Graph parameters and invariants of the orthogonal group

Regts, G.

Citation for published version (APA):
Regts, G. (2013). Graph parameters and invariants of the orthogonal group.
Contents

Preface

1 Introduction 1
 1.1 Background and motivation 2
 1.2 Contributions 4
 1.3 Outline of this thesis 4

2 Preliminaries 7
 2.1 Some notation and conventions 7
 2.2 Labeled graphs and fragments 8
 2.2.1 Labeled graphs 8
 2.2.2 Fragments 9
 2.3 Connection matrices 11
 2.4 Graph algebras 12

3 Partition functions of edge- and vertex-coloring models 15
 3.1 Graph parameters from statistical models 15
 3.2 Partition functions of vertex-coloring models 17
 3.3 Partition functions of edge-coloring models 18
 3.4 Tensor networks 20
 3.5 The orthogonal group 21
 3.6 Computational complexity 22

4 Invariant theory 25
 4.1 Representations and invariants 25
 4.2 FFT and SFT for the orthogonal group ... 27
 4.3 Existence and uniqueness of closed orbits 29
 4.4 Proof of the Tensor FFT 30
CONTENTS

5 Characterizing partition functions of edge-coloring models 35

5.1 Introduction ... 35
5.2 Finite rank edge-coloring models 38
 5.2.1 Catalan numbers and the rank of $N_{f,2,l}$ 40
5.3 Framework ... 42
5.4 Proof of Theorem 5.3 46
5.5 Proof of Theorem 5.4 47
5.6 Analogues for directed graphs 50

6 Connection matrices and algebras of invariant tensors 51

6.1 Introduction ... 51
6.2 The rank of edge-connection matrices 54
 6.2.1 Algebra of fragments 54
 6.2.2 Contractions 55
 6.2.3 Stabilizer subgroups of the orthogonal group ... 57
 6.2.4 The real case 58
 6.2.5 The algebraically closed case 58
6.3 The rank of vertex-connection matrices 60
 6.3.1 Another algebra of labeled graphs 60
 6.3.2 Some operations on labeled graphs and tensors 62
 6.3.3 Proof of Theorem 6.1 64
6.4 Proofs of Theorem 6.11 and Theorem 6.16 65

7 Edge-reflection positive partition functions of vertex-coloring models 69

7.1 Introduction ... 69
7.2 Orbits of vertex-coloring models 73
 7.2.1 The one-parameter subgroup criterion 73
 7.2.2 Application to vertex-coloring models 75
7.3 Proof of Theorem 7.3 77

8 Compact orbit spaces in Hilbert spaces and limits of edge-coloring models 83

8.1 Introduction ... 83
8.2 Compact orbit spaces in Hilbert spaces and applications 85
 8.2.1 Compact orbit spaces in Hilbert spaces 86
 8.2.2 Application of Theorem 8.2 to graph limits .. 87
 8.2.3 Application of Theorem 8.2 to edge-coloring models ... 88
8.3 Proof of Theorem 8.2 90
8.4 Proofs of Theorem 8.3 and 8.41 92
 8.4.1 Properties of the map π 93