Contents

Preface xi

1 **Introduction** 1
 1.1 Background and motivation 2
 1.2 Contributions 4
 1.3 Outline of this thesis 4

2 **Preliminaries** 7
 2.1 Some notation and conventions 7
 2.2 Labeled graphs and fragments 8
 2.2.1 Labeled graphs 8
 2.2.2 Fragments 9
 2.3 Connection matrices 11
 2.4 Graph algebras 12

3 **Partition functions of edge- and vertex-coloring models** 15
 3.1 Graph parameters from statistical models 15
 3.2 Partition functions of vertex-coloring models 17
 3.3 Partition functions of edge-coloring models 18
 3.4 Tensor networks 20
 3.5 The orthogonal group 21
 3.6 Computational complexity 22

4 **Invariant theory** 25
 4.1 Representations and invariants 25
 4.2 FFT and SFT for the orthogonal group 27
 4.3 Existence and uniqueness of closed orbits 29
 4.4 Proof of the Tensor FFT 30
CONTENTS

5 Characterizing partition functions of edge-coloring models
- 5.1 Introduction ... 35
- 5.2 Finite rank edge-coloring models
 - 5.2.1 Catalan numbers and the rank of $N_{f-3,l}$ 40
- 5.3 Framework .. 42
- 5.4 Proof of Theorem 5.3 46
- 5.5 Proof of Theorem 5.4 47
- 5.6 Analogues for directed graphs 50

6 Connection matrices and algebras of invariant tensors
- 6.1 Introduction ... 51
- 6.2 The rank of edge-connection matrices
 - 6.2.1 Algebra of fragments 54
 - 6.2.2 Contractions 55
 - 6.2.3 Stabilizer subgroups of the orthogonal group 57
 - 6.2.4 The real case 58
 - 6.2.5 The algebraically closed case 58
- 6.3 The rank of vertex-connection matrices
 - 6.3.1 Another algebra of labeled graphs 60
 - 6.3.2 Some operations on labeled graphs and tensors 62
 - 6.3.3 Proof of Theorem 6.1 64
- 6.4 Proofs of Theorem 6.11 and Theorem 6.16 65

7 Edge-reflection positive partition functions of vertex-coloring models
- 7.1 Introduction ... 69
- 7.2 Orbits of vertex-coloring models
 - 7.2.1 The one-parameter subgroup criterion 73
 - 7.2.2 Application to vertex-coloring models 75
- 7.3 Proof of Theorem 7.3 77

8 Compact orbit spaces in Hilbert spaces and limits of edge-coloring models
- 8.1 Introduction ... 83
- 8.2 Compact orbit spaces in Hilbert spaces and applications
 - 8.2.1 Compact orbit spaces in Hilbert spaces 86
 - 8.2.2 Application of Theorem 8.2 to graph limits 87
 - 8.2.3 Application of Theorem 8.2 to edge-coloring models .. 88
- 8.3 Proof of Theorem 8.2 90
- 8.4 Proofs of Theorem 8.3 and 8.41 92
 - 8.4.1 Properties of the map π 93