Graph parameters and invariants of the orthogonal group
Regts, G.

Citation for published version (APA):
Regts, G. (2013). Graph parameters and invariants of the orthogonal group
Graph Parameters and Invariants of the Orthogonal Group–Errata

Guus Regts
Errata published on 10 December 2013

All references in this text are to the document ‘Graph Parameters and Invariants of the Orthogonal Group’.

p.17, l.4: $\sigma(u)$ should be $\sigma(v)$.
p.17, l.7: ‘term’ should be ‘factor’.
p.19, above and below (3.7): G should be G'.
p.21, (3.13): $\phi(i)$ should be $\phi(e)$.
p.22, l.6: ‘maps’ should be ‘functionals’.
p.26, l.5: No comma before ‘denote’.
p.27, l.1 from Section 4.2: Add ‘group’ after ‘orthogonal’.
p.27, line above (4.4): $2m$ should be m.
p.29, l.10: There is a superfluous ‘(′ after ‘:′.
p.31, l.4: S_n should be S_m.
p.31, l.6 below Theorem 4.3: End(V) should be End(W).
p.32, l.1: Replace ‘is’ by ‘induces’.
p.37, third line below (5.5): $\phi \circ \rho$ should be $\rho \circ \pi$.
p.38, l.-8: Remove ‘it’ after f_{-2}.
p.39, l.-4: Schur’s Lemma actually only implies that $S^\lambda \subseteq \text{Im} A_n$.
p.39, first line below (5.42): $y_{\phi(\delta(u) \cup \delta(s(v)))}$ should be $y_{\phi(\delta(u) \cup \delta(s(v)))}$.
p.40, in line 3 of (5.42): $[2l] \should be $[l]$.np.41, l.4: $\text{dim} \left(\text{span} \{ u_1, \ldots, u_n \} \right) = \text{dim} \left(\text{span} \{ w_1, \ldots, w_n \} \right)$ in the statement of Proposition 7.6.
p.42, in the proof of Theorem 6.15: Replace \subseteq by \supseteq.
p.43, second and third line below the proof of Lemma 7.1: C^k should be C and C should be C^k.
p.49, p.38: $p_{a,b}$ should be $p_{a,b}$.
p.50, add dim(span(\{u_1, \ldots, u_n\})) = dim(span(\{w_1, \ldots, w_n\})) in the statement of Proposition 7.6.
p.51: In the proof of Theorem 7.7 we assume that u_1 is orthogonal to all u_i, but this not completely correct. Here is fix: In case none of the u_i is orthogonal to all of the u_i, we can find, by degeneracy, a nonzero linear combination of the u_i, which is orthogonal to all of the u_i, and call this u_{n+1}. Let $U = \text{span} \{ u_1, \ldots, u_n \}$ and write $U = U_{n+1} \oplus U'$ (for some algebraic complement U' of u_{n+1}). Next we find for each $\varepsilon > 0$, $g(\varepsilon) \in O_k$ such that $g u_{n+1} = \varepsilon u_{n+1}$ by letting $g(\varepsilon)$ map U' identically onto U'. Then $\lim_{\varepsilon \to 0} g(\varepsilon)(u_1, \ldots, u_n) = (u'_1, \ldots, u'_n)$ for certain $u'_i \in U$. Let $h' = \sum_{i=1}^n a_i ev_{u'_i}$.
Then \(\lim_{\varepsilon \to 0} g(\varepsilon) h_{\leq \varepsilon} = h'_{\leq \varepsilon} \). Hence by (7.6) \(h'_{\leq \varepsilon} \) is not contained in the orbit of \(h_{\leq \varepsilon} \) (as \(\dim(U') < \dim(U) \)). This implies that the orbit of \(h_{\leq \varepsilon} \) is not closed.

p.84, l.7: The term ‘graphon’ is first used in [7].

p.84, l.8: In fact an equivalence class of almost everywhere equal functions \(W \).

p.84, (8.3): \(W_H \) should be \(W_G \).

p.88/p.95: In Examples 8.2, 8.3 and 8.4 we implicitly use \(C = \mathbb{N} \).

p.90, l.4: There is a superfluous ‘a’ before ‘any’.

p.94: In (8.27) \(\pi_F \) should be \(\pi_H \) and in line 2 of (8.29) the sum is over \(\phi : E(H') \to C \).

Acknowledgements

I thank Tom Koornwinder for pointing out some of the errata.