Exclusive dielectron production in ultraperipheral Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ATLAS

The ATLAS Collaboration

DOI
10.1007/JHEP06(2023)182

Publication date
2023

Document Version
Final published version

Published in
Journal of High Energy Physics

License
CC BY

Citation for published version (APA):
Exclusive dielectron production in ultraperipheral Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ATLAS

The ATLAS collaboration

E-mail: atlas.publications@cern.ch

ABSTRACT: Exclusive production of dielectron pairs, $\gamma\gamma \rightarrow e^+e^-$, is studied using $L_{\text{int}} = 1.72 \text{ nb}^{-1}$ of data from ultraperipheral collisions of lead nuclei at $\sqrt{s_{NN}} = 5.02$ TeV recorded by the ATLAS detector at the LHC. The process of interest proceeds via photon–photon interactions in the strong electromagnetic fields of relativistic lead nuclei. Dielectron production is measured in the fiducial region defined by following requirements: electron transverse momentum $p_{T} > 2.5$ GeV, absolute electron pseudorapidity $|\eta| < 2.5$, dielectron invariant mass $m_{ee} > 5$ GeV, and dielectron transverse momentum $p_{T}^{ee} < 2$ GeV. Differential cross-sections are measured as a function of m_{ee}, average p_{T}^{e}, absolute dielectron rapidity $|y_{ee}|$, and scattering angle in the dielectron rest frame, $|\cos \theta^*|$, in the inclusive sample, and also with a requirement of no activity in the forward direction. The total integrated fiducial cross-section is measured to be $215 \pm 1(\text{stat.})^{+23}_{-20}(\text{syst.}) \pm 4(\text{lumi.}) \mu\text{b}$. Within experimental uncertainties the measured integrated cross-section is in good agreement with the QED predictions from the Monte Carlo programs STARLIGHT and SUPERCHIC, confirming the broad features of the initial photon fluxes. The differential cross-sections show systematic differences from these predictions which are more pronounced at high $|y_{ee}|$ and $|\cos \theta^*|$ values.

KEYWORDS: Heavy Ion Experiments, Heavy-Ion Collision

ArXiv ePrint: 2207.12781
1 Introduction

Collisions of ultrarelativistic heavy ions provide an opportunity to study not only the strong interactions between nucleons but also processes involving electromagnetic (EM) interactions. This is due to the presence of intense EM fields associated with the ultrarelativistic ions. The EM interactions become dominant at large impact parameters, \(b > 2R_A \), where \(R_A \) is the ion radius. Such collisions are usually referred to as ultraperipheral collisions (UPC). Comprehensive reviews of UPC physics can be found in refs. [1, 2].

The EM fields associated with the ultrarelativistic nuclei can be treated as fluxes of quasi-real photons according to the equivalent photon approximation (EPA) formalism [3, 4]. In this approach, the total cross-section for a given process is calculated as a convolution of the photon flux with the elementary production cross-section. Although the same approach is also valid for proton–proton (\(pp \)) collisions, the expected cross-sections are strongly enhanced in the heavy-ion (HI) collisions. The photon flux from each nucleus is enhanced by a factor of \(Z^2 \), where \(Z \) is the atomic number. That results in a \(Z^4 \) enhancement of the cross-sections. For lead (\(\text{Pb}, Z = 82 \)), this \(Z^4 \) enhancement is \(4.5 \times 10^7 \).

Another advantage of studying photon-induced interactions in UPC HI collisions is the relatively low number of interactions per LHC bunch crossing. The mean number of simultaneous hadronic interactions, \(\mu \), is typically at the subpercent level. This provides a clean
environment, facilitating the detection of the interaction products, and little contamination from unrelated interactions in the same crossing. With the centre-of-mass energy per nucleon pair available at the Large Hadron Collider (LHC), $\sqrt{s_{NN}} = 5.02$ TeV, the initial photons can reach energies up to 75–100 GeV in the Pb+Pb centre-of-mass system.

Among the possible set of photon-induced reactions, the exclusive production of dielectron pairs from photon–photon collisions, i.e. $\gamma\gamma \rightarrow e^+e^-$, is one of the cleanest elementary processes. This process, also referred to as the Breit–Wheeler process [5], is a non-resonant two-photon scattering to opposite-charge electron pairs. The outgoing nuclei may be excited, due to incoherent emission of photons participating in $\gamma\gamma \rightarrow e^+e^-$ process or via photonuclear reactions, occurring when an additional photon is exchanged. [6, 7]. A Feynman diagram of the leading-order $\gamma\gamma \rightarrow e^+e^-$ reaction is shown in figure 1. Even for large $\gamma\gamma$ invariant masses, the relatively large cross-section associated with this process allows precise differential measurements to be made. Thus, this process is a particularly effective tool for studying the modelling of photon fluxes and elementary production cross-sections, as well as for studying the effects of nuclear break-up induced by additional photon exchanges, whose probability is strongly correlated with the internuclear impact parameter [2]. Nuclear break-up gives rise to forward neutron production, and the fraction of events with such activity is larger at smaller impact parameters.

Exclusive dilepton production, via both electron-pair and muon-pair final states, has been measured by ATLAS and CMS in pp collisions at $\sqrt{s} = 7$ TeV [8–10] and $\sqrt{s} = 13$ TeV [11–13]. The ALICE Collaboration has measured exclusive production of electron pairs in Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV [14] over a limited kinematic range. The STAR and PHENIX experiments at RHIC have measured exclusive dileptons at lower invariant masses at $\sqrt{s_{NN}} = 200$ GeV for both Au+Au and U+U collisions [15–17]. With the higher centre-of-mass energy of $\sqrt{s_{NN}} = 5.02$ TeV, ATLAS has performed differential measurements of $\gamma\gamma \rightarrow \mu^+\mu^-$ production in UPC Pb+Pb collisions [18]. Both STAR and ATLAS have observed substantial broadening of angular distributions for exclusive dileptons from $\gamma\gamma$ interactions in events where the nuclei overlapped and interacted hadronically [15, 19]. Finally, CMS has observed that angular correlations in exclusive dimuon
events are broadened significantly as a function of the impact parameter [20], as inferred by the amount of forward neutron production.

Exclusive dielectron production is an important reference process for other measurements. References [21] and [22] propose using it in the context of $\gamma\gamma \rightarrow \tau^+\tau^-$ production, in order to reduce the impact of correlated systematic uncertainties for the measurement of the τ-lepton anomalous magnetic moment. It is also an important background for light-by-light scattering, which proceeds via loop diagrams and thus has a much lower cross-section. This has been assessed in several publications on light-by-light scattering by ATLAS [23–25] and CMS [26].

This paper presents a measurement of the exclusive production of dielectrons with the ATLAS detector at the LHC. It uses Pb+Pb data collected in 2018, which have an integrated luminosity three times larger than the sample used in the ATLAS dimuon measurement [18]. Dielectron production is measured in the fiducial region defined by the following requirements: electron transverse momentum $p_T^{e} > 2.5$ GeV, electron pseudo-rapidity $|\eta| < 2.5$, dielectron invariant mass $m_{ee} > 5$ GeV, and dielectron transverse momentum $p_T^{ee} < 2$ GeV. Compared to the dimuon measurement discussed in ref. [18], this fiducial region has wider coverage in lepton p_T and dilepton invariant mass, with the minimum values lowered by 1.5 GeV and 5 GeV, respectively. The backgrounds originating from single-dissociative processes, $T(nS)$ production, and exclusive τ-lepton pair production, $\gamma\gamma \rightarrow \tau^+\tau^-$, are estimated and subtracted. Differential cross-sections are measured as a function of m_{ee}, average electron transverse momentum $\langle p_T^{e} \rangle$, absolute dielectron rapidity $|y_{ee}|$, and scattering angle in the dielectron rest frame, $|\cos \theta^*|$. The cross-sections are extracted both inclusively in forward neutron activity and exclusively in $\gamma\gamma \rightarrow e^+e^-$ events without activity in the forward direction. The latter is a unique feature of this paper.

2 ATLAS detector

The ATLAS detector [27] at the LHC covers nearly the entire solid angle around the collision point. It consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting toroidal magnets with eight coils each.

The inner detector (ID) is immersed in a 2 T axial magnetic field and provides charged-particle tracking in the pseudorapidity range $|\eta| < 2.5$.\footnote{ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. Angular distance is measured in units of $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$. The photon (electron) transverse energy is $E_T = E/cosh(\eta)$, where E is its energy.} The high-granularity silicon pixel (Pixel) detector covers the vertex region and typically provides four measurements per track, with the first hit normally being in the insertable B-layer (IBL) [28], which was installed at the mean distance of 3.3 cm from the beam axis before the start of Run 2. It is followed by the silicon microstrip tracker (SCT), which usually provides four two-dimensional measurement points per track. These silicon detectors are complemented by
the transition radiation tracker, which enables radially extended track reconstruction up to $|\eta| = 2.0$.

The calorimeter system covers the pseudorapidity range $|\eta| < 4.9$. Within the region $|\eta| < 3.2$, electromagnetic calorimetry is provided by barrel and endcap lead/liquid-argon (LAr) calorimeters (high granularity for $|\eta| < 2.5$), with an additional thin LAr presampler covering $|\eta| < 1.8$ to correct for energy loss in material upstream of the calorimeters. Hadronic calorimetry is provided by the steel/scintillator-tile calorimeter, which is segmented into three barrel structures within $|\eta| < 1.7$, and two copper/LAr hadronic endcap calorimeters. The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules (FCal) optimised for electromagnetic and hadronic measurements respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring the deflection of muons in a magnetic field generated by the superconducting air-core toroids. The precision chamber system covers the region $|\eta| < 2.7$ with three layers of monitored drift tubes, complemented by cathode strip chambers in the forward region, where the background is highest. The muon trigger system covers the range $|\eta| < 2.4$ with resistive plate chambers in the barrel, and thin gap chambers in the endcap regions.

The zero-degree calorimeters (ZDC) consist of four longitudinal compartments on each side of the IP, each with one nuclear interaction length of tungsten absorber, with Cherenkov light read out by 1.5-mm-diameter quartz rods. The detectors are located 140 m from the nominal IP in both directions, covering $|\eta| > 8.3$, and are well suited to measuring neutral particles originating from the collision. In Pb+Pb collisions the ZDC detects individual neutrons originating from the incoming nuclei. The ZDC calibration is performed in each set of four modules using photonuclear processes that deposit one or more neutrons on one side, and a single neutron, carrying the full per-nucleon beam energy, on the other. Time-dependent weights are determined for each module in short time intervals to minimise the variance around the nominal per-nucleon beam energy. Energy resolutions achieved are typically around $\Delta E/E \approx 16\%$.

The ATLAS trigger system [29, 30] consists of a first-level (L1) trigger implemented using a combination of dedicated electronics and programmable logic, and a software-based high-level trigger (HLT). An extensive software suite [31] is used in the reconstruction and analysis of real and simulated data, in detector operations, and in the trigger and data acquisition systems of the experiment.

3 Data and Monte Carlo simulation samples

The data used in this measurement are from Pb+Pb collisions with a centre-of-mass energy of $\sqrt{s_{NN}} = 5.02$ TeV, recorded in 2018 with the ATLAS detector at the LHC. The full data set corresponds to an integrated luminosity of 1.72 nb$^{-1}$. Only high-quality data [32] with all detectors operating normally are analysed.

Monte Carlo (MC) simulated events for the $\gamma\gamma \to e^+e^-$ signal process were generated at leading order (LO) using STARLIGHT v3.13 [33]. In this approach, the cross-section
is computed by convolving the Pb+Pb photon flux with the LO calculation of the elementary $\gamma\gamma \rightarrow e^+e^-$ process. The photon spectrum is calculated in impact parameter space by integrating the photon number density over all impact parameters while assuming that the beam projectiles do not interact hadronically. This is done by utilising a simple Glauber model [34] which provides an impact-parameter-dependent probability of inelastic processes. STARLIGHT also requires that the dilepton pairs are not formed within either nucleus. Several signal samples were produced for exclusive m_{ee} intervals within the range $4.5 < m_{ee} < 200$ GeV. An alternative sample for the signal $\gamma\gamma \rightarrow e^+e^-$ process uses the SUPERCHIC v3.05 [35] program. The difference between the nominal and alternative signal prediction is mainly in the implementation of the initial photon flux. The STARLIGHT generator relies on flux from point-like sources restricted to impact parameters larger than nuclear radius ($b > R_A$), while SUPERCHIC generator implements flux calculations down to $b = 0$ and takes the nuclear form factor into account.

Backgrounds from $\gamma\gamma \rightarrow \tau^+\tau^-$ and $\Upsilon(nS) \rightarrow e^+e^-$ were simulated using STARLIGHT v3.13. All generated events utilised PYTHIA 8 (Py8) [36] to model QED final-state radiation (FSR) from the outgoing leptons.

Incoherent emission of photons participating in $\gamma\gamma \rightarrow e^+e^-$ process contribute to background in the dielectron production sample. In such a process either one (single dissociation) or both (double dissociation) nuclei interact inelastically and dissociate. Simulation of this process is not available in any MC generator, however a similar process in pp collisions is modelled using SUPERCHIC v4.0 (SC4) [37]. The sample generated with SC4 was interfaced to PYTHIA 8 for showering and hadronisation. A data-driven approach, discussed in detail in section 5, is used in the analysis to utilise this sample in Pb+Pb collisions.

Apart from the alternative signal sample, all generated events are processed with a detector simulation [38] based on GEANT4 [39] and are reconstructed with the standard ATLAS reconstruction software [31]. The alternative signal sample is used for comparisons with the measured differential cross-sections discussed in section 8.

4 Signal selection and detector corrections

Candidate dielectron events were recorded using a dedicated trigger for events with moderate activity in the calorimeter but little additional activity in the entire detector. A logical OR of two L1 trigger conditions was required: (1) at least one EM cluster with $E_T > 1$ GeV in coincidence with a total E_T of 4–200 GeV registered in the calorimeter, or (2) at least two EM clusters with $E_T > 1$ GeV and a total E_T below 50 GeV registered in the calorimeter. At the HLT, the total E_T on each side of the FCal detector was required to be below 3 GeV. Additionally, a veto condition on the maximum activity in the Pixel detector, hereafter referred to as the Pixel-veto, had to be satisfied at the HLT. The number of hits was required to be at most 15 to be compatible with low-multiplicity UPC events.

Electrons are reconstructed from EM clusters in the calorimeter and tracking information provided by the ID [40]. Selection requirements are applied to remove EM clusters with a large amount of energy from poorly functioning calorimeter cells, and a timing requirement is made to reject out-of-time candidates. An energy calibration specifically
optimised for electrons and photons [40] is applied to the candidates to account for upstream energy loss and both lateral and longitudinal shower leakage. The calibration is derived for nominal pp collisions with dedicated factors applied to account for the much lower contribution from multiple Pb+Pb collisions in the same bunch crossing.

The electron identification in this analysis is based on a ‘loose’ cut-based working point [40] which is defined using selections on the shower-shape and tracking variables. Only electrons with $p_T > 2.5$ GeV and $|\eta| < 2.47$, excluding the calorimeter transition region $1.37 < |\eta| < 1.52$, are considered. The minimum p_T requirement is driven by the electron reconstruction efficiency, which drops below 20% for p_T values below this threshold.

Preselected events are required to have exactly two opposite-charge electrons satisfying the above selection criteria, with a dielectron invariant mass, m_{ee}, greater than 5 GeV. To suppress non-exclusive backgrounds, only two charged-particle tracks [41, 42] each with $p_T > 100$ MeV, $|\eta| < 2.5$, at least seven hits in the Pixel and SCT detectors in total and at most two silicon sensors without a hit, and associated with the dielectron are allowed. To reject non-collision backgrounds such as cosmic-ray muons, the event must not have a track in the MS. Finally, the total p_T of the dielectron, p_T^{ee}, is required to be less than 2 GeV. Low p_T^{ee} values are a key feature of the purely EM process, which involves initial-state photons with very low p_T.

Each of the events satisfying the $\gamma\gamma \rightarrow e^+e^-$ criteria can be further classified into one of three categories based on the observed activity in the ZDC detector: 1) no neutron is registered in either ZDC (‘0n0n’), 2) one or more forward neutrons registered in one ZDC and none in the other (‘Xn0n’), and 3) one or more forward neutrons detected in both ZDC arms (‘XnXn’). The observed fractions of events falling into these categories are: $f_{0n0n} = (62.9 \pm 0.3)\%$, $f_{Xn0n} = (29.7 \pm 0.3)\%$, and $f_{XnXn} = (7.4 \pm 0.2)\%$. Due to the relatively large instantaneous luminosity of Pb+Pb collisions, which peaked around 7×10^{27} cm$^{-2}$s$^{-1}$, additional neutrons might be generated per bunch crossing by single and mutual dissociation processes and detected in one or both arms of the ZDC, but they are not associated with the exclusive dielectron process. This leads to an outflow of events from the 0n0n and Xn0n categories to both the Xn0n and XnXn categories. This effect is accounted for using the method established in ref. [18]. A matrix equation with two fundamental parameters representing probabilities for single and mutual dissociation is built. The corrected fractions are measured in four bins of m_{ee}, with boundaries at 5, 10, 20, and 40 GeV, and three bins of $|y_{ee}|$, with boundaries at 0, 0.8, 1.6, and 2.4, and also in the sample integrated over m_{ee} and $|y_{ee}|$. On average, in the 0n0n category, they are about 13% larger than the observed fractions. Figure 2 shows the fractions of events in the 0n0n category as a function of m_{ee} in three bins of $|y_{ee}|$, corrected for the presence of additional neutrons. These fractions tend to drop with increasing mass, and are in general larger for higher $|y_{ee}|$ values. For the rapidity range of $|y_{ee}| < 0.8$, which has the largest number of events, the f_{0n0n} values drop from about 78% in the lowest mass bin to about 57% in the highest mass bin. The systematic uncertainties in the fractions of events in the 0n0n category originate from several sources: uncertainties in the exclusive single and double EM dissociation cross-sections measured by the ALICE Collaboration [43], and their
Figure 2. Fractions of events in the 0n0n category evaluated from data in three bins of \(|y_{ee}|\), corrected for the presence of additional neutrons. Error bars represent statistical uncertainties, while shaded boxes represent systematic uncertainties. Points for \(|y_{ee}| < 0.8\) and \(1.6 < |y_{ee}| < 2.4\) are displaced horizontally for better visibility.

The efficiency of the primary physics trigger (\(\epsilon_T\)) is determined as \(\epsilon_T = \epsilon_{L1} \cdot \epsilon_{PixVeto} \cdot \epsilon_{FCal}\), where \(\epsilon_{L1}\) is the efficiency of the L1 EM trigger to register the moderate calorimeter activity characteristic of the signal process, \(\epsilon_{PixVeto}\) is the efficiency of the trigger to reject events with large numbers of Pixel detector hits, and \(\epsilon_{FCal}\) is the efficiency of the FCal selection to reject events with large energy depositions on either side. Individual efficiencies are evaluated in a sample of \(\gamma\gamma \rightarrow e^+e^-\) events collected with a set of dedicated supporting triggers that do not use the condition under study in the primary physics trigger to reject any events. The \(\epsilon_{L1}\) value rises with the sum of the transverse energies of the two electron clusters and reaches 100% for \(\Sigma E_T > 8\) GeV. The Pixel-veto efficiency and its uncertainties are measured as a function of the dielectron rapidity in the dedicated dielectron sample collected by the supporting trigger requiring at least two tracks with \(p_T\) above 1 GeV and without veto requirement on the number of Pixel hits. The efficiency is evaluated as a ratio of events passing the Pixel-veto requirement to all selected events. It is just over 80% for \(|y_{ee}| \sim 0\) and falls to about 50% for \(|y_{ee}| > 2\). The dependence on \(|y_{ee}|\) originates from the growing number of Pixel-detector layers in the forward direction that a dielectron pair has to pass through. The average number of Pixel hits for the signal process is 10 in the central region, and it increases to 14 in the forward direction. The systematic uncertainties
are evaluated by repeating the efficiency measurement on the dielectron sample selected by varying requirements on p_T and m_{ee}, and acoplanarity ($\alpha = 1 - |\Delta\phi|/\pi$, where $\Delta\phi$ is the azimuthal angle between the two electrons). They are at the level of 0.5%, while the statistical uncertainty ranges between 1 and 2%. Finally, the FCal veto efficiency is measured to be $(99.1 \pm 0.6)\%$, and it is constant for the entire range in ΣE_T. The total uncertainty in the trigger efficiency is determined by increasing and decreasing all of the individual components by their respective total uncertainties. They amount to about 3%–4% for the primary calorimeter pair trigger, driven mainly by the limited number of dielectron events collected by an independent ZDC-based trigger used to measure ε_{L1}, and less than a percent for the other contributions.

The total electron efficiency is the product of the electron reconstruction efficiency and the 'loose' electron identification efficiency [40]. This is determined in data using a sample of events triggered by the presence of EM clusters, limited total E_T, and a maximal number of Pixel hits, on which a tag-and-probe procedure is performed. The tag is a well-reconstructed, high-purity electron candidate with $E_T > 2.5 \text{ GeV}$, and the probe is an opposite-charge track built from at least three hits in the Pixel detector (referred to as a 'Pixel-track'). Pixel tracks are required to have $p_T > 50 \text{ MeV}$. The invariant mass of the tag-and-probe system must exceed 5 GeV and the acoplanarity has to be less than 0.1. The extracted mass distribution is found to agree well with a reconstructed sample of STARLIGHT events. The reconstruction efficiency is defined as the fraction of probes which are reconstructed electrons, while the identification efficiency is the fraction of reconstructed electrons which are identified as 'loose' electrons. The reconstruction efficiency has large variations with both p_T and Pixel-track η, and ranges from about 30% at $p_T = 2.5 \text{ GeV}$ to 95% above 15 GeV. The identification efficiency is found to vary more weakly with Pixel-track η, ranging between 80% and 90%. Then, the overall reconstruction scale factors are extracted as the ratio of efficiencies measured in data and MC simulation. They vary between 0.9 and 1.2, with the largest deviations from unity being in the forward direction for Pixel-track $|\eta| > 1.1$. Systematic uncertainties in the scale factors are evaluated using tighter selection criteria for the tag and probe candidates, as well as reducing a potential contribution from background processes by limiting the measurement to the $0n0n$ category or to a narrow acoplanarity region, $\alpha < 0.01$. In particular the requirement on maximum α reduces the contribution from the exclusive $\tau^+\tau^-$ production to 0.25% level. The total systematic uncertainty is at the level of 5% for central Pixel-tracks with $|\eta| < 1$, and grows to 10% in the forward direction. In the forward region, the statistical and systematic uncertainties are of similar size.

5 Background contributions

There are three primary sources of background considered in this analysis, presented in order of decreasing contributions: dissociative $\gamma\gamma \rightarrow e^+e^-$ production; Υ-meson production; and exclusive τ-lepton pair ($\tau^+\tau^-$) production.

The largest background originates from $\gamma\gamma \rightarrow e^+e^-$ production with nuclear dissociation. In this process one (or both) of the initial photons originates from the substructure
of the nucleon, rather than from the exterior EM field of the nuclei as a whole. The photon interaction that produces the e^+e^- pair is thus accompanied by the dissociation of the emitting nucleus, whose remnants are produced in the forward direction and are typically captured by the ZDC detector.

The contribution from dissociative events is estimated using a template-fitting approach applied to the acoplanarity distribution. The signal template is simulated with STARLIGHT + PYTHIA 8 and it is peaked at $\alpha \approx 0$, with some contribution in the tail originating from events with FSR. The background template shape is taken from the single-dissociative events simulated in pp collisions with SUPERCHIC v4.0 interfaced with PYTHIA 8. These events have a much wider α distribution than the signal. The acoplanarity shape is strongly correlated with the transverse momentum of the $\gamma\gamma$ system, which is driven by the transverse momenta of the initial photons. For the photons emitted coherently from the nucleus, the transverse momentum is of order $\hbar c/R_A \approx 30$ MeV, while typical p_T scale for dissociative events is of order GeV. In the case of dilepton production in pp collisions, the typical initial p_T scale is about 200 MeV. The convolution of photon fluxes originating from either proton or ion with photons emitted from nucleon substructure is always dominated by the harder spectrum of the latter. Therefore, the shape of the acoplanarity distribution for dissociative dielectron production in Pb+Pb collisions can be described by the simulation of this process in pp collisions. The fit to the data is performed in the same intervals of m_{ee} and $|y_{ee}|$ as in the study of the fractions of events in the $0n0n$, $Xn0n$ and $XnXn$ categories. In each bin, a binned maximum-likelihood fitting procedure is performed separately in three ZDC categories. The normalisation of the relative background contribution, f_{bkg}, is taken to be a free parameter of the fit. The signal fraction is thus $(1 - f_{bkg})$. For the inclusive sample, f_{bkg} is a weighted sum of the results for the $0n0n$, $Xn0n$, and $XnXn$ categories. The f_{bkg} fraction accounts for contributions from dissociative production and exclusive $\tau^+\tau^-$ production, $\gamma\gamma \rightarrow \tau^+\tau^-$. The latter may contribute to the electron background, especially when both τ-leptons decay in the electron channel. The $\tau^+\tau^-$ contribution is estimated using a dedicated MC sample from STARLIGHT. The resulting background fraction of $\gamma\gamma \rightarrow \tau^+\tau^-$ events in the full data sample amounts to 0.1%. It is found that the shape of the α distribution for the exclusive $\tau^+\tau^-$ events is similar to the α distribution for the pure dissociative component. However, the origin of this shape in $\tau^+\tau^-$ events is due to the presence of the neutrino in τ-lepton decay. The dissociative contribution, f_{diss}, is therefore determined as the background fraction obtained from the fitting procedure, then reduced by the $\tau^+\tau^-$ background fraction.

The results of the fitting procedure for the data from the $10 < m_{ee} < 20$ GeV and $|y_{ee}| < 0.8$ interval are presented in figure 3 for three ZDC categories as well as for the inclusive sample. The f_{bkg} fraction amounts to $(0.3 \pm 0.2)\%$, $(9.9 \pm 0.6)\%$, $(13 \pm 1)\%$ and $(4.3 \pm 0.3)\%$ for the $0n0n$, $Xn0n$, $XnXn$ categories, and the inclusive sample, respectively and increases with m_{ee} and $|y_{ee}|$.

The contribution from Υ-meson production is estimated using the dedicated STARLIGHT + PYTHIA 8 samples. Three Υ states, $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ are considered. This background is significant only for m_{ee} below 14 GeV and amounts to 2.4% of events satisfying the selection criteria for the $\gamma\gamma \rightarrow e^+e^-$ process. The α distribution of
the dielectron candidates from Υ decays is peaked at zero, similarly to the signal shape. It does not contribute to f_{bkg} because the resulting fraction is not sensitive to a 2.4% change in the acoplanarity peak. Hence, the Υ contribution is subtracted separately from the data.

A background contribution originating from photonuclear processes occurring in ultra-peripheral heavy-ion collisions is largely suppressed by the trigger requirement limiting the maximum E_T deposited in the FCal to 3 GeV per side. The validity of this assumption was tested by examining the multiplicity distribution of Pixel-tracks. The fraction of events that have more than two Pixel-tracks is 1.3% and consistent with simulations of $\gamma\gamma \rightarrow e^+e^-$ events. This also confirms that the pileup contribution from additional low-p_T $\gamma\gamma \rightarrow e^+e^-$ interactions, which should be below 1%, can be neglected in the selected data sample.

Figure 4 shows control distributions for reconstructed and uncorrected values of m_{ee}, $\langle p_T^\gamma \rangle$, y_{ee}, $|\cos \theta^\ast| = |\text{tanh}(\Delta \eta_{ee}/2)|$, and α for the inclusive data sample compared with MC predictions including the signal and background processes. The trigger decision is not
simulated in the MC events. Instead, the distributions are weighted event-by-event by the parameterised trigger efficiency and by electron scale factors. The signal, \(\Upsilon \) decay and \(\tau^+\tau^- \) MC prediction is normalised to the integrated luminosity in data. The dissociative contribution is scaled to constitute the \(f_{\text{diss}} \) fraction (determined for the inclusive sample) of the data. In general, good agreement between data and the sum of the predictions for signal and background processes is found. On average, the observed discrepancies are at the level of 10\%–15\% with some exceptions which are discussed further. In the \(m_{ee} \) distribution the data excess is more strongly pronounced for \(m_{ee} \) between 10 and 20 GeV, where the difference between data and MC simulation is 10\%–20\%. The data-to-MC ratio drops below unity for masses above 40 GeV. The same features are observed in the \(\langle p_T \rangle \) distribution, with the largest deviations from unity in the range 5–10 GeV. In the \(y_{ee} \) distribution, the data excess is smaller, up to 10\%, in the range from \(-1.2\) to \(1.2\), with larger discrepancies for higher \(|y_{ee}|\) values. The data-to-MC ratio in the \(|\cos\theta^*|\) distribution drops slowly from 1.2 for \(|\cos\theta^*| = 0\) to unity at \(|\cos\theta^*| = 0.75\), and then falls more steeply, to 0.5 for the largest values of \(|\cos\theta^*|\). In the \(\alpha \) distribution, a difference in the overall shape is observed in the full range. This can be explained by a sensitivity of the results to the \(p_T \) spectrum assumed by STARLIGHT, since this spectrum determines the width of the \(\alpha \) distribution. In general, all these discrepancies tend to be consistent with the observations made in the ATLAS \(\gamma\gamma \rightarrow \mu^+\mu^- \) measurement \[18\], where the STARLIGHT predictions were found to underestimate the measured integrated fiducial cross-sections by about 10\%.

6 Analysis

The integrated fiducial cross-section for exclusive dielectron production is calculated using the following formula:

\[
\sigma_{\text{fid}} = \frac{N_{\text{data}} - N_{\text{bkg}}}{C \cdot A \cdot L},
\]

where:

- \(N_{\text{data}} \) and \(N_{\text{bkg}} \) refer to the number of events in data after event selection and the expected number of background events in this selected sample, respectively;

- \(C \) is a correction factor accounting for detector inefficiencies (including the trigger), calculated as \(\frac{N_{\text{fid,cut,MC,rec}}}{N_{\text{fid,cut,MC,gen}}} \), where \(N_{\text{fid,cut,MC,gen}} \) is the number of generated events passing fiducial requirements of the analysis, while \(N_{\text{fid,cut,MC,rec}} \) is the number of simulated signal events that also pass the reconstruction-level selection;

- \(A \) is the acceptance correction, used to correct the result for the exclusion of the calorimeter transition region and extrapolation from \(|\eta| < 2.47\) to \(|\eta| < 2.5\); and is calculated as \(\frac{N_{\text{fid,cut,MC,gen}}}{N_{\text{MC,gen}}} \), where \(N_{\text{MC,gen}} \) is the number of generated events passing all fiducial requirements of the analysis, except the requirement to exclude the calorimeter transition region;

- \(L \) is the total integrated luminosity.
Figure 4. Distributions of m_{ee} (top left), $\langle p_T^e \rangle$ (top right), y_{ee} (middle left), $|\cos \theta^\tau|$ (middle right), and α (bottom) for the inclusive sample in data and the MC predictions for signal and background processes. The lower panels show the ratio of data to MC simulation. Error bars represent statistical uncertainties. The shaded area represents the overall uncertainty of the total MC prediction. In the y_{ee}, $|\cos \theta^\tau|$, and α distributions, the Υ and $\tau^+\tau^-$ contributions are shown together. The dissociative contribution is scaled to constitute the f_{diss} fraction from the data fit.

Both $N_{\text{MC, gen}}^{\text{fid, cut}}$ and $N_{\text{MC, gen}}^{\text{fid}}$ are extracted with respect to the generator-level electrons before FSR. The fiducial region is defined by the following requirements: $p_T^e > 2.5$ GeV, $|\eta^e| < 2.5$, $m_{ee} > 5$ GeV, and $p_T^{ee} < 2$ GeV. The number of events passing the fiducial
selection is $N_{\text{data}} = 30456$. The dissociative and $\tau^+\tau^-$ background fraction obtained from the fit amounts to 4.5%. The Υ background amounts to 2.4% of all events satisfying the selection criteria.

The selected data sample is corrected in a few subsequent steps in order to compare it with the theoretical predictions. In the first step the backgrounds are subtracted. Distributions in the data are reweighted event-by-event by the factor $(1 - f_{\text{bkg}})$ where f_{bkg} is the fraction of background (inclusive in ZDC) from the fit in a given m_{ee} and $|y_{ee}|$ range. For masses above 40 GeV, the fraction obtained from the fit in the full $|y_{ee}| < 2.4$ range is taken. For events with m_{ee} below 40 GeV, the fraction as a function of $|y_{ee}|$ is used. If $|y_{ee}|$ exceeds 2.4, the fraction from the $1.6 < |y_{ee}| < 2.4$ bin is applied. In the next step, the background expected from $\Upsilon(nS)$ decays is subtracted.

For differential cross-section measurement, the data are corrected with fiducial correction factors defined as the fraction of events in each bin which fall into the fiducial region at generator level. These factors correct for the events that are reconstructed within the fiducial region, but fall outside it at the generator level. They are parameterised using the reconstructed kinematic variables. They deviate from unity at the subpercent level, so their impact is marginal. After this, the reconstructed data are unfolded using a Bayesian-inspired iterative procedure [44] with one iteration for all distributions implemented in the RooUnfold package [45], using response matrices derived from signal MC samples. The number of iterations is chosen to minimise the resulting statistical uncertainty and at the same time provide good closure. A closure test based on the signal MC samples is performed to validate the unfolding procedure. The signal sample is split into two parts. The first part is used to fill the response matrices, while the second one is unfolded. The ratio of the unfolded yields to the generated yields deviates from unity by 1% at most.

Finally, the distributions are divided by the luminosity as well as the product of correction factors, $C \times A$, which account for detector inefficiencies as well as acceptance losses. They are determined for each bin of the unfolded distribution as the fraction of events that pass the fiducial requirements at reconstruction level, in events that pass them at generator level. The $C \times A$ factors are parameterised using generator-level kinematics, but then weighted by trigger and reconstruction efficiency scale factors, evaluated at reconstruction level. The average C and A factors amount to 0.087 and 0.878, respectively.

7 Systematic uncertainties

The following systematic uncertainties are considered in the cross-section measurement. The total scale factors for the electron reconstruction and identification efficiency [40] are varied upwards and downwards coherently over the full kinematic range, as a conservative estimate. The data-driven trigger efficiency, which is the product of the L1 efficiency, the Pixel-veto efficiency, and the forward transverse energy requirement efficiency, is increased and decreased by its total uncertainty. To assess known uncertainties in the EM energy scale and energy resolution, the calibrations are varied by factors determined in 13 TeV pp collisions [40]. The background contributions are increased and decreased by their total uncertainties. The dissociative backgrounds are dominated by their statisti-
cal uncertainties from the fit. The systematic uncertainties are also evaluated, and the largest contribution is related to the shape of the signal template. This is estimated using data from the 0n0n category as a signal distribution for the Xn0n and XnXn categories. The background template shape uncertainty is estimated by adding the double dissociative component. The uncertainty in the expected Υ yields is dominated by both the efficiency scale factors and the EM energy scale. Given the small contribution from Υ production, the theoretical uncertainties of its cross-section are considered to have negligible impact on the final measurement.

For the differential cross-sections, additional systematic uncertainties are related to the unfolding procedures. The MC sample is split in two, with one subsample used to determine the response matrix and the other treated as a simulated data set. The differences between the generated and unfolded yields are treated as a systematic uncertainty. Similarly, the sensitivity to the Bayesian prior is tested by reweighting the simulated data set to agree with the reconstructed data. Again, the differences between simulated and reconstructed yields in this closure test are applied as an uncertainty. While the primary unfolding is evaluated in one dimension rather than two, a cross-check is performed using the response in two dimensions. For each of the unfolded variables, every other one is used in the second dimension, but with the number of bins reduced to four (three) for m_{ee} and $\langle p_T \rangle$ ($|y_{ee}|$ and $|\cos \theta^*|$) to compensate for the limited number of events in the MC sample. The three resulting two-dimensional cross-sections are projected to one dimension and compared with the nominal results for each unfolded variable. The largest variations in each bin are included as an uncertainty. Finally, the spectra are evaluated in the 0n0n category, using the fractions determined in section 4, but evaluated for generator-level m_{ee} and $|y_{ee}|$ (as opposed to the reconstructed values). The differences are found to be within 1%-2%.

The uncertainty in the integrated luminosity of the data sample is 2.0%. It is derived from the calibration of the luminosity scale using x–y beam-separation scans, following a methodology similar to that detailed in ref. [46], and using the LUCID-2 detector for the baseline luminosity measurements [47].

A summary of the systematic uncertainties as a function of m_{ee} and $|y_{ee}|$ is shown in figure 5. The dominant source of uncertainty arises from the uncertainties in the electron scale factors. They are at the level of 10%–11% in the whole range of m_{ee}, and rise from 9% at $|y_{ee}| \approx 0$ to about 15% for $|y_{ee}|$ close to 2. The systematic uncertainty from the trigger efficiency is approximately 2% for m_{ee} above 10 GeV and $|y_{ee}|$ below 1.6. It rises to 4% for smaller m_{ee}, and to 6% for the highest $|y_{ee}|$ values. The uncertainty related to the energy scale and resolution is below 1% in the whole range of $|y_{ee}|$, but exceeds this value in some m_{ee} bins, reaching approximately 5% for the lowest m_{ee} values. The background uncertainties are within 1%–3% and increase slightly with increasing m_{ee} and $|y_{ee}|$. Uncertainties related to unfolding procedures do not exhibit such clear dependencies in m_{ee} and $|y_{ee}|$. They are mostly within the 2%–3% range but exceed this value, up to 5%, at intermediate m_{ee} and $|y_{ee}|$.
8 Results

The total integrated fiducial cross-section is measured to be $215 \pm 1\text{(stat.)} +23^{-20}\text{(syst.)} \pm 4\text{(lumi.)} \mu b$. The STARLIGHT prediction for the total integrated fiducial cross-section is 196.9 μb, while the SUPERCHIC prediction is 235.1 μb. Both predictions are statistically compatible with the measurement.

The differential cross-sections for exclusive dielectron production are presented as a function of m_{ee}, $\langle p_T^e \rangle$, $|y_{ee}|$, and $|\cos\theta^*|$ in figure 6. The cross-sections are measured inclusively in the ZDC categories. The results are corrected for detector inefficiency and resolution effects, and are compared with STARLIGHT v3.13 and SUPERCHIC v3.05 predictions for the signal $\gamma\gamma \rightarrow e^+e^-$ process. The bottom panel in each plot shows the ratio of the unfolded data to MC predictions. On average the STARLIGHT predictions underestimate the data by about 10%–15%, while SUPERCHIC predictions are higher by about the same amount. The STARLIGHT and SUPERCHIC predictions tend to have very similar shapes. The difference in the absolute normalisation of the two predictions is due to different approaches in the calculation of the initial photon flux. The predictions describe the shape of the data well, except at high $|y_{ee}|$ and high $|\cos\theta^*|$. The differences are more pronounced for m_{ee} between 10 and 20 GeV, and for $\langle p_T^e \rangle$ between 5 and 10 GeV. The ratio of data to STARLIGHT rises from about 1.1 to 1.2 as $|y_{ee}|$ increases from 0 to 2.5. For $|\cos\theta^*|$ close to 0, the data-to-STARCIGHT ratio reaches its largest value, around 1.15, and then slowly decreases to about 1.05 for $|\cos\theta^*| = 0.8$. The ratio falls more steeply in the last two bins of $|\cos\theta^*|$ and drops below unity to 0.75 and 0.65 for STARLIGHT and SUPERCHIC respectively. The measured cross-section in the highest $|\cos\theta^*|$ bin is 1.8 (2.7) standard deviations below the theory prediction from STARLIGHT (SUPERCHIC). There is a plausible proposal that higher-order scattering processes (involving more than two photons in the initial state) are relevant and would tend to reduce the predicted cross-sections by the observed discrepancies [48].

The differential cross-sections as a function of m_{ee}, $\langle p_T^e \rangle$, $|y_{ee}|$ and $|\cos\theta^*|$ for the $0n0n$ category are presented in figure 7. They are compared with the MC predictions
Figure 6. Fully corrected differential cross-sections measured inclusively in ZDC categories for exclusive dielectron production, $\gamma\gamma \rightarrow e^+e^-$, as a function of m_{ee}, $<p_{T}^{e}>$, $|y_{ee}|$ and $|\cos\theta^{*}|$ for data (dots) and MC predictions from STARLIGHT (solid blue) and SUPERCHIC (dashed red). Bottom panels present the ratios of data to MC predictions. The shaded area represents the total uncertainty of the data, excluding the 2% luminosity uncertainty.

from STARLIGHT v3.13 and SUPERCHIC v3.05. Both simulated samples were produced inclusively and reweighted to the 0n0n category using the measured fractions presented in figure 2. The reweighting was performed event-by-event based on the generator level values of m_{ee} and $|y_{ee}|$. Each theory prediction is represented by two curves reflecting the systematic variations of the measured 0n0n fractions. STARLIGHT can also generate a prediction conditional on the presence of neutron emission in one or both directions. These dedicated predictions from STARLIGHT for the 0n0n category are shown in the same plots. That prediction agrees well with the shape of the inclusive STARLIGHT prediction corrected for the measured 0n0n fractions, but is systematically lower by 2%–3% for $|y_{ee}| < 1.4$. The general conclusions from this comparison between MC predictions and data are consistent
Figure 7. Fully corrected differential cross-sections measured for the 0n0n category for exclusive dielectron production as a function of m_{ee}, $\langle p_T^{e} \rangle$, $|y_{ee}|$ and $|\cos \theta^*|$. The cross-sections are compared with MC predictions from STARLIGHT (solid blue) and SUPERChic v3.05 (dashed red), each represented by two lines reflecting systematic variations. Also, a dedicated prediction from STARLIGHT for the 0n0n category (dashed-dotted black) is shown. The bottom panels show the ratios of data to predictions. The shaded area represents the total uncertainty of the data, excluding the 2% luminosity uncertainty.

with the inclusive case. Agreement between data and MC events is generally better for lower $|y_{ee}|$ and $|\cos \theta^*|$ values, i.e. involving lower-energy initial-state photons.

9 Conclusions

A measurement of the cross-section for exclusive dielectron production, $\gamma\gamma \rightarrow e^+e^-$, is performed using $L_{\text{int}} = 1.72 \text{ nb}^{-1}$ of ultraperipheral Pb+Pb collision data at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ recorded by the ATLAS detector at the LHC. The cross-section is corrected for detector
efficiency, acceptance losses, and background contributions. The backgrounds from dissociative processes, T decays, and $\tau^+\tau^-$ production are subtracted, with the first contribution estimated using a template fit to the acoplanarity distribution. After all corrections, the integrated cross-section for the $\gamma\gamma \rightarrow e^+e^-$ process in the fiducial region, defined by $p_T^e > 2.5\text{ GeV}, \mid \eta \mid < 2.5, m_{ee} > 5\text{ GeV},$ and $p_T^{e\gamma} < 2\text{ GeV}$ requirements, is measured to be 215 ± 1(stat.) $^{+23}_{-20}$(syst.) ± 4(lumi.) μb. Within experimental uncertainties the data are in good agreement with the QED predictions from STARLIGHT v3.13 and SUPERChic v3.05. The differential cross-sections are presented as a function of $m_{ee}, \langle p_T^e \rangle, \mid y_{ee} \mid$ and $\cos \theta^*$, both with and without requirements on forward neutron activity. The differential results are compared with the predictions from STARLIGHT v3.13, which are generally lower than measured cross-sections, and from SUPERChic v3.05, which tend to be higher. In general, the shapes of the distributions agree well, but some systematic differences are observed. In particular, the discrepancy between data and the STARLIGHT prediction rises with higher $\mid y_{ee} \mid$, similarly to what ATLAS observed previously in $\gamma\gamma \rightarrow \mu^+\mu^-$ production. For $\mid \cos \theta^* \mid \approx 1$, the measured cross-section is 1.8 (2.7) standard deviations below the theory prediction from STARLIGHT (SUPERChic). Agreement between data and MC simulation is generally better for lower $\mid y_{ee} \mid$ and $\mid \cos \theta^* \mid$ values.

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MEIN, Poland; FCT, Portugal; MNE/IFA, Romania; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TENMAK, Türkiye; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; PRIMUS 21/SCI/017 and UNCE SCI/013, Czech Republic; COST, ERC, ERDF, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Hérakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and MINERVA, Israel; Norwegian Financial Mechanism 2014-2021, Norway; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana,
Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in ref. [49].

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. SCOAP³ supports the goals of the International Year of Basic Sciences for Sustainable Development.

References

[27] ATLAS collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003 [inSPIRE].

18 Institut für Physik, Humboldt Universität zu Berlin, Berlin; Germany
19 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern; Switzerland
20 School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom
21 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (c) Department of Physics, Istanbul University, Istanbul; (d) Istituto Universitario, Sariger, Istanbul; Turkey
22 (a) Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogotá; (b) Departamento de Física, Universidad Nacional de Colombia, Bogotá; Colombia
23 (a) Dipartimento di Fisica e Astronomia A. Righi, Università di Bologna, Bologna; (b) INFN Sezione di Bologna; Italy
24 Physikalisches Institut, Universität Bonn, Bonn; Germany
25 Department of Physics, Boston University, Boston MA; United States of America
26 Department of Physics, Brandeis University, Waltham MA; United States of America
27 (a) Transilvania University of Brasov, Brasov; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c) Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; (d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca; (e) University Politehnica Bucharest, Bucharest; (f) West University in Timisoara, Timisoara; (g) Faculty of Physics, University of Bucharest, Bucharest; Romania
28 (a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak Republic
29 Physics Department, Brookhaven National Laboratory, Upton NY; United States of America
30 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, y CONICET, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires; Argentina
31 California State University, CA; United States of America
32 Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom
32 (a) Department of Physics, University of Cape Town, Cape Town; (b) iThemba Labs, Western Cape; (c) Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg; (d) National Institute of Physics, University of the Philippines Diliman (Philippines); (e) University of South Africa, Department of Physics, Pretoria; (f) University of Zululand, KwaDlangezwa; (g) School of Physics, University of the Witwatersrand, Johannesburg; South Africa
34 Department of Physics, Carleton University, Ottawa ON; Canada
35 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Énergies - Université Hassan II, Casablanca; (b) Faculté des Sciences, Université Ibn-Tofail, Kénitra; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) LPMR, Faculté des Sciences, Université Mohamed Premier, Oujda; (e) Faculté des sciences, Université Mohammed V, Rabat; (f) Institute of Applied Physics, Mohammed VI Polytechnic University, Ben Guerir; Morocco
36 CERN, Geneva; Switzerland
37 Affiliated with an institute covered by a cooperation agreement with CERN
38 Affiliated with an international laboratory covered by a cooperation agreement with CERN
39 Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America
40 LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand; France
41 Nevis Laboratory, Columbia University, Irvington NY; United States of America
42 Niels Bohr Institute, University of Copenhagen, Copenhagen; Denmark
43 (a) Dipartimento di Fisica, Università della Calabria, Rende; (b) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Italy
44 Physics Department, Southern Methodist University, Dallas TX; United States of America
45 Physics Department, University of Texas at Dallas, Richardson TX; United States of America
46 National Centre for Scientific Research “Demokritos”, Agia Paraskevi; Greece
47 (a) Department of Physics, Stockholm University; (b) Oskar Klein Centre, Stockholm; Sweden
48 Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen; Germany
49 Fakultät Physik, Technische Universität Dortmund, Dortmund; Germany
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg; Germany

Department of Physics, University of Warwick, Coventry; United Kingdom

Waseda University, Tokyo; Japan

Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot; Israel

Department of Physics, University of Wisconsin, Madison WI; United States of America

Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal; Germany

Department of Physics, Yale University, New Haven CT; United States of America

\[a\] Also Affiliated with an institute covered by a cooperation agreement with CERN

\[b\] Also at Borough of Manhattan Community College, City University of New York, New York NY; United States of America

\[c\] Also at Bruno Kessler Foundation, Trento; Italy

\[d\] Also at Center for High Energy Physics, Peking University; China

\[e\] Also at Centro Studi e Ricerche Enrico Fermi; Italy

\[f\] Also at CERN, Geneva; Switzerland

\[g\] Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland

\[h\] Also at Departament de Física de la Universitat Autònoma de Barcelona, Barcelona; Spain

\[i\] Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece

\[j\] Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America

\[k\] Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of America

\[l\] Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva; Israel

\[m\] Also at Department of Physics, California State University, East Bay; United States of America

\[n\] Also at Department of Physics, California State University, Sacramento; United States of America

\[o\] Also at Department of Physics, King’s College London, London; United Kingdom

\[p\] Also at Department of Physics, University of Fribourg, Fribourg; Switzerland

\[q\] Also at Department of Physics, University of Thessaly; Greece

\[r\] Also at Department of Physics, Westmont College, Santa Barbara; United States of America

\[s\] Also at Hellenic Open University, Patras; Greece

\[t\] Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain

\[u\] Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg; Germany

\[v\] Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan

\[w\] Also at Institute of Theoretical Physics, Ilia State University, Tbilisi; Georgia

\[x\] Also at Lawrence Livermore National Laboratory, Livermore; United States of America

\[y\] Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing; China

\[a\] Also at TRIUMF, Vancouver BC; Canada

\[ab\] Also at Università di Napoli Parthenope, Napoli; Italy

\[ac\] Also at University of Chinese Academy of Sciences (UCAS), Beijing; China

\[ad\] Also at University of Colorado Boulder, Department of Physics, Colorado; United States of America

\[ae\] Also at Yeditepe University, Physics Department, Istanbul; Türkiye

\[af\] Also at Physics Department, An-Najah National University, Nablus; Palestine

\[\ast\] Decedent