Sliding friction
From microscopic contacts to Amontons’ law
Weber, B.A.

Citation for published version (APA):
Fluorescence Microscopy Visualization of Contacts Between Objects

Figure A.1: Representative absorption and emission steady state spectra of 1 (a) and 2 (b) in selected solvents.
Table A.1: Measured photophysical properties of 1 and 2 in various solvents. Last digit in a given number represents the estimated uncertainty of the measurement.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Compound 1</th>
<th>Compound 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>η^a</td>
<td>λ_{abs}^b</td>
</tr>
<tr>
<td>1,4-dioxane</td>
<td>1.37</td>
<td>476</td>
</tr>
<tr>
<td>toluene</td>
<td>0.59</td>
<td>283</td>
</tr>
<tr>
<td>ethyl acetate</td>
<td>0.45</td>
<td>483</td>
</tr>
<tr>
<td>cyclohexanol</td>
<td>41.1</td>
<td>497</td>
</tr>
<tr>
<td>DMSO</td>
<td>2.24</td>
<td>505</td>
</tr>
<tr>
<td>1-butanol</td>
<td>2.95</td>
<td>501</td>
</tr>
<tr>
<td>DMF</td>
<td>0.92</td>
<td>501</td>
</tr>
<tr>
<td>2-propanol</td>
<td>2.40</td>
<td>501</td>
</tr>
<tr>
<td>acetonitrile</td>
<td>0.35</td>
<td>539</td>
</tr>
<tr>
<td>methanol</td>
<td>0.60</td>
<td>531</td>
</tr>
</tbody>
</table>

a Viscosity in mPa s.; *b* UV/VIS absorption maximum in nm.; *c* Emission maximum in nm.; *d* Fluorescence quantum yield (%) measured relative to C153.[1] Literature values are given in parentheses. For toluene, the initially published value from ref. [2] was corrected in ref. [3]. Since the values in the other solvents published in ref. [4] were measured relative to the incorrect value of 0.10 in toluene we multiplied the published value by 0.44.; *e* Fluorescence decay times in ns and amplitudes in % (parentheses); *f* Average fluorescence decay times in ns.; *g* From ref. [4].
Bibliography

