Graph parameters and invariants of the orthogonal group
Regts, G.

Citation for published version (APA):
Regts, G. (2013). Graph parameters and invariants of the orthogonal group
List of symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>sum of the α_i, 47</td>
</tr>
<tr>
<td>$\text{Aut}(a, B)$</td>
<td>automorphism group of the weighed graph $G(a, B)$, 51</td>
</tr>
<tr>
<td>\mathcal{A}</td>
<td>algebra of all fragments, 54</td>
</tr>
<tr>
<td>$(\cdot, \cdot)_w$</td>
<td>bilinear form: $(e_i, e_j)w := w_i \delta{i,j}$, 61</td>
</tr>
<tr>
<td>$B(\mathcal{H})$</td>
<td>closed unit ball in \mathcal{H}, 86</td>
</tr>
<tr>
<td>$C_{i,j}$</td>
<td>contraction operator for tensors, 20</td>
</tr>
<tr>
<td>C_1^*</td>
<td>labeled loop, 9</td>
</tr>
<tr>
<td>C_n</td>
<td>n-th Catalan number, 41</td>
</tr>
<tr>
<td>\mathbb{C}</td>
<td>field of complex numbers, 7</td>
</tr>
<tr>
<td>\circ</td>
<td>circle; the graph with one edge and no vertices, 8</td>
</tr>
<tr>
<td>$\mathcal{C}_{i,j}$</td>
<td>contraction operator for fragments, 56</td>
</tr>
<tr>
<td>$F_1 \cdot F_2$</td>
<td>gluing product of 2l-fragments F_1 and F_2, 10</td>
</tr>
<tr>
<td>$\delta(v)$</td>
<td>set of edges incident with the vertex v, 8</td>
</tr>
<tr>
<td>δ_{s_1,s_2}</td>
<td>the delta function (equal to 1 if $s_1 = s_2$ and 0 otherwise), 7</td>
</tr>
<tr>
<td>$d(V)$</td>
<td>degree of the vertex v, 8</td>
</tr>
<tr>
<td>$E(F)$</td>
<td>edge set of the fragment F, 55</td>
</tr>
<tr>
<td>$E(H)$</td>
<td>edge set of the graph H, 8</td>
</tr>
<tr>
<td>E_s</td>
<td>edges associated to the map s, 36</td>
</tr>
<tr>
<td>ev_u</td>
<td>evaluation map, 69</td>
</tr>
<tr>
<td>$\text{End}(V)$</td>
<td>linear maps from V to itself, 8</td>
</tr>
<tr>
<td>e_ϕ</td>
<td>$e_\phi(1) \otimes \cdots \otimes e_\phi(n)$, 54</td>
</tr>
<tr>
<td>\mathcal{F}_l</td>
<td>set of all l-fragments, 10</td>
</tr>
<tr>
<td>\mathcal{F}_l^l</td>
<td>space of l-quantum fragments, 54</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

- \mathbb{F}: field of characteristic zero, 7
- \mathbb{F}^*: nonzero elements of the field \mathbb{F}, 8
- $\overline{\mathbb{F}}$: algebraic closure of \mathbb{F}, 7
- FFT: First Fundamental Theorem, 27

- $G(a,B)$: weighted graph with vertex weights a and edge weights B, 18
- \mathcal{G}': set of all graphs including \bigcirc, 8
- \mathcal{G}: set of all graphs, 8
- \mathcal{G}_l: set of all l-labeled graphs, 9
- \mathcal{G}_n: set of graphs with vertex set $[n]$, 43
- \mathcal{G}_{sim}: set of all simple graphs, 87
- $\mathbb{F}G_l$: semigroup algebra of \mathcal{G}_l, 12
- $\text{GL}(W)$: group of invertible linear maps from W to itself, 25

- H / s: graph obtained from H_s by contracting the edges in E_s, 36
- H_1H_2: product of the labeled graphs H_1 and H_2, 9
- H_s: graph obtained from H by adding the edges in E_s, 36
- \mathcal{H}: Hilbert space, 86
- \mathcal{H}_k: space of S_k-invariants in H_k, 88
- \mathcal{H}_k^l: the Hilbert space $l^2(C^k)$, 88
- $\text{hom}(H,G)$: number of homomorphisms from H to G, 18
- h_1: restriction of h to the space of homogenous polynomials of degree 1, 57

- $\mathcal{I}_V(I)$: identity map in $\text{End}(V)$, 8
- $\mathcal{I}_1(f)$: ideal in $\mathbb{F}G_l$ generated by the kernel of f, 13
- $\mathcal{I}_1(h)$: kernel of $M_{ph,l}$, 54

- $K^l_{i,j}$: labeled contraction operator for tensors, 62
- K^\bullet_1: labeled vertex, 9
- $K^\text{**}_2$: 2-labeled edge, 9
- $K^l_{i,j}$: labeled contraction operator for labeled graphs, 62

- M_h: moment matrix of h, 36
- $M_{f,l}$: l-th edge connection matrix of f, 11
- \mathcal{M}_m: set of perfect matchings on $[2m]$, 27

- $N_{f,l}$: l-th vertex connection matrix of f, 11
- $[n]$: the set $\{0,1,\ldots,n\}$, 7
- \mathbb{N}: the natural numbers including 0, 7
- \mathbb{N}_d^k: set of those $\alpha \in \mathbb{N}^k$ with $|\alpha| \leq d$, 47
- $|| \bar{x} ||_R$: seminorm associated to R, 86

114
LIST OF SYMBOLS

\(\mathcal{O}(V) \) algebra generated by the dual of \(V \), 22

\(\overline{h(p)} \) complex conjugate of \(h(p) \), 71

\(\mathcal{A} \) Zariski closure of \(\mathcal{A} \), 29

\(\text{O}(\mathcal{H}) \) orthogonal group of the real Hilbert space \(l^2(C, \mathbb{R}) \), 89

\(\text{O}_k(\mathbb{F}) \) orthogonal group over \(\mathbb{F} \), 21

\(\text{pr}_d \) projection from \(\mathbb{N}^k \leq d' \) onto \(\mathbb{N}^k \leq d \), 47

\(p \) map from \(G \) to \(T \), 43

\(p_{h(A)} \) image of \(A \) in the tensor algebra under the map \(p_h \), 57

\(p_{n} \) restriction of \(p \) to the set of graphs with \(n \) vertices, 43

\(p_{a,B} \) partition function of \((a,B)\), 18

\(\mathcal{Q}_l(f) \) quotient algebra \(F G_l / I_l(f) \), 13

\(R(\mathbb{F}) \) polynomial ring \(\mathbb{F}[x_1, \ldots, x_k] \), 18

\(R \) polynomial ring \(\mathbb{F}[x_1, \ldots, x_k] \), 18

\(R_k \) \{ \(r_1 \otimes \cdots \otimes r_k \mid r_1, \ldots, r_k \in B(\mathcal{H}_1) \} \), 89

\(\mathbb{R} \) field of real numbers, 7

\(\text{rk}(M) \) rank of the matrix \(M \), 8

\((C \circ D) \) Schur product of \(C \) and \(D \), 62

\(C \ast D \) operation on 2-tensors, 62

\(F_1 \ast F_2 \) gluing operation of \(F_1 \) and \(F_2 \), 10

\(\text{SF}^{n \times n} \) space of symmetric \(n \times n \) matrices in \(\mathbb{F}^{n \times n} \), 28

\(S_n \) symmetric group, 30

\(\text{Stab}(A) \) pointwise stabilizer of \(A \), 57

\(\text{Stab}(h) \) stabilizer of the edge-coloring model \(h \), 52

\(\text{SFT} \) Second Fundamental Theorem, 27

\(F_1 \otimes F_2 \) tensor product of the fragments \(F_1 \) and \(F_2 \), 54

\(M^* \) conjugate transpose of the matrix \(M \), 8

\(M^T \) transpose of the matrix \(M \), 8

\(T(V)^{\text{Stab}(h)} \) algebra of tensors invariant under the stabilizer of \(h \), 58

\(T \) polynomial ring in the variables \(y_\alpha, \alpha \in \mathbb{N}^k \), 42

\(T_n \) homogeneous polynomials in \(T \) of degree \(n \), 43

\(\text{tr} \) trace, 77

\(t_M \) tensor associated to the perfect matching \(M \), 27

\(\mathcal{U}_i \) unlabeling operator for tensors, 62

\([H] \) underlying graph of the labeled graph \(H \), 9

\(\mathcal{U}_i \) unlabeling operator for labeled graphs, 62
LIST OF SYMBOLS

\((V \otimes 2^m)^O_k\) space of \(O_k\)-invariant \(2m\)-tensors, 27

\(V(F)\) vertex set of the fragment \(F\), 55

\(V(H)\) vertex set of the graph \(H\), 8

\(V^*\) dual vectorspace of the vectorspace \(V\), 8

\(W^G\) subspace of \(G\)-invariants in \(W\), 26

\(X/G\) orbit space of \(G\) acting on \(X\), 86

\(Y_d\) the common zeros of the polynomials \(p(H) - f(H)\), with \(H \in G\) of max. degree \(d\), 47