Graph parameters and invariants of the orthogonal group

Regts, G.

Citation for published version (APA):
Regts, G. (2013). Graph parameters and invariants of the orthogonal group.
List of symbols

α	sum of the α_i, 47
Aut(a, B)	automorphism group of the weighed graph $G(a, B)$, 51
\mathcal{A}	algebra of all fragments, 54
$(\cdot, \cdot)_w$	bilinear form: $(e_i, e_j)_w := w_i \delta_{i,j}$, 61
\mathcal{B}(H)	closed unit ball in \mathcal{H}, 86
$C_{i,j}$	contraction operator for tensors, 20
C_1^*	labeled loop, 2
C_n	n-th Catalan number, 41
C	field of complex numbers, 7
\bigcirc	circle; the graph with one edge and no vertices, 8
$C_{i,j}^l$	contraction operator for fragments, 56
$F_1 \cdot F_2$	gluing product of $2l$-fragments F_1 and F_2, 10
$\delta(v)$	set of edges incident with the vertex v, 8
δ_{s_1,s_2}	the delta function (equal to 1 if $s_1 = s_2$ and 0 otherwise), 7
$d(V)$	degree of the vertex v, 8
$E(F)$	edge set of the fragment F, 55
$E(H)$	edge set of the graph H, 8
E_s	edges associated to the map s, 36
ev_u	evaluation map, 69
$\text{End}(V)$	linear maps from V to itself, 8
e_ϕ	$e_{\phi(1)} \otimes \cdots \otimes e_{\phi(n)}$, 54
\mathcal{F}_l	set of all l-fragments, 10
\mathcal{F}_l	space of l-quantum fragments, 54
LIST OF SYMBOLS

\(\mathbb{F} \) field of characteristic zero
\(\mathbb{F}^* \) nonzero elements of the field \(\mathbb{F} \)
\(\mathbb{F} \) algebraic closure of \(\mathbb{F} \)
FFT First Fundamental Theorem

\(G(a, B) \) weighted graph with vertex weights \(a \) and edge weights \(B \)
\(G' \) set of all graphs including \(\bigcirc \)
\(G \) set of all graphs
\(G_l \) set of all \(l \)-labeled graphs
\(G_n \) set of graphs with vertex set \([n]\)
\(G_{\text{sim}} \) set of all simple graphs
\(\mathbb{F}G_l \) semigroup algebra of \(G_l \)
\(\text{GL}(W) \) group of invertible linear maps from \(W \) to itself

\(H/s \) graph obtained from \(H_s \) by contracting the edges in \(E_s \)
\(H_1 H_2 \) product of the labeled graphs \(H_1 \) and \(H_2 \)
\(H_s \) graph obtained from \(H \) by adding the edges in \(E_s \)
\(\mathcal{H} \) Hilbert space
\(\mathcal{H}^k_k \) space of \(S_k \)-invariants in \(\mathcal{H}_k \)
\(\mathcal{H}_k \) the Hilbert space \(l^2(C^k) \)
\(\text{hom}(H, G) \) number of homomorphisms from \(H \) to \(G \)
\(h_l \) restriction of \(h \) to the space of homogenous polynomials of degree \(l \)

\(I_V \) identity map in \(\text{End}(V) \)
\(I_1(f) \) ideal in \(\mathbb{F}G_l \) generated by the kernel of \(f \)
\(I_1(h) \) kernel of \(M_{ph,l} \)

\(K_{i,j}^l \) labeled contraction operator for tensors
\(K^*_l \) labeled vertex
\(K^{**}_l \) 2-labeled edge
\(K^l_{i,j} \) labeled contraction operator for labeled graphs

\(M_h \) moment matrix of \(h \)
\(M_{f,l} \) \(l \)-th edge connection matrix of \(f \)
\(M_m \) set of perfect matchings on \([2m]\)

\(N_{f,l} \) \(l \)-th vertex connection matrix of \(f \)
\([n] \) the set \(\{0, 1, \ldots, n\} \)
\(\mathbb{N} \) the natural numbers including 0
\(\mathbb{N}^k \) set of those \(\alpha \in \mathbb{N}^k \) with \(|\alpha| \leq d \)
\(\| x \|_R \) seminorm associated to \(R \)
LIST OF SYMBOLS

\(\mathcal{O}(V) \) algebra generated by the dual of \(V \), 22
\(\overline{h}(p) \) complex conjugate of \(h(p) \), 71
\(\overline{A} \) Zariski closure of \(A \), 29
\(O(\mathcal{H}) \) orthogonal group of the real Hilbert space \(l^2(C, \mathbb{R}) \), 89
\(O_k(\mathbb{F}) \) orthogonal group over \(\mathbb{F} \), 21
\(h(p) \) complex conjugate of \(h(p) \), 71
\(\overline{h}(p) \) complex conjugate of \(h(p) \), 71
\(A \) Zariski closure of \(A \), 29
\(pr_d \) projection from \(\mathbb{N}_k^{\leq d} \) onto \(\mathbb{N}_k^{\leq d} \), 47
\(p \) map from \(G \) to \(T \), 43
\(p(A) \) image of \(A \) in the tensor algebra under the map \(p_h \), 57
\(p_n \) restriction of \(p \) to the set of graphs with \(n \) vertices, 43
\(p_{a,B} \) partition function of \((a, B) \), 18
\(Q_l(f) \) quotient algebra \(F G_l / I_l(f) \), 13
\(R(\mathbb{F}) \) polynomial ring \(\mathbb{F}[x_1, \ldots, x_k] \), 18
\(R \) polynomial ring \(\mathbb{F}[x_1, \ldots, x_k] \), 18
\(R_k \) \(\{ r_1 \otimes \ldots \otimes r_k \mid r_1, \ldots, r_k \in B(H_1) \} \), 89
\(\mathbb{R} \) field of real numbers, 7
\(\text{rk}(M) \) rank of the matrix \(M \), 8

\((C \circ D) \) Schur product of \(C \) and \(D \), 62
\(C \ast D \) operation on 2-tensors, 62
\(F_1 \ast F_2 \) gluing operation of \(F_1 \) and \(F_2 \), 10
\(S\mathbb{F}^{n \times n} \) space of symmetric \(n \times n \) matrices in \(\mathbb{F}^{n \times n} \), 28
\(S_n \) symmetric group, 30
\(\text{Stab}(A) \) pointwise stabilizer of \(A \), 57
\(\text{Stab}(h) \) stabilizer of the edge-coloring model \(h \), 52
\(\text{SFT} \) Second Fundamental Theorem, 27

\(F_1 \otimes F_2 \) tensor product of the fragments \(F_1 \) and \(F_2 \), 54
\(M^* \) conjugate transpose of the matrix \(M \), 8
\(M^T \) transpose of the matrix \(M \), 8
\(T(V)^{\text{Stab}(h)} \) algebra of tensors invariant under the stabilizer of \(h \), 58
\(T \) polynomial ring in the variables \(y_\alpha, \alpha \in \mathbb{N}_k \), 42
\(T_n \) homogeneous polynomials in \(T \) of degree \(n \), 43
\(\text{tr} \) trace, 77
\(t_M \) tensor associated to the perfect matching \(M \), 27

\(U_i \) unlabeling operator for tensors, 62
\([H] \) underlying graph of the labeled graph \(H \), 9
\(U_i^l \) unlabeling operator for labeled graphs, 62
LIST OF SYMBOLS

\((V \otimes 2^m)^O_k\) space of \(O_k\)-invariant \(2m\)-tensors, \(27\)

\(V(F)\) vertex set of the fragment \(F\), \(55\)

\(V(H)\) vertex set of the graph \(H\), \(8\)

\(V^*\) dual vectorspace of the vectorspace \(V\), \(8\)

\(W^G\) subspace of \(G\)-invariants in \(W\), \(26\)

\(X/G\) orbit space of \(G\) acting on \(X\), \(86\)

\(Y_d\) the common zeros of the polynomials \(p(H) - f(H)\), with \(H \in \mathcal{G}\) of max. degree \(d\), \(47\)