Search for long-lived, heavy particles in final states with a muon and multi-track displaced vertex in proton-proton collisions at s = 7 TeV with the ATLAS detector

Published in:
Physics Letters B

DOI:
10.1016/j.physletb.2013.01.042

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

Download date: 28 Feb 2018
Search for long-lived, heavy particles in final states with a muon and multi-track displaced vertex in proton–proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

ATLAS Collaboration

1. Introduction

Several extensions to the Standard Model predict the production of heavy particles with lifetimes that may be of order picoseconds up to about a nanosecond [1], at the Large Hadron Collider (LHC). One such scenario is gravity-mediated supersymmetry (SUGRA [2]) with R-parity violation (RPV) [3,4]. If the results of R-parity conserving supersymmetry searches at the LHC (see, for example, Refs. [5,6]) continue to disfavour light superpartners, then scenarios in which R-parity is violated may be required if supersymmetry is the solution to the hierarchy problem [7]. The present (largely indirect) constraints on RPV couplings [3,4] would allow the decay of the lightest supersymmetric particle as it traverses a particle detector at the LHC. Signatures of heavy, long-lived particles are generally disfavoured [13] because they are strong sources of background for many Standard Model processes. However, the signal strategy is based on triggering on and reconstructing the decay products of individual long-lived particles, irrespective of the rest of the event, these limits can easily be reinterpreted in scenarios with different numbers of long-lived particles per event. The limits are presented as a function of neutralino lifetime, and for a range of squark and neutralino masses.

ATLAS Collaboration

© 2013 CERN. Published by Elsevier B.V. All rights reserved.
that do not originate from the primary vertex. The dependence on simulation to estimate background levels is also removed. Finally, while the previous analysis did not require muons to be associated vertices, this association requirement is now imposed, which greatly simplifies both the analysis itself, and also the reinterpretation of these results for scenarios containing different numbers of long-lived particles.

2. The ATLAS detector

The ATLAS detector [22] is a multipurpose apparatus at the LHC. The detector consists of several layers of subdetectors. From the interaction point (IP) outwards there is an inner detector (ID), measuring the tracks of charged particles, electromagnetic and hadronic calorimeters, and an outer muon spectrometer (MS).

The ID is immersed in a 2 T axial magnetic field, and extends from a radius of about 45 mm to 1100 mm and to |z| of about 3100 mm. It provides tracking and vertex information for charged particles within the pseudorapidity region |η| < 2.5. At small radii, silicon pixel layers and stereo pairs of silicon microstrip detectors provide high resolution pattern recognition. The pixel system consists of three barrel layers, and three forward disks on either side of the interaction point (the beam pipe envelope is at a radius of about 30 mm). The barrel pixel layers, which are positioned at radii of 50.5 mm, 88.5 mm, and 122.5 mm are of particular relevance to this work. The silicon microstrip tracker (SCT) comprises four double layers in the barrel, and nine forward disks on either side. A further tracking system, a transition–radiation tracker (TRT), consists of three barrel layers, and three forward disks on either side

The calorimeter provides coverage over the pseudorapidity range |η| < 4.9. It consists of a lead/liquid-argon electromagnetic calorimeter, a hadronic calorimeter comprising a steel and scintillator-tile system in the barrel region and a liquid–argon system with copper and tungsten absorbers in the end-caps.

Muon identification and momentum measurement is provided by the MS. This device has a coverage in pseudorapidity of |η| < 2.7 and is a three-layer system of gas-filled precision-tracking chambers. The pseudorapidity region |η| < 2.4 is additionally covered by separate trigger chambers, used by the hardware trigger for the first level of triggering (level-1). The MS is immersed in a magnetic field which is produced by a set of toroid magnets, one for the barrel and one each for the two end-caps. Online event selection is performed with a three-level trigger system. It comprises a hardware-based level-1 trigger, which uses information from the MS trigger chambers and the calorimeters, followed by two software-based trigger levels.

3. Data and simulation

The data used in this analysis were collected between March and October, 2011. After the application of beam, detector, and data-quality requirements, the integrated luminosity considered corresponds to 4.4 fb−1, with an uncertainty of ±3.9% [21].

Signal Monte Carlo (MC) events are generated with PYTHIA 6 [23], using the MRST LO* [24] set of parton distribution functions (PDFs). Processes are simulated in which a q̄q or q̄q pair is produced in the pp collision, with each squark (antisquark) decaying into a long-lived lightest neutralino and a quark (antisquark). Degeneracy of the first and second generations and for the left-handed and right-handed squarks is assumed. The masses of the gluino, sleptons and third-generation squarks are set at such a high value (5 TeV) that they are not directly produced in the supersymmetry scenario considered here.

The parameter settings for the samples of signal MC events are summarised in Table 1. The chosen values of squark and neutralino masses correspond to a wide range in the quantities to which the signal efficiency is most sensitive: neutralino speed and final-state multiplicities (see Section 5). The Higgsino-gaugino mixing determines the neutralino mass values. The signal MC samples are labelled in Table 1 according to the squark mass and neutralino mass, respectively: MH (medium-mass squark, heavy neutralino), ML (medium-mass squark, light neutralino), and HH (heavy squark and heavy neutralino). It is assumed that all RPV couplings other than λ′ 211 are zero. This leads to each neutralino decaying to μ−udd (or the charge-conjugate state). Decays of neutralinos to a neutrino and jets final state, which would also occur via a non-zero λ′ 211, are not considered in this work.

The PROSPINO [25] program is used to calculate the signal cross section (hereafter referred to as the supersymmetry production cross section) at next-to-leading order; cross section values are listed in Table 1. The CTEQ6.6 PDF set [26] is used. Owing to differences in the predicted cross sections for the q̄q and q̄q processes from PYTHIA and PROSPINO, and the possible sensitivity of the neutralino-speed distribution to the assumed process, signal samples are generated for each process separately with PYTHIA and reweighted according to the relative cross sections of the two processes as estimated with PROSPINO. The reweighting procedure, however, has a minimal effect on the distributions of physical quantities used in this work and typically leads to changes of much less than 1%.

Each generated event in the signal samples is processed with the GEANT4-based [27] ATLAS detector simulation [28] and treated in the same way as the collision data. The samples include a realistic modelling of the effects of multiple pp collision per bunch crossing (pile-up) observed in the data, obtained by overlaying simulated Minimum Bias events generated using PyTHIA, on top of the hard scattering events, and reweighting events such that the distribution of the number of interactions per bunch crossing matches that in the data.

![Diagram](image-url)
4. Vertex reconstruction and event selection

It is required that the trigger identifies a muon candidate with transverse momentum \(p_T > 40 \) GeV and \(|\eta| < 1.07 \), i.e., in the barrel region of the MS. The latter selection is necessary since there is no ID track requirement in the trigger, and the trigger rate arising from muons with badly measured momenta in the (larger \(|\eta| \)) end-cap region, where the magnetic field is highly complex, would have consumed too much bandwidth to be viable in the 2011 running conditions.

Owing to the higher instantaneous luminosity of the LHC in 2011 compared to that in 2010, most events contain more than one primary vertex (PV). The PV with the highest sum of \(p_T^2 \) of the tracks associated to it is required to have at least five tracks and a \(z \) position in the range \(|z_{PV}| < 200 \) mm. In order to reduce cosmic-ray background, events are rejected if they contain two muons which appear back-to-back. A selection \(\sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} < 0.1 \) is applied where \(\phi_1, \phi_2, \eta_1 \) and \(\eta_2 \) are the azimuthal angles and pseudorapidities of the two reconstructed muons.

A muon candidate is required to have been reconstructed in both the MS and the ID with transverse momentum \(p_T > 50 \) GeV (which is well into the region where the trigger efficiency is approximately independent of the muon momentum) and \(|\eta| < 1.07 \). The impact parameter relative to the transverse position of the primary vertex (\(d_0 \)) is required to satisfy \(|d_0| > 1.5 \) mm. To ensure that the muon candidate is associated with the muon that satisfied the trigger requirement, the selection \(\sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} < 0.15 \) is imposed, where \(\Delta \phi (\Delta \eta) \) is the difference between the azimuthal angle (pseudorapidity) of the reconstructed muon and that of the muon identified by the trigger. The ID track associated with the muon candidate is required to have at least six SCT hits, and at most one SCT hit that is expected but not found i.e. in an active detector element with no known read-out problems. Furthermore, the track must satisfy an \(|\eta| \)-dependent requirement on the number of TRT hits. No pixel-hit requirements are applied to the muon track. The combination of requirements described above is referred to as the muon-selection criteria.

In order to reconstruct a DV it is first necessary to select high quality tracks. This is done by requiring that candidate tracks have two or more associated SCT hits and a value of \(|d_0| > 2 \) mm. Studies made with the MC simulation show that 98% of all tracks originating from the primary pp interaction are rejected by the selection on \(|d_0| \). Standard ATLAS tracking [22] is based on three passes in which the initial track candidates are formed in different ways: initially found in the silicon detectors, initially found in the TRT detector, and only found in the TRT detector. The algorithms all assume that tracks originate from close to the PV, and hence have reduced reconstruction efficiency for signal tracks which originate at a DV. To counter this problem and recover some of these lost tracks, the silicon-seeded tracking algorithm is re-run with looser requirements on the radial and \(z \) impact parameters, and on the number of detector hits that can be shared among more than one seed track. To reduce the rate of false seed tracks, it is required that these additional tracks have \(p_T > 1 \) GeV, which is greater than the standard-tracking requirement of \(p_T > 400 \) MeV. This procedure is termed “re-tracking”. Fig. 2 shows the efficiency for vertex reconstruction (described later) as a function of the radial position of the vertex \(r_{DV} \) when using standard tracking and re-tracking for sample MH. As can be seen, there is a substantial improvement due to re-tracking at values of \(r_{DV} \) greater than about 100 mm. The dips in the plot correspond to losses in efficiency for decays immediately before a pixel layer, where many tracks from the vertex have shared pixel hits and therefore fail the selection.

Using an algorithm based on the incompatibility-graph approach [29], DVs are sought with the selected tracks. The method adopted is similar to that used in Ref. [30]. The algorithm starts by finding two-track seed vertices from all pairs of tracks; those that have a vertex-fit \(\chi^2 \) of less than 5.0 per degree of freedom are retained. A seed vertex is rejected if at least one of its tracks has hits between the vertex and the PV. Multi-track vertices are formed from combinations of seed vertices in an iterative process. The following method is used to do this. If a track is assigned to two different vertices, the action taken depends on the distance \(D \) between the vertices. If \(D > 3 \sigma_D \), where \(\sigma_D \) is the estimated uncertainty on \(D \), a single vertex is formed from the tracks of the two vertices. Otherwise, a track is associated with that vertex for which the track has the smaller \(\chi^2 \) value. In the event of the \(\chi^2 \) of a track relative to the resulting vertex exceeding 3.0 per degree of freedom, the track is removed from the vertex, and the vertex is refitted. This process continues until no track is associated with more than one vertex. Finally, vertices are combined and refitted if they are separated by less than 1 mm.

To ensure a good quality DV fit, the \(\chi^2 \) per degree of freedom of the fit must be less than 5. Furthermore, the DV position is required to be in the fiducial region, defined as \(|z_{DV}| < 300 \) mm and \(r_{DV} < 180 \) mm, where \(r_{DV} \) and \(z_{DV} \) are the radial and longitudinal vertex positions with respect to the origin. To minimise background coming from the PVs, the transverse distance \(\sqrt{(x_{DV} - x_{PV})^2 + (y_{DV} - y_{PV})^2} \) between any of the PVs and the DV must be at least 4 mm. Here \(x \) and \(y \) are the transverse coordinates of a given vertex, with the subscripts PV and DV denoting the type of vertex. The number of tracks \(N_{DV}^{PV} \) associated with the DV is required to be at least five. This reduces background from random combinations of tracks and from material interactions. Background due to particle interactions with material is suppressed by requiring \(m_{DV} > 10 \) GeV. Here, \(m_{DV} \) is the invariant mass of the set of tracks associated with the DV, using the charged-pion mass hypothesis for each track. Candidate vertices which pass (fail) the \(m_{DV} > 10 \) GeV requirement are hereafter referred to as being high-\(m_{DV} \) (low-\(m_{DV} \)) vertices.

The typical position resolution of the DV in the signal MC samples is tens of microns for \(r_{DV} \) and about 200 \(\mu \)m for \(z_{DV} \) near the interaction point. For vertices beyond the outermost pixel layer, which is located at a radius of 122.5 mm, the typical resolution is several hundred microns for both coordinates.

Low-\(m_{DV} \) (\(m_{DV} < 4 \) GeV) vertices from particle–material interactions are abundant in regions in which the detector material is dense. High-\(m_{DV} \) background may arise from the random
spatial coincidence of a material-interaction vertex with a high-\(p_T\) track, especially when this track and the particle that initiated the material-interaction vertex originate from different primary interactions, resulting in a large angle between their momentum vectors.

To reduce this source of background, vertices that are reconstructed in regions of high-density material are removed. The high-density material was mapped using low-\(m_{T\nu}\) material-interaction candidate vertices in data and true material-interaction vertices in minimum-bias MC events. The \(z_{DV}\) and \(r_{DV}\) positions of these vertices are used to make a two-dimensional material-density distribution with a bin size of 4 mm in \(z_{DV}\) and 1 mm in \(r_{DV}\). It has been demonstrated [30] that the detector simulation describes the positions of pixel layers and associated material reasonably well, while the simulated position of the beampipe is shifted with respect to the actual position. The use of data events to construct the material map therefore ensures that the beampipe material is correctly mapped, while the use of the simulation provides a high granularity of the map at the outer pixel layers, where material-interaction vertices in the data are comparatively rare. Material-map bins with vertex density greater than an \(r_{DV}\)- and \(z_{DV}\)-dependent density criterion are characterised as high-density-material regions. These make up 34% of the volume at \(|z_{DV}| < 300\) mm, \(r_{DV} < 180\) mm.

To ensure that the muon candidate is associated with the reconstructed DV, the distance of closest approach of the muon with respect to the DV is required to be less than 0.5 mm. This requirement ensures that the vertex that we reconstruct gave rise to the muon that triggered the event, and so the selection efficiency for each neutralino decay is independent of the rest of the event. This facilitates a straightforward calculation of the event selection efficiency for scenarios with different numbers of long-lived neutralinos in the event. The aforementioned selections are collectively referred to as the vertex-selection criteria. Events containing one or more vertices passing these criteria are accepted.

5. Signal efficiency

The signal efficiency depends strongly on the efficiencies for track reconstruction and track selection, which are affected by several factors: (1) The number of tracks originating from the DV and their total invariant mass increase with the neutralino mass. (2) More tracks fail the \(|d_0| > 2\) mm requirement for small \(r_{DV}\) or if a neutralino with large \(p_T\) has a small decay length, thereby leaving its daughters pointing back closer to the PV. (3) The efficiency for reconstructing tracks decreases with increasing values of \(|d_0|\). Because the MH and HH samples have the same neutralino mass, but different boosts, a cross-check of the efficiency estimation procedure can be made. The HH sample is reweighted vertex-by-vertex such that the \(\beta\gamma\) versus \(\eta\) distributions match the MH sample. It was checked that they have the same efficiency as a function of decay position. The total efficiency for each of the signal MC samples is shown in Fig. 3 as a function of \(c\tau\). This is an overall event efficiency, derived from the determination of (the single) vertex efficiency, and is based on having two displaced vertices per event in the signal MC. This efficiency as a function of \(c\tau\) is calculated from the samples generated with a single-\(c\tau\) value (see Table 1) using a two-dimensional map in \(|z_{DV}|, r_{DV}\) (Fig. 4) and distributions of decay positions for different values of \(c\tau\). Events are reweighted according to their probability of being found at different positions in the map, where the probability depends on \(c\tau\). Fig. 3 includes systematic corrections and uncertainties that are discussed in Section 7.

6. Background estimation

Spurious high-\(m_{T\nu}\), high-multiplicity vertices in non-material regions could come from one of two sources: (1) Purely random combinations of tracks (real or fake). This type of background is expected to form the largest contribution at small radii where the track density is highest. (2) Vertices from real hadronic interactions with gas molecules. Although most of these events will have masses below the 10 GeV requirement, the high-mass tail of the distribution indicates a potential background, in particular if the vertex is crossed by a random track (real or fake) at large crossing angle.

The first source of background mentioned above gives rise to displaced vertices inside the beampipe (where there are few real hadronic interactions due to the good vacuum, but where random combinations are expected to dominate). The expected contribution from this source of background is evaluated using a large sample of jet-triggered events, and examining the ratio of the number of vertices with \(m_{T\nu} > 10\) GeV to the number in a mass control region, \(4\) GeV < \(m_{T\nu}\) < \(10\) GeV. Since the number of random combinations of tracks depends primarily on the pile-up conditions, and is therefore independent of the type of event that fired the trigger, this ratio can also be applied to the number of vertices in Fig. 3. The event selection efficiency as a function of \(c\tau\) for the three signal samples. The total uncertainties on the efficiency are shown as bands; the estimation of the uncertainties is discussed in Section 7.

Fig. 4. The efficiency as a function of \(r_{DV}\) and \(z_{DV}\) for vertices in the signal MC sample MH. The blank areas represent regions of dense material which are not considered when looking for DVs. Bin-to-bin fluctuations due to limited MC sample size are compensated for by recalculating this map many times, varying each bin content within its statistical uncertainty.
the mass control region in muon-triggered events. All of this information is used as input to a simple maximum likelihood fit, which yields a background expectation of $0.00^{+0.06}_{-0.05}$ vertices passing our cuts, that arise from random combinations of tracks.

To estimate the second source of background i.e. vertices arising from real hadronic interactions, including those crossed by tracks from different PVs, two m_{DV}-distributions are constructed. One distribution is formed from vertices which do not include a so-called large-angle track, i.e. the average angle between a constituent track and the rest of the tracks in the vertex must be less than one radian. The four-momentum of a randomly-selected track in the event is added to the vertex to build the second distribution. Both of these distributions are taken from a large control sample of jet-triggered events. The relative normalisations of these distributions are determined using an estimate of the “crossing probability”. This is obtained by fitting a function representing a K_S mass peak to the invariant mass distribution of all two-track combinations within three-track vertices, and comparing the integral of this function (which is a measure of how many real K_S were crossed by a random track to form a three-track vertex), to the number of two-track K_S mesons observed.

With the shape of the m_{DV}-distribution determined in this manner, the absolute normalisation for the muon-triggered sample can be found. It is extracted from a maximum likelihood fit, which takes as input the numbers of vertices in each material layer (i.e. the beam pipe and three pixel detector layers), and the numbers of low-track-multiplicity vertices in the regions in which there is no material, which are termed “air gaps”. It has been empirically observed that in each material layer or air gap, the relation between the numbers of n-track, $(n+1)$-track, $(n+2)$-track vertices etc. is well modelled by an exponential function. Furthermore, the ratio of the number of n-track vertices in a material layer to the number in the air gap immediately outside it, is consistent between several different control samples. These relations can therefore be used in the fit to predict the number of vertices with at least five tracks in the air gaps. This procedure was tested on various control samples, giving consistent results for the $m_{\text{DV}} < 10$ GeV control region in all cases. For instance, in events that fail the muon trigger requirement, the fit predicted 105.4 ± 5.7 events, whereas 110 events were observed. The m_{DV} distribution, scaled by the prediction, is then integrated to obtain an estimate of the number of vertices with $m_{\text{DV}} > 10$ GeV, and a final scale factor is applied, based on the fraction of events in our muon-triggered sample that pass the offline muon requirements. Systematic uncertainties are evaluated by varying the relevant input parameters (the crossing probability, the parameters of the exponential function and material-to-airgap ratio, and the final scale factor) within their respective uncertainties, and taking the largest deviation. Finally, the background from hadronic interactions in the air gaps is estimated to be $3.7^{+4.3}_{-1.7} \times 10^{-3}$ vertices. Note that this is somewhat conservative, as the “crossing probability” used here is derived from tracks crossing K_S vertices, which have worse position resolution than vertices with four or more tracks.

The total background estimate is therefore taken to be $4^{+60}_{-44} \times 10^{-3}$ vertices.

7. Systematic corrections and uncertainties

Several categories of uncertainties and corrections are considered. The values of the uncertainties depend on the neutralino lifetime and the signal sample under investigation. However, they can be ordered in approximately decreasing size. Uncertainties on the muon reconstruction efficiency are largest (typically $\approx 7\%$), followed by trigger ($\approx 6\%$) and tracking ($\approx 4\%$) efficiency uncertainties. The relative luminosity uncertainty is 3.9%, while the uncertainty due to limited numbers of events in the signal samples is around 1.5%. Other systematic effects, such as the uncertainty on the modelling of pile-up, contribute less than 1% to the total uncertainty. The effect on the efficiency associated with PDF uncertainties is negligible.

To estimate the uncertainty on the efficiency as a function of cT (Fig. 3) from finite MC sample size, the efficiency in each bin of the two-dimensional efficiency map (Fig. 4) was varied randomly within its statistical uncertainty and the total efficiency was repeatedly re-measured. The spread in those results is taken as the contribution to the systematic uncertainty on the efficiency at each cT value.

To compensate for the different z-distributions of the primary vertices in data and MC simulation, a weight is applied to each simulated event such that the reweighted z_{PV} distribution matches that in data. This weight is applied to both the numerator and denominator in the efficiency calculation.

Similarly, a weight is applied to each simulated event such that the distribution of (μ), the average number of interactions per bunch-crossing, matches that in data. An uncertainty associated with this procedure is estimated by scaling the (μ) values used as input to this correction calculation by a factor 0.9 (motivated by the difference between the MC simulation by (μ) calculated from luminosity measurements and by using the number of reconstructed PVs in data and MC simulation). The difference in the efficiency is evaluated as a function of cT, and is applied as a symmetric systematic uncertainty.

A trigger efficiency correction and its associated systematic uncertainty are derived from a study of $Z \rightarrow \mu^+\mu^-$ events in which at least one of the muons was selected with a single-muon trigger. The trigger efficiency for selecting a signal event is about 90%. The ratio of the trigger efficiencies in data and simulation is applied as a correction factor. Furthermore, the statistical uncertainty on this ratio is added in quadrature to the differences in trigger efficiency between the $Z \rightarrow \mu^+\mu^-$ sample and the signal samples to estimate a systematic uncertainty.

The modelling of track reconstruction efficiency for prompt tracks has been extensively studied in ATLAS [31]. In order to estimate the systematic uncertainty on the track reconstruction for secondary tracks, a study is performed where the number of K_S vertices in data and simulation are compared over a range of radii and η-values. Based on the outcome of this study, some fraction of tracks in the signal MC are randomly removed from the input to the vertexing algorithm, and the same procedure is used to obtain efficiency-vs-cT is performed. The difference between this and the nominal efficiency at each cT point is taken as the systematic uncertainty.

Since the distribution of the true values of d_0 for cosmic-ray muons is flat over the limited d_0 range considered here, as predicted by cosmic-ray simulation, the shapes of the measured (and simulated) d_0-spectra of such muons are used to determine the accuracy to which the simulation reproduces the muon-finding efficiency as a function of d_0. The ratio of the number of observed cosmic-ray muons (recorded during 2011) and the simulated muon-finding efficiency is studied as a function of d_0. The degree to which the distribution is not flat is used to estimate the d_0-dependent muon-finding efficiency, which is used for the results in Figs. 3 and 4. The uncertainties on the efficiency (largely due to the limited statistical precision of the cosmic-ray background sample) are propagated to uncertainties of between $\pm 3.5\%$.
Fig. 5. Vertex mass (m_{DV}) vs. vertex track multiplicity (N_{DV}^{trk}) for DVs in events with no muon requirements other than the trigger, and all other selection criteria except the m_{DV} and N_{DV}^{trk} requirements. Shaded bins show the distribution for the signal MC MH sample (see Table 1), and data are shown as filled ellipses, with the area of the ellipse proportional to the number of vertices in the corresponding bin. The horizontal lines show the cross sections calculated from PROSPINO for squark masses of 700 GeV and 1500 GeV. The shaded regions around these lines represent the uncertainties on the cross sections obtained from the procedure described in the text.

Fig. 6. Upper limits at 95% confidence level on $\sigma \cdot BR^2$ vs. the neutralino lifetime for different combinations of squark and neutralino masses, based on the observation of zero events satisfying all criteria in a 4.4 fb$^{-1}$ data sample. The shaded areas around these curves represent the $\pm 1\sigma$ uncertainty bands on the expected limits. The horizontal lines show the cross sections calculated from PROSPINO for squark masses of 700 GeV and 1500 GeV. The shaded regions around these lines represent the uncertainties on the cross sections obtained from the procedure described in the text.

(MH) and ±8% (ML) on the signal reconstruction efficiency, depending on the signal sample.

8. Results

Fig. 5 shows the distribution of m_{DV} vs. N_{DV}^{trk} for vertices in the selected data events, including vertices that are rejected by the selection on m_{DV} and N_{DV}^{trk}. The signal distribution for the MH sample is also indicated. The signal region, corresponding to a minimum number of five tracks in a vertex and a minimum vertex mass of 10 GeV, is also shown. No events are observed in the signal region.

Given the lack of candidate events in data, upper limits are evaluated on the supersymmetry production cross section (σ) times the square of the branching ratio (BR^2) for produced squarks to decay via long-lived neutralinos to muons and quarks. The limits are presented for different assumed values of squark and neutralino mass and $c\tau$, where $c\tau$ is the neutralino lifetime. Based on the efficiency, background estimate, and luminosity of 4.4 fb$^{-1}$ (with the uncertainties on each of these treated as nuisance parameters), the CLs method [32] is used to set limits on the plane of $\sigma \cdot BR^2$ versus $c\tau$. The resulting limits are shown in Fig. 6, with the PROSPINO-calculated cross sections for squark masses of 700 GeV and 1500 GeV. The PROSPINO predictions are shown as a band which represents the variation in predicted cross section when using two different sets of PDFs (CTEQ6.6 and MSTW2008NLO [33]) and varying the factorisation and renormalisation scales each up and down by a factor of two. Since essentially no background is expected and no events are observed, the expected and observed limits are indistinguishable. Based on the observation of no signal events in a data sample of 4.4 fb$^{-1}$, a 95% confidence-level upper limit of 0.68 fb is set on $\sigma \cdot BR^2$ multiplied by the detector acceptance and the reconstruction efficiency for any signal vertex.

9. Summary and conclusions

An improved search is presented for new, heavy particles that decay at radial distances between 4 mm and 180 mm from the pp interaction point, in association with a high-transverse-momentum muon. This search is based on data collected by the ATLAS detector at the LHC at a centre-of-mass energy of 7 TeV. Fewer than 0.06 background events are expected in the data sample of 4.4 fb$^{-1}$, and no events are observed. Limits are derived on the product of di-squark production cross section and decay chain branching fraction squared, in a SUGRA scenario where the lightest neutralino produced in the primary-squark decay undergoes an R-parity violating decay into a muon and two quarks. The limits are reported as a function of the neutralino lifetime and for a range of neutralino masses and velocities, which are the factors with greatest impact on the reconstruction efficiency. Limits for a variety of other models can thus be approximated from these results, based on the neutralino mass and velocity distribution in a given model.

Comparing to the results of the previous analysis reported in [16], for lifetimes $c\tau < 100$ mm, the limits presented here are somewhat less stringent than could be expected from the factor ≈ 130 increase in integrated luminosity, as a result of tighter trigger and offline muon selection requirements. For longer lifetimes, these factors are more than outweighed by the increase in efficiency afforded by re-tracking, so the limits are somewhat better than would be expected by simple scaling according to the integrated luminosity of the data samples.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; CONICET, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DOE and NSF, United States of America; BMBF, MPG, and DFG, Germany; INFN, Italy; INFN, Italy; IN2P3-CNRS, CEA-DSM/IRFU, France; CNRS, Georgia; BMBF, DFG, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, INHERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MENES, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVPZ, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NCS, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.
The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

ATLAS Collaboration

43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham, NC, United States
46 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova, (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (c) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (d) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
56 Department of Physics, Hampton University, Hampton, VA, United States
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
58 (a) Kernforschungszentrum Karlsruhe, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 Department of Physics, Indiana University, Bloomington, IN, United States
61 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
62 University of Iowa, Iowa City, IA, United States
63 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
65 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
66 Graduate School of Science, Kobe University, Kobe, Japan
67 Faculty of Science, Kyota University, Kyoto, Japan
68 Kyoto University of Education, Kyoto, Japan
69 Department of Physics, Kyushu University, Fukuoka, Japan
70 Instituto de Fisica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
71 Physics Department, Lancaster University, Lancaster, United Kingdom
72 (a) INFN Sezione di Lecco; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecco, Italy
73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
74 Department of Physics, Józef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
75 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
76 Department of Physics, Royal Holloway University of London, London, United Kingdom
77 Department of Physics and Astronomy, University College London, London, United Kingdom
78 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
79 Fysiska institutionen, Lund University, Lund, Sweden
80 Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
81 Institut für Physik, Universität Mainz, Mainz, Germany
82 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
83 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
84 Department of Physics, University of Massachusetts, Amherst, MA, United States
85 Department of Physics, McGill University, Montreal, QC, Canada
86 School of Physics, University of Melbourne, Victoria, Australia
87 Department of Physics, The University of Michigan, Ann Arbor, MI, United States
88 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
89 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
90 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus
92 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States
93 Group of Particle Physics, University of Montreal, Montreal, QC, Canada
94 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
95 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
96 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
97 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
98 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
99 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
100 Nagasaki Institute of Applied Science, Nagasaki, Japan
101 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
102 (a) INFN Sezione di Napoli; (b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
103 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
104 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
105 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
106 Department of Physics, Northern Illinois University, Dekalb, IL, United States
107 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
108 Department of Physics, New York University, New York, NY, United States
109 Ohio State University, Columbus, OH, United States
110 Faculty of Science, Okayama University, Okayama, Japan
111 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States
112 Department of Physics, Oklahoma State University, Stillwater, OK, United States
113 Palacký University, Brno, Czech Republic
114 Center for High Energy Physics, University of Oregon, Eugene, OR, United States
115 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
116 Graduate School of Science, Osaka University, Osaka, Japan
117 Department of Physics, University of Oslo, Oslo, Norway
118 Department of Physics, Oxford University, Oxford, United Kingdom
119 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
120 Department of Physics, University of Pennsylvania, Philadelphia, PA, United States