Graph parameters and invariants of the orthogonal group
Regts, G.

Citation for published version (APA):
Regts, G. (2013). Graph parameters and invariants of the orthogonal group

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
List of symbols

α	sum of the α_i, 47
Aut(a, B)	automorphism group of the weighed graph $G(a, B)$, 51
A	algebra of all fragments, 54
$(\cdot, \cdot)_w$	bilinear form: $(e_i, e_j)_w := w_i \delta_{i,j}$, 61
$B(\mathcal{H})$	closed unit ball in \mathcal{H}, 86
$C_{i,j}$	contraction operator for tensors, 20
C^1	labeled loop, 2
C_n	n-th Catalan number, 11
C	field of complex numbers, 7
\bigcirc	circle; the graph with one edge and no vertices, 8
$C^l_{i,j}$	contraction operator for fragments, 56
$F_1 \cdot F_2$	gluing product of 2l-fragments F_1 and F_2, 10
$\delta(v)$	set of edges incident with the vertex v, 8
δ_{s_1,s_2}	the delta function (equal to 1 if $s_1 = s_2$ and 0 otherwise), 7
$d(V)$	degree of the vertex v, 8
$E(F)$	edge set of the fragment F, 55
$E(H)$	edge set of the graph H, 8
E_s	edges associated to the map s, 36
ev_{μ}	evaluation map, 69
$\text{End}(V)$	linear maps from V to itself, 8
$e_{\phi} \otimes \cdots \otimes e_{\phi(n)}$	54
\mathcal{F}_l	set of all l-fragments, 10
\mathcal{F}	space of l-quantum fragments, 54
LIST OF SYMBOLS

\(\mathbb{F} \) field of characteristic zero, 7
\(\mathbb{F}^* \) nonzero elements of the field \(\mathbb{F} \), 8
\(\overline{\mathbb{F}} \) algebraic closure of \(\mathbb{F} \), 7
FFT First Fundamental Theorem, 27

\(G(a, B) \) weighted graph with vertex weights \(a \) and edge weights \(B \), 18
\(\mathcal{G}' \) set of all graphs including \(\bigcirc \), 8
\(\mathcal{G} \) set of all graphs, 8
\(\mathcal{G}_l \) set of all \(l \)-labeled graphs, 9
\(\mathcal{G}_n \) set of graphs with vertex set \([n]\), 43
\(\mathcal{G}_{\text{sim}} \) set of all simple graphs, 87
\(\mathbb{F} \mathcal{G}_l \) semigroup algebra of \(\mathcal{G}_l \), 12

\(\mathcal{H} \) Hilbert space, 86
\(\mathcal{H}^S_k \) space of \(S_k \)-invariants in \(\mathcal{H}_k \), 88
\(\mathcal{H}_k \) the Hilbert space \(l^2(C^k) \), 88
hom(\(H, G \)) number of homomorphisms from \(H \) to \(G \), 18
\(h_l \) restriction of \(h \) to the space of homogenous polynomials of degree \(l \), 57

\(I_{V(I)} \) identity map in \(\text{End}(V) \), 8
\(\mathcal{I}_l(f) \) ideal in \(\mathbb{F} \mathcal{G}_l \) generated by the kernel of \(f \), 13
\(\mathcal{I}_l(h) \) kernel of \(M_{ph,l} \), 54

\(K_{i,j}^l \) labeled contraction operator for tensors, 62
\(K_{i,j}^\bullet \) labeled vertex, 9
\(K_{1,2}^\bullet \) 2-labeled edge, 9
\(K_{i,j}^\bigodot \) labeled contraction operator for labeled graphs, 62

\(M_h \) moment matrix of \(h \), 36
\(M_{f,i} \) \(i \)-th edge connection matrix of \(f \), 11
\(\mathcal{M}_m \) set of perfect matchings on \([2m]\), 27

\(N_{f,i} \) \(i \)-th vertex connection matrix of \(f \), 11
\([n] \) the set \(\{0, 1, \ldots, n\} \), 7
\(\mathbb{N} \) the natural numbers including 0, 7
\(\mathbb{N}_d^k \) set of those \(\alpha \in \mathbb{N}^k \) with \(|\alpha| \leq d \), 47
\(|x|_R \) seminorm associated to \(R \), 86
LIST OF SYMBOLS

\(\mathcal{O}(V) \) algebra generated by the dual of \(V \), 22
\(\overline{h(p)} \) complex conjugate of \(h(p) \), 71
\(\overline{A} \) Zariski closure of \(A \), 29
\(\text{O}(\mathcal{H}) \) orthogonal group of the real Hilbert space \(l^2(C, \mathbb{R}) \), 89
\(\text{O}(\mathcal{H}) \) orthogonal group over \(\mathbb{F} \), 21
\(h(p) \) complex conjugate of \(h(p) \), 71
\(\text{pr}_d \) projection from \(\mathbb{N}^k \leq d' \) onto \(\mathbb{N}^k \leq d' \), 47
\(p \) map from \(G \) to \(T \), 43
\(p_n \) restriction of \(p \) to the set of graphs with \(n \) vertices, 43
\(p_{a,B} \) partition function of \((a, B) \), 18
\(\mathcal{Q}_l(f) \) quotient algebra \(\mathcal{F}G_l/I_l(f) \), 13
\(\mathcal{R}(\mathcal{F}) \) polynomial ring \(\mathcal{F}[x_1, \ldots, x_k] \), 18
\(\mathcal{R} \) polynomial ring \(\mathcal{F}[x_1, \ldots, x_k] \), 18
\(\mathcal{R}_k \) \(\{ r_1 \otimes \ldots \otimes r_k \mid r_1, \ldots, r_k \in B(\mathcal{H}) \} \), 89
\(\mathbb{R} \) field of real numbers, 7
\(\text{rk}(M) \) rank of the matrix \(M \), 8
\((C \circ D) \) Schur product of \(C \) and \(D \), 62
\(C \ast D \) operation on 2-tensors, 62
\(F_1 \ast F_2 \) gluing operation of \(F_1 \) and \(F_2 \), 10
\(\text{SF}^{n \times n} \) space of symmetric \(n \times n \) matrices in \(\mathbb{F}^{n \times n} \), 28
\(S_n \) symmetric group, 30
\(\text{Stab}(A) \) pointwise stabilizer of \(A \), 57
\(\text{Stab}(h) \) stabilizer of the edge-coloring model \(h \), 52
\(\text{SFT} \) Second Fundamental Theorem, 27
\(F_1 \otimes F_2 \) tensor product of the fragments \(F_1 \) and \(F_2 \), 54
\(M^* \) conjugate transpose of the matrix \(M \), 8
\(M^T \) transpose of the matrix \(M \), 8
\(T(V)^{\text{Stab}(h)} \) algebra of tensors invariant under the stabilizer of \(h \), 58
\(T \) polynomial ring in the variables \(y_\alpha, \alpha \in \mathbb{N}^k \), 42
\(T_n \) homogeneous polynomials in \(T \) of degree \(n \), 43
\(\text{tr} \) trace, 77
\(t_M \) tensor associated to the perfect matching \(M \), 27

\(U_i \) unlabeling operator for tensors, 62
\([H] \) underlying graph of the labeled graph \(H \), 9
\(U_i^l \) unlabeling operator for labeled graphs, 62
LIST OF SYMBOLS

\((V \otimes^2 m)^O_k\) space of \(O_k\)-invariant \(2m\)-tensors, \(27\)

\(V(F)\) vertex set of the fragment \(F\), \(55\)

\(V(H)\) vertex set of the graph \(H\), \(8\)

\(V^*\) dual vectorspace of the vectorspace \(V\), \(8\)

\(W^G\) subspace of \(G\)-invariants in \(W\), \(26\)

\(X/G\) orbit space of \(G\) acting on \(X\), \(86\)

\(Y_d\) the common zeros of the polynomials \(p(H) - f(H)\), with \(H \in \mathcal{G}\) of max. degree \(d\), \(47\)