Graph parameters and invariants of the orthogonal group
Regts, G.

Citation for published version (APA):
Regts, G. (2013). Graph parameters and invariants of the orthogonal group.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>sum of the α_i, 47</td>
</tr>
<tr>
<td>$\text{Aut}(a, B)$</td>
<td>automorphism group of the weighed graph $G(a, B)$, 51</td>
</tr>
<tr>
<td>\mathcal{A}</td>
<td>algebra of all fragments, 54</td>
</tr>
<tr>
<td>$(\cdot, \cdot)_w$</td>
<td>bilinear form: $(e_i, e_j)w := w_i \delta{i,j}$, 61</td>
</tr>
<tr>
<td>$B(\mathcal{H})$</td>
<td>closed unit ball in \mathcal{H}, 86</td>
</tr>
<tr>
<td>$C_{i,j}$</td>
<td>contraction operator for tensors, 20</td>
</tr>
<tr>
<td>C_1</td>
<td>labeled loop, 9</td>
</tr>
<tr>
<td>C_n</td>
<td>n-th Catalan number, 41</td>
</tr>
<tr>
<td>\mathbb{C}</td>
<td>field of complex numbers, 7</td>
</tr>
<tr>
<td>\circ</td>
<td>circle; the graph with one edge and no vertices, 8</td>
</tr>
<tr>
<td>$C_{i,j}^l$</td>
<td>contraction operator for fragments, 56</td>
</tr>
<tr>
<td>$F_1 \cdot F_2$</td>
<td>gluing product of 2l-fragments F_1 and F_2, 10</td>
</tr>
<tr>
<td>$\delta(v)$</td>
<td>set of edges incident with the vertex v, 8</td>
</tr>
<tr>
<td>δ_{s_1,s_2}</td>
<td>the delta function (equal to 1 if $s_1 = s_2$ and 0 otherwise), 7</td>
</tr>
<tr>
<td>$d(V)$</td>
<td>degree of the vertex v, 8</td>
</tr>
<tr>
<td>$E(F)$</td>
<td>edge set of the fragment F, 55</td>
</tr>
<tr>
<td>$E(H)$</td>
<td>edge set of the graph H, 8</td>
</tr>
<tr>
<td>E_s</td>
<td>edges associated to the map s, 36</td>
</tr>
<tr>
<td>ev_u</td>
<td>evaluation map, 69</td>
</tr>
<tr>
<td>$\text{End}(V)$</td>
<td>linear maps from V to itself, 8</td>
</tr>
<tr>
<td>e_ϕ</td>
<td>$e_{\phi(1)} \otimes \cdots \otimes e_{\phi(n)}$, 54</td>
</tr>
<tr>
<td>\mathcal{F}_l</td>
<td>set of all l-fragments, 10</td>
</tr>
<tr>
<td>\mathcal{F}_l^l</td>
<td>space of l-quantum fragments, 54</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\mathbb{F} field of characteristic zero, 7
\mathbb{F}^* nonzero elements of the field \mathbb{F}, 8
\mathbb{F} algebraic closure of \mathbb{F}, 7
FFT First Fundamental Theorem, 27

$G(a,B)$ weighted graph with vertex weights a and edge weights B, 18
G' set of all graphs including \bigcirc, 8
G set of all graphs, 8
G_l set of all l-labeled graphs, 9
G_n set of graphs with vertex set $[n]$, 43
G_{sim} set of all simple graphs, 87
\mathbb{FG}_l semigroup algebra of G_l, 12
$\text{GL}(W)$ group of invertible linear maps from W to itself, 25

H / s graph obtained from H_s by contracting the edges in E_s, 36
H_1H_2 product of the labeled graphs H_1 and H_2, 9
H_s graph obtained from H by adding the edges in E_s, 36
\mathcal{H} Hilbert space, 86
\mathcal{H}_k space of S_k-invariants in \mathcal{H}_k, 88
\mathcal{H}_k^l the Hilbert space $l^2(C)^l$, 88
$\text{hom}(H,G)$ number of homomorphisms from H to G, 18
h_l restriction of h to the space of homogenous polynomials of degree l, 57

$I_V(I)$ identity map in $\text{End}(V)$, 8
$I_l(f)$ ideal in \mathbb{FG}_l generated by the kernel of f, 13
$I_l(h)$ kernel of $M_{ph,l}$, 54

$K_{i,j}$ labeled contraction operator for tensors, 62
K^* labeled vertex, 9
K^* labeled edge, 9
$K^*_{i,j}$ labeled contraction operator for labeled graphs, 62

M_h moment matrix of h, 36
$M_{f,l}$ l-th edge connection matrix of f, 11
M_m set of perfect matchings on $[2m]$, 27

$N_{f,l}$ l-th vertex connection matrix of f, 11
$[n]$ the set $\{0,1,\ldots,n\}$, 7
\mathbb{N} the natural numbers including 0, 7
$\mathbb{N}^k_{\leq d}$ set of those $\alpha \in \mathbb{N}^k$ with $|\alpha| \leq d$, 47
$|| x ||_R$ seminorm associated to R, 86
LIST OF SYMBOLS

- $\mathcal{O}(V)$ algebra generated by the dual of V, 22
- $\overline{h(p)}$ complex conjugate of $h(p)$, 71
- A Zariski closure of A, 29
- $O(H)$ orthogonal group of the real Hilbert space $l^2(C, \mathbb{R})$, 89
- $O_k(\mathbb{F})$ orthogonal group over \mathbb{F}, 21
- pr_d projection from $\mathbb{N}_k^{d} \to \mathbb{N}_k^{d'}$, 47
- p map from G to T, 43
- $p(A)$ image of A in the tensor algebra under the map p_h, 57
- p_n restriction of p to the set of graphs with n vertices, 43
- $p_{a,B}$ partition function of (a, B), 18
- $Q_l(f)$ quotient algebra $\mathbb{F}_l G_l / I_l(f)$, 13
- $R(\mathbb{F})$ polynomial ring $\mathbb{F}[x_1, \ldots, x_k]$, 18
- R polynomial ring $\mathbb{F}[x_1, \ldots, x_k]$, 18
- $R_k \{ r_1 \otimes \ldots \otimes r_k \mid r_1, \ldots, r_k \in B(H_1) \}$, 89
- \mathbb{R} field of real numbers, 7
- $rk(M)$ rank of the matrix M, 8
- $(C \circ D)$ Schur product of C and D, 62
- $C \ast D$ operation on 2-tensors, 62
- $F_1 \ast F_2$ gluing operation of F_1 and F_2, 10
- $\mathbb{S}F^n$ space of symmetric $n \times n$ matrices in $\mathbb{F}^n \times n$, 28
- S_n symmetric group, 30
- $\text{Stab}(A)$ pointwise stabilizer of A, 57
- $\text{Stab}(\mathcal{h})$ stabilizer of the edge-coloring model \mathcal{h}, 52
- SFT Second Fundamental Theorem, 27
- $F_1 \otimes F_2$ tensor product of the fragments F_1 and F_2, 54
- M^* conjugate transpose of the matrix M, 8
- M^T transpose of the matrix M, 8
- $T(V)^{\text{Stab}(\mathcal{h})}$ algebra of tensors invariant under the stabilizer of \mathcal{h}, 58
- T polynomial ring in the variables y_α, $\alpha \in \mathbb{N}_k$, 42
- T_n homogeneous polynomials in T of degree n, 43
- tr trace, 77
- t_M tensor associated to the perfect matching M, 27
- U_i unlabeling operator for tensors, 62
- $[H]$ underlying graph of the labeled graph H, 9
- U^l_i unlabeling operator for labeled graphs, 62

115
LIST OF SYMBOLS

$(V^\otimes 2m)^O_k$ space of O_k-invariant $2m$-tensors, 27
$V(F)$ vertex set of the fragment F, 55
$V(H)$ vertex set of the graph H, 8
V^* dual vectorspace of the vectorspace V, 8
W^G subspace of G-invariants in W, 26
X/G orbit space of G acting on X, 86
γ_d the common zeros of the polynomials $p(H) - f(H)$, with $H \in G$ of max. degree d, 47