Double-CLIPS technology for the mimicry of structurally complex antibody binding sites on proteins
Smeenk, L.E.J.

Citation for published version (APA):
Smeenk, L. E. J. (2013). Double-CLIPS technology for the mimicry of structurally complex antibody binding sites on proteins

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
TABLE OF CONTENTS

LIST OF ABBREVIATIONS

1: THE ART OF PROTEIN MIMICRY

1.1 General Introduction
1.2 Exploring Protein-Protein Interactions (PPIs)
 1.2.1 The Definition of Protein Binding Sites
 1.2.2 Inhibition of Protein-Protein Interactions (PPIs)
1.3 Synthetic Protein Mimics
 1.3.1 Level 1: Linear Protein Binding Sites as Targets for Synthetic Protein Mimics
 1.3.2 Level 2: Conformational Protein Binding Sites as Targets for Synthetic Protein Mimics
 1.3.3 Level 3: Discontinuous Protein Binding Sites as Targets for Synthetic Protein Mimics
1.4 Strategy and Outline of this Thesis
1.5 References

2: SYNTHESIS OF FUNCTIONALIZED SCAFFOLDS FOR CLIPS-CYCLIZATION AND LIGATION OF PEPTIDES

2.1 General Introduction
2.2 Synthesis of 1st-Generation CLIPS-Scaffolds
2.3 Synthesis of 2nd-Generation CLIPS-Scaffolds
 2.3.1 Scaffolds for an ‘Azide-alkyne Cycloaddition’ Ligation Reaction
 2.3.2 Scaffolds for a ‘Thiol-ene’ Ligation Reaction
 2.3.3 Scaffolds for ‘Oxime’ Formation
2.4 Summary
2.5 Experimental Section
2.6 References

3: SYNTHESIS OF DOUBLE-CLIPS PEPTIDES FOR THE MIMICRY OF DISCONTINUOUS PROTEIN BINDING SITES

3.1 General Introduction
3.2 Solid Phase Peptide Synthesis
3.3 Synthesis of Cyclic β1-Loop and β3-Loop Peptides Using CLIPS Technology
3.4 Synthesis of Cyclic Constrained Double-CLIPS (β1+β3) Peptides
 3.4.1 The Cu-catalyzed Azide-alkyne Cycloaddition for Peptide Ligation (1)
 3.4.2 The Strain-promoted Azide-alkyne Cycloaddition for Peptide Ligation (2)
 3.4.3 The Thiol-ene Reaction for Peptide Ligation (3)
 3.4.4 Oxime Formation for Peptide Ligation (4)
3.5 Synthesis of Double-CLIPS Peptides with a Single Disulfide Bond
 3.5.1 Intramolecular Disulfide Bond Formation
 3.5.2 Intermolecular Disulfide Bond Formation
3.6 Synthesis of Double-CLIPS Peptides with Two Disulfide Bonds
3.7 Summary
3.8 Experimental Section
3.9 References
4: MIMICRY OF A DISCONTINUOUS BINDING SITE ON HUMAN FOLLICLE STIMULATING HORMONE BETA (hFSH-β)

4.1 General Introduction
4.2 Human Follicle Stimulating Hormone (hFSH)
 4.2.1 The Cysteine-knot Protein Family
 4.2.2 Human Follicle Stimulating Hormone (hFSH)
 4.2.3 Anti-hFSH Monoclonal Antibodies (mAbs) 5828 and 6602
 4.2.4 Structural Design of Double-CLIPS hFSH-Mimics
4.3 Synthesis and Screening of Double-CLIPS hFSH-Mimics in Peptide Arrays
4.4 Enzyme-Linked Immunosorbent Assays (ELISA)
 4.4.1 Double-CLIPS Disulfide Constrained hFSH-Mimics
 4.4.2 Variation of the Covalent Linkage Between the Scaffolds of Double-CLIPS hFSH-Mimics
 4.4.3 Variation of Peptide Lengths of Double-CLIPS hFSH-Mimics
 4.4.4 Investigation of Additional Constraints Between the Loops of Double-CLIPS hFSH-Mimics
4.5 Summary
4.6 Experimental Section
4.7 References

5: MIMICRY OF A DISCONTINUOUS BINDING SITE ON HUMAN CHORIONIC GONADOTROPIN BETA (hCG-β)

5.1 General Introduction
5.2 Human Chorionic Gonadotropin (hCG)
 5.2.1 Human Chorionic Gonadotropin (hCG)
 5.2.2 Anti-hCG Monoclonal Antibodies (mAbs) 3468, 8G5, 4F9, B2 and B4
 5.2.3 Structural Design of Double-CLIPS hCG-Mimics
5.3 Enzyme-Linked Immunosorbent Assays (ELISA)
 5.3.1 Evaluation of Discontinuous Binding Site Mimics for mAbs B4, B2 and 4F9
 5.3.2 Evaluation of Discontinuous Binding Site Mimics for mAb 8G5
 5.3.3 Evaluation of Discontinuous Binding Site Mimics for mAb 3468
5.4 Synthesis and Screening of Double-CLIPS hCG-Mimics in Peptide Arrays
5.5 Sheep Immunization Studies
5.6 Summary
5.7 Experimental Section
5.8 References

6: MIMICRY OF A DISCONTINUOUS BINDING SITE ON HUMAN VASCULAR ENDOTHELIAL GROWTH FACTOR (hVEGF)

6.1 General Introduction
6.2 Human Vascular Endothelial Growth Factor (hVEGF)
 6.2.1 Human Vascular Endothelial Growth Factor
 6.2.2 Anti-hVEGF Monoclonal Antibodies (mAbs) 293 and Bevacizumab
 6.2.3 Structural Design of Double-CLIPS hVEGF-Mimics
6.3 Enzyme-Linked Immunosorbent Assays (ELISA)
 6.3.1 Evaluation of Discontinuous Binding Site Mimics for mAb 293
 6.3.2 Evaluation of Discontinuous Binding Site Mimics for mAb Avastin
6.4 Summary
6.5 Experimental Section
6.6 References