Graph parameters and invariants of the orthogonal group
Regts, G.

Citation for published version (APA):
Regts, G. (2013). Graph parameters and invariants of the orthogonal group

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Contents

Preface xi

1 Introduction 1
 1.1 Background and motivation 2
 1.2 Contributions 4
 1.3 Outline of this thesis 4

2 Preliminaries 7
 2.1 Some notation and conventions 7
 2.2 Labeled graphs and fragments
 2.2.1 Labeled graphs 8
 2.2.2 Fragments 9
 2.3 Connection matrices 11
 2.4 Graph algebras 12

3 Partition functions of edge- and vertex-coloring models 15
 3.1 Graph parameters from statistical models 15
 3.2 Partition functions of vertex-coloring models 17
 3.3 Partition functions of edge-coloring models 18
 3.4 Tensor networks 20
 3.5 The orthogonal group 21
 3.6 Computational complexity 22

4 Invariant theory 25
 4.1 Representations and invariants 25
 4.2 FFT and SFT for the orthogonal group 27
 4.3 Existence and uniqueness of closed orbits 29
 4.4 Proof of the Tensor FFT 30
CONTENTS

5 Characterizing partition functions of edge-coloring models
- 5.1 Introduction ... 35
- 5.2 Finite rank edge-coloring models
 - 5.2.1 Catalan numbers and the rank of $N_{f,2,i}$ 40
- 5.3 Framework .. 42
- 5.4 Proof of Theorem 5.3 46
- 5.5 Proof of Theorem 5.4 47
- 5.6 Analogues for directed graphs 50

6 Connection matrices and algebras of invariant tensors
- 6.1 Introduction .. 51
- 6.2 The rank of edge-connection matrices
 - 6.2.1 Algebra of fragments 54
 - 6.2.2 Contractions ... 55
 - 6.2.3 Stabilizer subgroups of the orthogonal group 57
 - 6.2.4 The real case ... 58
 - 6.2.5 The algebraically closed case 58
- 6.3 The rank of vertex-connection matrices 60
 - 6.3.1 Another algebra of labeled graphs 60
 - 6.3.2 Some operations on labeled graphs and tensors 62
 - 6.3.3 Proof of Theorem 6.1 64
- 6.4 Proofs of Theorem 6.11 and Theorem 6.16 65

7 Edge-reflection positive partition functions of vertex-coloring models
- 7.1 Introduction .. 69
- 7.2 Orbits of vertex-coloring models
 - 7.2.1 The one-parameter subgroup criterion 73
 - 7.2.2 Application to vertex-coloring models 75
- 7.3 Proof of Theorem 7.3 77

8 Compact orbit spaces in Hilbert spaces and limits of edge-coloring models
- 8.1 Introduction .. 83
- 8.2 Compact orbit spaces in Hilbert spaces and applications
 - 8.2.1 Compact orbit spaces in Hilbert spaces 86
 - 8.2.2 Application of Theorem 8.2 to graph limits 87
 - 8.2.3 Application of Theorem 8.2 to edge-coloring models .. 88
- 8.3 Proof of Theorem 8.2 90
- 8.4 Proofs of Theorem 8.3 and 8.41 92
 - 8.4.1 Properties of the map π 93
CONTENTS

8.4.2 Proof of Theorem 8.4 96

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>99</td>
</tr>
<tr>
<td>Samenvatting</td>
<td>101</td>
</tr>
<tr>
<td>Bibliography</td>
<td>103</td>
</tr>
<tr>
<td>Index</td>
<td>109</td>
</tr>
<tr>
<td>List of symbols</td>
<td>113</td>
</tr>
</tbody>
</table>