Modeling and clinical diagnosis of dead regions in the cochlea

Warnaar, B.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
# Contents

Foreword 10

## 1 General introduction 13

1.1 Sensory systems 14
1.2 Hearing impairment 14
1.3 Rehabilitation in modern society 16
1.4 Clinical Diagnosis 17
1.5 Psychophysical measurement 17
   1.5.1 Auditory filter 18
   1.5.2 Off-frequency listening 21
   1.5.3 Psychophysical measurement of hearing impairment 22
   1.5.4 Dead region diagnosis using off-frequency listening 23
1.6 Physical structures of the auditory system 24
   1.6.1 Outer ear and middle ear 25
   1.6.2 Cochlea 25
   1.6.3 Organ of Corti 28
   1.6.4 Sensorineural hair cells 28
   1.6.5 Inner hair cells 31
   1.6.6 Outer hair cells 31
   1.6.7 Retrocochlear structures 32
1.7 Physical impairment 33
   1.7.1 Dead regions 33
1.8 Indirect evaluation of the auditory function 33
1.9 Thesis overview 34

## 2 Agreement between psychophysical tuning curves and the threshold equalizing noise test in dead region identification 37

2.1 Introduction 38
2.2 Methods 42
   2.2.1 Subjects 42
   2.2.2 Test methods 42
2.3 Results 46
2.4 Discussion 57
   2.4.1 Level dependent tip shifts in PTC results 57
   2.4.2 Which test to use for dead region diagnosis? 57
   2.4.3 Which test criteria to use? 58
2.5 Conclusions 59
2.6 Acknowledgments 59
3 Simulating off-frequency masking experiments in normal-hearing listeners 61
  3.1 Introduction ........................................... 62
  3.2 Simulating a psychophysical response ......................... 64
  3.3 Simulating off-frequency listening .......................... 66
  3.4 Simulating masking of off-frequency listening ................. 70
  3.5 Conclusions ............................................. 73

4 Simulating psychophysical tuning curves in listeners with dead regions 75
  4.1 Introduction ........................................... 76
  4.2 Model based hypothesis ................................... 79
    4.2.1 Functional simulation of psychophysical tuning curves .... 79
    4.2.2 Simulation of normal-hearing ........................... 80
    4.2.3 Consequences of simulating hearing impairment ........... 80
  4.3 Experimental method .................................... 84
    4.3.1 Procedure and stimuli ................................ 84
    4.3.2 Listeners .......................................... 85
    4.3.3 PTC analysis ....................................... 88
  4.4 Results ................................................ 89
    4.4.1 Normal-hearing ...................................... 89
    4.4.2 Hearing-impaired .................................... 91
  4.5 Discussion .............................................. 94
    4.5.1 PTC tip frequency and $F_e$ ........................... 94
    4.5.2 Clinical value of the model ........................... 96
    4.5.3 Future prospects ..................................... 96
  4.6 Conclusions ............................................. 97
  4.7 Acknowledgments ......................................... 97

5 Simulating threshold equalizing noise test results in listeners with dead regions 99
  5.1 Introduction ........................................... 100
  5.2 Model based predictions ................................... 103
    5.2.1 Functional simulation of the TEN[HL] test ................ 103
    5.2.2 Simulation of normal-hearing ........................... 104
    5.2.3 Consequences of simulating hearing impairment ........... 105
  5.3 Experimental method .................................... 108
    5.3.1 Procedure and stimuli ................................ 108
    5.3.2 Listeners .......................................... 111
    5.3.3 Analysis .......................................... 111
  5.4 Results ................................................ 112
    5.4.1 Comparison with data from Warnaar et al. (2012) .......... 112
    5.4.2 Comparison with data from Markessis et al. (2009) ........ 117
  5.5 Discussion .............................................. 118
    5.5.1 Effects of different types of hearing impairment on masked thresholds .......................................... 118
5.5.2 Dead region diagnosis with the TEN[HL] test ................................ 119
5.6 Conclusions .................................................. 121
5.7 Acknowledgments ........................................... 121

6 General discussion ............................................. 123
6.1 Discussing study results ...................................... 124
6.2 Relevance of dead region diagnosis ......................... 125
   6.2.1 An example of a clinical benefit ....................... 126
   6.2.2 An example of a scientific benefit .................... 127
6.3 Classification of dead regions ............................... 128

A The CASP model .................................................. 131
A.1 Module details ............................................... 133
   A.1.1 Outer and middle-ear transformations ................ 133
   A.1.2 Dual-resonance non-linear filterbank ................. 133
   A.1.3 Hair cell transduction ................................ 136
   A.1.4 Expansion .............................................. 137
   A.1.5 Adaptation ............................................. 137
   A.1.6 Modulation filterbank ................................. 138
   A.1.7 Internal noise and optimal detector ................. 138
A.2 How to use the CASP model ................................ 140
   A.2.1 Access to the source code ............................. 140
   A.2.2 Using basic parameters ............................... 140

Bibliography ...................................................... 143
Abbreviations ................................................... 153
Summary .......................................................... 155
Samenvatting ...................................................... 159
Dankwoord ........................................................ 163
Curriculum Vitae ................................................. 167
Portfolio .......................................................... 169