Fluorescent molecular rotors

From working principles to visualization of mechanical contacts

Suhina, T.

Publication date
2017

Document Version
Other version

License
Other

Citation for published version (APA):
Fluorescent Molecular Rotors: From Working Principles to Visualization of Mechanical Contacts

In this thesis, we develop and characterize a method that enables us to visualize the real microscopic contact area between objects, using fluorescent molecules. Visualization and the ability to predict the real contact area between touching objects is a subject of a considerable interest, because the real contact area plays an important role in friction. Friction, defined as a force that resists relative motion between two surfaces in contact, is of immense importance, and can be found everywhere around us. If there was no friction, we could not survive because we could not move. At the same time, friction is considered to be responsible for huge energy losses amounting to about 30% of the world’s total energy consumption.

To visualize the real contact area between solid surfaces, we developed a method based on fluorescent molecular rotors immobilized on a solid glass substrate. Fluorescent molecular rotors are weakly fluorescent in low-viscosity solvents, because internal rotational motions result in a rapid decay of the excited state, such that the emission of a fluorescence photon is not fast enough to compete effectively. In high viscosity liquids and polymer matrices, however, such motions become severely hindered. Therefore, the molecules can remain in the excited state much longer, and become strongly fluorescent. A similar situation arises when molecular rotors are confined in contacts between objects, and this effect can be imaged and used to measure the real contact area with fluorescence microscopy.

Chapter 1 introduces the topic of this thesis and the role and the importance of the real contact area in understanding friction is discussed. In this Chapter we also introduce fluorescent molecular rotors, their application, and the origin of their response towards confinement. In Chapter 2, we describe experimental methods and data analysis used throughout this thesis.

In Chapter 3, we demonstrate the validity of our approach for visualizing the contact area by immobilizing dicyanomethylenedihydrofuran (DCDHF) molecular rotors on glass cover slips and making contact between functionalized cover
slips and a PMMA bead. Contact-induced confinement of surface-bound DCDHF molecular rotors results in a strong fluorescence enhancement, and allows us to image contacts between these objects. We compare our experimentally-obtained contact area with the one predicted by the widely-used Hertz theory for non-adhering elastic contacts, and find excellent agreement between the two. Non-exponential excited-state decays and fluorescence quantum yields that we observed in this work indicate that the photophysical behavior of DCDHF molecular rotors is more complex than previously reported. This motivated us to conduct a detailed photophysical characterization of this chromophore described in Chapters 4 and 5.

Chapter 4 describes steady-state and time-resolved spectroscopic measurements conducted on the DCDHF-based chromophore used in Chapter 3. The combination of these powerful laser spectroscopy techniques with quantum-chemical TD-DFT calculations enables us to learn more about the excited-state dynamics of DCDHF molecular rotors in low, medium, and high polarity solvents. We show that both single and double bond rotations can cause excited state decay in the case of DCDHF rotors: fluorescence is quenched by rotation around the dicyanomethylene double bond in non-polar solvents, but in a sufficiently polar environment rotation about a formally single bond leads to a nonfluorescent internal charge-transfer state. We detect this species directly using time-resolved infrared spectroscopy in the polar solvent dimethylsulfoxide.

Chapter 5 describes further mechanistic studies using quantitative fluorescence and transient absorption spectroscopy on the previously introduced DCDHF-based molecular rotor in order to examine and quantify the influence of solvent polarity on the photophysical behavior of this type of molecule. The obtained experimental data support the model with two polarity-responsive excited-state deactivation barriers. We demonstrate that in solvent of low viscosity the presence of two excited-state deactivation pathways leads to fast excited state decay and weak fluorescence both in solvents of low polarity and in solvents of high polarity. In solvents of intermediate polarity, the fluorescence quantum yield, however, is remarkably high. Finally, pump/probe measurements in the visible spectral range reveal the spectra of the intermediate dark state in three (polar) solvents. Thus, the results provide strong support for the model that was proposed in Chapter 4.

Chapter 6 describes a detailed photophysical characterization of a molecular rotor based on meso-substituted boron-dipyrrromethane (BODIPY). We again use visible and IR pump-probe spectroscopies combined with TD-DFT calculations, and we show that fluorescence deactivation of this molecule takes place through a fast and irreversible process which does not involve intermediate electronic states. Our data indicate that nonradiative excited-state deactivation of BODIPY molecular rotors is practically independent of solvent polarity, but strongly governed by viscoelastic/free volume properties of the local environment in both low- and high-viscosity regimes.

In Chapter 7 we introduce a new DCDHF-based molecular rotor with extended π-conjugation, which results in a significant red shift of the absorption and emission spectra relative to the previously introduced DCDHF and BODIPY molecular
rotors. In this chapter we compare the photophysical behavior of these molecular rotors in solutions, immobilized on a glass surface, and under contact-induced confinement. While the fluorescence of the two examined molecular rotors based on dicyanomethylenedihydrofuran accepting unit is significantly enhanced within the contact zone, the BODIPY-based molecular rotor unexpectedly does not show confinement-induced response. Furthermore, we show that in the contact zones the probe molecules are strongly confined but still have some freedom to move. The nanoscale environment resembles a viscous liquid like glycerol.

Chapter 8 describes an application of our method to study the relation between friction and the real contact area. We find that frictional force is directly proportional to the real area of contact between a glass cover slip and a polystyrene bead, but the contact area does not grow linearly with the applied normal force, which results in breaking of Amontons’ law. With the help of simulations from our collaborators we find that this is because both elastic interactions and plastic deformations play an important role in deformations of the asperities that are present within the zone of contact between the objects.
Samenvatting

Fluorescerende moleculaire rotors: van werkingsprincipe tot het visualiseren van mechanische contacten

In dit proefschrift ontwikkelen en karakteriseren we een methode voor het meten van het echte, microscopische contactoppervlak tussen twee objecten met behulp van fluorescerende moleculen. Visualisatie en voorspelling van dit echte contactoppervlak is van grote praktische waarde, omdat het echte contactoppervlak bepalend is voor wrijving. De wrijvingskracht gaat relatieve beweging van oppervlakken in contact tegen en is van groot belang omdat alle toepassingen met bewegende onderdelen aan wrijving onderhevig zijn. Zonder wrijving zouden we ons niet voort kunnen bewegen. Anderzijds zorgt wrijving voor grote energieverliezen: wrijving is verantwoordelijk voor ongeveer 30% van de wereldenergieconsumptie.

In dit onderzoek visualiseren we het echte contactoppervlak tussen twee oppervlakken door middel van fluorescerende moleculaire rotoren, vastgemaakt op een glasoppervlak. Deze moleculen fluoresceren zwak in oplossingen met een lage viscositeit, doordat interne rotatiebewegingen van het molecuul in de aangeslagen toestand ervoor zorgen dat het zo snel terug kan keren naar de grondtoestand dat het geen kans ziet een foton uit te zenden. Dergelijke bewegingen worden sterk belemmerd in visceuze oplossingen en polymeermatrices, waardoor het molecuul langer in de aangeslagen toestand verblijft en voornamelijk terugkeert naar de grondtoestand door emissie van een foton. De fluorescentie neemt in deze omstandigheden sterk toe. Een vergelijkbare situatie doet zich voor wanneer moleculaire rotoren in het contact tussen twee vaste stoffen worden vastgeklemd. Dit effect maakt het mogelijk om het echte contactoppervlak door middel van fluorescentie-microscopie zichtbaar te maken.

Hoofdstuk 1 introduceert het onderwerp van dit proefschrift en de rol van het echte contactoppervlak in relatie tot wrijving. In dit hoofdstuk introduceren we fluorescerende moleculaire rotoren, toepassingen van deze rotoren en hun gedrag onder druk. In hoofdstuk 2 beschrijven we de experimentele methoden en data-analyse toegepast in dit proefschrift. In hoofdstuk 3 demonstreren we dat de
fluorescerende moleculen het echte contactoppervlak daadwerkelijk doen oplichten; we immobiliseren dicyanomethyleendihydrofuran (DCDHF) moleculen op een glasoppervlak en brengen het contact tussen dit oppervlak en een PMMA bol in beeld. De contactdruk resulteert in een significante toename van de fluorescencie waardoor we het contact met behulp van een fluorescentiemicroscoop kunnen visualiseren. We meten het contactoppervlak tussen de bol en het glasoppervlak en vergelijken dit met de Hertz theorie voor elastisch contact zonder adhesie; het experiment en de theorie komen uitstekend overeen. De gemeten fluorescencie intensiteiten en vervaltijden geven aan dat het fotofysische gedrag van DCDHF moleculaire rotoren complexer is dan voorheen verondersteld werd. Deze waarneming vormt de motivatie voor hoofdstukken 4 en 5 waarin we deze chromofoor uitgebreid karakteriseren.

Hoofdstuk 4 beschrijft tijdsopgeloste metingen aan de DCDHF-gebaseerde chromoforen gebruikt in hoofdstuk 3, waarbij we verschillende spectra van de aangeslagen toestanden meten. De combinatie van deze krachtige laserspectroscoptech- nieken met kwantumchemische TD-DFT-berekeningen stelt ons in staat meer te leren over de manier waarop de DCDHF moleculaire rotoren van hun aangeslagen toestand terugkeren naar de grondtoestand in media met verschillende polariteit. We laten zien dat twee verschillende rotaties rond bindingen als reactiepad kunnen dienen: in niet-polaire oplossingen wordt de fluorescencie gestopt door rotatie rond de dubbele dicyanomethyleen binding, maar in polaire oplossingen leidt de rotatie rond de enkelvoudige binding tussen de twee ringen in het molecuul tot een andere, niet-fluorescerende toestand. Met behulp van infraroodspectroscopie kunnen we deze toestand waarnemen in het polaire oplosmiddel dimethylsulfoxide.

Hoofdstuk 5 bouwt verder op het mechanistisch onderzoek in hoofdstuk 4 met kwantitatieve fluorescentie- en tijdsopgeloste absorptiemetingen. We demonstreren opnieuw dat de aanwezigheid van de twee desactiveringpaden bij lage viscositeit leidt tot snel stralingsloos verval en zwakke fluorescencie zowel bij lage en hoge polariteit, en we laten nu ook zien dat in het tussenliggende polariteitsgebied de fluorescencie verrassend veel sterker is. Verder kunnen we de intermediaire aangeslagen toestand in drie polaire oplosmiddelen detecteren. De resultaten geven een sterke onderbouwing van het model uit hoofdstuk 4.

Hoofdstuk 6 beschrijft de gedetailleerde fotofysische karakterisering van een moleculaire rotor gebaseerd op meso-gesubstitueerd boor-dipyrromethaan (BO- DIPY). We gebruiken het nieuwe tijdsopgeloste spectroscopie gecombineerd met TD-DFT berekeningen en laten zien dat fluorescentiedoving van dit molecuul plaatsvindt door een snel en irreversibel proces waar geen tussenliggende elektronische toestanden aan te pas komen. Onze data tonen aan dat de stralingsloze desactivering van de aangeslagen toestanden van BODIPY moleculaire rotoren praktisch onafhankelijk is van de polariteit van het oplosmiddel, maar sterk afhanger van de viscoelastische eigenschappen van de lokale omgeving van het molecuul.

In hoofdstuk 7 introduceren we nieuwe DCDHF-gebaseerde moleculaire rotoren met uitgebreide π-conjugatie, wat resulteert in een significante roodverschuiving van de absorptie en emissie spectra ten opzichte van de eerder gebruikte DCDHF en BODIPY moleculaire rotoren. In dit hoofdstuk vergelijken we het fotofysische
gedrag van deze moleculaire rotoren in oplossing, geïmmobiliseerd op een glasoppervlak en onderhevig aan mechanisch contact met een bol. Terwijl de fluorescentie van de twee moleculaire rotoren gebaseerd op DCDHF significant toeneemt binnen het contact is er geen druk-effect zichtbaar bij de BODIPY-gebaseerde moleculaire rotor. Verder laten we zien dat in de gebieden van contact tussen de objecten de moleculen nog steeds een zekere bewegingsvrijheid hebben: het contact is op de nanometerschaal vergelijkbaar met een stroperige vloeistof zoals glycerol.

Hoofdstuk 8 tenslotte, beschrijft de toepassing van onze meetmethode voor het bestuderen van het echte contactoppervlak en wrijving. We meten dat de wrijvingskracht evenredig is met het echte contactoppervlak tussen een plastic bol en een glasoppervlak. Het contactoppervlak groeit echter niet-lineair met de normaalkracht waardoor de wet van Amontons niet houdt. Door middel van simulaties verricht door collega’s, tonen we aan dat dit komt door de combinatie van elastische en plastische deformatie van het oppervlak van de plastic bol.
Acknowledgments

The past four and a half years have been a truly special experience for me. This book is a culmination of my PhD and represents the end of an amazing era of my life. Making of this thesis was a long and often challenging journey that would not be possible without support of a number of individuals to whom I owe my deepest gratitude.

Firstly, I would like to thank my supervisor prof. Fred Brouwer to whom I am truly grateful for all the supervision, support, patience, and guidance provided throughout my PhD. I extend my gratitude to my second supervisor prof. Daniel Bonn, whom I thank for all the interesting discussions, guidance and the valuable input during the past four and a half years. I am very grateful to both for giving me the opportunity to work on this project, and for teaching me how to perform scientific research.

Next, I would like to thank the people I collaborated with: Bart Weber (it was a lot of fun working with you), prof. Sander Woutersen (who also kindly accepted to be a part of my defense committee), prof. Benedetta Mennucci, dr. Saeed Amirjalayer (amazing late night experiments ;)), Dina Petrova, prof. Peter Schall (who also accepted to be a part of my committee) and people who initiated this project, dr. Chantal Carpentier and dr. Kinga Lorincz.

I express my sincere gratitude to committee members prof. Bas de Bruin, prof. Mark Maroncelli, prof. Michel Orrit, prof. Peter Schall, and prof. Sander Woutersen for making time to read this manuscript and accepting the invitation to be a part of this, for me, very special day.

Also, I would like to express my gratitude to Dr. René Williams, prof. Hong Zhang, prof. Wybren Jan Buma for useful discussions during the group meetings, and random hallway encounters.

A special thanks is due to our amazing technicians Michiel Hilbers and Hans Sanders. Thank you for all the help and eye-opening discussions (not necessarily of scientific nature) we had during my time at UvA. It was a lot of fun working with you (we still need to take care of those bottles in the office!). Since I submitted, I think we have some "office work" to attend to ;) I also thank Paul Reinders for the technical help provided with the transient experiments in the visible domain.

I also thank the past and present members of Molecular Photonics, Soft Mat-
ter, and other groups: Bert, Tibert, Sérgio, Chris (you’re the only person who appreciates a good steak as much as I do), Ariana (thanks for amazing dinners!), Eric, Steven, Arthur, Matthijs (a.k.a. The Hammer), Wim (beer?), Elena (yes, I play Witcher now), Heleen, Jing, Yanni, Adriana, Phaedon, Mina, Riccardo (still feel bad about your search for chemicals), Wagner, Hung-Cheng, Olivier, Emma, Lotte, René, Yadan, Kai, Xiao, Yadan, Bruno, Jarich, Yu, Fei, Steven, Roberto, Dina, Paul, Mark, Emmanuele (we still need to organize PS4 night), Tom (thanks for introducing me to polymer brushes!), Chrisja (when do we do selfies again?), Paul, Freek, Jeroen, Chris (master), Angela, Jean-Pierre and many others that I forgot to mention. I would also like to thank my students Floor, Nikos, Stan, Yorrick, Cami, Krishnili, George and Consuela for all the hard work and enthusiasm invested in their projects.

Spending long hours in (and outside) of the lab would not be a lot of fun without amazing colleagues and friends I got to meet during my time in Amsterdam. First individual I have to mention is Tatu, who was the only person I (kind of) knew when I came to Amsterdam. Thank you for showing me around and helping me get my feet on the ground :) I would also like to thank other people who I am proud to call my friends: Roel, Dongdong (my fav roomie and also my paranimf), Benjamin (thanks for being my paranimf and second best roomie), Artem (thanks for coming, appreciate it!) and Tatu (once again). My experience with Amsterdam would not be the same without you, and I would not be able to call it a home away from home. I also thank my roommates Kenan, Boris and Mika for good times spent in Diemen. I also thank Linda for great company, (mostly) healthy food, and for forcing me to relax once in a while, even when things got stressful.

I would also like to express a sincere gratitude to my family and friends from Croatia, who always make me feel right at home when I go back. Zahvaljujem od srca svima (nasumičnim redosljedom): Paji, Božici (oklada vrijedi), strini, Darku (naučil sam grah radit!), Gogi, Ivanu (če vapi ne ginu), vujči Ivanu (gemiš dok se vratim), Štefici, Ivani, Mladenu, Aniti, Ines, Filipu, Kruni, Marijani, Tajani, Davoru, Snjezani i ostalima koje sam može bit zaboravio napomenuti u žurbi. Hvala i mojoj ekipi iz "studentskih" dana koja me uvijek srdacno doceka dok se vratim: Vedranu, Tei, Fishu, Peri, (DJ) Vladdzu, Petruku, Leu, Štefu i Kreši. Zbog ljudi poput vas je dom samo jedan :)

Last, but not least, I would like to thank my mother, Brankica, and my grandmother, Katarina. Hvala vam od srca na svoj ljubavi, odricanju i podršci koju ste mi pružale tokom čitavog života. Bez vas, nebi bilo ove knjige.

Tomislav Suhina
Amsterdam, July 2017