Graph parameters and invariants of the orthogonal group
Regts, G.

Citation for published version (APA):
Regts, G. (2013). Graph parameters and invariants of the orthogonal group

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Graph Parameters and Invariants of the Orthogonal Group–Errata

Guus Regts
Errata published on 10 December 2013

All references in this text are to the document ‘Graph Parameters and Invariants of the Orthogonal Group’.

p.17, l.4: $\sigma(u)$ should be $\sigma(v)$.
p.17, l.7: ‘term’ should be ‘factor’.
p.19, above and below (3.7): G should be G'.
p.21, (3.13): $\phi(i)$ should be $\phi(e)$.
p.22, l.6: ‘maps’ should be ‘functionals’.
p.26, l.5: No comma before ‘denote’.
p.27, l.1 from Section 4.2: Add ‘group’ after ‘orthogonal’.
p.27, line above (4.4): $2m$ should be m.
p.28 l.6: ‘maps’ should be ‘functionals’.
p.29, l.10: There is a superfluous ‘(‘ after ‘:=’.
p.31, l.3,5,6: F should be H_1 and H should be H_1.
p.32, l.6: $[2I]$ should be $[I]$.
p.38, l.8: Remove ‘it’ after f_{-2}.
p.40, l.5: Add ‘not’ before crossing.
p.41, l.-4: Schur’s Lemma actually only implies that $S^\lambda \subseteq \text{Im } A_n$.
p.42, l.6: $[2l]$ should be $[l]$.
p.48, in line 3 of (5.42): $y_{\phi(\delta(u) \sqcup \delta(s(\pi(v))))}$ should be $y_{\phi(\delta(u) \sqcup \delta(s(v)))}$.
p.61, l.3,5,6: F should be H_1 and H should be H_1.
p.62 in (6.38): Replace F by H (two times).
p.63, l.4: Replace A^{-1} by A^{-2} (also on p.64, l.2,3).
p.64, l.1: $K_1^* \cdot K_1^*$ should be $K_1^* \otimes K_1^*$.
p.65, 5th line in the proof of Theorem 6.15: Replace \subseteq by \supseteq.
p.70, second and third line below the proof of Lemma 7.1: C^k should be C and C should be C^k.
p.70, l.10: $p_{a,b}$ should be $p_{1,b}$.
p.75: add $\dim(\text{span}(\{u_1,\ldots,u_n\})) = \dim(\text{span}(\{w_1,\ldots,w_n\}))$ in the statement of Proposition 7.6.
p.75: In the proof of Theorem 7.7 we assume that u_1 is orthogonal to all u_i, but this not completely correct. Here is fix: In case none of the u_i is orthogonal to all of the u_i, we can find, by degeneracy, a nonzero linear combination of the u_i, which is orthogonal to all of the u_i, and call this u_{n+1}. Let $U = \text{span}\{u_1,\ldots,u_n\}$ and write $U = U_1 \oplus U'$ for some algebraic complement U' of u_{n+1}. Next we find for each $\varepsilon > 0$, $g(\varepsilon) \in O_k$ such that $gu_{n+1} = \varepsilon u_{n+1}$ by letting $g(\varepsilon)$ map U' identically onto U'. Then $\lim_{\varepsilon \to 0} g(\varepsilon)(u_1,\ldots,u_n) = (u'_1,\ldots,u'_n)$ for certain $u'_i \in U$. Let $h' = \sum_{i=1}^n a_i ev_{u'_i}$.

2
Then $\lim_{\varepsilon \to 0} g(\varepsilon)h_{\leq \varepsilon} = h^\prime_{\leq \varepsilon}$. Hence by (7.6) $h^\prime_{\leq \varepsilon}$ is not contained in the orbit of $h_{\leq \varepsilon}$ (as $\dim(U') < \dim(U)$). This implies that the orbit of $h_{\leq \varepsilon}$ is not closed.

p.84, l.7: The term ‘graphon’ is first used in [7].

p.84, l.8: In fact an equivalence class of almost everywhere equal functions W.

p.84, (8.3): W_H should be W_G.

p.88/p.95: In Examples 8.2, 8.3 and 8.4 we implicitly use $C = \mathbb{N}$.

p.90, l.4: There is a superfluous ‘a’ before ‘any’.

p.94: in (8.27) π_F should be π_H and in line 2 of (8.29) the sum is over $\phi: E(H') \to C$.

Acknowledgements

I thank Tom Koornwinder for pointing out some of the errata.