gh)}(z,x) \right]$$

$$\left. - 8 \left( 2 \partial_\tau^\rho F^{(gl)\rho \xi}(x,z) F^{(gl)\mu \beta}(x,z) ight) ight.$$

$$\left. - \frac{1}{2} \partial_\tau^\rho F^{(gl)\rho \xi}(x,z) \rho^{(gl)\mu \beta}(x,z) \right]$$

$$\left. + 4 \left( 2 \partial_\tau^\rho F^{(gl)\rho \beta}(x,z) F^{(gl)\mu \xi}(x,z) ight) \right.$$

$$\left. - \frac{1}{2} \partial_\tau^\rho F^{(gl)\rho \beta}(x,z) \rho^{(gl)\mu \xi}(x,z) \right]$$

$$\left. + 4 \left( 2 \partial_\tau^\rho F^{(gl)\mu \xi}(x,z) F^{(gl)\rho \beta}(x,z) ight) \right.$$

$$\left. - \frac{1}{2} \partial_\tau^\rho F^{(gl)\mu \xi}(x,z) \rho^{(gl)\rho \beta}(x,z) \right]$$

$$\left. - 2 \left( 2 \partial_\tau^\rho F^{(gl)\mu \beta}(x,z) F^{(gl)\rho \xi}(x,z) ight) \right.$$

$$\left. - \frac{1}{2} \partial_\tau^\rho F^{(gl)\mu \beta}(x,z) \rho^{(gl)\rho \xi}(x,z) \right]$$

$$\left. + 4 \left( 2 \partial_\tau^\rho F^{(gl)\rho \xi}(x,z) F^{(gl)\mu \beta}(x,z) ight) \right.$$

$$\left. - \frac{1}{2} \partial_\tau^\rho F^{(gl)\rho \xi}(x,z) \rho^{(gl)\mu \beta}(x,z) \right].$$

Figure 4.4: Corrections to gluon propagator.
\[ \Sigma_{\rho}^{(gl)\mu\xi}(x, z) = g^2 N \times \]
\[ \left[ \sigma_{\alpha\beta}^{(g)} \sigma_{\kappa\lambda}^{(g)} \left( -8 F^{(f)\alpha\beta}(x, z) \rho^{(f)\kappa\lambda}(z, x) + 8 \rho^{(f)\alpha\beta}(x, z) F^{(f)\kappa\lambda}(z, x) \right) + 12 \partial^\mu_{\nu} F^{(s)}(x, z) \partial^\nu_{\kappa} \rho^{(s)}(x, z) + 12 \partial^\mu_{\nu} \rho^{(s)}(x, z) \partial^\nu_{\kappa} F^{(s)}(x, z) \right] \]
\[ - 12 \partial^\mu_{\nu} F^{(s)}(x, z) \partial^\nu_{\kappa} \rho^{(s)}(x, z) - 12 \partial^\mu_{\nu} \rho^{(s)}(x, z) \partial^\nu_{\kappa} F^{(s)}(x, z) + 2 \partial^\gamma_{\kappa} F^{(gh)}(x, z) \partial^\mu_{\nu} \rho^{(gh)}(x, z) - 2 \partial^\mu_{\nu} \rho^{(gh)}(x, z) \partial^\gamma_{\kappa} F^{(gh)}(x, z) \]
\[ + 16 \left( \partial^\gamma_{\kappa} \partial^\mu_{\nu} F^{(g)\rho\xi}(x, z) \rho^{(g)\mu\nu}(x, z) + \partial^\mu_{\nu} \partial^\gamma_{\kappa} \rho^{(g)\rho\xi}(x, z) F^{(g)\mu\nu}(x, z) \right) \]
\[ + 8 \partial^\gamma_{\kappa} \partial^\mu_{\nu} F^{(g)\rho\xi}(x, z) \rho^{(g)\mu\nu}(x, z) + \partial^\mu_{\nu} \partial^\gamma_{\kappa} \rho^{(g)\rho\xi}(x, z) F^{(g)\mu\nu}(x, z) \]
\[ + 8 \partial^\gamma_{\kappa} \partial^\mu_{\nu} F^{(g)\rho\xi}(x, z) \rho^{(g)\mu\nu}(x, z) + \partial^\mu_{\nu} \partial^\gamma_{\kappa} \rho^{(g)\rho\xi}(x, z) F^{(g)\mu\nu}(x, z) \]
Finally, the single ghost propagator correction is given in Figure 4.6, with

Fermion propagator corrections are shown in Figure 4.5 and yield

\[ \Sigma^{(f)}_{\mu, \lambda \tau}(x, z) = -2g^2N \left[ \sigma_{a \lambda} \sigma_{\bar{r} \bar{p}} \left( F^{\mu \bar{r}}(x, z)F^{\nu \bar{p}}(x, z) - \frac{1}{4} \rho^{(f) \mu \bar{r}}(x, z)\rho^{(g) \nu \bar{p}}(x, z) \right) \right. \\
\left. - 6 \left( F^{(f) \tau \mu}(z, x)F(x, z) + \frac{1}{4} \rho^{(f) \tau \mu}(z, x)\rho(x, z) \right) \right], \tag{4.56} \]

\[ \Sigma^{(f)}_{\rho, \lambda \tau}(x, z) = -2g^2N \left[ \sigma_{a \lambda} \sigma_{\bar{r} \bar{p}} \left( \rho^{(f) a \bar{r}}(x, z)F^{(g) \nu \bar{p}}(x, z) + F^{(f) a \bar{r}}(x, z)\rho^{(g) \nu \bar{p}}(x, z) \right) \right. \\
\left. + 6 \left( \rho^{(f) \tau \mu}(z, x)F(x, z) - F^{(f) \tau \mu}(z, x)\rho(x, z) \right) \right]. \tag{4.57} \]

Finally, the single ghost propagator correction is given in Figure 4.6, with
\[ \Sigma_F^{(gh)}(x, z) = -g^2 N \left[ 2 \partial_\mu F_{\mu \nu}^{(gl)}(x, z) \partial_\nu F^{(gh)}(x, z) - \frac{1}{2} \partial_\mu \rho^{(gl)}_{\mu \nu}(x, z) \partial_\nu \rho^{(gh)}(x, z) + 2 F_{\mu \nu}^{(gl)}(x, z) \partial_\mu \partial_\nu F^{(gh)}(x, z) - \frac{1}{2} \rho^{(gl)}_{\mu \nu}(x, z) \partial_\mu \partial_\nu \rho^{(gh)}(x, z) \right], \]

\[ \Sigma_\rho^{(gh)}(x, z) = -2g^2 N \left[ \partial_\mu F_{\mu \nu}^{(gl)}(x, z) \partial_\nu \rho^{(gh)}(x, z) + \partial_\mu \rho^{(gl)}_{\mu \nu}(x, z) \partial_\nu F^{(gh)}(x, z) + F_{\mu \nu}^{(gl)}(x, z) \partial_\mu \partial_\nu \rho^{(gh)}(x, z) + \rho^{(gl)}_{\mu \nu}(x, z) \partial_\mu \partial_\nu F^{(gh)}(x, z) \right]. \]