Gathering evidence: Model-driven software engineering in automated digital forensics
van den Bos, J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

Preface ix

I Overview and Analysis 1

1 Introduction 3

1.1 Automated Digital Forensics 5
1.2 Model-Driven Software Engineering 10
1.3 Towards Model-Driven Digital Forensics 12
1.4 Research Questions and Perspectives 15
1.5 Software and Technology 17
1.6 Origin of Chapters 18

2 Towards an Engineering Approach to File Carver Construction 19

2.1 Introduction 20
2.2 File Carving Techniques 20
2.3 File Carving Performance 24
2.4 Recoverability Example: GIF 25
2.5 Discussion 28
2.6 Conclusion 30

II Modularity and Efficiency 33

3 Bringing Domain-Specific Languages to Digital Forensics 35

3.1 Introduction 36
3.2 Digital Forensics Challenges 37
3.3 A DSL for Digital Forensics 41
Contents

3.4 Application: Carving .. 44
3.5 Discussion ... 52
3.6 Related Work .. 54
3.7 Conclusion .. 55

4 Domain-Specific Optimization in Digital Forensics 57
 4.1 Introduction .. 58
 4.2 Background ... 59
 4.3 Transforming Derric Models ... 65
 4.4 Evaluation ... 68
 4.5 Discussion .. 71
 4.6 Related Work .. 72
 4.7 Conclusion .. 73

III Maintainability .. 75

5 A Case Study in Evidence-Based DSL Evolution 77
 5.1 Introduction .. 78
 5.2 Background ... 79
 5.3 Observing Corrective Maintenance 80
 5.4 Experiment ... 81
 5.5 Results ... 84
 5.6 Analysis ... 85
 5.7 Discussion .. 88
 5.8 Conclusion .. 91

6 Trinity: An IDE for The Matrix ... 93
 6.1 Background ... 94
 6.2 Trinity ... 96
 6.3 Implementation ... 99
 6.4 Related work .. 100
 6.5 Conclusion and Future Work 101

IV Retrospective .. 103

7 Contributions .. 105
 7.1 Achieving Separation of Concerns 105
 7.2 Measuring Runtime Performance Costs 107
 7.3 Leveraging Model Transformation 108
 7.4 Evaluating Maintainability .. 109
Contents

8 **Conclusions**
8.1 Model-Driven Software Engineering in Practice 113
8.2 DERRIC: Applying MDSE in Automated Digital Forensics 114
8.3 RASCAL: DSL Engineering in Practice 114
8.4 Future Directions ... 115

Bibliography

Summary

Samenvatting