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Chapter 1

Introduction

This dissertation brings together epistemic logic and topology. It studies formal
representations of the notion of evidence and its link to justi cation, justi ed
belief, knowledge, and evidence-based information dynamics, by using tools from
topology and (dynamic) epistemic logic.

Epistemic logic is an umbrella term for a species of modal logics whose main
objects of study are knowledge and belief. As a eld of study, epistemic logic uses
modal logic and mathematical tools to formalize, clarify and solve the questions
that drive (formal) epistemology, and its applications extend not only to philoso-
phy, but also to theoretical computer science, arti cial intelligence and economics
(for a survey, see van Ditmarsch et al., 2015a). Hintikka (1962) is considered the
founding father of modern epistemic logic. In his booknowledge and Belief:
An Introduction to the Logic of the Two Notions (1962)|inspired by insights
in (von Wright, 1951)|Hintikka formalizes knowledge and belief as basic modal
operators, denoted byK and B, respectively, and interprets them using standard
possible worlds semantics based on (relational) Kripke structures. Ever since|as
Kripke semantics provides a natural and relatively easy way of modelling epis-
temic logics|it has been one of the prominent and most commonly used semantic
structures in epistemic logic, and research in this area has widely advanced based
on the formal ground of Kripke semantics.

However, standard Kripke semantics possesses some features that make the
notions of knowledge and belief it implements too strong|leading to the problem
of logical omniscience|and is lacking the ingredients that make it possible to talk
about the nature and grounds of acquired knowledge and belief. What triggered
the work presented in this dissertation is the latter issue: we not only seek an
easy way to model knowledge and belief, but also study the emergence, usage,
and transformation of evidenceas an inseparable component of mtional and
idealizedagent's justi ed belief and knowledge.

For this purpose, topological spaces are proven to be natural mathematical
objects to formalize the aforementioned epistemic notions, and, in turn, evidence-
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2 Chapter 1. Introduction

based information dynamics: while providing a deeper insight into the evidence-
based interpretation of knowledge and belief, topological semantics also general-
izes the standard relational semantics of epistemic logic. Roughly speaking, topo-
logical notions like open, closed, dense and nowhere dense sets qualitatively and
naturally encode notions such ameasurement/observation, closeness, smallness,
largeness and consistenc¢yll of which will recur with an epistemic interpretation

in this dissertation. Moreover, topological spaces are equipped with well-studied
basic operators such as the interior and closure operators which|alone or in
combination with each other|succinctly interpret di erent epistemic modalities,
giving a better understanding of their axiomatic properties. To that end, we see
topological spaces as information structures equipped with an elegant and strong
mathematical theory that help to shed some light on the philosophical debates
surrounding justi ed belief and knowledge, and to gain more insights into learning
via evidence-acquisition.

The epistemic use of topological spaces as information structures can be
traced back to the 1930s and 1940s, where topological spaces served as models
for intuitionistic languages, and open sets are considered to be “pieces of evi-
dence', ‘observable properties' concerning the actual state (see, e.g., Troelstra
and van Dalen, 1988). This interpretation assigned to open sets constitutes the
basic epistemic motivation behind our use of topological models, and will return
often at various places (in modi ed forms) in the main body of this disserta-
tion. Variations of this idea can also be found in domain theory in computer
science (Abramsky, 1987, 1991; Vickers, 1989), and guide the research program of
\topological" formal learning theory initiated by Kelly and others (Kelly, 1996;
Schulte and Juhl, 1996; Kelly et al., 1995; Kelly and Lin, 2011; Baltag et al.,
2015c) in formal epistemology.

The literature connecting (modal) epistemic logic and topology is developed
based on two separate, yet strongly related topological settings. Our work in
this dissertation justly bene ts from both approaches. The rst direction stems
from the interior-based topological semantics of McKinsey (1941) and McKin-
sey and Tarski (1944) for the language of basic modal logic (some of the ideas
could already be found in Tarski, 1938 and Tsao-Chen, 1938). In this seman-
tics the modal operator?2 is interpreted on topological spaces as the interior
operator. These investigations took place in an abstract, mathematical context,
independent from epistemic/doxastic considerations. McKinsey and Tarski (1944)
not only proved that the modal systemS4 is the logic of all topological spaces
(under the above-mentioned interpretation), but also showed that it is the logic
of any dense-in-itself separable metric space, such as the rational I@gethe real
line R, and the Cantor space, among others. This approach paved the way for
a whole new area of spatial logics, establishing a long standing connection be-
tween modal logic and topology (see, e.g., Aiello et al., 2007 for a survey on this
topic, in particular, see van Benthem and Bezhanishvili, 2007). Moreover, the
completeness results concerning the epistemic syst&shave naturally attracted



epistemic logicians, and led to arepistemicre-evaluation of the interior seman-
tics, seeing topologies as models for information. One branch of the epistemic
logic-topology connection has thus been built on the interior-based topological
semantics, where the central epistemic notion studied is knowledge (see, e.g.,van
Benthem and Sarenac, 2004). What we add to this body of work, in Part | of this
dissertation, are the missing epistemic componentidenceand belief as well

as thedynamics of learning new evideng¢strengthening the connection between
epistemic logic and topology. We do so by reanalyzing the neighbourhood-based
evidence models of van Benthem and Pacuit (2011) from a topological perspec-
tive. The way we represent evidence and how it connects to justi ed belief are
inspired by the approach in (van Benthem and Pacuit, 2011), and the evidence
transforming actions considered are adapted from the aforementioned in uential
work.

The second topological approach to epistemic logic was initiated by Moss and
Parikh (1992). They introduced the so-calledopologic a bimodal framework to
formalize reasoning about sets and points in a single modal system. Their topo-
logical investigations have a strong motivation from epistemic logic, suggesting
that \simple aspects of topological reasoning are also connected with special-
purpose logics oknowledgeé (Moss and Parikh, 1992, p. 95). The key element
Moss and Parikh (1992) introduced to the paradigm of epistemic logic is the ab-
stract notion of epistemice ort . E ort can, roughly speaking, be described as any
type of evidence-gathering|via, e.g., measurement, computation, approximation,
experiment or announcement|that can lead to an increase in knowledge. The
formalism of topologic therefore combines the static notion of knowledge with
the dynamic notion of e ort, thus, it is strongly related to dynamic epistemic
logic (Baltag et al., 1998; van Ditmarsch et al., 2007; van Benthem, 2011; Baltag
and Renne, 2016). In Part Il of this thesis, we build a bridge between the two
formalisms, which results in both conceptual and technical advantages. While
dynamic epistemic logic expands the array of dynamic attitudes it studies, the
topologic setting obtains epistemically more intuitive axiomatizations, clarifying
the meaning ofe ort by linking it to well-understood instances such apublicand
arbitrary announcements

*kk

The contributions of this thesis are presented in two parts. Below, we give a brief
overview of each chapter. Every chapter starts with a brief introduction further
elaborating its content and links to the relevant literature.

Chapter 2 provides the technical preliminaries that are essential for both parts
of the dissertation. This includes, in the rst half, a very brief introduction to
the standard Kripke semantics for the basic modal logic. We recall the commonly
studied static systems for epistemic/doxastic logics and the corresponding rela-
tional properties that render these logics sound and complete. In the second part,
we introduce the elementary topological notions that will be used throughout this
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dissertation.

PART |: From Interior Semantics to Evidence Models

Part | is concerned with evidence-based interpretations of justi ed belief and
knowledge. Starting with a by-now-standard topological interpretation of knowl-
edge as the interior operator, we develop, in a gradual manner, a topological
framework that (1) can talk about evidence not only semantically, but also at
the syntactic level, thereby making the notion of evidence more explicit; (2)
takes evidence as the most primitive notion, and de nes belief and knowledge
purely based on it, thereby linking these two crucial notions of epistemology at

a deeper, more basic level. These investigations have considerable philosophical
consequences as they allow us to discern, isolate, and study various aspects of the
notion of evidence, and its relation to justi cation, knowledge and belief.

Chapter 3 introduces the interior-based topological semantics of McKinsey and
Tarski (1944) as a way to model knowledge, points out its link to the standard

relational semantics, and motivates the interpretation of knowledge as the topo-
logical interior operator. It then discusses an existing topological semantics for
belief based on the derived set operator, and argues that it does not constitute
a satisfactory semantics for belief, especially when considered in tandem with
knowledge as the interior.

Chapter 4 shifts our focus from the topological interpretation of knowledge to the
topological interpretation of belief, and presents the rst step toward developing a
topological theory of belief that works well in combination with knowledge as the
interior operator. More precisely, the rst part of this chapter presents a review of
the topological belief semantics of@zgan, 2013; Baltag et al., 2013), addressing
the following questions:

Given the interior-based topological semantics for knowledge, how can we
construct a topological semantics for belief that can also address the problem
of understanding the relation between knowledge and belief? To what extent
do topological notions capture the intuitive meaning of the intended notion
of belief?

The proposed semantics for belief is derived from Stalnaker's logical framework in
which belief is realized as a weakened form of knowledge (Stalnaker, 2006), which
leads to a belief logic obxtremally disconnected space¥Vhile this static setting
provides a satisfactory answer for the above questions, the dynamic extension
with public announcement modalities runs into problems due to the structural
properties of extremally disconnected spaces. This leads to the search for a public
announcement friendly logic of knowledge and belief. The second part of this
chapter (based on Section 4.2 of Baltag et al., 2015a) is devoted to solving this



issue, and the proposed solution consists in interpreting knowledge and belief on
hereditarily extremally disconnected spaces

While this semantics for belief works well for Stalnaker's strong notion of belief
assubjective certainty from a more general perspective, it can be seen somewhat
restrictive for two reasons. It is based on rather exotic classes of topological spaces,
and the corresponding logics do not comprise evidence in a real sense as there
is no syntactic representation of it. This constitutes part of the motivation for
the next chapter, leading to more general and fundamental questions addressed
there.

Chapter 5 contains the main contribution of Part I. Resting on the assumption
that an agent's rational belief is based on the available evidence, we try to unveil
the concrete relationship between an agent's evidence, beliefs and knowledge,
and study the evidence dynamics that the designed static account supports. This
project is motivated by both philosophical and technical questions, as well as the
aforementioned drawbacks of our own work in Chapter 4. To be more precise, we
focus on the following questions, among others:

How does a rational agent who is in possession of some possibly false, pos-
sibly mutually contradictory pieces of evidence put her evidence together in
a consistent way, and form consistent beliefs?

What are the necessary and su cient conditions for a piece of evidence to
constitute justi cation for one's beliefs? What properties should a piece of
justi cation possess to entail(defeasible knowledge?

How does our formalization of the aforementioned notions help in under-
standing the discussions in formal epistemology regarding the link between
justi ed belief and knowledge?

What are the complete axiomatizations of the associated logics of justi ed
belief, knowledge and evidence? Do they have the nite model property? Are
they decidable?

The above questions also drive the approach of van Benthem and Pacuit (2011);
van Benthem et al. (2012, 2014), which inspired our work considerably. Address-
ing the rst question requires de ning a \smart" way of aggregating the available
evidence, based omite and consistentsubcollections of it. Topologically, this
leads to a move from a topological subbasis to a basis. This generates a topo-
logical evidence structure that allows us to work with many epistemic modalities
capturing di erent notions of evidence, belief, and knowledge interpreted using
topological notions. The explicit use of topologies is one of the features of our
setting which separates it from that of van Benthem and Pacuit (2011). Once the
evidence aggregation method is set, we takecaherentist and holistic view on
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justi cation, and, roughly speaking, de ne it as a piece of evidence that is consis-
tent with every available evidence. Moreover, in our setting, defeasible knowledge
requires a true justi cation. We then use our topological setting to formalize sta-
bility and defeasibility theories of knowledge (Lehrer and Paxson, 1969; Lehrer,
1990; Klein, 1971, 1981), as well as relevant notions such as (non-)misleading ev-
idence, clarifying some of the philosophical debates surrounding them. Our main
technical results concern completeness, decidability and the nite model property
for the associated logics.

PART II: From Public Announcements to E ort

In Part Il of this dissertation, we no longer discuss belief, but rather focus on
notions of knowledge as well as various types of information dynamics compris-
ing learning new evidence. This part takes the subset space setting of Moss and
Parikh (1992) as a starting point, and is centered around the notions absolutely
certain knowledgeand knowability as \potential knowledgé as well as the connec-
tions between the abstract notion of epistemie@ ort encompassing any method
of evidence acquisition and the well-studied dynamic attitudes such asiblicand
arbitrary public announcements

Chapter 6 provides the background for Part Il and motivates the paradigm shift
between the two parts of this thesis. In particular, it introduces the subset space
semantics of Moss and Parikh (1992) and the topological public announcement
logic of Bjorndahl (2016).

Chapter 7 investigates extensions of the topological public announcement logic
of Bjorndahl (2016) with the e ort modality of Moss and Parikh (1992), as well
as with a topological version of the arbitrary announcement modality of Balbiani
et al. (2008). This work is of both conceptual and technical interest, aiming at
clarifying the intuitively obvious, yet formally elusive connection between the
dynamic notionse ort and its seemingly special instances: public and arbitrary
announcements. In particular, we address the following questions, and answer
them positive:

Can we clarify the meaning of the e ort modality by linking it to the afore-
mentioned dynamic modalities?

Does treating the e ort modality together with public announcements in a
topological setting provide any technical advantages regarding the complete
axiomatization of its associated logic, decidability and the nite model prop-
erty?

We give a complete axiomatization for thedynamic topologic of e ort and public
announcementswhich is epistemically more intuitive and, in a sense, simpler than
the standard axioms of topologic (Georgatos, 1993, 1994; Dabrowski et al., 1996).



Our completeness proof is also more direct, making use of a standard canonical
model construction. Moreover, we study the relations between this extension and
other known logical formalisms, showing in particular that it is co-expressive with
the simpler and older logic of interior and global modality (Goranko and Passy,
1992; Bennett, 1996; Shehtman, 1999; Aiello, 2002), which immediately provides
an easy decidability proof both for the original topologic and for our extension.

Chapter 8 is concerned with the multi-agent generalization of the setting pre-
sented in the previous chapter. Modelling multi-agent epistemic systems in the
style of subset space semantics is not a trivial task. We start the chapter by lay-
ing out some problems one encounters while working with multi-agent extensions
of subset space logics. Our proposal for a multi-agent logic of knowledge and
knowability and its further extensions with public and arbitrary announcements
does not run into these problems and constitutes a novel semantics for the afore-
mentioned notions. In addition, the multi-agent setting presented in this chapter
is general enough not only to model fully introspective, i.eS5type knowledge,
but also to interpret S4, S42 and S43-types of knowledge. This contrasts with
and enriches the existing approaches to subset space semantics for knowledge,
since the other approaches, to the best of our knowledge, can only work wib
knowledge.

Origin of the material

Chapter 4 is based on:

Baltag, A., Bezhanishvili, N., Ozgun, A., and Smets, S. (2015a). The topo-
logical theory of belief.Under review Available online at
http://www.illc.uva.nl/Research/Publications/Reports/PP-2015-18.text.pdf.

Part | of Chapter 4 (Sections 4.1-4.2.1) provides a review oDggsn, 2013;
Baltag et al., 2013), whereas the remainder of the chapter contains material
not covered in ©zgsn, 2013; Baltag et al., 2013) but presented in (Baltag
et al., 2015a).

Chapter 5 is based on two papers, where the latter is an extended version
of the former:

Baltag, A., Bezhanishvili, N., Ozgsn, A., and Smets, S. (2016a). Justi ed
belief and the topology of evidence. IfProceedings of 23rd Workshop on
Logic, Language, Information and Computation(WoLLIC 2016), pp. 83-
103.

Baltag, A., Bezhanishvili, N., Ozgsn, A., and Smets, S. (2016b). Justi ed
belief and the topology of evidence{Extended version. Available online at
http://www.illc.uva.nl/Research/Publications/Reports/PP-2016-21.text.pdf.
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Chapter 7 is based on:

van Ditmarsch, H., Knight, S., and Ozgsn, A. (2014). Arbitrary announce-
ments on topological subset spaces. IRroceedings of the 12th European
Conference on Multi-Agent System$EUMAS 2014, pp. 252-266.

Baltag, A., Ozgsn, A., and Vargas-Sandoval, A. L. (2017). Topo-Logic as
dynamic epistemic logic. InProceedings of the 6th International Workshop
on Logic, Rationality and Interaction (LORI 2017). To appear.

Chapter 8 is based on:

van Ditmarsch, H., Knight, S., and Ozgsn, A. (2015b). Announcements
as e ort on topological spaces. InProceedings of the 15th Conference on
Theoretical Aspects of Rationality and KnowledgéTARK 2015), pp. 283-
297.

van Ditmarsch, H., Knight, S., and Ozgan, A. (2015c). Announcements as
e ort on topological spaces{Extended version. Accepted for publication in
Synthese

Moreover, although the main results of the following papers are not included in
this dissertation, the discussion concerning their conceptual content contributes
to the present work to a great extent.

van Ditmarsch, H., Knight, S., and Ozgsn, A. (2017). Private announce-
ments on topological spacesStudia Logica Forthcoming.

Bjorndahl, A., and Ozgun, A. (2017). Logic and Topology for Knowledge,
Knowability, and Belief. In Proceedings of the 16th Conference on Theoret-
ical Aspects of Rationality and KnowledgéTARK 2017), pp. 88-101.



Chapter 2

Technical Preliminaries

In this chapter, we provide the technical preliminaries essential for the main body
of the thesis. The original work presented in Parts | and Il is based on two di er-
ent, yet related topological frameworks. However, we occasionally resort to their
connection with the relational semantics and the well-developed completeness
results therein in order to obtain similar conclusions for the topological coun-
terpart. We therefore primarily use three di erent formal settings in developing
our original contribution: the standard relational semantics for the basic modal
logic, the interior-based topological semanticsa la McKinsey and Tarski (1944),
and the subset space semantics introduced by Moss and Parikh (1992). While
the relational setting serves only as a technical tool utilized in Parts | and I,
the latter two topological settings have inspired the developments presented in
these parts. We leave the background details of these topological settings for later
chapters, and present here only the formal tools that are commonly used in both
parts.

Outline

Our presentation in this chapter is two-fold. Section 2.1 brie y discusses the stan-
dard relational semantics for the language of basic modal logic, and the unimodal
epistemic and doxastic systems that will be studied in later chapters. Section
2.2 introduces the purely topological preliminaries that will be used throughout
the thesis. Additionally, this chapter also serves the purpose of xing our nota-
tion for the main body of this dissertation. Readers who are familiar with the
aforementioned topics should feel free to skip this chapter.

9
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2.1 Relational Semantics for Modal Logics (of
Knowledge and Belief)

Starting from the pioneering work of Hintikka (1962), if not earlier, modal logic
and its relational semantics|also known as Kripke semantics|have been the
main tools utilized in the formalization of knowledge and belief. Hintikka (1962)
interpreted knowledge and belief as normal modal operatork, and B, respec-
tively, on Kripke models. This enables us to formulate the properties of various
notions of knowledge and belief (of di erent strength and type) by using modal
formulas of a given epistemic/doxastic language.

In this section, we brie y present the standard relational semantics for the
basic modal language and de ne some well-known epistemic and doxastic logics.
This is in no way an exhaustive presentation of relational semantics for modal
epistemic and doxastic logics: we here aim to x notation in order to ease the
presentation in the main chapters and summarize the results we later refer to.
The presentation in this section is based on the basic modal language since we
make use of the technical aspects of the relational setting to prove results almost
exclusively regarding unimodal epistemic/doxastic systems.

2.1.1. Definition.  [Syntax of L,] The language ofbasic modal logid., is de-
ned recursively as

= ppt N2y
wherep 2 prop , a countable set ofpropositional variables

Abbreviations for the Boolean connectives ;! and $ are standard, and? is
dened asp”™: p. We employ3' as an abbreviation for: 2: "' .

Since we, in general, work with the above de ned modal language in an epis-
temic/doxastic setting, the particular languages we consider in this work typically
include, instead of2, modalities such aK and B for knowledge and belief, re-
spectively. Accordingly,L x denotes thebasic epistemic languagend L g the basic
doxastic languagele ned as in De nition 2.1.1.

We are particularly interested in the modal systems that are commonly used
in the formal epistemology literature to represent notions of knowledge and be-
lief. Some of the interesting and widely used axioms and an inference rule formal-
izing properties of these notions are listed in Table 2.1.

We again use a similar notational convention as we did in case of the lan-
guages. For example, the axiom of Consistency fdeliefis denoted by (Ds)

B' !': B:', Positive Introspection for knowledgeis written as (4«<) K' !
KK' , etc.

Let CPL denote all instances of classical propositional tautologies (see, e.g.,
Chagrov and Zakharyaschev, 1997, Section 1.3 for an axiomatization of classical
propositional logic). Throughout this thesis, we use Hilbert-style axiom systems in
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(K2) 20 )Yy 2'v 2) Normality

(D) 2" 1 2 Consistency

(T2) 2' 1 Factivity

(4,) 2' 1 22" Positive Introspection
(.22) p2:2" 0 2:2" Directedness

(.32) 22" ) _2(2 ' ") Connectedness

(52) 22t 1 22" Negative Introspection
(Neg) from ', infer 2° Necessitation

(MP) from ' ! and' , infer ° Modus Ponens

Table 2.1: Some unimodal axiom schemes and a rule of inferenceZor

order to provide the syntactic de nitions of the modal logics we work with. Recall
that, the weakest/smallestnormal modal logic, denoted byK,, is de ned as the
least subset ol , containing all instances of propositional tautologiesGPL) and
(K2), and closed under the inference rules (MP) and (Ne& Then, following
standard naming conventions, we de ne the following normal modal logics that
are used to represent knowledge and belief of agents with di erent reasoning
power, whereL+(" ) denotes the smallest modal logic containingand' . In other
words, L+( ' ) is the smallest set of formulas (in the corresponding language) that
containsL and ' , and is closed under the inference rules bf For example:

KT, = Ky +(T2)
S4 = KT+ (42)
8422 = 842 +(.22)
S43, = S4 +(.32)
S% = S4 +(52)
KD45 = K; +(D2)+(42)+(52)

Table 2.2: Some normal (epistemic/doxastic) modal logics

While the systemsS4 ; S42¢ ; S43¢« and S5 are considered to be logics for
knowledge of di erent strength, much work on the formal representation of belief
takes the logical principles olKD45; for granted (see, e.g., Baltag et al. (2008);
van Ditmarsch et al. (2007); Baltag and Smets (2008)). Hintikka (1962) consid-
ered S4 to be the logic of knowledgeS42« is defended by Lenzen (1978) and
Stalnaker (2006). Van der Hoek (1993); Baltag and Smets (2008) studi&d: 3«
as epistemic logics for agents of stronger reasoning power. While the syst®h
is used in applications of logic in computer science (Fagin et al., 1995; Meyer and
van der Hoek, 1995; van Ditmarsch et al., 2007), it is, as a logic of knowledge,
often deemed to be too strong and rejected by philosophers (see, e.g., Hintikka,
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1962; Voorbraak, 1993, for arguments again§% ). In this thesis, we examine
each of the above systems in di erent topological frameworks. In the following,
we rst present their standard relational semantics.

Before moving on to the standard relational semantics for the basic modal
logic, we brie y recall the following standard terminology for Hilbert-style axiom
systems, and set some notation. Given a logicde ned by a ( nitary) * Hilbert-
style axiom system, anL-derivation/proof is a nite sequence of formulas such
that each element of the sequence is either an axiom lgfor obtained from the
previous formulas in the sequence by one of the inference rules. A formula
is called L-provable or, equivalently, atheoremof L, if it is the last formula of
someL-proof. In this case, we write’ | ' (or, equivalently, * 2 L). For any set
of formulas and any formula ', we write " | ' if there exist nitely many
formulas' 4;:::;' 2 suchthat " "~ ~ ', ! '.Wesaythat is L-
consistentif 6, ?, and L-inconsistentotherwise. A formula' is consistent with

if [f ' gisL-consistent (or, equivalently, if 6, : ' ). Finally, a set of formulas

is maximally consistentif it is L-consistent and any set of formulas properly
containing is L-inconsistent, i.e. cannot be extended to anothel-consistent
set. We drop mention of the logid. when it is clear from the context.

2.1.2. Definition.  [Relational Frame/Model] A relational frame F = (X;R) is
a pair where X is a nonempty set andR X  X. A relational modelM =
(X;R; V) is a tuple where K;R) is a relational frame andV : prop 'P (X)is
a valuation map.

Relational frames/models are also callelripke frames/models Throughout
this thesis, we use these names interchangeably. We ddy = (X;R;V ) is a
relational modelbased on the framé = ( X;R). While elements ofX are called
statesor possible worldsone of which represents the actual state of a airs, called
the actual or real state, R is known as theaccessibility or indistinguishability
relation. We let R(x) = fy 2 X j xRyg. The setR(x) represents the set of states
that the agent considers possible ax. This way, roughly speaking, a relational
structure models the agent'suncertainty about the actual situation via the truth
conditions given in the following de nition.

2.1.3. Definition.  [Relational Semantics folL ; ] Given a relational modelM =
(X;R;V) and a statex 2 X, truth of a formula in the languagel , is de ned
recursively as follows:

M;XFPp i x 2 V(p); wherep 2 prop

M ;xE ' i not M ;xg'

M ;xg" " i M ;xE" andM ;X F

M ;xE 2' i forall y2 X; if xRy thenM ;yF "

lIn Chapter 8, we work with a proof system with an in nitary inference rule. The notion of
derivation for this in nitary logic, and other relevant notions, will be explained in Chapter 8.
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It follows from the above de nition that
M;xE 3" 1 thereis y2 X suchthatxRy andM ;y F "

We adopt the standard notational conventions and abbreviations (see e.g.,
Blackburn et al., 2001, Chapter 1.3). IfM does not make true at x, we write
M ;x 6 ' . Inthis case, we say that isfalseat x in M . When the corresponding
model is clear from the context, we writex = ' for M ;x F ' .

We call a formula' valid in a relational modelM = (X;R;V), denoted
by Mj=",if M;x "' forall x 2 X, and it is valid in a relational frame
F = (X;R), denoted by F j= ', if M j= ' for every relational model based
on F. Moreover, we say is valid in a classkK of relational frames denoted by
Kj=",if Fj=" for every member of this class, and it isalid, denoted byF ' ,
if it is valid in the class of all frames. These de nitions can easily be extended to
sets of formulas in the following way: a set L , isvalid in a relational frame
Fi Fj=' forall' 2 .Wedene k kM = fx2 X jM ;x F ' gand call
k' kM the truth set, or equivalently, extensionof' in M . In particular, we write
x 2 k' kM for M ;x E ' . We omit the superscriptM when the model is clear
from the context. The crucial concepts oboundnessand completenesghat link
the syntax and the semantics are de ned standardly (see, e.g., Blackburn et al.,
2001, Chapter 4.1).

We conclude the section by listing the relational soundness and completeness
results for the important epistemic and doxastic logics de ned in Table 2.2. To
do so, we rst list in Table 2.3 some important frame conditions, and then de ne
some useful order theoretic notions that will also be used in later chapters.

Re exivity ( 8x)(xRx)

Transitivity (8x;y;z)(XRy " yRz! xRz)

Symmetry Bx;y)(XRy ! yRXx)

Antisymmetry (8 Y)(XRy M yRx ! x=1y)

Seriality (8x)(9y)(xRYy)

Euclideanness &x;y;2)(XRy * xRz ! yRz)

Directedness 8x;y; 2)((xRy » xRz) ! (9w)(YRw " zRw))
No right branching (Bx;y;2)(xRy » xRz) ! (yRz _zRy _y= 2))
Total (Connected) (Bx;y)(XxRy _ yRx)

Preorder re exive and transitive

Partial order re exive, transitive and antisymmetric
Equivalence relation re exive, transitive and symmetric

Table 2.3: Relevant Frame Conditions
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Following the traditional conventions in order theory, we also call a re exive
and transitive relational frame (X; R) a preordered setand a re exive, transitive
and antisymmetric frame apartially ordered set or, in short, aposet The following
order theoretic notions will be useful in later chapters.

2.1.4. Definition.  [Up/Down-set,Upward/Downward-closure] Given a preor-
dered set K;R) and a subsetA X,

A is called anupward-closed sefor, in short, an up-se) of (X;R) if for
eachx;y 2 X, xRy andx 2 A imply y 2 A;

A is called adownward-closed sefor, in short, a down-sej of (X;R) if for
eachx;y 2 X, yRx andx 2 A imply y 2 A;

the upward-closureof A, denoted by"A, is the smallest up-set of X;R)
that includes A. In other words,"A = fy 2 X j9x 2 A with xXRyg;

the downward-closureof A, denoted by #A, is the smallest down-set of
(X;R) that includes A. In other words, #A = fx 2 X j9y 2 A with xRyg:

For every elementx 2 X, we simply write "x and #x for the upward and
downward-closure of the singletorfixg, respectively.

We can now state some of the well-known relational soundness and com-

pleteness results. For a more detailed discussion, we refer to (Chagrov and Za-
kharyaschev, 1997; Blackburn et al., 2001).

2.1.5. Theorem (Relational (Kripke) Completeness).
S4 is sound and complete with respect to the class of preordered sets;

S42, is sound and complete with respect to the class of directed preordered
sets;

S43, is sound and complete with respect to the class of total preordered
sets;

S5 is sound and complete with respect to the class of frames with equiva-
lence relations;

KD45, is sound and complete with respect to the class of serial, transitive
and Euclidean frames.

Following Theorem 2.1.5, we sometimes refer to a class of relational frames/
models by the name of its corresponding logic. For example, a preordered set is
also called anS4frame. Similarly, a relational model based on a serial, transitive
and Euclidean frame is also called KD45model, etc.



2.2. Background on Topology 15

2.2 Background on Topology

In this section, we introduce the topological concepts that will be used through-
out this thesis. We refer to (Dugundji, 1965; Engelking, 1989) for a thorough
introduction to topology.

2.2.1. Definition.  [Topological Space] Aopological spacés a pair (X; ), where
X is a nonempty set and is a family of subsets oX such that

X;;2 ; and
is closed under nite intersections and arbitrary unions.

The setX is aspace the family is called atopologyon X . The elements of
are calledopen sets(or openg in the space. If for somex 2 X and an open
U X we havex 2 U, we say thatU is anopen neighborhooafx. AsetC X
is called aclosed seff it is the complement of an open set, i.e., it is of the form
XnU forsomeU 2 . Welet =fXnUjU2 gdenote the family of all closed
sets of K; ). Moreover a setA X is calledclopenif it is both closed and open.
A point x is called aninterior point of a setA X if there is an open
neighbourhoodU of x such that U  A. The set of all interior points of A is
called theinterior of A and is denoted byint (A). Then, for any A X, Int (A)
is an open set and is indeed the largest open subsetAgfthat is

[
Int(A)= fu2 jU Ag

Dually, for any x 2 X, x belongs to theclosure of A, denoted by CI(A), if and
only if U\ A 6 ; for each open neighborhootl of x. It is not hard to see that
CI(A) is the smallest closed set containing., that is

\
Cl(A)= fC2 jA Cg

and that CI(A) = XnInt (X nA) for all A X. Itis well known that the interior

Int and the closureCl operators of a topological spaceX ) satisfy the follow-
ing properties (the so-called Kuratowski axioms) for anyA; B X (see, e.g.,
Engelking, 1989, pp. 14-15)

(I1) Int(X) = X (C1) CI(;) = ;

(I2) Int(A) A (C2) A CI(A)

(13) Int (A\ B) = Int(A)\ Int(B) (C3) CI(A[ B)= CI(A)[ CI(B)
(14) Int (Int (A)) = Int (A) (C4) CI(CI(A)) = CI(A)

2The properties (11) (14) (and, dually, (C1) (C4)) are what render the knowledge modality
interpreted as the topological interior operator an S4type modality. We will elaborate on this
in Chapter 3.
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AsetA X is calleddensein X if CI(A) = X and it is callednowhere dense
if Int (CI(A)) = ;. Moreover, theboundaryof a setA X, denoted byBd(A), is
de ned asBd(A) = CI(A)nint (A).

A point x 2 X is called alimit point (or accumulation poin) of a setA X if
for each open neighborhoot) of x, we haveA\ (Unfxg) 6 ;. The set of all limit
points of A is called thederived setof A and is denoted byd(A). Forany A X,
we also lett(A) = X nd(X nA). We call t(A) the co-derived setof A. Moreover, a
setA X is calleddense-in-itselfif A d(A). A spaceX is calleddense-in-itself
if X = d(X).

2.2.2. Definition.  [Topological Basis] A family B Is called abasisfor a
topological space X; ) if every non-empty open subset oK can be written as
a union of elements oB.

We call the elements oB basic opens We can give an equivalent de nition
of an interior point by referring only to a basisB for a topological spaceX; ):
forany A X, x 2 Int(A) if and only if there is an open setU 2 B such that
x2UandU A.

Given any family = fA | 2 Ig of subsets ofX, there exists a unique,
smallest topology () with () (Dugundiji, 1965, Theorem 3.1, page 65).
The family () consists of ;, X, all nite intersections of the A , and all arbitrary
unions of these nite intersections. is called asubbasisfor (), and () is
said to begeneratedby . The set of nite intersections of members of forms
a basis for ().

2.2.3. Definition.  [Subspace] Given a topological spac¥ ) and a nonempty
subsetP X, the topological spacePR; p) is called asubspacef (X; ) (induced
byP) where p = fU\ PjU2 g.

The closureClp, the interior Intp and the derived setdr operators of the
subspace P; p) can be de ned in terms of the closure and interior operators of
(X; )as, foralA P,

Clp(A)= CI(A)\ P
Intp(A) = Int(XnP)[ A)\ P
dr(A) = d(A)\ P:
2.2.4. Definition.  [Hereditary Property] A property of a topological space is
called hereditary if each subspace of the space possesses this property.

2.2.5. Lemma. For any two topological spacéX; ) and (X; 9, if O then
Int (A) Int o(A) forall A X.

We here end the presentation of the background material for this dissertation.
In the next chapter, we introduce the interior-based topological semantics for the
basic modal language and motivate the use of topological models in epistemic
logic.
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Chapter 3

The Interior Semantics

In this chapter, we provide the formal background for the interior-based topologi-
cal semantics for the basic modal logic that originates from the work of McKinsey
(1941), and McKinsey and Tarski (1944). In this semantics the modal operat@r

is interpreted on topological spaces as the interior operator. As brie y discussed
in Chapter 1, among other reasons, the fact that the epistemic systeB#is the
logic of all topological spaces, and the interpretation of open sets as "observable
properties' or “pieces of evidence' put the interior-based topological semantics on
the radar of epistemic logicians.

In the following, we brie y introduce the so-called topological interior seman-
tics, focusing particularly on its epistemic insights, and explain how and why
it constitutes a satisfactory interpretation for (evidence-based) knowledge, and,
consequently, why|in certain contexts|it forms a richer semantics than the re-
lational semantics. Our contribution in Part | is inspired by and developed on the
basis of this setting. In later chapters, we extend and enrich the interior semantics
in order to formalize di erent notions of (evidence-based) knowledge and justi ed
belief, as well as various notions of evidence possession.

Outline

Section 3.1 is a technical section introducing the interior semantics together with
its connection to the relational semantics (Section 3.1.2). In Section 3.1.3, we
list the general topological soundness and completeness results for the systems
S4 S42 and S43 that will be used in later chapters. Section 3.2 then explains
the motivation behind the use of the interior operator as a knowledge modality,
where the main focus will be on the underlying evidence-based interpretation.

19
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3.1 Background on the Interior Semantics

This section gives an overview of the essential technical preliminaries of the inte-
rior semantics. The presentation of this section follows (van Benthem and Bezhan-
ishvili, 2007, Section 2). The reader who is familiar with the source and topic
should feel free to continue with Section 3.2.

3.1.1 Syntax and Semantics

We work with the basic epistemic languagé ¢ as given in De nition 2.1.1. Since
we examine the interior semantics in an epistemic context, we prefer to use the
modality K' (instead of2' ) that is read as \the agent knows' (is true)". The
dual modality K for epistemic possibilityis de ned asK' = : K: "

3.1.1. Definition.  [Topological Model] Atopological mode(or, in short, a topo-
mode) X = (X; ;V ) is a triple, where (X; ) is a topological space and/ :
prop !'P (X) is a valuation function.

3.1.2. Definition.  [Interior Semantics forL « ] Given a topo-modelX =( X; ;V )
and a statex 2 X, truth of a formula in the langaugel ¢ is de ned recursively
as follows:

XiXF p i x2V(p)

Xox g I not X;xF'

X;xg ' n I XGxXE" and XX E

X;x F K I (9U2 ) x2Uand8y2U; X;yF ')

It is useful to note the derived semantics foK'
X:xE R i (8U2 )x2Uimplies9y2 U; M ;yE ")

Truth and validity of a formula' of Ly are de ned in the same way as for
the relational semantics. We here apply similar notational conventions as we have
set in Section 2.1. We let []* = fx 2 X j X;x F ' g denote thetruth set,
or equivalently, extension of a formula' in topo-model X. We emphasize the
di erence betweenjj' jj’M and [ ]*: while the former refers to the truth set in a
relational model under the standard relational semantics (De nition 2.1.3), the
latter is de ned with respect to topo-models and the interior semantics (De nition
3.1.2). We again omit the superscript for the model when it is clear from the
context.

The semantic clauses fok and K give us exactly the interior and the closure
operators of the corresponding model. In other words, according to the interior
semantics, we have

=
=
|

Int([" 1)
CIT" D:

K
K1
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3.1.2 Connection between relational and topological mod-
els

As is well known, there is a tight link between the relational semantics and the
interior semantics at the level of re exive and transitive frames: every re exive
and transitive Kripke frame corresponds to anAlexandro space The class of
re exive and transitive frames therefore forms a subclass of all topological spaces.
This connection does not only help us to see how the interior semantics and the
relational semantics relate to each other and how the former extends the latter,
but it also provides a method to prove topological completeness results by using
the already established results for the relational counterpart.

3.1.3. Definition.  [Alexandro space] A topological sp]ace)(; ) is an Alexan-
dro spaceif is closed under arbitrary intersections, i.e., A2 foranyA

A topo-model X = (X; ;V ) is called anAlexandro model if (X; ) is an
Alexandro space. A very important feature of an Alexandro space K; ) is
that every point x 2 X has a smallest open neighbourhood. Given a re exive and
transitive Kripke frame (X;R), we can construct an Alexandro spaceX; r) by
de ning r to be the set of all up-sets of X;R). The up-setR(x) = "x = fy 2
X j xRyg forms the smallest open neighborhood containing the poirt It is then
not hard to see that the set of all down-sets ofX{; R) coincides with the set of
all closed sets inX; r), and that forany A X, we haveCl _(A) = #A, where
Cl . denotes the closure operator ofX; r). Conversely, for every topological
space K; ), we de ne aspecialization preorderv on X by

xv yi x2Cl(fyg)i (8U 2 )(x2 U impliesy 2 U):

(X; v ) is therefore a re exive and transitive Kripke frame, i.e., a preordered
set. Moreover, we have thaR = v _, and that =  ifand onlyif (X; )is
Alexandro (see, e.g., van Benthem and Bezhanishvili, 2007). Hence, there is a
natural one-to-one correspondence between re exive and transitive Kripke models
and Alexandro models. In particular, for any re exive and transitive Kripke
modelM = (X;R;V), we setB(M) = (X; r;V), and for any Alexandro
modelX = (X; ;V ), we can form a re exive and transitive Kripke modelA(X) =

(X; v ;V). Moreover, any two models that correspond to each other in the above
mentioned way make the same formulas &fx true at the same states, as shown
in Proposition 3.1.4.

3.1.4. Proposition. Forall' 2L,

1. for any re exive and transitive Kripke modelM =(X;R;V) andx 2 X,

M xF"' i B(M)xF",;
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2. for any Alexandro model X = (X; ;V )andx 2 X,
XsxfF'" i1 AX)xE ™"

Therefore, re exive and transitive Kripke models and Alexandro models are
just di erent representations of each other with respect to the languagéy .
In particular, the modal equivalence stated in Proposition 3.1.4-(1) constitutes
the key step that allows us to use the relational completeness results to prove
completeness with respect to the interior semantics.

3.1.3 Soundness and Completeness for S4, S42¢ and S43¢

Having explained the connection between re exive-transitive Kripke models and
Alexandro models, we can now state the topological completeness results for
S4 and its two normal extensionsS42¢ and S43x that are of interests in later
chapters. In fact, Proposition 3.1.4-(1) entails the following more general result
regarding all Kripke complete normal extensions dd4 .

3.1.5. Proposition (van Benthem and Bezhanishvili, 2007). Every nor-
mal extension ofS4c (over the languagé.x ) that is complete with respect to the
standard relational semantics is also complete with respect to the interior seman-
tics.

Proof:

Let Lx be a normal extension oS4 that is complete with respect to the rela-
tional semantics and 2 L ¢ suchthat' 62 . Then, by relational completeness
of Lx, there exists a relational modelM = (X;R;V) and x 2 X such that
M ;x 6 '. Sincelx extends the systemS4c, which is complete with respect
to re exive and transitive Kripke models, R can be assumed to be at least re-
exive and transitive. Then, by Proposition 3.1.4-(1), we obtainB(M );x 6 ' . 2

We can therefore prove completeness of the Kripke complete extensions of
S4¢ with respect to the interior semantics via their relational completeness. What
makes the interior semantics more general than Kripke semantics is tied to sound-
ness. For exampleS4¢ is not only sound with respect to Alexandro spaces, but
also with respect to all topological spaces.

3.1.6. Theorem (McKinsey and Tarski, 1944). S4 is sound and complete
with respect to the class of all topological spaces under the interior semantics.

Similar results have also been proven fd842¢ and S43¢ for the following
restricted classes of topological spaces.

3.1.7. Definition.  [Extremally Disconnected Space] A topological spac&y )
is calledextremally disconnectedf the closure of each open subset &f is open.
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For example, Alexandro spaces constructed from directed preorders, i.e.,
from S42¢ -frames, are extremally disconnected. To elaborate, it is routine to
verify that, given a directed preordered setX; R) and an up-setU of (X;R), the
downward-closure#U of the setU is still an up-set. Recall thatCl ,(U) = #U,
where X; gr) is the corresponding Alexandro space andCl . is its closure op-
erator. Therefore, since the set of all up-sets oK(R) forms the corresponding
Alexandro topology g, we conclude that K; gr) is extremally disconnected.
This, in fact, establishes the topological completeness result 842« via Propo-
sition 3.1.5. It is also well known that topological spaces that are Stone-dual to
complete Boolean algebras, e.g., the Stoiech compacti cation (N) of the set
of natural numbers with a discrete topology, are extremally disconnected (Siko-
rski, 1964).

3.1.8. Definition.  [Hereditarily Extremally Disconnected Space] A topological
space K; ) is calledhereditarily extremally disconnectedh.e.d) if every subspace
of (X; ) is extremally disconnected.

Alexandro spaces corresponding to total preorders, i.e., corresponding to
S43¢ -frames, are hereditarily extremally disconnected. To see this, observe that
for every nonempty Y X, the subspace Y;( r)y) of (X; r) is in fact the
Alexandro space constructed from the subframeY;R\ (Y Y)) of (X;R).
Moreover, every subframe of a total preorderX;R) is still a total preorder,
thus, is also a directed preorder. Therefore, the correspondence between total
preorders and h.e.d spaces follows from the fact that Alexandro spaces con-
structed from directed preorders are extremally disconnected. Another inter-
esting and non-Alexandro example of an hereditarily extremally disconnected
space is the topological space\{ ) where N is the set of natural numbers and

= f; ; all co nite subsets of Ng. In this space, the set of all nite subsets ofN
together with ; and X completely describes the set of closed subsets with respect
to (N; ). Itis not hard to see that foranyU 2 , CI(U) = N andInt(C) = ; for
any closedC with C 6 X. Moreover, every countable Hausdor extremally dis-
connected space is hereditarily extremally disconnected (Blaszczyk et al., 1993).
For more examples of hereditarily extremally disconnected spaces, we refer to
(Blaszczyk et al., 1993).

3.1.9. Theorem (Gabelaia, 2001). S42¢ is sound and complete with respect
to the class of extremally disconnected topological spaces under the interior se-
mantics.

3.1.10. Theorem (Bezhanishvili et al., 2015). S43¢ is sound and com-
plete with respect to the class of hereditarily extremally disconnected topological
spaces under the interior semantics.
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3.2 The Motivation behind Knowledge as Inte-
rior

Having presented the interior semantics, we can now elaborate on its epistemic
signi cance that has inspired our work in this dissertation, in particular, the
content of Chapter 4 and Chapter 5.

We would rst like to note that the conception of knowledge as interior is
not the only type of knowledge we study in this thesis. We even question whether
knowledge as interiois the \only" type of knowledge that a topological semantics
can account for and answer in the negative (see Chapters 5-7). However, the
aforementioned semantics can be considered as the most primitive, in a sense
as the most direct way of interpreting an epistemic modality in this setting. We
therefore argue that, even in this very basic form, the interior semantics works at
least as well as the standard relational semantics for knowledge, and, additionally,
it extends the relational semantics while admitting an evidential interpretation
of knowledge.

The interior semantics is naturally epistemic and extends the relational

semantics. The initial reason as to why the topological interior operator can
be considered as knowledge is inherent to the properties of this operator. As
noted in Section 2.2, the Kuratowski axioms (11)-(14) correspond exactly to the
axioms of the systemS4c, when K is interpreted as the interior modality (see
Table 3.1 for the one-to-one correspondence). Therefore, elementary topological

S4¢ axioms Kuratowski axioms
(Kk) K™ )$ (K "K ) Int(A\ B) = Int(A)\ Int(B)
(Tk) K Int(A) A
(4¢) K' I KK' Int (A) Int(Int (A))
(Nec) from ' | infer K' Int(X)= X

Table 3.1: S4 vs. Kuratowski axioms

operators such as the interior operator, or, dually, the closure operator produces
the epistemic logicS4 with no need for additional constraints (also see Theorem
3.1.6). In other words, in its most general form, topologically modelled knowledge
is Factive and Positively Introspective however, it does not necessarily possess
stronger properties. On the other hand, this in no way limits the usage of interior
semantics for stronger epistemic systems. In accordance with the case for the
relational semantics, we can restrict the class of spaces we work with and interpret
stronger epistemic logics such aS42 ; S43« (see Theorems 3.1.9 and 3.1.10)
and S5 in a similar manner (see, e.g., van Benthem and Bezhanishvili, 2007,
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p. 253). To that end, topological spaces providsu ciently exible structures

to study knowledge of di erent strength. They are moreovenaturally epistemic
since the most general class of spaces, namely the class of all topological spaces,
constitutes the class of models of arguably the weakest, yet philosophically the
most accepted normal systent4 . Moreover, as explained in Section 3.1.2, the
relational models for the logicS4 , and for its normal extensions, correspond to
the subclass of Alexandro models (see Proposition 3.1.4). The interior semantics
therefore generalizes the standard relational semantics for knowledge.

One may however argue that the above reasons are more of a technical nature
showing that the interior semantics works as well as the relational semantics,
therefore motivate \why we could use topological spaces" rather than \why we
should use topological spaces" to interpret knowledge as opposed to using rela-
tional semantics. Certainly the most important argument in favour of the con-
ception of knowledge as the interior operatois of a more “semantic' nature: the
interior semantics provides a deeper insight into the evidence-based interpretation
of knowledge.

Evidence as open sets.  The idea of treating "open sets as pieces of evidence' is
adopted from the topological semantics for intuitionistic logic, dating back to the
1930s (see, e.g., Troelstra and van Dalen, 1988). In a topological-epistemological
framework, typically, the elements of a given open basis are interpreted as observ-
able evidence, whereas the open sets of the topology are interpreted as properties
that can be veri ed based on the observable evidence. In fact, the connection be-
tween evidence and open sets comes to exist at the most elementary level, namely
at the level of a subbasis. We can think of a subbasis as a collection of observable
evidence that isdirectly obtained by an agent via, e.g., testimony, measurement,
approximation, computation or experiment. The family of directly observable
pieces of evidence therefore naturally forms an open topological basis: closure
under nite intersection captures an agent's ability to put nitely many pieces
into a single piece, i.e., her ability to derive more re ned evidence from direct
ones by combining nitely many of them together. Therefore, a topological space
does not only account for the plain conception oévidence as open setbut it

is rich enough to di erentiate various notions of evidence possession. The above-
mentioned correspondence between evidence and open sets constitutes the main
motivation behind the topological frameworks developed in this dissertation and
we will elaborate on di erent views and interpretations oftopological evidencén
later chapters, starting with Chapter 5.

On the other hand, the basic epistemic languagey interpreted by the in-
terior semantics is clearly not expressive enough to distinguish di erent types of
open sets, e.g., it cannot distinguish a basic open from an arbitrary open, simply
because the only topological modalitK is interpreted as an existential claim of
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an open neighbourhood of the actual state that entails the known proposition:

X2 KP i x2Int(P) (3.1)
i (U2 )x2UandU P) (3.2)
i (9U2B )(x2UandU P) (3.3)

whereB is a basis for . Therefore, in its current form, the interior semantics
does not form a su ciently strong setting to account for (various type of) evi-
dence possession alone. However, even based on this basic shape, the notion of
knowledge as the interior operator yields an evidential interpretation at a purely
semantic level. More precisely, from an extensional point of viéywa proposition

P is true at world x if x 2 P. If an openU is included in a setP, then we can say

that proposition P is entailed/supportedby evidenceU. Open neighbourhood4J

of the actual world x play the role of sound (correct, truthful) evidence. There-
fore, as basic open sets are the pieces of observable evidence, (3.3) means that
the actual world x is in the interior of P i there exists a sound piece of evidence

U that supports P. That is, according to the interior semantics, the agenknows

P at x i she has a sound/correct piece of evidence supporting. Moreover,
open sets will then correspond to properties that are in principle veri able by the
agent: whenever they are true, they are supported by a sound piece of evidence,
therefore, can be knownDually, we have

x 62CI(P)i (U2 )x2UandU XnP) (3.4)

meaning that closed sets correspond to falsi able propertiesvhenever they are
false, they are falsi ed by a sound piece of evidenc€hese ideas have also been
used and developed in (Vickers, 1989; Kelly, 1996) with connections to episte-
mology, logic and learning theory.

The interior-based semantics for knowledge has been extended to multiple
agents (van Benthem et al., 2005), to common knowledge (Barwise, 1988; van
Benthem and Sarenac, 2004) to logics of learning and observatioeabrt (Moss
and Parikh, 1992; Dabrowski et al., 1996; Georgatos, 1993, 1994), to topological
versions of dynamic-epistemic logic (Zvesper, 2010) (see Aiello et al., 2007, for a
comprehensive overview on the eld). Belief on topological spaces, rather surpris-
ingly, has not been investigated and developed as much as knowledge, especially
in connection with topological knowledge.

3.3 Belief on Topological Spaces?

As explained in Section 3.2, as far as an evidential interpretation of knowledge
is concerned, the interior semantics improves the standard relational semantics,

1Extensional here means any semantic formalism that assigns the same meaning to sentences
having the same extension.
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most importantly, for the reason that evidential justi cation for knowing some-
thing is embedded in the semantics. It then seems natural to ask whether a
topological semantics can also account for notions oé\identially) justi ed be-
lief. Answering this question constitutes one of the main goals of Part | of this
dissertation.

One of the crucial properties that distinguishes knowledge from belief is its
veracity (formalised by the axiom (T )). However, no matter how idealized and
rational the agent is, it must be possible for her to believe false propositions,
yet she is expected to hold consistent beliefs (formalized by the axiomg]). To
the best of our knowledge, the rst worked out topological semantics for belief is
proposed by Steinsvold (2006) in terms of the co-derived set operator. According
to the co-derived set interpretation of belief,

x2BPi (9U2 )(x2UandUnfxg P); (3.5)

i.e., x 2 BP i x 2 t(P). We here note that this topological semantics inter-
preting the modal operator2 as the co-derived set operator, or dualhd as the
derived set operator was also pioneered by McKinsey and Tarski (1944), and later
extensively developed by the Georgian logic school led and inspired by Esakia,
and their collaborators (see, e.g., Esakia, 2001, 2004; Bezhanishvili et al., 2005,
2009; Beklemishev and Gabelaia, 2014; Kudinov and Shehtman, 2014). Steinsvold
(2006) was the rst to propose to use this semantics to interpret belief, and proved
soundness and completeness for the standard belief syst€®45; . This account
still requires having atruthful piece of evidence for the believed proposition, how-
ever, the proposition itself does not have to be true. Therefore, it is guaranteed
that the agent may hold false beliefs. However, as also discussed in (Baltag et al.,
2013;0zgsn, 2013), and brie y recapped here, this semantics further guarantees
that in any topo-model and any state in this model, there is at least one false
belief that is, the agent always believes the false propositiox nf xg at the actual
state x. This is the case because for any topological space; () and x 2 X,
we havex 62d(f xg), i.e., x 2 t(X nfxg), therefore, the clause (3.5) entails that
x 2 B(Xnfxg) always holds. This is an undesirable and disadvantageous prop-
erty, especially if we also want to study dynamics such as belief revision, updates
or learning. Always believingX nfxg prevents the agent to ever learning the ac-
tual state unless she believes everything. Formally speaking,2 B(fxg) i the
singleton f xg is an open, and in this case, the agent believes everything xat
In order to avoid these downsides and obtaiKkD45;, we have to work with the
so-call DSO-spaces, as shown by Steinsvold (2006).D50-spaceis de ned to
be a dense-in-itself space (i.e., a space with no singleton opens) in which every
derived setd(A) is open.

Moreover, in a setting where knowledge as the interior and belief as the co-
derived set operator are studied together, we obtain the equality

KP =P\ BP;
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stating that knowledge is true belief Therefore, this semantics yields a formal-
ization of knowledge and belief that is subject to well-known Gettier counterex-
amples (Gettier, 1963)

In the next chapter, we present another topological semantics proposed by
Baltag et al. (2013) for belief, in particular, for Stalnaker's notion of belief as
subjective certainty(Stalnaker, 2006), in terms of theclosure of the interior op-
erator on extremally disconnected spaces. Baltag et al. (2013) have argued that
this semantics is better behaved, especially when considered together with the
notion of knowledge as the interior operator. They moreover provided a sound-
ness and completeness result for the belief syst&D45; with respect to the class
of extremally disconnected spaces, which extends the class of DSO-spaces. How-
ever, this setting still encounters problems when extended f@ublic announce-
ments We then propose a solution consisting in interpreting belief in a similar
way based on hereditarily extremally disconnected spaces, and axiomatize the
belief logic of hereditarily extremally disconnected spaces.

2This connection has also been observed in (Steinsvold, 2006, Section 1.11), and an alterna-
tive topological semantics for knowledge in terms of clopen sets is suggested without providing
any further technical results. Steinsvold (2006) does not elaborate on to what extend his pro-
posed semantics for knowledge could give new insight into the Gettier problem and leaves this
point open for discussion.



Chapter 4

A topological theory of \justi ed"
belief: an initial attempt

Understanding the relation between knowledge and belief is an issue of central
importance in epistemology. Especially after Gettier (1963) shattered the tradi-
tional account of knowledge agusti ed true belief, many epistemologists have
attempted to strengthen the latter to attain a satisfactory notion of the former.
According to this approach, one starts with a weak notion of belief (which is at
least justi ed and true) and tries to reach knowledge by making the chosen no-
tion of belief stronger in such a way that the de ned notion of knowledge would
no longer be subject to Gettier-type counterexamples (Gettier, 1963)More re-
cently, there has also been some interest in reversing this project|deriving belief
from knowledge|or, at least, putting \knowledge rst" (Williamson, 2000). In

this spirit, Stalnaker (2006) has proposed a formal framework in which belief is
realized as a weakened form of knowledge. More precisely, beginning with a logical
system in which both belief and knowledge are represented as primitives, Stal-
naker formalizes some natural-seeming relationships between the two, and proves
on the basis of these relationships that belief can ke ned from knowledge. To
this end, Stalnaker's syntactic formalization seems to be analogous to the afore-
mentionedstatus quoof the interior semantics for knowledge and of a topological
interpretation for belief, where the interpretation of knowledge is given and a
good semantics for belief is to be unveiled.

Baltag et al. (2013) and©Ozgan (2013), starting from Stalnaker's formalism,
proposed to interpret belief, in particular Stalnaker's belief, asubjective cer-
tainty, in terms of the closure of the interior operatoron extremally disconnected
spaces (Section 4.2 explains the reason for restriction to extremally disconnected

1Among this category, we can mention thedefeasibility analysis of knowledggLehrer and
Paxson, 1969; Lehrer, 1990; Klein, 1971, 1981),no false lemma& account (Clark, 1963), the
sensitivity account (Nozick, 1981), the contextualist account (DeRose, 2009) and thesafety
account (Sosa, 1999). For an overview of responses to the Gettier challenge and a detailed
discussion, we refer the reader to (Ichikawa and Steup, 2013; Rott, 2004).

29
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spaces). This static setting, developed based on extremally disconnected spaces,
however could not be extended with updates fopublic announcementglue to
some structural properties of the extremally disconnected spaces (see Section
4.2.2). One way of dealing with this problem based aall topological spacedead-

ing to weakening of the underlying knowledge and belief logics, has been presented
in (Baltag et al., 2015b). In this chapter, we present a solution approaching the is-
sue from the opposite direction, namely, we propose to restrict the class of spaces
we work with to the class ofhereditarily extremally disconnected spaces.

Outline

Section 4.1 presents Stalnaker's combined system of knowledge and belief, and
lists the important aspects of his work that inspired ©zgan, 2013; Baltag et al.,
2013). In Section 4.2, we review the topological belief semantics Gfzgan, 2013;
Baltag et al., 2013), and, Section 4.2.2 recalls why updates do not work on ex-
tremally disconnected spaces. In Section 4.3, we introduce the material that goes
beyond ©zgan, 2013; Baltag et al., 2013), and model belief, conditional beliefs
and public announcements on hereditarily extremally disconnected spaces and
present several completeness results regardikdp45 and its extensions with
conditional beliefs and public announcements.

This chapter is based on (Baltag et al., 2015a).

4.1 Belief as subjective certainty

Stalnaker (2006) focuses on the properties of knowledge, belief and the relation
between the two. He approaches the problem of understanding the precise con-
nection between knowledge and belief from an unusual perspective by following
a \knowledge- rst" approach. That is, unlike most proposals in the formal epis-
temology literature, he starts with a chosen notion of knowledge and weakens it
to obtain belief. He bases his analysis on a strong conception of belief as \subjec-
tive certainty": from the point of the agent in question, her belief issubjectively
indistinguishable from her knowledge

Stalnaker (2006) works with thebimodal languagd_xg given by the grammar

=pit A KB

augmenting the logicS4¢ with the additional axioms schemes presented in Table
4.1.
Let Stal denote this combined logié. Most of the above axioms, such aS4,

2 What justi es the properties of knowledge and belief stated in Stal may be debatable,
though not in the scope of this dissertation. We refer to (Bjorndahl and Ozgan, 2017) for a
topological-based reformulation of Stalnaker's system.
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(Dg) B !: B:' Consistency of belief

(sP1) B' ! KB Strong positive introspection
(sNI) :B'' ! K:B' Strong negative introspection
(KB) K' 1! B Knowledge implies belief
(FB) B' ! BK' Full belief

Table 4.1: Stalnaker's additional axiom schemes

(Dg), (KB), are widely taken for granted by many formal epistemologists (see
Section 2.1 for some sources). The properties (sPl) and (sNI) state that Stal-
naker's agent has full introspective access to her beliefs. Finally, (FB) constitutes
the key property of belief as subjective certaintythe notion of belief Stalnaker
seeks to capture. In his settingthe agent fully believes i she believes that
she knows if He therefore studies a strong notion of belief that is very close to
knowledge.

From these rst principles formalizing the interplay between knowledge and
belief, Stalnaker (2006) extracts the properties regarding the unimodal fragments
for knowledge and for belief, as well as a de nition of belief in terms of knowledge.
More precisely, he shows that

Stal derives S42 as the pure logic of knowledge (although onl$4c was
initially assumed);

Stal derivesKD45; as the pure logic of belief; and
it proves the equivalenceB' $ KK

He therefore argues|based on the rst principles of the systenttalthat the
\true" logic of knowledge is S42 , that the \true" logic of belief is KD45;, and
that belief is de nable in terms of knowledge as thepistemic possibility of knowl-
edge As a conclusion of the last itemStal constitutes a formalization of knowledge
and belief admitting conceptual priority of belief over knowledge. Moreover, given
the interior semantics for knowledge, the equatioB' $ KK' yields a natural
topological semantics for full belief (Baltag et al., 2013Dzgan, 2013).

4.2 The Topological Semantics for Full Belief

The topological semantics foiStal, and in particular for full belief, was rst stud-

ied in (Baltag et al., 2013;0zgsn, 2013). They propose to extend the interior
semantics for knowledge by a semantic clause for belief, and model belief as the
closure of the interior operatoron extremally disconnected spaces. The restriction

3The converse direction of (FB) is easily derivable inStal.



32 Chapter 4. A topological theory of \justi ed" belief: an initial attempt

to the class of extremally disconnected spaces is imposed by the axiom$ta,
that is, e.g., the axiom (Ds) as well as the derived principles such as g and
(.2¢ ) de ne extremally disconnectness wheiK is interpreted as the interior op-
erators andB is interpreted as the closure of the interior operator (see Gabelaia,
2001, Theorem 1.3.3 for (4&), and ©zg4n, 2013, Propositions 11 and 12 for (§)
and (Kg)). Baltag et al. (2013) provide several topological soundness and com-
pleteness results for both bimodal and unimodal cases, in particular f8tal and
KD45;, with respect to extremally disconnected spaces. In this section we give an
overview of their proposal and list some of the results. The proofs can be found
in (Ozgan, 2013; Baltag et al., 2015a).

4.2.1. Definition.  [Closure-interior semantics forLxg ] Given a topo-model
X = (X; ;V), the semantics for the formulas inLgg is de ned for Boolean
cases anK' in the same way as in De nition 3.1.2. The semantics foB' is
given by

[B' 1= Ci(int([" I)):

Truth and validity of a formula as well as soundness and completeness of logics
are de ned in the same way as for the interior semantics.

4.2.2. Theorem (Baltag et al., 2013). Stalis the sound and complete logic
of knowledge and belief on extremally disconnected spaces under the closure-
interior semantics.

Moreover, Stalnaker's combined logic of knowledge and belief yields the sys-
tems S42¢ and KD45;. It has already been proven thatS42¢ is sound and
complete with respect to the class of extremally disconnected spaces under the
interior semantics (see Theorem 3.1.9). This raises the question of topological
soundness and completeness f&iD45 under the proposed semantics for belief
in terms of the closure and the interior operator

4.2.3. Theorem (Baltag et al., 2013). KD45; is sound and complete with
respect to the class of extremally disconnected spaces under the closure-interior
semantics.

Theorem 4.2.3 therefore shows that the logic of extremally disconnected spaces
is KD45 when B is interpreted as the closure of the interior operator. Besides
these technical results, the closure-interior semantics of belief comes with an in-
trinsic philosophical and intuitive value, and certain advantages compared to the
co-derived set semantics as elaborated in the next section.
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4.2.1 What motivates topological full belief

The closure-interior semantics provides an intuitive interpretation of Stalnaker's
conception of (full) belief assubjective certainty It does so through the de nitions

of the interior and closure operators and the concepts they represent, namely, the
notions ofevidenceand closenessWe have discussed the role of open sets as pieces
of evidence, and of open neighbourhoods of the actual state as pieces of truthful
evidence in Section 3.2. Moreover, it is well known that the closure operator
captures a topological, qualitative notion ofcloseness x is said to beclose toa
setA X i x 2 CI(A). Recalling the proposed topological semantics for full
belief, given a topological spaceX; )and P X, we have

x2BP i x2Cl(Int(P)) (4.2)
I x2 CH(K(P)) (4.2)
I (8U2 )(x2UimpliesU\ KP 6 ;) (4.3)

Therefore, following (4.2),topologically the set of states in which the agent be-
lieves P is very closeto the set of states in which the agent know$ . Taking
open sets as evidence pieces, (4.3) moreover states that an agent (fully) believes
P at a statex i every sound piece of evidence she has atis consistent with her
knowing P, i.e., she does not have any truthful evidence that distinguishes the
states in which she has belief d? from the states in which she has knowledge
of P. Belief, under this semantics, therefore becomes subjectively indistinguish-
able from knowledge. Hence, the closure-interior semantics naturally captures the
conception of belief as \subjective certainty".

Moreover, the closure-interior belief semantics improves on the co-derived set
semantics for the following reasons: (1) belief as the closure of the interior op-
erator does not face the Gettier problem, at least not in the easy way in which
the co-derived set semantics does, when considered together with the conception
of knowledge as interior. More precisely, knowledge as interior cannot be de-
ned as (justi ed) true full belief since, in general,Int (P) 6 CI(Int (P))\ P, i.e.,

KP 6 BP " P; (2) the class of DSO-spaces with respect to whitfD45; is sound

and complete under the co-derived set semantics is a proper subclass of the class
of extremally disconnected spaces (s€zgsn, 2013, Proposition 13). Therefore,
the closure-interior semantics foKD45; is de ned on a larger class of spaces.

Additionally, ©zgun (2013) and Baltag et al. (2013) have studied a topologi-
cal analogue of static conditioning|capturing static belief revision|by providing
a topological semantics for conditional beliefs based on extremally disconnected
spaces. However, this framework encounters problems when extended to a dy-
namic setting by adding update modalities for public announcements, formalized
as model restriction by means of subspaces.
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4.2.2 Problems with updates for public announcements

The topological semantics and associated logics we have studied so far \sé&a#c,
representing the epistemic state of an agent as isolated from receiving further in-
formation. Following the methodology of Dynamic Epistemic Logic (DEL), we
can also represent knowledge and belief change brought about by a piece of new
information by extending the static language withdynamic modalities and de-
signingan update mechanisnthat transforms the initial model into an \updated"
structure. The resulting updated model expresses what is known/believed after
the chosen epistemic action has been performed (see, e.g., van Ditmarsch et al.,
2007; van Benthem, 2011, Baltag and Renne, 2016, for a detailed presentation of
DEL).

The rst, and maybe the most well-known, epistemic action studied in the lit-
erature of DEL is the so-callecpublic announcementéntroduced by Plaza (1989)
and Gerbrandy and Groeneveld (1997). Public announcements are concerned with
learning \hard" information, i.e. information that comes with an inherent war-
ranty of veracity, e.g. because of originating from an infallibly truthful sourcé.In
DEL, in a qualitative setting based on relational semantics or a plausibility order,
public announcements are standardly modelled by restricting the initial model to
the truth set of the new information (see, e.g., Plaza, 1989, 2007; Gerbrandy
and Groeneveld, 1997; van Ditmarsch et al., 2007). Its natural topological ana-
logue, as recognized by Zvesper (2010); Baskent (2011, 2012) (among others), is
a topological update operator using the restriction of the original topology to the
subspace induced by a nonempty subsbBt The described update mechanism for
public announcements is sometimes callagphdate for hard information or hard
update (van Benthem, 2011). In what follows, we simply refer to it asipdate

In order for this interpretation to be successfully implemented, the subspace
induced by the new informationP should possess the same structural properties
as the initial topology that renders the axioms of the underlying static knowl-
edge/belief system sound. More precisely, we demand that the subspace induced
by the new information P be in the class of structures with respect to which
the (static) knowledge/belief logics in question are sound and complete. How-
ever, since extremally disconnectedness is not a hereditary property, the above
mentioned topological interpretation of conditioning with true, hard informa-
tion cannot be implemented on extremally disconnected spaces. This is obviously
analogous to the problem of implementing updates on relational models based
on directed preorders (see, e.qg., Balbiani et al., 2012, for a more general explana-
tion regarding preserving frame conditions in public announcement logic). Baltag
et al. (2015b) present a solution for this problem by changing the semantics for
belief as theinterior of the closure of the interiors operator and modelling public
announcements on all topological spaces. In Section 4.3 though, we con ne the

4The \public" aspect of an announcements is relevant only in a multi-agent settings, encoding
the fact that all agents receive the same information conveyed by the announcement.
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topo-models to the largest subclass that preserves extremally disconnectedness
under taking arbitrary subspaces, namely to the class dfereditarily extremally
disconnected(h.e.d) spaces This also requires a re-evaluation of the underly-
ing static knowledge and belief systems. Before presenting the modi ed setting
based on h.e.d spaces, we explain the problem regarding updates on extremally
disconnected spaces in a more precise manner.

Topological updates for public announcements. We now consider the lan-
guagel ;; obtained by adding to the language. g (existential) dynamic public
announcement modalitiest' i , reading\' is true and after the public announce-
ment of' ,  becomes true!' The dual operator [! ] is de ned as usual ash!" i: ,
and [' ] reads as\after the public announcement of , becomes trué.

4.2.4. Definition.  [Restricted Model] Given a topo-modeX = (X; ;V ) and
' 2Lg,thetopo-modelX' =([']; ";V')is called therestricted mode] where

ri1=rr.
"=fu\[']ju2 g, and

V' (p)=V(p)\ [ ] foranyp 2 prop .

In other words, ([ ]; ') is the subspace ofX; ) induced by [ J. The semantics
for the dynamic modalitiesh' i is then given as

i =1 1 :

Updates in general are expected to cause changes in an agent's knowledge
and belief in some propositions, however, the way she reasons about her epis-
temic/doxastic state, in a sense the de ning properties of the type of agent we
consider, should remain una ected. This amounts to saying that any restricted
model should as well make the underlyingtatic knowledge and belief logics
sound. In particular, as we work with rational, highly idealized normal agents
that hold consistent beliefs, we demand them not to lose these properties after
an update with true information. With respect to the closure-interior semantics,
these requirements are satis ed if and only if the resulting structure is extremally
disconnected: under the topological belief semantics, both the axiomMdrmality

B(C~ )$ (B "B) (Kg)
and the axiom ofConsistency of Belief
B"!: B:' (Dg)

characterize extremally disconnected space®Zgun, 2013, Propositions 11 and
12). Therefore, if the restricted model is not extremally disconnected, the agent
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comes to have inconsistent beliefs after an update with hard true information. In
order to avoid possible confusions, we note th&? is never true with respect
to the closure-interior semantics sinceg?] = Cl(Int(;)) = ;. By an agent
having inconsistent beliefs, we mean that she believes mutually contradictory
propositions such as and: ' at the same time, without in fact believingB? ,
as also illustrated by the following example.

4.2.5. Example. Consider the Alexandro topo-modelX = (X; ;V ) where

X = fX1;X2; X3: %40, = FX; 55 FX40; F X2, X40; f X35 Xa0; T X2; X3, X499 @and V (p) =
fXq1;X2; %30 and V(q) = fXx;;x49 for somep; g 2 prop . It is easy to see that
X corresponds to a directed re exive transitive relational frame as depicted in
Figure 4.1a, where the re exive and transitive arrows are omitted. It is easy to
check that (X; ) is an extremally disconnected space anq!: B: qis valid
in X. We stipulate that x; is the actual state andp is truthfully announced. The
updated (i.e., restricted) model is therX? = ([ p]; P; VP) where [p] = fX1;X2; X30,

P = flpl;;; fX20;fX30; fX2; X399, VP(p) = fX1;X2;X3g and VP(q) = fxzg. Here,
(I,l; P) is not an extremally disconnected space (similarly, the underlying Kripke
frame is not directed) sincef x3g is an open subset of (f]; P) but Cly(fxs0) =
fx1; X3g is not open in (o], P). Moreover, asx; 2 [Bq]*® = Cly(Int o(fx20)) =
fx1;X20 and x; 2 [B: gI*r = Clp(Int o(f X1; X30)) = fX1;X30, the agent comes to
believe bothqg and : g, implying that the restricted model falsies (Dg) at X;.
Consequently, it also falsi es (i) since B(g”: ]*" = ;.

(b) ([pl; P;VP)

Figure 4.1: Update of K; ;V ) by p.

One possible solution for this problem is extending the class of spaces we
work with: we can focus on all topological spaces instead of working with only
extremally disconnected spaces and provide semantics for belief in such a way that
the aforementioned problematic axioms become valid on all topological spaces.
This way, we do not need to worry about any additional topological property that
is supposed to be inherited by subspaces. This solution, unsurprisingly, leads to a



4.3. The Belief Logic of H.E.D Spaces 37

weakening of the underlying static logic of knowledge and belief. It is well known
that the knowledge logic of all topological spaces under the interior semantics
is S4 (Theorem 3.1.6), and the (weak) belief logic of all topological spaces is
studied in (Baltag et al., 2015b). In the next section, we work out another solution
which approaches the issue from the opposite direction: we further restrict our
attention to hereditarily extremally disconnected spacethereby guaranteing that
no model restriction leads to inconsistent beliefs. As the logic of hereditarily
extremally disconnected spaces under the interior semanticsS€3¢ (Theorem
3.1.10), the underlying static logic, in this case, would consist i843« as the
logic of knowledge but agairKD45; as the logic of belief as shown in the next
section®

4.3 The Belief Logic of H.E.D Spaces

In this section, we present the underlying static logic of belief for the closure-
interior semantics, and then extend this setting based on h.e.d. spaces for condi-
tional beliefs and public announcements.

Even though we work with a more restricted class, the belief logic of h.e.d.
spaces is stillKD45; . While the soundness of this system follows from Theorem
4.2.3 since every h.e.d. space is extremally disconnected, its topological complete-
ness will be shown by using its Kripke completeness. To this end, we rst need to
build a connection betweerKD45frames and h.e.d. spaces that is similar to the
one presented in Section 3.1.2, and prove their modal equivalence for the language
Lg analogous to Proposition 3.1.4-(1).

4.3.1 Connection between KD45frames and h.e.d. spaces

Recall that KD45frames are serial, transitive and Euclidean Kripke frames. Since
truth of modal formulas with respect to the standard relational semantics is pre-
served under taking generated submodels (see, e.g., Blackburn et al., 2001, Propo-
sition 2.6), we can use the following simpli ed relational structures as Kripke
frames ofKD45;.

4.3.1. Definition.  [Brush/Pin]

A relational frame (X; R) is called abrushif there exists a nonempty subset
C X suchthatR=X C;

A brush is called apin if jX nCj= 1.

5The logical counterpart of the fact that extremally disconnected spaces $42-spaces) are
not closed under subspaces is tha$4:2 is not a subframe logic (see Chagrov and Zakharyaschev,
1997, Section 9.4). The logical counterpart of the fact that hereditarily extremally disconnected
spaces §43-spaces) are extremally disconnected spaces closed under subspaces is that the
subframe closure ofS4:2 is S43, (see Wolter, 1993, Section 4.7).
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(a) Brush (b) Pin

Figure 4.2: An example of a brush and of a pin, where the top ellipses illustrate
the nal clusters and an arrow relates the state it started from to every element
in the cluster.

Clearly, if such aC exists, it is unique; call it the nal cluster of the brush.
It is easy to see that every brush is serial, transitive and Euclidean (see Figure
4.2). For the proof of the following lemma see, e.g., (Chagrov and Zakharyaschev,
1997, Chapter 5) and (Blackburn et al., 2001, Chapters 2, 4).

4.3.2. Lemma. KD45; is a sound and complete with respect to the class of
brushes, and with respect to the class of pins. In fa¢{D45 is sound and com-
plete with respect to the class of nite pins.

Similar to the construction in Section 3.1.2, we can build an Alexandro h.e.d.
space from a given pin. The only extra step consists in taking the re exive closure
of the initial pin. More precisely, for any frame K; R), let R* denote there exive
closure of R, de ned as

R" =R[f (x;x)jx2Xg:

Given a pin (X;R), the set g+ = fR"(x) j X 2 X g constitutes a topology on
X. In fact, in this special case of pins, we haves- = fX; C;;g whereCis the
nal unique cluster of (X;R). Therefore, it is easy to see thatX; r+) is an
Alexandro h.e.d. space. In fact, X; r+) is a generalized Sierphski space where
C does not have to be a singleton (see Figure 4.3).

This construction leads to a natural correspondence between pins and Alexan-
dro h.e.d. spaces. In particular, for any Kripke modelM = (X;R;V ) based on
a pin, we setl (M ) = ( X; r+;V). Moreover, any two such model$1 and | (M)
make the same formulas of g true at the same states, as shown in Proposition
4.3.4.

4.3.3. Lemma. Let (X;R) be a pin andC denote the nal cluster of (X;R),
and let Int and Cl denote the interior and closure operators, respectively, in the
topological spacgX; r+). Then for all x 2 X and everyA X:

1. RX)= C2 g+;
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0
@) (X;R) (b) (X; r+) (c) Sierpinski space

Figure 4.3: From pins to Alexandro h.e.d. spaces

2. Int(A)\C & ; ifandonly if A C;
3. CI(A)= X ifand only if A\C & ;;
4. if Cl(Int (A)) 6 ; then CI(Int (A)) = X.

Proof:

(2) follows from the fact that R = X C (De nition 4.3.1). (2) and (3) are direct
consequences of the construction of- , thatis, r- = fX; C;;g. And, (4) follows
from (2) and (3), sinceCl(Int (A)) 6 ; implies that Int (A) 6 ;. 2

4.3.4. Proposition. For all ' 2 L g, any Kripke modelM = (X;R;V) based
on a pin andx 2 X,
Mi;xE" i1 I(M)xE™"

Proof:

The proof follows by subformula induction on ; cases for the propositional vari-
ables and the Boolean connectives are elementary. So assume inductively that the
result holds for ; we must show that it holds also for := B

M:;xFB i RXx j jM (the relational semantics ofB)
i C jji jiM (Lemma 4.3.3-1)
i c []™ (induction hypothesis)
i Int([ TMH\C6& ; (Lemma 4.3.3-2)
i Cl(Int([ ™)) =X (Lemma 4.3.3-3)
i x2 Cl(Int([ 7™y (Lemma 4.3.3-4)
i I((M);xE B (the closure-interior semantics oB)

2
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4.3.5. Theorem. KD45 is sound and complete with respect to the class of
hereditarily extremally disconnected spaces under the closure-interior semantics.

Proof:

Soundness follows from Theorem 4.2.3 and the fact that every hereditarily ex-
tremally disconnected space is extremally disconnected. For completeness, let
' 2 Lg suchthat' 62KD45. Then, by Lemma 4.3.2, there exists a relational
modelM = (X;R;V), where (X;R) is a pin, andx 2 X such thatM ;x § ' .
Therefore, by Proposition 4.3.4, we obtain (M );x 6 ' . Sincel (M) is heredi-
ratily extremally disconnceted, we obtain the desired result. 2

Theorem 4.3.5 therefore shows that the (belief) logic of h.e.d. spaces is also
KD45;. The class of h.e.d. spaces of course restricts the class of extremally dis-
connected spaces, however, it is still a larger class than the class of DSO-spaces.

4.3.6. Proposition.  Every DSO-space is hereditarily extremally disconnected,
however, not every h.e.d. space is a DSO-space.

Proof:

Recall that a DSO-space is a dense-in-itself topological space (i.e., a space with no
singleton opens) in which every derived set(A) is open. Let (X; ) be a DSO-
space and P; p) its subspace induced by the nonempty se® X . Observe
that, for all A P, we haveds(A) 2 p sinced(A) 2 andds(A)= d(A)\ P.
Now supposeU 2 p and considerClp(U). Since Clp(U) = dp(U) [ U and
dr(U) 2 p, we immediately obtain that Clp(U) 2 p. Therefore P; p) is ex-
tremally disconnected. Hence, every subspace of;( ) (including in particular
(X; ) itself) is extremally disconnected. As an example of an h.e.d. space that is
not DSO, consider the Sierpnski space given in Figure 4.3c: the Sierpnski space
has a singleton open, therefore, it is not dense-in-itself. 2

We can further generalize the belief semantics on h.e.d. spaces for static con-
ditioning.

4.3.2 Static conditioning:  conditional beliefs

Static conditioning captures the agent's revised beliefs about how the world was
before learning new information. This is in general implemented by conditional
belief operatorsB"  read as\if the agent would learn' , then she would come
to believe that was the case before the learninglBaltag and Smets, 2008, p.
12). Conditional beliefs therefore are static and hypothetical by nature, hinting at
possible future belief changes of the agent. In the DEL literature, the semantics
for conditional beliefs is generally given in terms of sphere models (Grove, 1988),
or equivalently, in terms of plausibility models (van Benthem, 2007; Baltag and
Smets, 2008; van Benthem and Pacuit, 2011).
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In this section, we provide a topological semantics for conditional beliefs based
on h.e.d. spaces. This topological semantics has been studied @zgan, 2013;
Baltag et al., 2013) based on extremally disconnected spaces, where the dynamic
extension encountered the problem explained in Section 4.2.2.

We can obtain the semantics for a conditional belief modalitg  in a natural
and standard way by relativizing the semantics for the simple belief modality to
the extension of the learned formula . By relativization we mean a local change
that only a ects one occurrence of the belief modality3' , and that does not cause
a real change in the model. Similar to the case iMOgzgsen, 2013; Baltag et al.,
2013) for extremally disconnected spaces, we can relativize the belief semantics
in two di erent ways. To recap, given a topo-modelX = (X; ;V ) based on an
extremally disconnected topology , we can describe the extension of a belief
formula in the following equivalent ways

B 12 cignt ([ 1) € int(Ci(nt ([ 1)):

While the relativization of (1) leads to

[B 1=Ci I\ Int(C 1! [ D) (4.4)

the relativization of (2) results in

[B 1=t 1! CIC I\ Int(@ 1! [ D) (4.5)

where [ J! [ ]is used as an abbreviation forXn[' D[ [ 1.

However, as elaborated in®@zgsn, 2013), the rst semantics (4.4) does not
work well as a generalization of belief on extremally disconnected spaces, and
the same arguments still hold on h.e.d. spaces. For example, it validates the
equivalences

K''$: B'>%$: B :'

which give a rather unusual de nition of knowledge in terms of conditional be-
liefs. The rst of these equivalences also shows that tleenditional belief operator

is not a normal modality (as the Necessitation rule for conditional beliefs stated
in Theorem 4.3.7 does not preserve validitiy). Moreover, this semantics validates
only a few of the AGM postulates stated in terms of conditional beliefs as in The-
orem 4.3.7 (see Alchouron et al., 1985, for the classical AGM theory). On the
other hand, the second relativization does not possess any of the above aws, and
moreover validates all the AGM postulates formulated in terms of conditional be-
liefs as shown below (see Baltag and Smets, 2008, 2006, for the treatment of AGM
theory in terms of conditional beliefs as a theory of static belief revision). We refer
to (Baltag et al., 2015a) for the proofs of the results stated in the remaining of
this chapter.
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4.3.7. Theorem. The following formulas are valid in h.e.d. spaces with respect
to the topological semantics for conditional beliefs and knowledge giver{(4rb)

Normality: B(C! )r B"! B )
Factivity: K

Persistence of Knowledge: K' ! B’

Strong Positive Introspection: B * ! KB '

Success of Belief Revision: B’

Consistency of Revision: CK:' 1. B'?

Inclusion: B" ' B(! )
Rational Monotonicity: B (! )»B: ! B"

Moreover, the Necessitation rule for conditional beliefs
from " infer B '
preserves validity.

Given the semantics in (4.5), we also obtain the following validities de ning
conditional beliefs in terms of knowledge, and simple belief in terms of conditional
belief, respectively:

B $ K(C 'hKi( "K(C ! ),
B $ B>"

Adding these two equivalences to a complete axiomatization &4 3« therefore
yields a complete logic of knowledge and conditional beliefs with respect to h.e.d.
spaces.

4.3.8. Theorem. The sound and complete logi&CB of knowledge and condi-
tional beliefs with respect to the class of h.e.d. spaces is obtained by adding the
following equivalences to any complete axiomatization &3y :

1.B $ K(C 'h Ki(" *K(C ! )
2.B" $ B>

Against this static background, we can further axiomatize the logic of public
announcements, knowledge and conditional beliefs, following the standard DEL{
technique: This is done by adding toKCB a set of reduction axioms that give
us a recursive rewriting algorithm to step-by-step translate every formula con-
taining public announcement modalities to a provably equivalent formula in the
static language. The completeness of the dynamic system then follows from the
soundness of the reduction axioms and the completeness of the underlying static
logic (see, e.g., Section 7.4 of van Ditmarsch et al., 2007 for a detailed presenta-
tion of completeness by reduction, and see Wang and Cao, 2013 for an elaborate
discussion of axiomatizations of public announcement logics).
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4.3.9. Theorem. The sound and complete dynamic logitKCB of knowledge,
conditional beliefs and public announcements with respect to the class of h.e.d.
spaces is obtained by adding the following reduction axioms to any complete ax-
iomatization of the logicKCB:

1.Hip$ (¢ ~p 4. MK $ (AKC 'hri))
2.0 i $ (Ahri) 5.WiB $ (“BYIhi)
3R A )$ (Wi Ahri) 6. Wi i $hINi i

4.4 Conclusions and Continuation

In this chapter, we presented our very rst attempt to formalize a notion of
evidence-based \justi ed" belief by using topological semantics based on ex-
tremally disconnected spaces, rst proposed injzgsn, 2013; Baltag et al., 2013).
The belief semantics based on hereditarily extremally disconnected spaces was
later investigated in (Baltag et al., 2015a).

To summarize, starting with the conception of knowledge as the interior opera-
tor, and building on Stalnaker's principles regarding the relation between knowl-
edge and belief (Table 4.1), we proposed a topological semantics of belief as
subjective certaintyin terms of the closure of the interior operator. While the
proposed topological semantics provides an intuitive and natural interpretation
for the conception of belief as subjective certainty (see Section 4.2.1), it also yields
the standard logic of belieKD45; both on extremally and hereditarily extremally
disconnected spaces (Theorems 4.2.3 and 4.3.5, respectively). The transition from
extremally disconnected spaces to hereditarily extremally disconnected spaces is
motivated by the fact that the topological semantics based on extremally dis-
connected spaces falls short of dealing with public announcements as shown in
Section 4.2.2. However, even this restricted class of h.e.d. spaces generalizes the
topological belief semantics based on the co-derived set operator sikd5; is
the logic of DSO-spaces when belief is interpreted as the co-derived set opera-
tor, and the class of DSO-spaces is a proper subclass of the class of h.e.d. spaces
(Proposition 4.3.6). Moreover, when studied in tandem with the notion of knowl-
edge as the interior, the belief semantics in terms of the closure of the interior
operator does not yield a de nition of knowledge as true belief (unlike belief as
the co-derived set operator, see Section 3.3).

At a high level, this chapter takes a further small step toward developing
a satisfactory epistemic/doxastic formal framework in which we can talk about
evidential grounds of knowledge and belief. It does so by extending the interior-
based topological semantics for knowledge by a semantic clause for belief, which
arguably works better than the aforementioned proposal based on the co-derived
set operator. However, within the current setting, everything we can say about
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evidence has to be said at a purely semantic level (see Section 3.2 and Section
4.2.1 to recall the topological, evidence-related readings of knowledge and belief,
respectively). As we have not yet introduced any \evidence modalities”, the modal
language cannot really say anything concerning the link between evidence and
belief, or evidence and knowledge, let alone represent di erent notions of evidence
possession.

This provides motivation for the framework we develop in the next chap-
ter. Chapter 5, improving on the evidence logic of van Benthem and Pacuit (2011)
based on neighbourhood semantics, introduces a new topological semantics for
various notions of evidence, evidence-based justi ed belief, knowledge and learn-
ing, where the studied notions of evidence are made explicit in the corresponding
syntax via matching modalities.



Chapter 5

Justi ed Belief, Knowledge and the
Topology of Evidence

In this chapter, we propose a topological semantics for various notionsesMidence
evidence-based justi cation, beliefand knowledgeand explore the connection be-
tween these epistemic notions. The work presented in this chapter is to a great
extent based on taking a newtopologicalperspective to the models for evidence,
belief and evidence-management proposed by van Benthem and Pacuit (2011),
and developed further by van Benthem et al. (2012, 2014). The framework de-
veloped in this chapter moreover generalizes and improves on our own work on a
topological semantics for Stalnaker's doxastic-epistemic logic presented in Chap-
ter 4.

The in uential approach, initiated by van Benthem and Pacuit (2011); van
Benthem et al. (2012, 2014), represents evidence semantically|roughly speaking,
as sets of possible worlds|based on neighbourhood structures as well as syntac-
tically by introducing evidence modalities. Their setting goes beyond and gener-
alizes the formal treatment of the aforementioned epistemic notions in terms of
relational structures, such as Kripke and plausibility models, and non-relational
models, such as Grove sphere models. We here take a further step toward im-
proving the formal, modal theoretical treatment of evidence, justi ed belief and
knowledge by revealing the hidden topological structure of the evidence models of
van Benthem and Pacuit (2011). The topological perspective enables more ne-
grained and re ned mathematical representations of various notions of evidence,
such asbasic evidence, combined evidence, factive evideaoe (non-)misleading
evidence as well as relevant epistemic notions such asgument and justi ca-
tion (based on evidence), and, in turnjusti ed belief and (in-)defeasible knowl-
edge Consequently, we obtain a semantically and syntactically rich setting that
provides a more in-depth logical analysis regarding the role of evidence in reaching
an agent's epistemic/doxastic state. We also examine several types of evidence
dynamics introduced in (van Benthem and Pacuit, 2011) and apply this setting to
analyze and address key issues in epistemology such as \no false lemma" Gettier

45
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examples, misleading defeaters, and undefeated justi cation versus undefeated
belief. Our main technical results are concerned with completeness, decidability
and nite model property for the associated logics.

Outline

Section 5.1 serves as a semi-formal introduction and summary of the chapter,
emphazising the important features of its content. In Section 5.2, we introduce
the evidence models of van Benthem and Pacuit (2011) as well as dapolog-
ical evidence models, and provide semantics for the notions of basic, combined
and factive evidence. We moreover provide topological de nitions for argument
and justi cation. In Section 5.3, we propose a topological semantics for a no-
tion of justi ed belief while comparing our setting to that of van Benthem and
Pacuit (2011). We then generalize our semantics of (simple) belief for conditional
beliefs. Section 5.4 de nes the model transformations induced by evidence-based
information dynamics such as public announcements, evidence addition, evidence
upgrade and feasible evidence combination. In Section 5.5, we propose a topolog-
ical interpretation for a notion of fallible knowledge and connect our formalism
to some important discussions emerged in the post-Gettier epistemology litera-
ture, such as stability/defeasibility theories of knowledge, misleading vs. genuine
defeaters etc. Finally, Section 5.6 presents all our technical results. The reader
who is interested in the technical aspect only can jump to Section 5.6 directly.

This chapter is based on (Baltag et al., 2016a,b)

5.1 Introduction

One of our main goals in this chapter, that we also share with van Benthem and
Pacuit (2011); van Benthem et al. (2012, 2014), is to study notions oElief and
knowledge for a rational agent who is in possession of sofpessibly false, possibly
mutually contradictory) pieces of evidenceA central underlying assumption is
that an agent's rational belief and knowledge is based on the available evidence,
namely, the evidence she has acquired via, e.g., direct observation, measurements,
testimony from others etc. We therefore do not take belief or knowledge as the
primitive notions, they are represented as \derived" notions purely based on
evidence. Toward designing a formal setting that can capture these ideas (among
others), we use the uniform evidence models of van Benthem and Pacuit (2011),
with a special focus on the topology generated by the evidence. In the following,
we provide a detailed overview of the epistemic notions studied in this chapter,
introduce the modalities we consider, and explain where our work stands in the
relevant literature.
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A crucial reason as to why the approach presented in this chapter improves
on the settings of Chapters 3 and 4 is that we here introduce evidence modali-
ties in order to also provide syntactic representations of notions of evidence, and
eventually to build evidence logicsin particular, we study the operator of \hav-
ing (a piece of) evidence for a propositio?" proposed by van Benthem and
Pacuit (2011), but we also investigate other interesting variants of this concept:
\having (combined) evidence forP", \having a (piece of) factive evidence for
P" and \having (combined) factive evidence forP". Table 5.1 below lists the
corresponding evidence modalities together with their intended readings.

Eo' the agent has a basic (piece of) evidence for

E' the agent has a (combined) evidence for

20 the agent has a factive basic (piece of) evidence for
2' the agent has factive (combined) evidence for

Table 5.1: Evidence modalities and their intended readings

The basic pieces of evidenggossessed by an agent are modelled as honempty
sets of possible worlds. Aombined evidencéor just \evidence", for short) is any
nonempty intersection of nitely many pieces of evidence. This notion of evidence
is not necessarily factivg, since the pieces of evidence are possibly false (and pos-
sibly inconsistent with each other). The family of (combined) evidence sets forms
a topological basis, that generates what we call thevidential topology This is
the smallest topology in which all the basic pieces of evidence are open, and it
will play an important role in our setting. In fact, the modality 2' capturing the
concept of \having factive evidence fof " coincides with the interior operator in
the evidential topology (see Section 5.2.2). We therefore use the interior semantics
of McKinsey and Tarski (1944) to interpret a notion offactive evidence (this is
unlike the case in Chapter 4, where the interior operator was treated as knowl-
edge). We also show that the two factive variants of evidence-possession operators
(20 and 2) are more expressive than the non-factive oneg{ and E): when in-
teracting with the global modality, the two factive evidence modalitie ,' and
2' can de ne the non-factive variantsE,' and E' , respectively, as well as many
other doxastic/epistemic operators.

The notion of justi ed belief we study in this chapter will be de ned purely
by means of the notions of evidence mentioned above. We propos&aheren-
tist" semantics for justi cation and justi ed belief, that is obtained by extending,
generalizing, and (to an extent), streamlining the evidence-model framework for

LFactive evidence is true in the actual world. In epistemology it is common to reserve the
term \evidence" for factive evidence. But we follow here the more liberal usage of this term in
(van Benthem and Pacuit, 2011), which agrees with the common understanding in day to day
life, e.g. when talking about \uncertain evidence", \fake evidence", \misleading evidence" etc.
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beliefs introduced by van Benthem and Pacuit (2011). The main idea behind the
belief de nition of van Benthem and Pacuit (2011) seems to be that the rational
agent tries to form consistent beliefs, by looking at alitrongest nitely-consistent
collections of evidenceand she believes whatever is entailed by all of thefriTheir
belief de nition therefore crucially depends on a notion of \strongest" evidence,
and it works well in the nite case (whenever the agent has nitely many pieces
of basic evidence) as well as isomein nite cases. But, as already noted in (van
Benthem et al., 2014), this setting has the shortcoming that it can produdacon-
sistent beliefsin the general in nite case. A more technical defect of this setting
is that the corresponding doxastic logic does not have the nite model property
(see van Benthem et al., 2012, Corollary 2.7 or van Benthem et al., 2014, Corol-
lary 1). In this chapter, we propose an \improved" semantics for evidence-based
belief, obtained by, in a sense, weakening the de nition from (van Benthem and
Pacuit, 2011). According to us, a propositiorP is believed ifP is entailed by
su ciently strong nitely-consistent collections of evidence This de nition co-
incides with the one of van Benthem and Pacuit (2011) for the models carrying
nite evidence collections, but involves a di erent generalization of their notion
in the in nite case. In fact, our semanticsalways ensures consistency of belief
even when the available pieces of evidence are mutually inconsistent. We also
provide a formalization of argumentand a \coherentist” view on justi cations.
An argument essentially consists of one or more evidence sets supporting the
same proposition (thus providing multiple evidential paths towards a common
conclusion); ajusti cation is an argument that is not contradicted by any other
available evidence. Our de nition of belief is equivalent to requiring that® is
believed i there is someg(evidence-basgdusti cation for P, therefore, accurately
captures the concept of \justi ed belief". Our proposal is also very natural from

a topological perspective; it is equivalent to saying thaP is believed i it is true

in \almost all* epistemically possible stateswhere \almost all" is interpreted
topologically as \all except for a nowhere-dense set". We moreover generalize this
belief semantics for conditional beliefs. Table 5.2 below lists the belief modalities
we study in this chapter.

B' the agent has justi ed belief in’
B the agent believes conditionally on'

Table 5.2: Belief modalities and their intended readings

2To be sure, this is still vague since we have not yet specied what a \strongest nitely-
consistent collections of evidence" means (we return to formalize these notions in Section 5.2.1),
however, this much precision should be su cient to explain the rough idea behind the belief
de nition of van Benthem and Pacuit (2011), and our notion of justi ed belief studied in this
chapter.
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Moving on to knowledge there are a number of di erent notions one may
consider. First, there is \absolutely certain” or \infallible" knowledge, akin to
Aumann's concept of partitional knowledge (Aumann, 1999) or van Benthem's
concept of hard information (van Benthem, 2007). In our single-agent setting,
this can be simply de ned as the global modality (quantifying universally over
all epistemically possible states). There are very few propositions that can be
known in this infallible way (e.g., the ones known by introspection or by logical
proof). Most facts in science or real life are unknown in this sense. It is therefore
more interesting to look at notions of knowledge that are less-than-absolutely-
certain, namely, the so-calledlefeasible knowledgén our framework, we consider
both absolutely certain knowledge and defeasible knowledge, but our main focus
will be on the latter notion. See Table 5.3 below for the corresponding knowledge
modalities and their readings.

[8] the agent infallibly knows'
K' the agent fallibly (or defeasibly) knows

Table 5.3: Knowledge modalities and their intended readings

The famous Gettier counterexamples (Gettier, 1963) show that simply adding
\factivity” to belief will not give us a \good" notion of defeasible knowledge:
true (justi ed) belief is extremely fragile (i.e., it can be too easily lost), and
it is consistent with having only wrong justi cations for an accidentally true
conclusion. We here formalize a notion of defeasible knowledge saying thit \
is (fallibly) known if there is a factive justi cation for P". We therefore study a
notion of knowledge de ned asorrectly justi ed belief. As elaborated in Section
5.5.1, this less-than-absolutely-certain notion of knowledge nds its place in the
post-Gettier literature as being stronger than the one charaterized by the \no false
lemma" of Clark (1963) and weaker than the conception of knowledge described
by the defeasibility theory of knowledge championed by Lehrer and Paxson (1969);
Lehrer (1990); Klein (1971, 1981).

Yet another path leading to our setting in this chapter goes via our previ-
ous work (Baltag et al., 2013, 2015a), presented in Chapter 4, on a topological
semantics for the doxastic-epistemic axioms of Stalnaker (2006). Recall that Stal-
naker's systemStal (see Table 4.1) is meant to capture a notion of fallible knowl-
edge, in close interaction with a notion of \strong belief" de ned assubjective
certainty. The main principle speci c to this system was that \believing implies
believing that you know" captured by the axiom of Full Belief 8 ! BK' ). The
topological semantics that we proposed for these concepts ®zgun, 2013; Baltag
et al., 2013, 2015a) was overly restrictive (being limited to the rather unfamiliar
class of extremally disconnected and hereditarily extremally disconnected topolo-
gies). In this chapter, we show that these notions can be interpreted on arbitrary
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topological spaces, without changing their logic. Indeed, our de nitions of belief
and knowledge can be seen as the natural generalizations to arbitrary topologies
of the notions in (Ozgsen, 2013; Baltag et al., 2013, 2015a).

We completely axiomatize the various resulting logics of evidence, knowledge,
and belief, and prove decidability and nite model property results. We moreover
study a few dynamic extensions, encoding di erent types of evidential dynam-
ics. Our technically most challenging result is the completeness of the richest
logic containing the two factive evidence modalitie2 o' and 2' , as well as the
global modality [8]' . This logic can de ne all the modal operators mentioned
above. While the other proofs are more or less routine, the proof of this result
involves a nontrivial combination of known methods.

5.2 Evidence, Argument and Justi cation

In this section, we introduce the (uniform) evidence models of van Benthem and
Pacuit (2011) as well as outopological version, and provide the formal seman-
tics of the evidence modalities given in Table 5.1. More precisely, we focus on
the operator \having a basic (piece of) evidence for a propositidd" (from van
Benthem and Pacuit, 2011), as well as the variants capturing \having (combined)
evidence forP", \having a basic (piece of)factive evidence forP" and \having
(combined) factive evidence foP". We explain how a rational agent can put
her basic evidence pieces together in a \ nitely consistent” way toward forming
combined evidencgestrongestand strong enough evidengeand eventually, her be-
liefs. We moreover provide topological de nitions forargumentand justi cation
purely based on evidence.

5.2.1 Evidencea la van Benthem and Pacuit

5.2.1. Definition.  [Evidence Models (van Benthem and Pacuit, 2011)] Aav-
idence modelis a tuple M = ( X; Ey; V), where

X is a nonempty set ofpossible worldor stateg,

Eo P (X) is a family of sets calledbasic evidence setgor pieces of evi-
dence, satisfying X 2 E; and ; 62 &, and

V :prop !'P (X) is a valuation function.

The evidence models presented in (van Benthem and Pacuit, 2011; van Ben-
them et al., 2014) are more general, covering cases in which evidence depends on
the actual world, i.e., in which each state may be assigned di erent set of neigh-
bourhoods. In this chapter, however, we stick with what they call \uniform"
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models (given in De nition 5.2.1), which corresponds to working with agents who
are \evidence-introspective®.

Note that evidence models are not necessarily based on topological spaces,
i.e., B is not de ned to be a topology (it may not even constitute a topological
basis). However, topo-models given in De nition 3.1.1 constitute a special case of
evidence modelé.We would like to elaborate more on the structural properties of
evidence models and explain which epistemic concepts they intend to represent.

The family E; is almost an arbitrary nonempty collection of subsets of a given
domain, carefully designed to capture certain aspects of the type of evidence
that is intended to be formalized. First of all, the subsets, represents the set
of evidence the agent has acquired about the actual situatiomlirectly via, e.g.,
testimony, measurement, approximation, computation or experiment. It is the
collection of evidence the agent gathered so far, and it is all our rational, idealized
agent has to form her beliefs and knowledge. The collection of evidence the agent
possesses is uniform across the states, i.e., the set of evidence the agent has does
not depend on the actual state. This corresponds to working with an \evidence-
introspective” agent, that is, the agent is absolutely sure about what evidence
she has and what it entails.

The two properties of By, namely, X 2 Eq and ; 62 i impose the following
constraints, respectively:

Tautologies are always evidence, and
Contradictions never constitute direct evidence.

Unlike the common practice in epistemology, where the term \evidence" is
generally reserved for factive evidence, van Benthem and Pacuit (2011) and van
Benthem et al. (2012, 2014) follow a more liberal, in a sense, more realistic view
on evidence which agrees with the common usage in day to day life, e.g. when
talking about \uncertain evidence", \fake evidence", \misleading evidence". They
not only consider evidence gathered from absolutely reliable and truthful sources,
but also take into accountfallible information coming from a possibly unreli-
able source:a piece of evidence irgy does not have to contain the actual state
Moreover, the evidence gathered from di erent sources (or even from a single
source) may be mutually inconsistentthe intersection of evidence pieces may be
empty. Therefore, the evidence models of van Benthem and Pacuit (2011) (as

3Since we never consider the more general case and focus only on the topological extension
of their uniform evidence models, we use the term \evidence model" exclusively for the uniform
evidence models of van Benthem and Pacuit (2011); van Benthem et al. (2014), given above in
De nition 5.2.1.

4As an even more special case, we can also think of Grove/Lewis Sphere spaces. These are
topological spaces in which the open sets are \nested", i.e. for every; U°2 | we have either
U U%oru®® U (see, e.g., Example 5.3.1).

5Standardly, as in the relational semantics and the interior semantics, the actual situation
is represented by a statex of X called the actual state or the real world.
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well as our topological evidence models) take into account that the agent might
be collecting evidence from di erent sources that may or may not be reliable,
however, it is assumed that all her current sources are equally reliable (or equally
unreliable) as no special order or quantitative measure is de ned on the elements
of B. Under these assumptions, what is expected from a rational agent toward
forming consistent beliefs based on the collection of evidence pieces she has, is to
evaluate every piece of evidence she possesses in a coherent and holistic way, and
put them together in a nite and consistent manner. This leads to the notions of

( nite ) bodies of evidencand combined evidenceconceptions with crucial roles

in formation of consistent beliefs based on fallible evidence, and of the evidential
topology. In what follows, we provide technical de nitions of the evidence-related
auxiliary notions that are adopted from van Benthem and Pacuit (2011), and will

be used throughout this chapter.

Bodies of evidence, Evidential Support and Strength

. . . . o T .
We call a collection of evidence piecds E ( consistentif F 6 ;, and incon-
sistent otherwise. In order to ease the notation, we leA , B to be read asA
is a nite subset of B

5.2.2. Definition.  [(Finite) Body of Evidence] Given an evidence modé{l =
(X; Ey; V), a body of evidencés a nonempty familyF E ( of evidence pieces such
that every nonempty nite subfamily is consistent. More formally, a nonempty
family F E o is a body of evidence if

\
(8F° fin F)F°6 ; implies F%6:):

A nite body of evidenceF 1, Ey is therefore simply q nite set of mutually
consistent pieces of evidence, that i§; ¢, Eysuchthat F 6 ;.

Therefore, a body of evidence is simply a collection of evidence pieces that has
the nite intersection property, and that represents the agent's ability of putting
evidence pieces together in anitely consistent way.

Given an evidence modeM = ( X; Ey; V), we denote \by

F:=fF Eoj(8F° i F)F°6 ; implies F%6:)g
the family of all bodies of evidencever M, ar{d by
F" =fF  Bj F6;g

the family of all nite bodies of evidence Both the interpretation of evidence-
based belief of van Benthem and Pacuit (2011) and our proposal for justi ed
belief, as well as the notion of defeasible knowledge we study in this chapter
crucially rely on the notion of body of evidence. But, in order to be able to talk
about theseevidence-basethformational attitudes, we rst need to specify what

it means for a proposition to besupportedby a body of evidence.
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5.2.3. Remark. Throughout Sections 5.2-5.5, we use the following conventions
to ease the presentation. Given an evidence moddl = ( X; E; V) (or, a topo-
e-modelM = (X; E; ;V) de ned later), we call any subsetP X a proposi-
tion. We say a propositionP X is true at x if x 2 P. The Boolean connec-
tives:,~, ,! , on propositions are de ned standardly as set operations: for
any P;Q X,weset:P = XnP,P*"Q=P\Q,P_Q:=P[ Qand
P! Q:=(XnP)[ Q. Moreover, the Boolean constants and ? are given as
> = X and ? := ;. Following this convention, we de ne the semantics of the
aforementioned modal operators for evidence, belief and knowledge introduced in
Tables 5.1-5.3 as set operators frofa (X ) to P(X) (and for the binary modal-
ity of conditional belief, from P(X) P (X) to P(X)). These set operators give
rise to the interpretations of the corresponding modalities of the full languade
(given in Section 5.6) in a standard way.

5.2.4. Definition.  [Evidential Support] Given an evidence modeé¥l =( X; E; V)
and a propositionP X, a body of eviden?d: supportsP if P is true in every
state satisfying all the evidence i, i.e.,if F P.

It is easy to see that a body of evidenc€ is inconsistent i it supports every
proposition (since; P, for all P). The strength orderbetween bodies of evidence
is given by inclusion: F F%means thatFCis at least as strong as~. Note
that stronger bodies of evidence support more propositions: K FO then
every proposition supported byF is also supported byF° A body of evidence is
maximal (\strongest") if it is a maximal element of the poset ¢; ), i.e., ifitis
not a proper subset of any other such body. We denote by

Max F:=fF2Fj (8F°2F)F F° F =F9g

the family of all maximal bodies of evidencef a given evidence model. By Zorn's
Lemma, every body of evidence can be strengthened to a maximal body of evidence
ie.,

8F 2F9F%2 Max F(F F9:

Therefore, in particular, every evidence model has at least one maximal body of
evidence, that is,Max F & ;.

In fact, for nite bodies of evidence, the notions of evidential support and
strength can be represented in a more concise way via the notion of combined
evidence, which, to anticipate further, is represented by basic open sets of the
evidential topology generated fronk, (see Section 5.2.2).

Combined Evidence and Evidential Basis

5.2.5. Definition.  [Combined Evidence]
Given an evidence modeM = (X; E;V), a combined evidencgor, evidence
for short) is any nhonempty intersection of nitely many basic evidence pieces. In
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T
other words, a nonempty subsee X is a combined evidence ie= F, for
someF 2 F fin |

A combined evidence therefore is just a repackaging of a nite body of evidence
in terms of its intersection. We denote by

\ .
E=f FjF2Ffng

the family of all (combined evidence which in fact constitutes a topological basis
over X . We will return to the topological versions of evidence models in Section
5.2.2.

The de nitions evidential supportand strengthare adapted for the elements of
E in an obvious way. A (combined) evidence 2 E supportsa propositionP X
if e P. In this case, we also say thae is evidence forP. The natural strength
order between combined evidence sets therefore is given by the reverse inclusion:
e e”means thate’is at least as strong ag. This is1both tort with the strength
order on bodies of evidence (sinde  F%implies F F9, and to ensure
that stronger evidence supports more propositions (since, éf €° then every
proposition supported bye is supported bye).

Recall that E, represents the collection of evidence pieces that are directly
observed by the agent. The elements of the derived detherefore serve as indirect
evidence which is obtained by combining nitely many pieces of direct evidence
together in a consistent way. This does not mean that all of this evidence is
necessarily true. We say that some (basic or combined) evidereg E is factive
evidenceat state x 2 X whenever it is true atx, i.e., if x 2 e. Similarly, a boqu of
evidenceF is factive if all the pieces of evidence i are factive, i.e., ifx 2 F.

Having presented the primary semantic concepts used in the representation of
(basic and combined) evidence, we proceed with our topological setting.

5.2.2 Evidence on Topological Evidence Models

For any nonempty setX and any family of subsets of X, we can construct a
topology on this domain by simply closing under nite intersections and arbi-
trary unions (see Section 2.2). Therefore, every evidence modiél= ( X; Ey; V)
can be associated with amvidential topologythat is generated by the set of basic
evidence piece&y, or equivalently, by the family of all combined evidencé&. In
this section, we introduce the topological evidence models, generated from evi-
dence models of van Benthem and Pacuit (2011) in the above described way, and
provide topological formalizations of a notion ofargumentand a \coherentist"
form of justi cation (in the spirit of Lehrer (1990)) based on the topological mod-
els. We moreover give the precise interpretations of the modaliti€s’ and E’

for basic and combined evidence possession, respectively, as well as their factive
versions2, and?2'.
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5.2.6. Definition.  [Topological Evidence Model] Atopological evidence model
(or, in short, a topo-e-mode) is a tuple M = (X; Ey; ; V), where (X; E;V) is an
evidence model and = ¢ is the topology generated by the family of combined
evidenceE (or equivalently, by the family of basic evidence setk), which is
called the evidential topology

The families By and E obviously generate the same topolog)E is the closure of
E, under nonempty nite intersections. We denote the evidential topology byg
only because the familyE of combined evidence forms &asis of this topology.
Since any familygy, P (X) generates a topology oveK , topo-e-models are just
another presentation of evidence models described in De nition 5.2.1. We use this
special terminology to stress our focus on the topology, and to avoid ambiguities,
since our de nition of belief in topo-e-models will be di erent from the de nition

of belief in evidence models of van Benthem and Pacuit (2011).

Argument and Justi cation. Given a topo-e-modeM = (X; Ey; ;V ) and a
proposition P X, we say

S
an argument for P is a unionU = — E° of some nonempty family of (com-
bined) evidenceE® E , each separately supporting® (i.e., e P for all
e 2 E° or equivalently, U  P).

Epistemologically, an argument forP provides multiple evidential pathse 2 E°
to support the common conclusiorP. Topologically, an argument forP is the
same as anonempty open subset d?: a set of statesU is an argument forP |
U2 andU P. Therefore, the opennt (P) forms the weakest (most general)
argument for P, since it is the largest open subset d?.

A justi cation for P is an argumentU for P that is consistent with every
(combined) evidence (i.e.J\ e6 ; foralle2 E, thatis, U\ U°6 ; for
all U°2 nf,g).

Justi cations are thus de ned to be arguments that are undefeated (i.e., whose
negations are not supported) by any available evidence or any other argument
based on this evidence. Topologically, a justi cation folP is just a dense open
subsetof P: a set of statesU is a justi cation for Pi U2 suchthatU P
and Cl(U) = X. As for evidence, an argument or a justi cationU for P is said

to be factive (or \correct") if it is true in the actual world, i.e., if x 2 U.

The fact that arguments are open in the generated topology encodes the prin-
ciple that any argument should be evidence-basaghenever an argument is cor-
rect, then it is supported by some factive evidence. To anticipate further: in our
setting, justi cations will form the basis of belief while correct justi cations will
form the basis offallible (defeasible) knowledg®ut before moving to justi ed be-
lief and fallible knowledge, we introduce a stronger, irrevocable form of knowledge
that is captured by the global modality.
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Infallible Knowledge: possessing hard information. We use 8] for the
so-calledglobal modality, which associates to every propositiol? X, some
other proposition B]P, given by putting:

X ifP=X

[8]P := ;. otherwise

In other words, B]P holds (at any state) i P holds at all states. In this setting,
[8]P is interpreted as \absolutely certain,infallible knowledgé&, de ned as truth

in all the worlds that are consistent with the agent's informatiofi. This is a limit
notion capturing a very strong form of knowledge encompassing all epistemic pos-
sibilities. It is irrevocable i.e., it cannot be lost or weakened by any information
gathered later. In this respect, 8]P could be best described ggossession of hard
information. Its dual [9]P := : [8]: P expresses the fact thaP is consistent with
(all) the agent's hard information.

We would like to note here that infallible knowledge§]' is not the most in-
teresting notion of knowledge we study in this chapter, and it is harshly criticized
by many epistemologists (see, e.g., Hintikka, 1962). However, having this strong
modality in our framework is useful for both conceptual and technical reasons:
while it helps us to see the di erence between infallible and fallible knowledge,
the global modality, in general, adds to the expressive power of modal languages.
In particular, it will allow us to express all the other modalities we work with
in terms of only the modalities2,' and 2' when interacting with the global
modality [8]' (see Proposition 5.6.2).

Having Basic Evidence for a Proposition. Van Benthem and Pacuit (2011)
de ne, for every propositionP X, another propositionEqP by ”:

X if9e2Ey(e P)

EoP = - otherwise

The modal sentencdeEgP therefore intends to capture possession of basic (direct)
evidence for the propositiorP, thus reads as \the agenhas basic evidence foP".

In other words, EqP states that P is supported by some basic piece of evidence
Additionally, we introduce a factive version of this proposition,2 oP, that is read
as \the agent hasfactive basic evidence foP", and is given by

20P = fx2X j9e2Ey(x2e P)o:

61n a multi-agent model, some worlds might be consistent with one agent's information, while
being ruled out by another agent's information. Therefore, in a multi-agent setting, [8;] will
only quantify over all the states in agenti's current information cell (according to a partition
of the state space re ecting agenti's hard information). We will present a multi-agent epistemic
system in Chapter 8.

’Van Benthem and Pacuit (2011) denote this by 2P, and it is denoted by [E]P in (van
Benthem et al., 2014). We useEP for this notion, since we reserve the notationEP for having
combinedevidence forP, and 2 P for having combined factiveevidence forP.
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Having (Combined) Evidence for a Proposition. The above notions of
evidence possession based on having basic evidence for a propositions can be gen-
eralized to having (combined) evidence for a proposition. This way, we obtain two
other evidence operatorsEP , meaning that \the agent has (combined evidence

for P", and 2P, meaning that \the agent has factive (combined evidence for

P". More precisely,EP and 2 P are given as follows:

X if9e2E(e P)
: otherwise

2P =fx2X j9e2E(x2e P)g

SinceE is a basis of the evidential topology g, we have thatthe agent has
evidence for a propositionP i she has an argument forP. SOEP can also be
interpreted as \having an argument forP". Similarly, 2P can be interpreted as
\having a correct argument for P". Moreover, 2 operator for having combined
factive evidence coincides with the topological interior operator (see equations
(3.1)-(3.3) in Section 3.2), thus, it coincides with the knowledge operator under
the interior semantics presented in Chapter 3. This observation therefore points
to a major di erence between the framework introduced in this chapter and the
approach based on the interior semantics presented in Chapters 3 and 4: while in
the interior semantics the interior operator represents \knowledge of" something,
in our interpretation the interior represents only \having true evidence for" some-
thing. The di erence arises from the fact that an agent may be in possession of
some evidence that happens to be true, without the agent necessarily knowing,
or even believing, that this evidence is true. To better understand the di erence,
we need a topological understanding dieliet

EP =

5.3 Justi ed Belief

In this section, we propose a topological semantics for a notion of evidence-based
justi ed belief. We do this by modifying, and in a sense, eliminating the \bugs”

in the belief de nition proposed by van Benthem and Pacuit (2011) based on evi-
dence models. While our proposal coincides with that of van Benthem and Pacuit
(2011) on evidence models carrying a nite set of basic evidence pieEgsand in
some in nite cases, in general ours is \better" behaved. To name a few reasons,
among others, our proposal leads to a notion of belief that iepologically natural
always consistentand in fact, it satis es the axioms of the standard doxastic logic
KD45 on all topo-e-modelsTo better explain the origins and inspiration of our
proposal, we rst recapitulate the belief de nition of van Benthem and Pacuit
(2011). We then introduce our de nition of justi ed belief, and show how and
when the two proposals coincide. We also provide several equivalent characteri-
zations of our proposed notion of justi ed belief, and generalize this setting for
conditional beliefs.
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5.3.1 Beliefa la van Benthem and Pacuit

In their work, van Benthem and Pacuit (2011) present an evidence-based notion
of belief de ned on the evidence models. According to their de nition,

P is believed i every maximal (i.e., strongest) body of evidence suppoRs

We denote this notion by Bel. More formally, given an evidence modeM =
(X; BEp; V) and a propositionP X,

\
BelP holds (at any state) i (8F 2 Max F)( F P):3®

However, as can be seen directly from the above de nitioBel is inconsistent on
evidence models whose every maximal body of evidence is inconsistent.

5.3.1. Example. Consider the evidence modeéWl = (N; Ey; V), where the state
space is the selN of natural numbers,V(p) = ;, and the basic evidence family
isE=f[n1)jn2 Ng-ﬁsee Figure 5.1). The only maximal body of evidence in
B is K itself. However, E,= ;. SoBel? holds inM.

Figure 5.1: M = (N; Ey; V)

This phenomenon only happens in (some cases af)nite models, so it isnot

due to the inherent mutual inconsistency of the available evidence. At a high
level, the source of the problem seems to be the tension between the way the
agent combines her evidence pieces and the way she forms her beliefs based her
evidence: while she puts her evidence pieces together imiely consistent way,
having consistent beliefs requires possibly in nite collections to have nonempty

8As already noticed in (van Benthem and Pacuit, 2011; van Benthem et al., 2014), in many
but not all cases, this is equivalent to treating plausibility models as a special case of evidence
models where the plausibility relation is given by the evidential plausibility order v g de ned as

XVEYIi (862Ep)(x2eimpliesy2e)i (8e2E)(x2 eimpliesy?2 e);

and applying the standard semantics of belief on plausibility models as \truth in all the most
plausible states". The relation between evidence models and plausibility models, as well as the
connection between the notions of belief de ned on these structures are subtle. We skip the
details on this issue here, and refer to (van Benthem and Pacuit, 2011, Section 5) and (van
Benthem et al., 2014, Section 3) for details.
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intersections. More precisely, even though it is guaranteed by de nition that every
nite subfamily of a maximal body of evidence is consistent, the whole maximal
body of evidence may actually be inconsistent. Therefore, in order to avoid this
problem, we could instead focus omaximal nite bodies of evidence as blocks
of evidence forming beliefs: these are, by de nition, guaranteed to be always
consistent. However, this solution inevitably restricts the class of evidence models
we can work with, simply because an in nite evidence model might not bear any
maximal nite body of evidence. To illustrate this, we can think of the evidence
model presented in Example 5.3.1: the set of basic evidertgas the only maximal
body of evidence in N; E; V), and it is in nite. Therefore, in order to eventually

be able to provide a belief logic of all evidence models that formalizes a notion of
consistent belief, further adjustments in the de nition ofBel are warranted. To
this end, we propose to \weaken" the belief de nition of van Benthem and Pacuit
(2011) in the sense that we focus oall nite bodies of evidence that are \strong
enough"instead of focusing on all the $trongest such bodies.

5.3.2 Our Justi ed Belief

It seems to us that the intended goal (only partially ful lled) in (van Benthem
and Pacuit, 2011) was to ensure that the agents are able to form consistent
beliefs based on the (possibly false and possibly mutually contradictory) available
evidence. We think this to be a natural requirement fordealized rationalagents,
and so we consider doxastic inconsistency to be \a bug, not a feature”, of the van
Benthem-Pacuit framework. Hence, we now propose a notion that produces in a
natural way|with no need for further restrictions|only consistent beliefs, and
also that agrees with the one in (van Benthem and Pacuit, 2011) in many cases
speci ed below.

The intuition behind our proposal is that a propositionP is believed i it is
supported by all \su ciently strong" evidence We therefore say thatP is believed
and write BP, i every nite body of evidence can be strengthened to some nite
body of evidence which suppor®. More formally, given an evidence modeé¥l =
(X; Eg; V) and a propositionP X,

\
BP holds (at any state) i 8F 2F MM 9F°2F MM (F  F%and F° P):

The notion of beliefB (like Bel) is a \global" notion, which depends only on
the agent's evidence, not on the actual world, so it is either true in all possible
worlds, or false in all possible worlds. We therefore have

| | T
X if8F 2FfMMOF°2F M (F Fland F° P)

BP := ;. otherwise

This re ects the assumption that beliefs are internal (and fully transparent) to
the agent (Baltag et al., 2008).



60 Chapter 5. Justi ed Belief, Knowledge and the Topology of Evidence

It is easy to see that, unlikeBel, our notion of beliefB is always consistent
(.,e., B? = B; =), since no nite body of evidence has an empty intersection.
Moreover, it satis es the axioms of the standard doxastic logiKD45 (see Section
5.6.2). As shown in Example 5.3.2, our notion of beli® and Bel are in general
incompatible (even in cases wheBel is consistent). On the other hand, these two
notions coincide on a restricted class of evidence models (see Proposition 5.3.3).

5.3.2. Example. We now present two models showing thaB and Bel are not
comparable in general. More precisely, the rst example below illustrates that
BP does not implyBelP, and the second model shows th&elP does not imply
BP even whenBel is consistent.

Consider the evidence modeM = (N [feg ;E);V), where N is the set of
natural numbers, V(p) = ;, and the set of basic evidence i& = feg ji 2
Ng[ff ngjn2 Ngwheree =[i;1)[feg (see Figure 5.2).

Figure 5.2:M = (N[fg ;EyV)

We then have that
Max (F)=ffeji2 Ngg[ff eji ng[ff mggjn;m2 Nwith m ng:

Therefore, for anyF2Max (F), we have

Vo fg ifF=feji2Ng

fmg ifF=feji ng[ff mggwith m n:

We thus obtain thatSF2Max (F)T F = N[feg . This meansthatBel(N[feg )=
Bel> holds inM, and moreover,N[feg is the only proposition that is believed
according to the belief de nition of van Benthem and Pacuit (2011). Thus, in
particular, Bel(N) = ;, hence,Bel(N) does not hold inM (i.e., no state in
N[fig makesBel(N) true). On the other hand, we haveF 2 F" i F =
feji2lg orF=1fe ji2I1g[ff mggfor somel ¢, Nandm max(l),
wheremax(l) is the greatest natural number inl . Therefore, for everyF 2 F fin |
we have

\F_ [max(1);1)[feg ifF="feji2lg;
- fmg ifF=feji2lg[ff mggform max(l):

This implies that, any nite body F of the formfeg ji 2 1g[ff mgg already
supports N. Moreover, if F = fe ji 2 | g, there exists a stronger nite bodyF°



5.3. Justi ed Belief 61

of the form F°= fe ji 2 Ig[ff mgg for somem max(l) that supports N.
We therefore have thatB (N) holds in M. Hence, in generalBP does not imply
BelP.

Now consider the evidence modeé¥l = (N [feg ;E3; V) based on the same
domain asM, and whereV (p) = ; and the basic evidence famil{g) = f[n;1 ) [
feg j n 2 Ng (see Figure 5.3). The only maximal body of evidence ig is EY

Figure 5.3: M°= (N [fg ;E};V)

itself, andT EY = fog . Therefore, we have Bel? in MY i.e., Bel is consistent in
M © Moreover, in particular, Belf-gl- holds inM . On the other hand, for all nite
bodiesF 2 F " we havefeg (  F, implying that : Bfeg in M2 Therefore,
even whenBel is consistent,BelP does not implyBP .

There are some special cases whdadel and B do coincide. First of all, our
notion of belief B coincides with Bel on the evidence models with nite basic
evidence setd,. More generally,Bel and B coincide on allmaximally compact
evidence models: the ones in which every body of evidence is equivalent to a
nite body of evidence. More formally, an evidence model = (X; E;V) is
called maximally compactif it satis es the property

A\ \
8F 2F9FC2FM( F= F9 (MC)

5.3.3. Proposition.  For all maximally compact evidence modeM =( X; E; V)
andP X, we haveBelP = BP.

Proof:
Let M = (X; E; V) be a maximally compact evidence model and  X.

( -} SupposeBelP holds in M, i.e., suppose that for allF 2 Max F, we
have F P. Now let F°2 Ff" By Zorn's Lemma, F° can be extended
to a maximal bogy of evidence=*2 F . Note that, since F*extendsF¥ i.e.,
FO F%wehave E%  FC SinceM is maximally compact, there isFo 2 F fin
guch that F°Q|: Fo. Now; consider the family of evidenceo [ FC Since

Fo= F® F° we have (Fo[ F9= Fo\ F°= Fy6 ;. Therefore,
the family of evidenceF,[ FCis a nite body of evidence, i.e.,Fo[ F°2 Ffn .
Obviously, Fo [ FextendsFS ie,F® Fo[ K% Moreover, ginceBelP holds in
M, we have that F% P. We then obtain (Fo[ FO9= Fy= F® P,
We have therefore proven that the nite body of evidenc&,[ F°extendsF°and
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it entails P. As F%has been chosen arbitrarily fronF " |, we conclude thatBP
holds in M.

() SupposeBP holds in M, i.e., spppose that for allF 2 F ™ , there ex-
ists F2 F" such thatF F%and F° P. Let F2 Max F. Then,
sinceM is maximally compact, there existsFq 2 F ™ such that F%=  Fy
Moreover, sinceBP holdsjn M, there existsF, 2 F fin such that F, F; and

F, P. Besides, since F; Fo = F%and F%js maximal, we in fact
have F; F°9r(otherwi§e, there existse 2 Egrsuch thate 2 F; but e 62F %

herefore, as F; F% we would have F; (FO%f eg), and thus

(F°}f eg) &, contradicting maximality of F°) Therefore, + F* F1, and
thus, F;= F% Then, together with F, P, we obtain F% P, AsF%®
has been chosen arbitrarily fronMax F, we conclude thatBelP holds inM. 2

Another important feature of our belief de nition is that B is a purely topo-
logical notion, as stated in the following proposition which, in turn, constitutes a
justi cation for our use of topo-e-models rather than working with only evidence
models.

5.3.4. Proposition.  In every topo-e-modeM = ( X; E; ;V ), the following are
equivalent, for any propositionP  X:

1. BP holds(at any state T
(i.e.,, 8F 2FfNQFO2 Ffn(F  F%and F° P));

2. every evidence can be strengthened to some evidence suppoRing
(i.e., 88 2E 9’2 E(e° e\ P));

3. every argument(for anything) can be strengthened to an argument fd?
(i.e., 8U2 nf;g9 U°2 nf,g(U° U\ P));

4. there is a justi cation for P, i.e., there is some argument foP which is
consistent with any available evidence
(e, 9U 2 (U P and8e2E(U\ €6 ;)));

5. P includes some dense open set
(e, 9U 2 (U P and Cl(U) = X));

6. Int(P) is densein (i.e., Cl(Int(P)) = X), or equivalently, XnP is
nowhere dense (i.ent (CI(X nP)) = ;);

7. [8]32 P holds(at any statg (i.e., [8]32 P = X), or equivalently,[8]32 P 6

Proof:
The equivalence between (1), (2) and (3) is easy, and follows directly from def-
initions of combined evidence and argument. The equivalence of (5) and (6) is
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also straightforward (recall thatInt (P) is the largest open contained irP). The
equivalence between (4) and (5) simply follows from the de nitions of arguments
and dense sets. For the equivalence of (6) and (7), recall tha][is the global
modality, 2 is interior and 3 is closure. For the equivalence of (3) and (4):
(3)) (4): Suppose (3) holds and consider the open skt (P). We will show
that Int (P) is a justi cation for P, i.e.,Int(P)\ e6 ; foralle2 E. Lete2E.
By (3), sincee2 E nf,g , there existsUy 2 nf;g such thatU, e\ P. We
then haveint (Uy) Int(e\ P)= Int(e)\ Int(P). Therefore, sincel, and e are
open sets, we obtaitJy, e\ Int(P). As Uy 6 ;, we conclude thate\ Int(P) 6 ;.
(4)) (3): Suppose (4) holds, i.e., suppose that there exist$ 2 such that
@ Uy P and () U\ e6 ; foralle2 E. LetU 2 with U 6 ;. Now
consider the open setU\ Uy. SinceE is a basis of , there existse 2 E such that
e U. Therefore, by (b), the intersectionU\ Uy 6 ;, thus, U\ Uy 2 nf;g. By
(@), we also haveU\ Uy, U\ P. 2

Proposition 5.3.4 deserves a closer look as it describes the topological proper-
ties of our notion of belief, as well as states that our belief is the samejasti ed
belief that is coherent with every available evidence. The equivalence between
(1), (2) and (3) shows that we can de neBP in equivalent ways by using only
basic evidence pieces (i.e., the elements &), or by using only combined evi-
dence (i.e., the elements oE), or by using only the open sets of the generated
evidential topology g. Proposition 5.3.4-(4) proves that our de nition of belief
indeed gives us a conception @videntially justi ed belief. The requirement that
any justi cation of a believed proposition must beopenin the evidential topology
simply means that the justi cation is ultimately based on the available evidence;
while the requirement that the justi cation is dense(in the same topology) means
that all the agent's beliefs must be coherent with all her evidence. Therefore, be-
lieved propositions, according to our de nition, are those for which there is some
evidential justi cation that is consistent with all available (basic or combined)
evidence. Moreover, whenever a propositioR is believed, there exists aveak-
est (most general) justi cation for P, namely the open setint (P). Proposition
5.3.4-(5-7) provide topological reformulations of the above items. In particular,
Proposition 5.3.4-(6) shows that our proposal is very natural from a topological
perspective: it is equivalent to saying thatP is believed i the complement o
is nowhere dense Since nowhere dense sets are one of the topological concepts
of \small" or \negligible" sets, this amounts to believing propositions i they are
true in almost all epistemically-possible worlds, where \almost all" spelled out
topologically as \everywhere but a nowhere dense part of the model”. Finally,
Proposition 5.3.4-(7) tells us that belief is de nable in terms of the operators3]
and 2.

We will provide further technical results such as the soundness and complete-
ness of the belief logic with respect to the topo-e-models in Section 5.6.2. We now
proceed with formalizing a notion of conditional beliefs on topo-e-models.
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5.3.3 Conditional Belief on Topo-e-models

The belief semantics given in Section 5.3.2 can be generalizeccomditional be-
liefs BRP by relativizing the simple belief de nition BP to the given condition

Q, in a way similar to how we obtained conditional belief semantics in Section
4.3.2. However, this current setting requires a somewhat more careful treatment
(as recognized already in van Benthem and Pacuit, 2011) since some of the agent's
evidence might be inconsistent with the conditior@Q. While evaluating beliefs un-
der the assumption that the given conditionQ is true, one should focus only
on the evidence that is consistent withQ by neglecting the evidence pieces that
are disjoint with Q. Therefore, in order to de ne conditional beliefs, we need a
\relativized" version of the notion of consistent (bodies of) evidence.

Given an evidence modeM = ( X; E;V), for any subsetsQ;A X, we say
that A is Q-con§istenti Q\ A 6 ;. Moreover, a body of evidenc& is called
Q-consistent i F\ Q 6 ;. We can then de ne conditional beliefs based on
these notions of \conditional consistency”. We say thaP is believed giverQ,
and write BOP, i every nite Q-consistent body of evidence can be strengthened
to some nite Q-consistent body of evidence supporting the propositiégh! P
(i.,e. : Q[ P)).

An analogue of Proposition 5.3.4 providing di erent characterizations can also
be proven for conditional belief:

5.3.5. Proposition.  In every topo-e-modeM = ( X; E; ;V ), the following are
equivalent, for any two proposition®?;Q X with Q6 ;:

1. BOP holds (at any state);

2. every Q-consistent evidence can be strengthened to so@econsistent evi-
dence supportingQ! P
(i.e., 8e2E(e\ Q6 :)9 €2E(°\ Q6 : ande® e\ (Q! P));

3. everyQ-consistent argument can be strengthened tdaconsistent argument
forQ! P
(i.,e., 8U2 (U\Q86;)9 U2 (U\N Q8 ; andU® U\ (Q! P)));

4. there is someQ-consistent argument forQ ! P whose intersection with
any Q-consistent evidence i€Q-consistent
(e, QU 2 (U\ Q6 ; and U Q! Pand8e 2 E(e\ Q6 ;)
U\ e\ Q6 ;));

5. Q! P includes someQ-consistent open set which is dense @
(e, U2 (U\ Q6 ; andU Q! PandQ CI(U\ Q));

6. Int(Q! P) is densein Q
(ie., Q CI(Q\ Int(Q! P));
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7.8(Q! 3(Q"2(Q! P))) holds(at any state) (i.e., 8(Q! 3(Q"2(Q'!
P))) = X), or equivalently,8(Q! 3(Q"2(Q! P)) 6 ;.

Proof:

The equivalence between (1), (2), (3) is easy and directly follows from the se-
mantics of BeP, and the de nitions of Q-consistent evidence and-consistent
argument. For the equivalence between (5) and (6), consider the weakest argu-
mentInt (Q! P)for Q! P. And, for the equivalence of (6) and (7), recall that
[8] is the universal quanti er, 2 is interior and 3 is closure. We here show only
the equivalence between (3) and (4), and between (4) and (5) in details.

(3)) (4): Suppose (3) holds and consider the weakest argumént (Q! P)
forQ! P. SinceX 2 E and X is Q-consistent, by (3), there exists a stronger
U2 suchthatU\ Q6 ; andU Q! P. Sincelnt(Q! P) is the largest
open withInt(Q! P) Q! P, we obtainU Int(Q! P) Q! P
for any suchU, therefore,Int (Q ! P) is also Q-consistent. Lete 2 E be such
that e\ Q 6 ;. Therefore, sinceE , by (3), there existsU®2  such that
U\ Q6 ; andU® e\ (Q! P). By the previous argument, we know that
U® Int(Q! P),thus,U° e\ Int(Q! P)6 ;.And, sinceU%s Q-consistent,
the result follows.

(4)) (3): Suppose (4) holds, i.e., suppose that there i4y 2 such that (a)
U\ Q6 ;,(b)U Q! P and (c)foralle2 E with e\ Q 6 ;, we have
(Ul &\ Q6 ;.LetU2 besuchthatU\ Q 6 ; and consider the open set
U\ Uyp. SinceU\ Q 6 ; and E is a basis for , there existsey 2 E such that
e Uande\ Q6 ;. Therefore, by (c), we have that U\ &)\ Q 6 ;, thus,
the open setUy\ g is Q-consistent. Moreover, sincéJ, Q! P ande U,
we obtainUp\ ¢g U\ (Q! P).

(4), (5): Forthe left-to-right direction, suppose (4) holds as in the above case,
and toward showingQ Cl(Up\ Q), let x 2 Q ande 2 E such thatx 2 e. There-
fore, e is Q-consistent, i.e.,e\ Q 6 ;. Then, by (4), we obtain U\ e)\ Q6 ;,
implying that x 2 Cl(Up\ Q). For the right-to-left direction, suppose (5) holds
with Ug the witness and lete 2 E be such thate\ Q 6 ;. This means that there
isy2 e\ Q,thus,y2 Q. Then, by (5),y 2 CI(Uy\ Q). Therefore, asy 2 e2 E,
we conclude Ug\ Q)\ €6 ;. 2

5.4 Evidence Dynamics

What we have presented so far focuses on how an agent forms beliefs based on
a xed collection of evidence pieces sh®as gathered so farHowever, collecting
and evaluating evidence is not a one-time process: the agent might receive fur-
ther information or re-evaluate her current evidence set, thus, she might need to
revise her beliefs and knowledge accordingly. There are di erent ways one can
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incorporate new information into the initial evidence structure depending on,
e.g., the information source and how the agent regards the new information. Van
Benthem and Pacuit (2011) presents a wide range of evidence dynamics as model
transformations, and in this section, we study their dynamic operators such as
public announcements, evidence addition, evidence upgrade and (a feasible ver-
sion of) evidence combination implemented on topo-e-models. While the only
domain changing operator is the so-called updates for public announcemets; ev-
idence addition, upgrade and combination only a ect the agent's initial basic
evidence setg,, and thus the combined evidence sdf and the generated topol-
ogy e. We here only describe the corresponding model changes and leave the
presentation of the corresponding dynamic logics for Section 5.6.6. Throughout
this section, we are given a topo-e-mod®l = ( X; E; ;V ) and some proposition

P X,withP6;.

Public Annoucements. Public announcements involve learning a new fad
with absolute certainty. The announced propositiorP is taken as \hard informa-
tion", that is, a true information coming from an infallible source. The standard
way of interpreting this|as also mentioned in Section 4.2.2]is via model re-
strictions, both on relational and neighbourhood structures (see, e.g., De nition
4.2.4). For evidence models, this means keeping only the worldsRnand only
the P-consistent evidence pieces. Topologically, this is a move from the original
space K; ) to the subspacgP; p) induced by P.

5.4.1. Definition.  [Public Announcements]

The modelM® = (X'";EP; 'P;V"™) is dened as follows: X'* = P, B =
fe\ Pje2Eywithe\ P6;9, P=fU\PjU2 g andV'"(p)=V(p)\ P
for eachp 2 prop .

It is easy to check thatM ' is a topo-e-model with the set of combined evidence

EP =fe\ Pje2E with e\ P 6 :g:

Evidence addition. An agent can also regard and admit the new information
on par with her old evidence without assuming it is hard information. In this
case, the natural thing to do is to add the new piece of evidence to the initial
basic evidence set and generate the evidential topology from the new evidence
collection. This action simply describes the most straightforward way an agent
collects individually consistent evidence pieces.

5.4.2. Definition.  [Evidence Addition]
The modelM *P = (X*P;E}P; *P;V*P)isde ned as follows: X *? = X, E;" =
E [f Pg, *F isthe topology generated byg; ", andV*P = V.
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Again, M *P is a topo-e-model, since 62 E” and X*P = X 2 E;", and *Pis
the evidential topology generated byg; © . Moreover, the set of combined evidence
E*P of M*P can be described as

E'P=E[fe\ Pje2E with e\ P 6 ;g;

which clearly constitutes a basis for *P.

Evidence upgrade.  The operator ofevidence upgradé P incorporatesP into
all other pieces of evidence, thus making the most important available evidence.

5.4.3. Definition.  [Evidence Upgrade]
The modelM P = (X*P;E"; *P;V*P)is de ned as follows: X" = X, E," =
fe[ Pje2Eyg[f Pg, ’P is the topology generated byg,”, and VP = V.

M P is obviously a topo-e-model for the same reasons given above, and the set
of combined evidenc&™” of M*P can be described as

EP=fe[ Pje2Eg|[f Pg:

The following observation proves that evidence upgrade witR in fact makes
the propositionP the most important evidence piece in the sense that the believed
propositions inM “P are exactly those entailed byP.

5.4.4. Proposition.  Given a topo-e-modeM = ( X; Ey; ;V ) and propositions
P;Q X withP;Q6 ;,

P Qi BQholdsinM™P:

Proof:

SupposeP 6 Q. This means, by de nition of E'P, that there is no argument
in M™P that supports Q (since every element of E'® includesP). Therefore,
by Proposition 5.3.4-(4), we obtain thatBQ does not hold inM*P. For the

other direction, supposeP  Q and let e 2 E"P. By the de nition of E'P, ei-

ther e = P or there ise® 2 E such thate = €°[ P. If e = P, then obviously
e\ Q=P\ Q= P 8 ; (where we used the assumptioR Q). If e= €°[ P,

thene\ Q=(e[ P)\ Q=(e"\ Q[ (P\ Q) =(e’\ Q[ P P 6 ; (where
we again used the assumptio® Q). Therefore, by Proposition 5.3.4-(4), we
obtain that BQ holds inM "P. 2
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Feasible evidence combination. Another dynamic operation considered in
(van Benthem and Pacuit, 2011) isevidence combinationWe here adapt it to our
topological setting, which assumes that agents can combine only nitely many
pieces of evidence at a given time. This is what we cd#lasible evidence combi-
nation, in contrast to the in nitary combinations allowed in (van Benthem and
Pacuit, 2011). The dynamic operation of evidence combination is concerned with
internal re-evaluation of the evidence pieces the agent possesses, it does not in-
volve any new external information. Feasible evidence combination, intuitively
speaking, produces a model in which every evidence previously regarded as com-
bined evidence becomes a basic piece of evidence.

5.4.5. Definition.  [Feasible Evidence Combination]

The modelM* = (X*;E; #;V*)is dened as follows: X* = X, E; is the
smallest set closed under nonempty, nite intersections and containing,, and
* is the topology generated byE; , and V# = V.

M* is clearly a topo-e-model. In fact, sinc&, is obtained by closingE, under
nite and nonempty intersections, we haveEg = E*¥ = E, and therefore, the
topology stays the same, i.e., = #.

The precise syntax capturing the above evidence dynamics, and the complete
axiomatizations of the corresponding logics will be provided in Section 5.6. We
now continue with our proposal for a defeasible type of knowledge based on topo-
e-models.

5.5 Knowledge

The only notion of knowledge we have considered so far in this chapter was the so-
calledinfallible knowledggepresented by the global modality [ 8]|that conveys
absolute certainty (Section 5.2.2). However, there are very few things we could
know in this strong sense, maybe, say, only logical-mathematical tautologies. We
now de ne a \softer" (weaker) notion of knowledge that approximates better the
common usage of the word than infallible knowledge. In particular, in this section,
we study a notion of (fallible) knowledge based ofactive justi cation . Formally,
given a topo-e-modeM = ( X; Ey; ;V ), we set

KP =fx2X j9u2 (x2U P andCl(U)= X)g;

stating that KP holds atxi P includes a dense open neighborhoodxofSimilarly
to the cases for belief and conditional beliefs (see Propositions 5.3.4 and 5.3.5),
we can provide several equivalent de nitions oKP on topo-e-models as follow.

5.5.1. Proposition. Let M =(X; E; ;V) be a topo-e-model, and assume2
X is the actual world. The following are equivalent for aP  X:



5.5. Knowledge 69

1. KP holds atx in M
(e, 9U 2 (x2U P and Cl(U) = X));

2. there is some factive justi cation for P at X, i.e., there is some factive
argument for P at x which is consistent with any available evidence
(e, 9U2 (x2U P and8e2E(U\ €6 ;)));

3. Int(P) contains the actual state and iglensein
(i.,e., x 2 Int (P) and Cl(Int (P)) = X);

4. 2P N BP holds atx.

Proof:

The proof is similar to the proof of Proposition 5.3.4. For the equivalence between
(1) and (2), recall that E constitutes a basis for . The equivalence of (2) and
(3) is also straightforward (recall thatInt (P) is the largest open set contained in
P). For the equivalence of (3) and (4), see Proposition 5.3.4-(6) and recall that
2 is interpreted as the interior operator. 2

Therefore, as the equivalence between Proposition 5.5.1-(1) and (2) shows, we
propose to de ne knowledge asorrectly justi ed belief. In other words, we here
study a notion of knowledge that is characterized abelief based on true justi -
cation. We would like to emphasize that the above-de ned notion of knowledge
doesnot boil down to \justi ed true belief". This would clearly be vulnerable to
Gettier-type counterexamples (Gettier, 1963). To explain better, we illustrate the
semantics we propose for justi ed belief and knowledge, as well as the connection
between the two notions in the example below.

5.5.2. Example. Consider the topo-e-modeM = ([0;1]; E; ;V ), where i =
f(a;b\ [0;1] ) a;b2 R; a<bgandV(p) = ;. The generated topology is
the standard topology on [01]. Let P = [0;1]nf j n 2 Ng be the proposition
stating that \the actual state is not of the form % for any n 2 N" (see Figure
5.4). Since the complement P = [0; 1]nP = f% jn2 Ngis nowheée dense (i.e.,
Int (CI(: P)) = Int(: P) = ;), the agentbelievesP, and e.g. U = | (i1
is a justi cation for P, that is, U is a dense open subset &f. This belief istrue
at world 0 2 P. But this true belief is not knowledget O: no justi cation for P
is true at 0, sinceP does not include any open neighborhood of 0, s&Gdnt (P)
and hence 062KP . This shows thatKP 6 P ~ BP. Moreover, P is known in

all the other statesx 2 PnfQg, since
8x 2 PnfOg9 > Ox2 (x ;x+ ) P);

thereforex 2 Int (P).
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Figure 5.4: ([Q1], )

Going back to Stalnaker's epistemic-doxastic syster8tal, it is easy to see
that K together with justi ed belief B satis es Stalnaker's Full Belief principle
BP = BKP (see Table 4.1). These operators in fact satisfy all the axioms and
rules of the systemStal on all topo-e-models, thus, onall topological spaces
not only on the restricted class of extremally disconnected spaces. We prove the
soundness and completeness of Stalnaker's syst8ial with respect to all topo-
e-models in Section 5.6.4.

One interesting property of this weaker type of knowledge is it beindefea-
sible in the light of new information, even when the new information is true. In
contrast, the usual assumption in epistemic logic is thatnowledge acquisition is
monotonic. As a result, logicians typically assume that knowledge is \irrevoca-
ble": once acquired, it cannot be defeated by any further evidence gathered later.
In our setting, the only irrevocable knowledge is the absolutely certain one (true
in all epistemically-possible worlds), captured by the operatol8]. Clearly, K is
not irrevocable.

5.5.1 Knowledge is defeasible

Gettier (1963)|with his famous counterexamples against the account of knowl-
edge as justi ed true belief|triggered an extensive discussion in epistemology
that is concerned with understanding what knowledge is, and in particular, with
identifying the exact properties and conditions that render a piece of justi ed true
belief knowledge. Epistemologists have made various proposals such as, among
others, the no false lemma(Clark, 1963), the defeasibility analysis of knowl-
edge(Lehrer and Paxson, 1969; Lehrer, 1990; Klein, 1971, 1981), thensitivity
account (Nozick, 1981), thesafety account(Sosa, 1999), and thecontextualist
account (DeRose, 2009). While there is still very little agreement about these
guestions, the extent of the post-Gettier literature at the very least shows that
the relation between justi ed belief and knowledge is very delicate, and it is not
an easy task, if possible, to identify a unique notion of knowledge that can deal
with all kinds of intuitive counterexamples. However, as Rott (2004) states, one
can accept that all these proposals \capture important intuitions that can in some
way or other be regarded as relevant to the question whether or not a given belief
constitutes a piece of knowledge" (Rott, 2004, p. 469). Providing an extensive
philosophical analysis regarding the aforementioned theories of knowledge is way

9For an overview of responses to the Gettier challenge and a detailed discussion, we refer
the reader to (Rott, 2004; Ichikawa and Steup, 2013).
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beyond the scope of this dissertation. However, in this section, we argue that
our conception of knowledge captured by the modaliti{ is stronger than Clark's
\no false lemma" (Clark, 1963), and very close to (though subtly di erent from)
the so-called defeasibility theory of knowledge held by Lehrer and Paxson (1969);
Lehrer (1990); Klein (1971, 1981).

Clark's in uential \no false lemma" proposal is to require acorrect \justi -
cation" |one that doesn't use any falsehood|for a piece of belief to constitute
knowledge (Clark, 1963). As similar as this sounds to our knowleddé, our
proposal imposes a stronger requirement than Clark's, since our concept of jus-
ti cation requires consistency with all the available (combined) evidence. In our
terminology, Clark only requires a factiveargument for P. So Clark's approach
is “local', assessing a knowledge claim based only on the truth of the evidence
pieces (and the correctness of the inferences) that are used to justify it. Our
proposal is coherentist, and thus "holistic', assessing knowledge claims by their
coherence with all of the agent's acceptance system: justi cations need to be
checked against all the other arguments that can be constructed from the agent's
current evidence.

On the other hand, the defeasibility theory of knowledge, roughly speaking,
defends that knowledge can be de ned gasti ed belief that cannot be defeated by
any factive evidence gathered latefthough it may be defeated by false evidence).
Therefore, knowledge is equated witluindefeated justi ed belief In its simplest
version, as formalized by Stalnaker (2006jhe agent knows? if and only if

1. P is true
2. she believes tha®, and
3. her belief inP cannot be defeated by new factive information.

In other words, given a true propositionP, the agent knowsP i she does not
give up her belief inP after receiving any true information, i.e., her belief irP is
stablefor true information. As Rott (2004) pointed out, this is a simple version
of defeasibility theory of knowledge as it requires only the belief iR itself to
be stable. For this reason, Rott (2004) calls thistable belief theoryor stability
theory of knowledge The above version has been challenged for being too weak
to form knowledge. The full- edged version of the defeasibility theory, as held
by Lehrer and others, insists that, in order to knowP, not only the belief in P
has to stay stable, but also its justi cation (i.e. what we call here \an argument
for P") should be undefeated. More precisely, according to this strong version of
defeasibility theory, the agent knows? if and only if

1. P is true

2. she believes thaP,
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3. her belief inP cannot be defeated by new factive information, and
4. her justi cation is undefeated by new factive information.

In other words, for the agent to knowP, there must exist an argument for
P that is believed conditional on every true evidence. Clearly, this implies that
the belief in P is stable, however, it is not at all obvious whether having stable
belief in P would imply its justi cation being undefeated. Indeed, Lehrer claims
that this is not the case. The problem is that, when confronted with various new
pieces of evidence, the agent might keep switching between di erent justi cations
(for believing P); thus, she may keep believing if? conditional on any such new
true evidence, without actually having any good, robust justi cation (i.e., one
that remains itself undefeated by all true evidence) (see Example 5.5.4). To have
knowledge, we thus need atable justi cation.*?

However, the above interpretation (of both the stability and the defeasibility
theory) was also attacked as beingpo strong: if we allow as potential defeaters
all factive propositions (i.e. all sets of world$ containing the actual world),
then there are intuitive examples showing that knowledg&P can be defeated
(Klein, 1980, 1981). Here is such an example discussed by Klein (1981), a leading
proponent of the defeasibility theory. Loretta lled in her federal taxes, following
very carefully all the required procedures on the forms, doing all the calculations
and double checking everything. Based on this evidence, she correctly believes
that she owes $500, and she seems perfectly justi ed to believe this. So it seems
obvious that she knows this. But suppose now that, being aware of her own
fallibility, she asks her accountant to check her return. The accountant nds no
errors (when there are in fact some errors in her calculation, yet not a ecting the
correct result that she owes $500), and so he sends her his reply reading \Your
return contains no errors"; but he inadvertently leaves out the word \no". If
Loretta would learn the true fact that the accountant's letter actually reads \Your
return contains errors”, she would lose her true belief that she owed $500! So it
seems that there exist defeaters that are true but \misleading”. We can formalize
this counterexample as follows, and show that our knowleddé is neither stable
nor indefeasible:

5.5.3. Example. Considerthe modeM = (X; Ey; ;V ), whereX = fXy;X5;X30,
V(p)=;, Bg=fX;01;0,0, O = fX1;%X20, O, = fX5; X39 (see Figure 5.5). The
resulting set of combined evidence B = fX;O4; O,;fX>,gg. Assume the actual
world is X;. Then Oy is known sincex; 2 Int(0O;) = O; and CI(O;) = X. Now

101 ehrer uses the metaphor of arlltra-Justi cation Game (Lehrer, 1990), according to which
"knowledge' is based on arguments that survive a game between the Believer and an omniscient
truth-telling Critic, who tries to defeat the argument by using both the Believer's current \jus-
ti cation system" and any new true evidence(see Fiutek, 2013, Section 5.2 for a formalization
of Lehrer's ultra-justi cation game).
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consider the modeM *©: = (X; Ej°%; *©3;V) obtained by adding the new ev-
idenceO3 = fXxy;x3g (as in De nition 5.4.2). We have E5’°3 = £X;071;0,; 030,
SOE*©: = £X;04;0,; O3;fXx10; fX0; f X309 Note that the new evidence idrue
(x1 2 Os3). However,O; is not even believedn M * ©2 anymore, sinceD;\f xsg= ;,
soO; is no longer dense in* 3. Therefore, O, is no longer knownafter the true
evidenceO3; was added!

0, N\ O,
.

0, O,

Figure 5.5: FromM to M *©s

Klein's story corresponds to takingO; to represent Loretta's direct evidence
(based on careful calculations) that she owes $500, to represent her prior
evidence (based on past experience) that the accountant doesn't make mistakes
in his replies to her, andOs; the potential new evidence provided by the letter.
In conclusion, our notion of knowledge is incompatible with the above-mentioned
strong interpretations of both stability and defeasibility theory, thus con rming
the objections raised against them.

Klein's solution is that one should exclude suclmisleadingdefeaters, which
may \unfairly" defeat a good justi cation. But how can we distinguish them from
genuine defeaters? Klein's diagnosis, in Foley's more succinct formulation, is that
\a defeater is misleading if it justies a falsehood in the process of defeating
the justi cation for the target belief" (Foley, 2012, p. 96). In the example, the
falsehood is that the accountant had discovered errors in Loretta's tax return. It
seems that the new evidenc®; (the existence of the letter as actually written)
supports this falsehood, but how? According to us, it is the combinatio®,\ Os
of the new (true) evidenceO; with the old (false) evidenceO, that supports
the new falsehood: the true fact (about the letter saying what it says) entails
a falsehoodonly if it is taken in conjunction with Loretta's prior evidence (or
blind trust) that the accountant cannot make mistakes. So intuitively,misleading
defeaters are the ones which may lead to new false conclusions when combined
with some of the old evidence

Misleading evidence and weakly indefeasible knowledge. We proceed
now to formalize the distinction between misleading and genuine (i.e., nonmis-
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leading) defeaters. Given a topo-e-modd®l = (X; E; ;V ), astatex 2 X and a
propositonQ X,

Q is misleading atx 2 X with respect toE if evidence-addition with Q
produces some false new evidence;

equivalently, and more formally, if there is some 2 E* °nE such that x 62, i.e.,
if there is somee 2 E such that x 62e\ Q) and (e\ Q) 62 E [f;g. A proposition
Q X is callednonmisleadingif Q is not misleading. It is easy to see thaold
evidencee 2 E is by de nition nonmisleading with respect toE (i.e., eache 2 E
is nonmisleading with respect toE), and new nonmisleadingevidence must be
true (i.e., if Q X is nonmisleading atx and Q 62 Ethen x 2 Q).

We are now in the position to formulate precisely the \weakened" versions of
both stability and defeasibility theories that we are looking for. The weak stability
theory will stipulate that the agent knowd? if and only if

1. P is true
2. she believes thaP,
3. her belief inP cannot be defeated by anynonmisleadingevidence,

On the other hand, the weak defeasibility theory requires that there exists some
justi cation (argument) for P that is undefeated by every nonmisleading proposi-
tion. More precisely, the weak defeasibility theory strengthens the above described
weak stability theory by the following \stable justi cation" clause:

4. her belief in its justi cation is undefeated by anynonmisleadingevidence.

Finally, we also provide a third formulation, which one might callepistemic co-
herence theory saying that P is known i there exists some justi cation (argu-
ment) for P which is consistent with every nonmisleading propositiokVhile our
proposed notion of knowledge is stronger than the one described by the weak
stability theory, as illustrated by Example 5.5.4, it coincides with the ones de-
ned by the weak defeasibility and epistemic coherence theories (see Proposition
5.5.5). In particular, the following counterexample shows that weak stability is
(only a necessary, but) not a su cient condition for knowledgeK :

5.5.4. Example. Considerthe modeM = (X; Ey; ;V ), whereX = fXgq;X1;X20,
V(p)=;, B =1X;0;;0,gwith O; = fx;0, O, = fXx1;X,0 (see Figure 5.6). The
resulting set of combined evidence = E,. Assume the actual world is<q, and let
P = fXo;X10. Then, P is believedin M (since its interior Int (P) = fx,g is dense
in ) butitis not known (sincexq 62nt (P) = fx;0). However, we can show that
P is believed inM * < for any nonmisleadingQ at x,. For this, note that the family
of nonmisleading propositions (ao) is E [f P;fxegg= fX;O1;O,; P;fXogg. It
is easy to see that for each s& in this family, BP holds inM * Q.
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Figure 5.6: M = ( X; Ey; V): The continuous ellipses represent the currently avail-
able pieces of evidence, while the dashed ones represent the other nonmisleading
propositions.

One should stress that our counterexample agrees with the position taken by
most proponents of the defeasibility theory: stability of (justi ed) belief is not
enough for knowledge. Intuitively, what happens in the above example is that,
although the agent continues to believ® given any nonmisleading evidence, her
justi cation keeps changing. For example, while the only justi cation for believing
P in M is Oy, the evidenceO; is no longer dense in modeWl * X9, therefore,
cannot constitute a justi cation for P in M **9. On the other hand, another
argument in M * %09 namely f xo; x1g forms a justi cation for P in M * %09, thus
P is still believed in M *™*9, but, based on a di erent justi cation. Therefore,
there isno uniform justi cation for P that works for every nonmisleading evidence
Q.

The next result shows thatour notion of knowledge exactly matches the weak-
ened version of defeasibility theoryas well as theepistemic coherence formulation

5.5.5. Proposition. LetM =(X; E,; ;V ) be a topo-e-model, ana 2 X is the
actual world. The following are equivalent for alP X

1. KP holds atx in M.

2. There is an argument(justi cation ) for P that cannot be defeated by any
nonmisleading proposition; i.e.9U 2 nf;g such thatU P andBU holds
in M*Q for all nonmisleadingQ X (at x with respect toE).

3. There is an argument(justi cation ) for P that is consistent with every non-
misleading proposition; i.e.9U 2 nf,g such thatU P andU\ Q 6 ;
for all nonmisleadingQ X (at x with respect toE).

Proof:
(1) ) (2): Supposex 2 KP. This means, by Proposition 5.5.1-(3), that
x 2 Int (P) and Cl(Int (P)) = X. Now consider the argumenint (P). Obviously
Int(P)2 nf;g andInt(P) P. Let Q be a nonmisleading proposition ax with
respect toE, and CI* © and Int * ? denote the closure and the interior operators of
*Q respectively. We only need to show thaint * ?(Int (P)) is dense in K; *9),
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i.e., that for all e2 E* <, we havee\ Int*?(Int(P)) 6 ;. Let e2 E*?. Then, by
the de nition of E*Q, we have two cases: (12 E, or (2) e62 Bbut e= €°\ Q
for somee® 2 E. SinceQ is nonmisleading, the latter case entails thak 2 e. If
e2 E, we havee\ Int*?(Int(P)) 6 ; sincelnt(P) Int*?(Int(P)) (by Lemma
2.2.5) andInt (P) is dense in K; ). If e 62 Eand e = €°\ Q for somee’ 2 E
with x 2 e, we obtainx 2 e\ Int*?(Int (P)) sincex 2 Int(P) Int*?(Int (P)),
thus, e\ Int*?(Int (P)) 6 ;. Therefore,Int *?(Int (P)) is dense in K; *9), i.e.,
B (Int (P)) holds in M * 2.

(2) ) (3): Suppose (2) holds, i.e., there is & 2 nf,g such thatU P
and CI*Q(Int *Q(U)) = X for all nonmisleadingQ X (at x with respect to E).
Let Q be nonmisleading atx with respect to E. SinceCl*?(Int**(U)) = X, we
have that e\ Int*Q(U) 6 ; for all e2 E*Q. As Q is nonmisleading atx, we in
particular have; 8 Q = Q\ X 2 E*? (by the de nition of E*? and the fact that
X 2 E). Hence, it follows from (2) thatQ\ Int*9(U) 6 ;. Sincelnt*?(U) U,
we obtainU\ Q6 ;.

(3)) (1): Assume thatU 2 nf;g is suchthatU P andU\ Q 6 ; holds
for all nonmisleadingQ (at x with respect to E). Clearly, this implies that U is
consistent with alle 2 E, i.e., that e\ U 6 ; (since available evidence is by de ni-
tion nonmisleading), soU is a justi cation for P (i.e., X = CI(U) = CI(Int (P))).
So, to show thatKP holds atx, it is enough to show thatx 2 Int (P). For this,
take the proposition Q = fxg, which obviously is nonmisleading ai, hence by
(3) we must haveU \f xg8 ;,i.e. x2 U. Then,x2U2 andU P give us
x 2 Int (P), as desired. 2

5.6 Logics for evidence, justi ed belief, knowl-
edge, and evidence dynamics

This section constitutes the technical heart of this chapter and is devoted to our
results concerning soundness, completeness, decidability and nite model prop-
erty for several logics of evidence, belief and knowledge (Sections 5.6.2-5.6.5). We
then continue with introducing the formal syntax and the semantics for the afore-
mentioned dynamic evidence modalities for public announcements, evidence ad-
dition, evidence upgrade and feasible evidence combination, and provide sound
and complete axiomatizations for the associated logics (Section 5.6.6). In order
to keep this section self-contained and x some notation, we rst recapitulate, in

a concise way, the formal syntax and the semantics capturing the static notions
we have presented in the previous sections (Section 5.6.1).
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5.6.1 Logics for evidence, justi ed belief and knowledge

Syntax. The full (static) language L of evidence, belief, and knowledge we
consider is de ned recursively by the grammar

CnEpit A GBS JE 2020 BB K 8]
wherep 2 prop . We employ the usual abbreviations for propositional connectives
>, 2, ,1 ,$ ,and for the dual modalitiesB, K, E etc. except that some of them
have special abbreviations:9]' := : [8]: " and3"' :=:2:"' . Several fragments
of the languagelL is of particular interest: Lg the fragment having the belief
modality B as the only modality; Lk having only the knowledge modalityK ;
and some bimodal fragments such dsxg having only operatorsK and B; L gk

having only operators 8] and K ; and the trimodal fragmentL g),,» having only
the modalities B], 2o and 2.

Semantics. We interpret the languageL on topo-e-models in an obvious way,
following the de nitions of the corresponding operators provided in previous sec-
tions.

5.6.1. Definition.  [Topo-e-Semantics fol.] Given a topo-e-model
M = (X; E; ;V), we extend the valuation mapV to an interpretation map
[[J:L!'P (X) recursively as follows:

[r] = V(p)

[ 1 = Xn[]

r~1=101NV11

[Eo' 1 = fx2Xj9e2Eq(e [ DIg

[E'] = fx2Xj9e2E(e [ Do

20" 1 = fx2Xj9e2E,(x2e [ Dg

2'1 = fx2Xjou2 x2U T Dg

[B'] = fx2Xj9u2 (U [ JandCI(U)= X)g
B'1 = fx2Xjou2 (G&EUN[] [landCIUNTD 1Dy
K1 = fx2Xjou2 (x2U [ JandCI(U)= X)g
(8] = fx2Xj[1=Xg

It is not hard to see that the above de ned semantics for the modalities of
L corresponds exactly to the semantic operators given in Sections 5.2-5.5: e.g.
Bri1=18II'1,12'1=2[1= Int([' ]), etc. Moreover, while all modalities
except for Eq and 2 o capture topological properties of topo-e-models, i.e., they
can be interpreted directly in (X; ), the expressivity of the full language goes
beyond the purely topological properties: the meaning &, and 2 , does not only
depend on the evidential topology, but also depends on the basic evidenceet
From the point of expressivity, the most important fragment ofL is the trimodal
languageL s2,2 since it is equally expressive as the full languagewith respect
to the topo-e-models:
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5.6.2. Proposition.  The following equivalences are valid in all topo-e-models:

1:B" $ [8]32" 4:K' $ 2' ~[8]32"

2:E'" $ [9]2° 5:B" $ [8( ! 3(~2(! "))

3:Eo $ [9]2¢
Proof:
The proof follows easily from the semantics clauses of the modalities given in
De nition 3.1.2. 2

Therefore, all the other modalities ofL can be de ned inLgp,.. In fact,
all our dynamic modalities can also be expressed Ing,,» (see Section 5.6.6).
For this reason, instead of focusing on the full languade, we present soundness,
completeness and decidability results for théactive evidence fragment g2 :
its importance comes from its expressive power. We moreover provide sound and
complete axiomatizations for the pure doxatic fragmentg, the pure epistemic
fragments Ly and Lgk , and nally for the epistemic-doxastic fragmentL g .
As the semantics of §], B and K can be de ned only based on the evidential
topology (without referring to &), we will state the corresponding soundness and
completeness results simply with respect to topo-models. Fofg2 .2, We need the
complete structure of the topo-e-models as the semantics 2§ depends on the
basic evidence seE,, and cannot be recovered purely topologically.

5.6.2 The belief fragment Lg: KD45;

In this section, we prove that the logic of belief on all topo-models is the standard
belief systemKD45z, and it moreover has the nite model property with respect
to the class of topo-models.

Soundness of KD45;:

5.6.3. Lemma. Given a topological spacéX; ) and any two subsetd;; U, X,
if U; is open dense andJ; is dense, thenU;\ U, is dense.

Proof:

Let (X; ) be a topological space andl;; U, X. SupposeU; is an open dense
and U, is a dense set inX; ). SinceU; is open and dense we have thav \ U,
is open and non-empty for any non-empty open s&V/. Thus, sinceU, is dense,
we also have that W\ U;)\ U, 6 ;. Therefore, W\ (U;\ U,) 6 ; for any
nonempty W 2 ,i.e.,,U;\ U, is dense as well. 2

5.6.4. Proposition.  KD45; is sound with respect to the class of all topo-models.
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Proof:

The soundness, as usual, is shown by proving that all axioms are validities and
that all derivation rules preserve validities. The cases for the axiomsgfand (5g)
and the inference rules are elementary, whereas the validity of §Kin the class of
all topological spaces follows from Lemma 5.6.3 as follows. Mt=( X; E,; ;V)
and'; 2 Lg. We need to showthat B(" ~ )$ B' "B ] = X, ie,,
that [B(" ~ )] =[B" *B ] Let x 2 B(" ~ ). This implies, by the se-
mantics of B that [B(" ~ )] = X, ie, CI(Int([' ~ ) = X. We there-
fore obtain, X = CI(Int([' ~ 1) = Cl{nt([' D\ Int([ I)) Cl{nt( )\
Cl(int(l D)=108B" ~B ]. For the other direction, supposex 2 [B' * B ].
We therefore havex 2 [B' ] and x 2 [B ]. Then, by the semantics ofB,
we obtain CI(Int([' J)) = X and CI(Int([ J)) = X. This means that both
Int([' ) and Int([ ]) are dense in X; ). Hence, by Lemma 5.6.3, we obtain
Ci(int(I' D\ Int([ D) = X. Similarly to the argument above, we then have

X = Cl(nt([' D\ Int([ D)= Cl(nt([" ~ D =I[BC ~ )l 2

Completeness of KD45;:

For completeness, we use the connection between tKB45Kripke frames and
topological spaces presented in Section 4.3.1. We only need to show that the
two semantics|the relational semantics and the proposed semantics on topo-e-
models|are equivalent for the languagelL g . To recall the de nition of relational
frame called a pin, see De nition 4.3.1, page 37.

5.6.5. Proposition. For all ' 2 Lg and any Kripke modelM = (X;R;V)
based on a pin,
K kM =" JM™):

Proof:

The proof follows by subformula induction on ; cases for the propositional vari-
ables and the Boolean connectives are elementary. So assume inductively that
the result holds for ; we must show that it holds also for := B . Observe
that, given a Kripke modelM = (X;R;V) based on a pin K;R) and' 2 Lg,

we have

X KK Co e s X DT C

' M -
kB* kK = . otherwise : otherwise

whereCis the nal cluster of (X; R). By induction hyposthesis, we have'[]' M) =
k' kM |, therefore, B' J'™) = kB' kM . 2

5.6.6. Theorem. KD45% is sound and complete with respect to the class of all
topo-e-models. MoreoverKD45; has the nite model property.
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Proof:

Soundness is given in Proposition 5.6.4. For completeness,'leR L g such that
' 62KD45. Then, by Lemma 4.3.2, there exists a nite pinM =(X;R;V)
with k' kM 6 X. Thus, by Propositition 5.6.5, we have that [J™) 6 X,
wherel (M ) = ( X; gr+;V)is the corresponding topological model. SindgM ) =
(X; gr+;V)is nite, we have also shown thatKD45; has the nite model prop-
erty. 2

5.6.3 The knowledge fragments Lk and Lpgk: S42« and
Knowgk

In this section, we focus on the two knowledge fragmentsx and L gk, and
provide sound and complete axiomatizations for the associated logics. While the
fragment having only the modalityK leads to the familiar systemS42y , the full
knowledge fragment having bottK and [8] gives us the axiomatizationKnowgk
presented below.

Soundness and Completeness of S42

The proof of soundness is again a standard validity check. The relatively harder
case of the normality axiom (K¢ ) for the knowledge modality K follows from
Lemma 5.6.3 and the fact that the interior operator commutes with nite inter-
sections (see, e.g., Table 3.1). For completeness, we follow a similar strategy as
in the proof of Theorem 5.6.6.

Let (X;R) be atransitive Kripke frame. A nonempty subsetC X is called
cluster if (1) for eachx;y 2 C we havexRy, and (2) there is noD X such that
C( D andD satis es (1). A point x 2 X is called amaximal point if there is no
y 2 X such that xRy and: (yRx). We call a cluster a nal cluster if all its points
are maximal. It is not hard to see that for any nal cluster C of (X;R) and any
x 2 C, we haveR(x) = C. A transitive Kripke frame (X;R) is called co nal if it
has a unique nal clusterC such that for eachx 2 X andy 2 C we havexRy.

5.6.7. Lemma. S42¢ is sound and complete with respect to the class of re exive
and transitive co nal frames.

Proof:
See, e.g., (Chagrov and Zakharyaschev, 1997, Chapter 5). 2

Recall that, given a re exive and transitive Kripke frame (X;R), we can
construct an Alexandro space K; r) by de ning g to be the set of all upsets
of (X;R) (see Section 3.1.2).
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5.6.8. Lemma. For every re exive transitive co nal frame (X;R) and nonempty
U2 g, we haveCl(U)= X in (X; Rr).

Proof:

Let (X;R) be a re exive and transitive co nal frame and letC X denote its
nal cluster. By construction, C 2 g and moreoverC U, for all nonempty
U 2 . Therefore, for every nonemptyJ;V 2 g, we haveV\ U C 6 ;.
Hence,CI(U) = X for any nonemptyU 2 R. 2

5.6.9. Proposition.  For every re exive and transitive co nal Kripke modelM =
(X;R;V) and all" 2 L g,

k' kM :[[| ]IB(M);
whereB(M ) = ( X; r;V).

Proof:

The proof follows by subformula induction on ; cases for the propositional vari-
ables, the Boolean connectives and the modalitg][are elementary. So assume in-
ductively that the result holds for ; we must show that it holds also fof = K
LetM =(X;R;V) be are exive and transitive co nal Kripke model, x 2 X and

"' 2L K -

( ) Supposex 2 kK kM. This impliesthat x 2 R(x) k kM. By induction
hypothesis, we obtainR(x) [ J®™). Sincex 2 R(x) 2 g, we havex 2
Int([ JB™)). Then, by Lemma 5.6.8,Cl(Int ([ JB™))) = X. Therefore, x 2
K ]IB(M)_

( ) Supposex 2 [K JBM). This means, by the topological semantics df ,
that x 2 Int([ JB™)) and that CI(Int([ ]B™))) = X. Then, by induction
hypothesis,x 2 Int(k kM) and Cl(Int(k k™)) = X. The former implies that
there is an open setJ 2 g suchthatx 2 U k kM. In particular, since R(x)
is the smallest open neighbourhood of, we obtain R(x) k kM. Therefore,
x 2kK kM. 2

5.6.10. Theorem. S42¢ is sound and complete with respect to the class of all
topo-models.

Proof:

For completeness, let 2 L ¢ such that' 62542 . Then, by Lemma 5.6.7, there
exists a Kripke modelM = (X;R;V ) based on the re exive and transitive co -

nal frame (X;R) such that k' kM 6 X. Thus, by Propositition 5.6.9, we have
[ IB™M) 6 X, whereB(M ) =(X; r;V)is the corresponding topological model.
2
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Soundness and Completeness of Knowg :

The full knowledge fragmentL ;g having both K and [8] yields the axiomatic
systemKnowgx given in Table 5.4 below.

(CPL) all classical propositional tautologies and (MP)
(S3s) all S5axioms and rules for the modality 8]
(S4) all S4axioms and rules for the modalityK
(Ax-1) [8] ! K

(AX-2) [9K' ! [8]K"

Table 5.4: The axiomatization ofkKnowgk

5.6.11. Theorem. Knowgyk is sound and complete with respect to the class of
all topo-models.

Proof:

Soundness is easy to see, we here only prove that the axio®l[ ! [8]K" )
is valid on all topo-models. LetM = (X; ;V ) be a topo-model,' 2 L gk, and
x 2 X such that x 2 [[9]K"' ]. This means that there existy 2 X such that
y2Int([' J) and CI(Int([' ])) = X . Note that for any z 2 X,

z2 K 1i ze2ant([:' ) or Cl(nt([: ' 1)) 6 X;

(see Proposition 5.5.1-(3)). Therefore, in order to showk] ] = X, it su ces to
show thatCl(Int ([: * ])) & X. Sincey 2 Int([' ]), we know that Int (CI([' ])) 6 ;
@sint('D Int(CI" D). Hence, ClI(Int([: " J)) 6 X. We therefore obtain
[K* 1= X, hence, 8]K holds everywhere inv .

For completeness, we use a well-known Kripke completeness result for the
logic obtained by extendingS42¢ with the universal modality [8]. More pre-
cisely, it has been shown in (Goranko and Passy, 1992) that the modal system
Knowg = SHe; + S42¢ +([8]' ! K' ), simply obtained by replacing (Ax-2)
in Table 5.4 by the axiom (% ):=KK' ! KRK' ,is complete with respect to the
class of re exive and transitive co nal Kriple frames wherK is interpreted as the
standard Kripke modality and [8] as the global modality. It is not hard to see that
the axiom (.2 ) is derivable inKnowgyk (by using (Ax-1) and (Ax-2) in Table 5.4),
hence,Knowgy is stronger thanKnow’ gy , i.e., that Knowgix ~ Knowgy . Let
' 2L gk suchthat' 62Knowgy . Thus, ' 62Know’g . Then, by the relational
completeness OKnOV\P[g]K, there exists a re exive and transitive co nal Kripke
model M = (X;R;V) such that k' kM 6 X. Then, by Proposition 5.6.9, we
obtain [' JB™) 6 X, whereB(M ) =(X; gr;V). 2
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5.6.4 The knowledge-belief fragment Lkg: Stal revisited

In this section, we show that Stalnaker's systerstal of knowledge and belief (see
Table 4.1) is sound and complete with respect to the class of all topo-models under
the semantics of knowledge and belief presented in this chapter. Recall that, in
Chapter 4, we provided a topological completeness result for this system for the
restricted class of extremally disconnected spaces. Therefore, we here show that
the topological semantics presented in this chapter generalizes the one provided
in Chapter 4 for Stalnaker's combined systenstal

5.6.12. Theorem. Stal is sound and complete with respect to the class of all
topo-models.

Proof:

For soundness, we here only show the validity of the axiom (FB): the validity
proofs of the other axioms are either trivial or follow from the previous results. Let
M =(X; ;V )beatopo-model, 2Lkg andx 2 X. Supposex 2 [B' ]. Hence,
[B' ]6 ;. This implies, by the semantics oB, that [B' ] = CI(Int([' ])) = X.
Recallthatx 2 [K" 1 x 2 Int([' ]) and CI(Int([' ])) = X. By the assumption,
we already know thatCl(Int ([' J)) = X. Thus, in this particular case, K' ] =
Int([' ). Therefore, X = CI(Int([' ])) = Cl(Int(Int([' 1)) = Cl(Int([K" 1))
implying that BK' holds everywhere inM .

For completeness, we follow a similar method as in the proof of Theorem
5.6.11. Let' 2 Lgg such that' 62Stal Then, since’ s B' $ KK' , there
existsa 2Lk suchthat gg' $ (this is obtained by replacing every oc-
currence ofB in ' by KK ). Therefore, 62Stal. Moreover, sinceS42¢  Stal
(see Section 4.1), we obtain 62542, . Then, by Theorem 5.6.10, there exists a
topo-modelM = (X; ;V ) such that [ ] 6 X. SinceStal is sound with respect
to all topo-models and” sz ' $ , we conclude [] 6 X. 2

5.6.5 The factive evidence fragment  Ligp,2: LOGy;

The logic Logs,, , of factive evidence is given by the axiom schemas and inference
rules in Table 5.5 over the languageé (gj2,2 -

This section presents the proof of the following theorem. Strong completeness
and strong nite model property are de ned standardly (see, e.g., Blackburn
et al., 2001, De nition 4.10-Proposition 4.12 and De nition 6.6, respectively).

5.6.13. Theorem. The logic Logs,, , of factive evidence is sound and strongly
complete with respect to the class of all topo-models. Moreover, it has the strong
nite model property, therefore, it is decidable.
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(CPL) all classical propositional tautologies and (MP)
(S3s) all S5axioms and rules for the modality 8]
(S%) all S4axioms and rules for the modality2

(42,) 20" ! 2020

Universality (U) [8] ' 2¢

Factive Evidence (FE) 2o 1 2

Pullout! (20" ~[8] )! 20(" [8] )

Monotonicity rule for 2, from"' ! cinfer 24" 1 29

Table 5.5: The axiomatization ofLogs,, ,

The proof of Theorem 5.6.13 is technically the most challenging result of this
chapter. The key di culty consists in guaranteeing that the natural topology
for which 2 acts as interior operator is exactly the topology generated by the
neighborhood family associated t@ ,. Though the main steps of the proof may
look familiar, involving known methods (a canonical quasi-model construction,
a ltration argument, and then making multiple copies of the worlds to yield a
nite model with the right properties), addressing the above-mentioned di culty
requires a non-standard application of these methods, as well as a number of
additional notions and results, and a careful treatment of each of the steps. The
plan of the proof is as follows. Since the soundness proof is straightforward, we
here focus on completeness and the nite model property (then decidability fol-
lows immediately). We rst prove strong completeness dfog,, , with respect to
a canonical quasi-modelWe then continue with proving the strong nite quasi-
model property for Logs,, , via a ltration argument. In the last step, we prove
that every nite quasi-model is equivalent to a nite Alexandro quasi-model by
making multiple copies of the worlds in order to put the model in the right shape.
As Alexandro quasi-models are modally equivalent to Alexandro topo-e-models
(Proposition 5.6.14), the result follows.

Quasi-model Construction

A quasi-modelis a tuple M = (X; E; ;V), where (X; E;V) is an evidence
model and is a preorder such that everye 2 Ey is an up-set of K; ) (see
De nition 2.1.4, page 14 to recall the de nition of an up-set). Given a preordered
set (X; ), the setUp (X) denotes theset of all up-sets ofX; ). We use the
same notations as for topo-e-models, for examplg,for the closure ofE, under
nonempty nite intersections, and g for the topology generated byE.

The semanticsfor the languageL g;2,2 on quasi-models is de ned the same
way as on topo-e-models (see De nition 5.6.1gxceptthat for 2 we (do not use
the topology, but instead we) use the standard Kripke semantics based on the
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relation . More precisely, the semantics for the modalities8], 2, and 2 are
given by the following clauses:

K8l KM = fx2 X jk kM = Xg
k2o K = fx2X j9e2Es(x2e k' kM)g
k2'kM = fx2Xj8y2 X(x yimpliesy2k'kM)g

We again omit the superscripts for the model when it is clear from the context.
A quasi-modelM = (X; E; ;V) is called Alexandro if the topology g is
Alexandro and = v is the specialization preorder. There is a natural one-
to-one correspondence between Alexandro quasi-models and Alexandro topo-

e-models, given by putting, for any Alexandro quasi-modeM = (X; E; ;V),
B(M) = (X; E; g V). Moreover, M and B(M ) satisfy the same formulas of
Lis2,2 at the same pointsas shown in Proposition 5.6.14 below.

5.6.14. Proposition.  For all ' 2 L g2, and every Alexandro quasi-model
M =(X; E; ;V), we have

kK KM =[P

Proof:

The proof follows by subformula induction on ; cases for the propositional vari-
ables, the Boolean connectives and the modalitie8][and 2, are trivial as the
semantics for these cases are de ned exactly the same way in both structures.
For the modality 2, recall that it is interpreted as the interior operator of the
topology g, thus, this case is analogous to Proposition 3.1.4-(1). 2

Therefore, as stated by Proposition 5.6.14, Alexandro quasi-models provide
just another presentation of Alexandro topo-e-models with respect to the lan-

guagel (g2,2 -

5.6.15. Proposition.  For every quasi-modeM = (X; E; ;V) the following
are equivalent:

1. M is Alexandro (hence, equivalent to an Alexandro topo-e-modgl
2. g=Up (X);
3. foreveryx 2 X, "xisin E.

Proof:

(1)) (3): SupposeM is Alexandro, i.e., g is Alexandro and = vg. Let
x 2 X. Then we have:"x = fy-r2 Xjx yg=fy2 X jxvegyg="fy?2
X j8U 2 E(x1|2 U) y2U)g= fU2 gjx2Ug. Sipce g is an Alexandro
space,we have fU2 gjx2Ug2 g,andhencé'x= fU2 gjx2Ug2 E.
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(3)) (2): Itiseasytoseethatg Up (X) (since g is generated byk, and
every element off, is upward-closed witg respect to ). Now let A 2 Up (X).
SinceA is upward-closed, we havéA = ' x j x 2 Ag. Then, by (3) (and g
being closed under arbitrary unions), we obtaiA 2 .

2)) (): SupposeTE = Up (X) and let A e. By (2), gvery U2Ais
upward-closed, hence, A is upward-closed. Therefore, by (2), A2 . This
proves that g is Alexandro. (2) also implies that "x is the least open neigh-
bourhood ofx in g, i.e.,"x U, for all U such thatx 2 U 2 ¢. Therefore,

is included inv g. For the other direction, supposex v g y. This implies, in
particular, that y 2" x (sincex 2"x 2 g), i.e., X V. 2

Having introduced the auxiliary notions and facts, we are ready to prove
Theorem 5.6.13. This proof goes througthree steps

1. strong completeness for quasi-models;

2. strong nite quasi-model property; and

3. every nite quasi-model is modally equivalent to a nite Alexandro quasi-
model (hence, to a topo-e-model).

Step 1: Strong Completeness for Quasi-Models. The proof follows via a
canonical quasi-model construction.

5.6.16. Lemma (Lindenbaum's Lemma). Every Log;,, ,-consistent set can be
extended to a maximally consistent one.

Let us now x a consistent set of sentence (. Our goal is to construct a
guasi-model for . By Lemma 5.6.16, there exists a maximally consistent s&
such that o T,. For any two maximally consistent setsT and S, we put:

T S i forall ' 2|_[8]202:([8]l 2T) ' 28),
T Siiforall " 2Lpgp,e (2" 2T) ' 295):

Since B] is an S5 modality, is an equivalence relation. Similarly, a® is
an S4modality, is a preorder. Moreover, since og,,, . B8] ' 2' (by axioms
(V) and (FE) in Table 5.5), we obtain that is included in

5.6.17. Definition.  [Canonical Quasi-Model fofTy] The canonical quasi model
for To is dened asM =(X; E; ;V), where

X =1fT L [gey2 | T is a maximally consistent set withT ~ Tog;

Eo:= 2 ' 2Lgp,e With[9]2¢0 2 Tog; whereP:= fT 2 X j 2Tg
forany 2L gp,2;



5.6. Logics for evidence, justi ed belief, knowledge, and evidence dynamic87

is the restriction of the above preorder to X; and
V(p) :=P.
In the following, variablesT;S;:::range overX.
5.6.18. Lemma. M = (X; E; ;V) is a quasi-model.

Proof:
In order to show that M is a quasi model, we need to show that (I¥ 2 E, and
;62 B, (2) is a preorder, and (3) every element o, is upward-closed with
respect to . Note that (2) follows from the fact that 2 is an S4 modality.

(2): Since" Logs2z 20> (by Negg and axiom (U) in Table 5.5), we have

> = X. Moreoever, by axiom (Tg;), we obtain [9]2 > 2 Ty, hence, #,> =
X 2 Ep. And, obviously, ; 62 k.

(3): Let e 2 Eo. By the de nition of E, we havee= 2l,' for some' 2 L gp,2
such that [9]2 " 2 To. Now supposel;S2 X with T 2 2y (i.e.,2o" 2 T) and
T S. Note that * o, . 20" ! 224" (by axioms (4,) and (FE)). Therefore,
22 o' 2 T.SinceT S, wethenobtain2,' 2 S,i.e.,S2 2, . Thus, asS has
been chosen arbitrarily, we conclude tha¢ is upward-closed with respect to .

2

5.6.19. Lemma (Existence Lemma for [8]). Forevery' 2L gp,2,
@1]' 6;1 b6 ;:

Proof:
0) Suppose@)]' 6 ;,i.e., thereisT 2 X suchthatT 2 @)]' . This means
[9]" 2 T. This implies that the set := f[8] j[8] 2 Tg[f ' gis consistent.

8] 1" :::”M[8] n!: ' isatheorem ofLog,, ,. But then, since B] is an S5
modality, we obtain that [8] ;~:::~[8] »! [8]: ' is also atheorem. Hence, as
[8] 17:::~[8] n2T,wegetB]:* 2T, which combined with P]' 2 T, implies
that T is inconsistent, contradictingT being consistent. Therefore, given that
is consistent, by Lindenbaum's Lemma, there exists some maximally consistent
set S such that S. Itis easy to see that this implies 2 SandS T Ty
(i,e., S 2 X). Therefore,S 2 b implying that b 6 ;.

(( ) Supposeb 6 ;, i.e., thereisT 2 X such that T 2 'b. Then, since
"1 [9]' 2 T (by axiom (Tg)), we obtain [9] 2 T, implying that @]' 6 ;. 2

5.6.20. Lemma (Existence Lemma for  2). For every' 2 L gp,, and T 2
X, T22% ithereis S2 bsuchthatT S.
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Proof:

() ) AssumeT 2 &', thatis, 3' 2 T. This implies that the set :=
f2 j2 2 Tg[f ' gisconsistent. Otherwise there exist nitely many sentences
2 130002 y2Tsuchthat (2 ~:::~2 ,)!': ' is atheorem. But then,
since 2 is an S4modality, we obtain that 2 ~ :::~2 , ! 2:' is also a
theorem. Hence, a2 ~:::"2 , 2 T,weget2:' 2 T, which combined
with 3' 2 T, implies that T is inconsistent, contradictingT being consistent.
Therefore, given that is consistent, by Lindenbaum's Lemma, there exists some
maximally consistent setS such that S. It is easy to see that this implies
"'2SandT S. Since isincludedin , we alsoobtainS T T, i.e.,
S 2 X. Therefore,S 2 b.

(( ) Suppose there isS 2 'b such that T S. Then, by de nition of
3'2T,ie, T223". 2

5.6.21. Lemma (Existence Lemma for 20). Forevery' 2L gp,2 and T 2
X, T22, i there exist e2 Ey such thatT 2 e b.

Proof:

() ) SupposeT 2 2y’ ,i.e. 2y 2 T. SinceT Ty, we getP]2o" 2 To. This
means2l, 2 E,. Taking e := 2y’ , we gete2 Eo and T 2 e. Moreover, since
“logay, , 20 ! ', weobtaine= 2o b

(( ) Suppose there i 2 Eg such that T 2 e 'b. Then, by the de nition
of By, we obtain that e = 2‘0 for some such that [9]2, 2 T,. Therefore,
T2e=9, 'b. This implies that the set = f2, g[f8 :8 2 Tg[f '¢g
is inconsistent. Otherwise, by Lindenbaum's Lemma, there exists&2 X such
that 20 2 Sand:' 2 S. The former means thatS 2 E‘o and the latter
means (sinceS is maximal) that S 62b. Thus, S 2 gy nb, contradicting the
assumptionﬁo 'b. Therefore, given \I7at is inconsistent, there exists anite

setf[8] 1;:::;[8] ng such thatv‘ a8l i! (20 ! "). Since B] is a
normal modality and T is maximal, ; [8] i =[8] forsome$] 2 T. We then
have
L8 ! (20 ! ")
2.7 ([8] "20)! "
37 20(8] "20)! 24 (Monotonicity of 2 )
4. 2020(8] N )! 2¢ (Pullout axiom)
57 20(8] ™ )! 2¢ (since” Logaz, ; 20 $ 2020")
6:" ([8] "20)! 2¢ (Pullout axiom)

Therefore, since§]; 2o 2 T and T is maximal, we obtain2,' 2 T, i.e.,
T2 2, . 2
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5.6.22. Lemma (Truth Lemma).  For every formula’ 2 L g2,2, Wwe have

Proof:
The proof follows standardly by subformula induction ol , where the inductive
step for each modality uses the corresponding Existence Lemma, as usual.2

5.6.23. Proposition.  Logs,, , is sound and strongly complete for quasi-models.

Proof:

Let o be alog,, -consistent set of formulas. Then, by Lindenbaum's Lemma
(Lemma 5.6.16), o can be extended to a maximally consistent séfi,. We can
then construct a canonical quasi-modeé¥l = ( X; Ey; ;V) for Ty as in De nition
5.6.17, and by Lemma 5.6.22 obtain thaM ;T ' forall' 2 . 2

Step 2: Strong Finite Quasi-Model Property. In this section, we prove
that the logic Logs,, , has the strong nite quasi-model property. We do so via a
Itration argument using the canonical model described in De nition 5.6.17.

Let' o be alLogs,, ,-consistent formula. By Lemma 5.6.16, there exist a max-
imally consistent setT, such that' o 2 To. Consider the canonical quasi-model
M = (X; E; ;V)for Ty (as given in De nition 5.6.17). We will use two facts
about this model:

1. k' kM = b forall' 2 I—[8]202; and
2. B = fﬂol J [9]20I 2 Tog: kaQ' kM j [9]20I 2 Tog:

Closure conditions for . Let bea nite setsuchthat: (1)' 02 ;(2) is
closed under subformulas; (3) iR, 2 then 22y 2 ; (4) is closed under
single negations; (52,>2 . For x;y 2 X, put

X yi forall 2 (x2k kKM y2k kM);

and denote byjxj = fy 2 X j x yg the equivalence class ot modulo
Also, put X := fjxj j x 2 X g, and more generally pute’ := fjxjj x 2 eg for
everye 2 E,. We now de ne a \ ltrated model” M ' = (XT;E}; f;V'), where

X =1ixjjx2Xg;
ixji Tjyjiforall 2 2 x2k2 kM) y2k2 kM ;

Eé = fé je= @'0 = k2, kM 2 E, forsome suchthat2, 2 g;
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Vi(p) = fjxj:x 2 V(p)o.

5.6.24. Lemma. M ' is a nite quasi-model (of size bounded by a computable
function of ' o).

Proof:

Since is nite, there are only nitely many equivalence classes modulo
Therefore,X " is nite. In fact, X' has at most 2 / states. It is obvious that f
is a preorder. Moreover, sinc&X = k2,>kM and2,>2 , we have X' 2 E(f).
Also, sincee 6 ; for all e 2 Ey, we have eache’ 2 E(f) nonempty. So we only
have to prove that the evidence sets’ are upward{closed. For this, lete/ 2 E(f),
iXj;jyi 2 X" such thatjxj 2 € andjxj ' jyj. We need to show thatjyj 2 €. By
the de nition of E(f, we know thate= 2’0 = k2, kM for some2, 2 .From
jxj 2 €, it follows that there is somex®  x such thatx°2 e= k2, k", and
since2, 2 , we have x 2 k2, kM. Therefore, since’ Logs2 , 20 ! 22
(this is easy to see from axioms ¢4) and (FE) stated in Table 5.5), we have
x2k22 o kM. But 22, 2 (by the closure assumptions on ), so jxj ' jyj
gives usy 2 k22 o jkM . By the axiom (T,), we obtainy 2 k2, kM = 2, = ¢
hencejyj 2 € . 2

5.6.25. Lemma (Filtration Lemma). For every formula' 2 , we have
K KM =fixjjx2k' kMg

Proof:

The proof follows by subformula induction induction on' 2 ; cases for the
propositional variables, the Boolean connectives and the modalitie®][ and 2

are treated as usual (in the last case using the lItration property of ' that: if
x ythanijxj jyj). We only prove here the inductive case for := 24 :

() ) Let jxj 2 k2, kM'. This means that there exists some’ 2 E/ s.t.
jxj2 € k KkM'.Bythe de nition of E}, there exists some suchthat2, 2
ande= 2, = k2, kM 2 Ey,. Fromjxj2 € , it follows that there is somex®  x
such thatx°2 e= k2, kM, and since2, 2 , we have x2k2, kM = e. Now
let y 2 e be any element ofe. Then, by the de nition of € and the assumption
that & k KkM', we obtainjyj2 ¢ k kM'. So,jyj2k kM'. Therefore, by
the induction hypothesis,y 2 k ky , hence,e k kM. Thus, we have found an
evidence see2 Ep such thatx 2 e k kM, i.e., shown thatx 2 k2, kM.

(( ) Let x 2 k2y kM. It is easy to see that 912, 2 x (since" Logs 2 ,
20 ! [9]20 ), and so also 912y 2 Ty (sincex 2 X, thus, x  Tp). This
means that the sete := @'o = k2, kM 2 E, is an evidence set in the canonical
model (see De nition 5.6.17), and sinc€, 2 , we conclude that & 2 E(f,.
We obviously havex 2 e, and sojxj 2 €. Since’ Logez , 20 ! , we have
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e= k2o kM k kM, and hencee fj yjjy2k kMg=k kM' (by the
induction hypothesis). Thus, we have found' 2 Eg, such thatjxj2 ¢ k kM "
i.e., shown thatjxj 2 k2, kM'. 2

5.6.26. Theorem. Log;,, , has strong nite quasi-model property.

Proof:

Let' o be alLog,, ,-consistent formula. Then, by Lindenbaum'’s Lemma (Lemma
5.6.16)," o can be extended to a maximally consistent séfiy such that' ¢ 2 T.
We can then construct a canonical quasi-modéM = (X; E; ;V) for Ty as
in De nition 5.6.17, and by Lemma 5.6.22 obtain thatM ;T E ' . Then, by
Lemma 5.6.25, we haveVl f;jToj j= ' o, whereM ' is the lItrated model of M
through the nite set that is obtained by closing f' (g under the closure condi-
tions (1)-(5). By Lemma 5.6.24, we know thatM ' is a nite model whose size is
bounded by 2 J, therefore we conclude thatogs,, , has the strong nite quasi-
model property. 2

Step 3: Equivalence of Finite Quasi-Models and Finite Alexandro
Quasi-Models. In this section, we prove that every nite quasi-model is modally
equivalent to a nite Alexandro quasi-model, and therefore, to a topo-e-model
with respect to the languagel g2 2 .

Let M = (X; E; ;V) be a nite quasi-model. We form a new structure
M = (X; B; ~; V), by putting:

X=X f 0;1g;
V(p):=V(p) f 0 1g;
1) ~(y;)) 1 x yandi=j;

B:=feje2Eyi2f0;1gg[fe jy2 e2Eqi2f0;1gg[f Xg, where
we used notations

{ g:=ef ig="f(x;i)jx2eg, and
{g="y fig[ef 1l ig=f(xi)jy xg[ e i
5.6.27. Lemma. M is a nite quasi-model.
Proof:
It is easy to see thatM™ is nite, in fact, it is of size 2 jX]j. It is guaranteed by
de nition that X 2 Ey and ; 62E,. To show that every element off is upward-

closed with respect to™, let €2 Ey and (x;i);(y;j) 2 X such that (x;i) 2 eand
(X;1)~(Y;j)- Then, by the de nition of ~, we know thatx yandi = j. We



92 Chapter 5. Justi ed Belief, Knowledge and the Topology of Evidence

have two cases: ie= e f ig for somee 2 Eo, theny 2 e (since e is upward
closed with respectto , x 2 eand x y), therefore, (y;i) 2 e f ig= =< If
e= ¢ forsomez 2 X andk 2 f 0; 1g, we again have two cases. K=1 i, then

the result follows as in the rst case. Itk = i,then"z i e Since k;i) 2 e, we
obtain that z x, and thus,z vy (since s transitive). We therefore conclude
that (y;i)2"z i e 2

Notation : For any setY X, put Yx := fy 2 X j (y;i) 2 Y for somei 2
f0; 1gg for the set consisting of rst components of all members df. It is easy
to see that we have ¥ [ Z)x = Yx [ Zx, and Xx = X.

5.6.28. Lemma. If y2 e2 Eg, i 2f0;1gande2 f e;€ g, then we have:
1. e = ¢
2. €/\ & ="(y;i), where"(y;i) = fx2 X j (y;i)™xg=f(x;i)jy xg.

Proof:
(1): Ife=g,thenex =(e f iglx = e Ife=¢€',thenex =("y f ig)x [
(e f 1 igx ="y[ e= e(sinceeis upward-closed and/ 2 e, so"y e).
(:e\e=("y figlef 1l ig\(efig=("y\ef ig="yf ig=
"(y;i) (since"y e). 2

5.6.29. Lemma. M is an Alexandro quasi-model(and thus also a topo-e-modgl

Proof:

By Proposition 5.6.15, it is enough to show that, for every i) 2 X, the upward-
closed set'(y; i) is open in the topology - generated byE;: this follows directly
from Lemma 5.6.28-(2). 2

5.6.30. Lemma (Modal-Equivalence Lemma). Forall ' 2L (g2,2,
K kM =k kM f 01g:

Proof:

The proof follows by subformula induction on ; cases for the propositional vari-
ables, the Boolean connectives and the modalitie8]] and 2' are straightfor-
ward. We only prove here the inductive case fdr := 2 .

() ) Suppose that ;i) 2k2, kM. Then there exists some 2 E, such that
(x;i)2e k kM =k kM f 0;1g (where we used the induction hypothesis for
at the last step). From this, we obtainthatx 2 ex  (k kM f 0;1g)x = k kV.
But by the construction of E;, € 2 E; means that eithere-= X or there exist
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e2Ep y2eandj 2f0;1g such thate2feg; qyg. If the former is the case, we
havex 2 e = X k kM. SinceX 2 Eg, by the semantics of2,, we obtain
x 2 k2, ky . If the latter is the case, by Lemma 5.6.28-(1), we hawe = e, so
we conclude thatx 2 ex = e k ' kM. Therefore, again by the semantics d o,
we havex 2 k2, kV.

(( ) Suppose thatx 2 k2, kM. Then, there exists somee 2 E, such that
x 2 e k kM. Take now the sete = e f ig 2 E. Clearly, we have
x;i)2e k kM fig k kM f 0;1g = k kM (where we used the in-
duction hypothesis for at the last step), i.e., we have X;i) 2 k2, kM. 2

5.6.31. Theorem. Every nite quasi-model is modally equivalent to a nite
Alexandro quasi-model, therefore, to a topo-e-model with respect to the language

L8202 -

Proof:
The proof immediately follows from Lemma 5.6.30: the same formulas are satis-
edat xinM asat (x;i)in M. 2

Proof of Theorem 5.6.13: Theorem 5.6.13 (completeness and nite model
property for topo-e-models) is thus obtained as an immediate corollary of Propo-
sition 5.6.23, Theorems 5.6.26 and 5.6.31.

5.6.6 Dynamics Extensions of Lgp,2

Moving on to dynamic extensionswe consideiP DL -style languages ;,, o L2 o
Lg» .. @ndL},, . obtained by adding toL g>,» dynamic modalities [! ] for pub-
lic announcements, respectively [+] for evidence addition, ' ] for evidence
upgrade and [#] for feasible evidence combination with the following intended
readings:

[I"] := becomes true after the public announcement of
[+'] = becomes true after is accepted as an admissible piece of evidence
[*'] := becomes true after is accepted as the most important evidence

[#] := becomes true after the basic evidence is feasibly combined

The semanticsfor dynamic operators uses the corresponding model change
presented in Section 5.4 (as standard in Dynamic Epistemic Logic). More pre-
cisely, given a topo-e-modeM = ( X; E; ;V) and x 2 X, the semantics for the
above mentioned dynamic operators are de ned as

x2["11 i x2[ ]impliesx2[ ™"’
x2[+'11 i x2[0O] ]impliesx2[ "'
x2[F'11 i x2([or]impliesx2[ ™"
x2[#'1 i ox2[I™
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where we denote by [JM"' the extension of in the updated modelM T 1,
etc. The preconditionx 2 [' ] in the above clause for public announcements
encodes the fact that public announcements are factive: so one can only update
with true sentences . The preconditionsx 2 [[9] ] in the clauses for evidence
addition and upgrade encodes the fact that, in order to qualify as (new) evidence,
' has to beconsistent(i.e. [ ] & ;). In the following, we present the sound and
complete axiomatizations for the corresponding dynamic systems. These will be
obtain by adding a set of reduction axioms for each dynamic modality to the
axiomatization Log,, ,, as standard in Dynamic Epistemic Logic (Baltag et al.,
1998; van Ditmarsch et al., 2007; van Benthem, 2011). We only prove the validity
of the reduction axiom for the modality2 o in each case and leave the other cases
for the reader since they follow either trivially or similar to the case foR .

5.6.32. Theorem. The sound and complete logicog;,, , of evidence and public
announcements with respect to the class of all topo-e-models is obtained by adding
the following reduction axioms to the systernog;,, ,:

1" ps$ (! p) 5012 $ ¢ 2[r])
22" 8 (e [M]) 6:[" 18 $ (! [8]["])
N LA (GRARD - I (L IA L 4% L | L IO U
4:"120 $ (! 20M])

Proof:
Let M = (X; B; ;V) be atopo-e-modelx 2 X and’; 2L g,

Axiom-4:

X2[" 120 Ji x27[ Jimpliesx 2 [2¢ ]IM!l'l
i x2[ ]implies9e2 Ef l(x2e [ M)
i x2[ ]implies9e’2Eq(x2 €\ ['J=e [ ')
(by defn. of EI 1)
| x2[ ]implies9e’2 Eo(x 2 ¢ [1'] 1)
I x2[ Jimpliesx 2 [20[" ] ]
i x2[ ! 2] ]

5.6.33. Theorem. The sound and complete logitog,, , of evidence and evi-
dence addition with respect to the class of all topo-e-models is obtained by adding
the axiom K. and the Necessitation rulgNec, ) for the evidence addition modal-
ities as well as the following reduction axioms t00gs,, .-
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L[+ Ip$ (91 ! P

2.+ ] s (or ' [+'1)

B[+ 1M )s ('] M)

4.+ 120 & (9] ! (2o[+"] _C ~[BIC ! [+']1))
S5.[+"12 s (o ' @[+ ] _C~2C ! [+']1))
6. [+ 18] $ ((o ! [8][+'])

Egt)(l)\jl' =(X; E; ;V) be atopo-e-modelx 2 X and’; 2 Lg,, . Observe that
x 2 [l9] Jimplies[ ™" '=[[+"11 (5.1)
Axiom-4:
X2[[+'120 1

i x2[[9] ]impliesx 2 [2o """
i x2 [ ]implies9e2El I x2e [ M)

i x2[[9] ]implies @2 Eo(x2¢” [ " Hor(x2['] [ M)
(by defn. of E;1' 1)

i x2[[9] ]implies Q2 Eo(x 2 €® [[+'] Dorx2[1 M+'11D
(by (5.1))
i x 2 [[9] ] implies ((x 2 [2o[+" ] Dor(x2 [ Jandx 2 [[8]C ! [+'] 1)
i x 291 ] implies (x 2 [2o[+" ] JTorx2 [ ~[8]C ! [+"]1 1)
box2[O ! 2o+ 1 _C ~[@IC ! [+ 1M
The proof for the modality 2 follows in a similar way with minor di erences

because of the fact that for everye 2 E*['1 there is some combined evidence
€°2 E such that eithere= €’or e= €°\ [' ]. Therefore, we have

Axiom-5:
x2[[+'12 ]
i x2[[9] ]implies9e2E' I(x2e [ M)
i x2[O Jimplies9e®2E(x2€® [ ™M ' orx2e 1 [ ™'
i x2[[9] ]1implies9e’2E((x2€” [[+'1 1
or(x2[ Jandx2€® [ ! [+'11)
i x2[9] 1implies(x2 [2[+'] Jor(x2[ Jandx2[2(C ! [+'1 1)
i x2[O ' @[+'] _C~2¢C " [+ 10



96 Chapter 5. Justi ed Belief, Knowledge and the Topology of Evidence

2

5.6.34. Theorem. The sound and complete logitog;,, , of evidence and evi-
dence upgrade with respect to the class of all topo-e-models is obtained by adding
the axiom K. and the Necessitation rul§Nec.) for the evidence addition modal-
ities as well as the following reduction axioms t00gs,, -

L[S (91 ! p
2.0 s (or s 1)
A N (G B I (e AN G B
4.1 120 & (91 ' ((2o[*" ] _")™M8IC ! [*"1)))
S.[12 s (o (@2l _)rBiIct 1w
6.[* 18] $ (o ! [&8I*"])

Proof:

Let M = (X; B; ;V) be a topo-e-modelx 2 X and'; 2 Lg,, . Similar to
the above case, we have

x 2 [19] Jimplies [ "' =[*"] 1 (5.2)

Axiom-4:

X2 " 120 1
i x2 [ ]implies9e2E,tIx2e [ M)
i x 2 [9] ]implies @2 Eo(x2 €’ L ['] [ 1™ Norx2[1 [I™"")
(by defn. of E;1')
i x2[[9] ]implies @2 Eo(x 2 €[ ['T [*'1 D
orx2[1 M'10D (by (5.2)
i x 2 [[9] ]implies Q2 Eo(x 2 €® [[*']1 Jand[] [*'11D
orx2[1 M'110D
i x 2 [[9] ] implies (x 2 [2o[*" ] Jandx 2 [[8]C ! [*" ] )I)
orx2[ ~[@BIC ' [*1)D
ox2[9] ' ((2o*"' ] _")~[8IC ! 1 NI

The validity of the axiom 5 follows similarly where we replace the basic evidence
set i by the corresponding combined evidence sEt 2
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5.6.35. Theorem. The sound and complete logicod;,, , of evidence and feasi-
ble evidence combination with respect to the class of all topo-e-models is obtained
by adding the axiom K and the Necessitation rulgNeg; ) for the evidence addi-
tion modalities as well as the following reduction axioms tmg;,, .

1:[#]p$ p 4:[#]12" $ 2[#]"
2:[#:" $: [#]' 5:[#]20 $ 2[#]'
3:HC N )S$ ([ NH ) 6: [#[8] $ [8]#]'

Proof:
Let M =(X; E; ;V) be atopo-e-modelx 2 X and' 2 L§220'

Axiom-5:

x2[#20' 1i x2[20 "
i 9¢f 2Ef(x2¢ [ M)
i 9" 2Ef(x2 €  [#'D

i 9e2E(x2e [#'] (sinceE;, = E* = E)
I x2[2[#]"1]
The validity of the axiom 5 follows similarly sinceE = E*. 2

5.7 Conclusions and Further Directions

In this chapter, we studied a topological semantics for various notions e¥idence
evidence-based justi cation, argument(conditional) belief and knowledge We

did so by using topological structures based on the (uniform) evidence models of
van Benthem and Pacuit (2011). Several soundness, completeness, nite model
property and decidability results concerning the logics of belief, knowledge and
evidence orall topological (evidence) models have been shown. We also discussed
some dynamic evidence modalities such as public announcements, evidence ad-
dition, evidence upgrade and feasible evidence combination, and provided sound
and complete axiomatizations for the associated logics by means of a set of re-
duction axioms for each dynamic modality.

Our topological approach contributes to the evidence setting of van Benthem
and Pacuit (2011); van Benthem et al. (2012, 2014) in many ways. First of all, this
topological approach, we believe, gives mathematically more natural meanings to
the epistemic/doxastic modalities we considered by providing a precise match be-
tween epistemic and topological notions. The list of the epistemic notions studied
together with their topological counterparts is given in Table 5.6 below.
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Epistemology Topology

Basic Evidence Subbasis of a topologyE{)

(Combined) Evidence Basis of a topology E)

Arguments Open Sets (g)

Justi cations Dense Open Sets

Belief Dense interior (nowhere dense complement)
Knowledge (ofP) x 2 Int(P) and Int (P) is dense

Table 5.6: Matching epistemic and topological notions

Besides, concerning the belief interpretation, our proposal yields a notion of
belief that coincides with the one of van Benthem and Pacuit (2011) in \good"
cases, and that behaves better in general. More precisely, our justi ed belief is
always consistent, in fact, it satis es the axioms and rules of the standard belief
system KD45; on all topological spaces (Section 5.6.2). It moreover admits a
natural topological reading in terms of dense-open sets (or equivalently, in terms
of nowhere dense sets) asruth in most states of the modé| where \most" refers
to \everywhere but a nowhere dense part". We have also shown that the logic
of evidence models under our proposed semantics has the nite model property,
whereas this was not the case in (van Benthem and Pacuit, 2011; van Benthem
et al., 2012, 2014).

The formalism developed in this chapter improves also on our own work on an-
other topological semantics for Stalnaker's epistemic-doxastic system, presented
in Chapters 4. While in Chapters 3 and 4 we could talk about evidential grounds
of knowledge and belief only on a semantic level, the current setting provides syn-
tactic representations of evidence, therefore, makes the notion of evidence a part
of the logic. Moreover, we showed that knowledge and belief can be interpreted
on arbitrary topological spaces (rather than on extremally disconnected or h.e.d.
spaces), without changing their logic. To this end, the semantics of knowledge
and belief proposed in this chapter generalizes the setting of Chapter 4.

In the rest of this section, we name a few directions for future research:

Connection to \topological” formal learning theory. One line of inquiry
involves adding to the semantic structure a larger s E ( of potential evi-
dence meant to encompass all the evidence that might be learnt in the future.
This would connect well with the topological program in Inductive Epistemology
started by Kelly and others (Kelly, 1996; Schulte and Juhl, 1996; Kelly et al.,
1995; Kelly and Lin, 2011; Baltag et al., 2015c), in which a topological version of
Formal Learning Theory is used to investigate convergence of beliefs to the truth
in the limit, when the agent observes a stream of incoming evidence. A formal
setting that involves both actual evidenceE, and potential evidenceE} E o
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would combine coherentist justi cation with predictive learning. A logical syntax
appropriate for this setting could be obtained by extending our language with
operators borrowed from topo-logic (Moss and Parikh, 1992), such as an operator
3", expressing the fact that can become true after more evidence is learnt. In-
ductive learnability of ' is then captured by the formula3 K' , whereK is our
defeasible knowledge (rather than the absolutely certain knowledge operator of
topo-logic).

Multi-agent extensions. Another line of research involves extending our frame-
work to a multi-agent setting. It is straightforward to generalize our semantics to
multiple agents, though obtaining a completeness result might not be that easy.
However, the real interesting challenge comes when we look at notionsgaup
knowledgefor some groupG of agents. Forcommon knowledgehere are at least
two di erent natural options: (1) the standard Lewis-Aumann concept of the in -
nite conjunctions of \everybody knows that everybody knows etc." (Lewis, 1969;
Aumang, 1976), and (2) a stronger concept, based ahared evidencdthe inter-
section _, E§ of the evidence families§ of all agentsa 2 G). The two concepts

di er in general, and this is related to Barwise's older observation on the distinc-
tion of concepts of common knowledge in a topological framework (Barwise, 1988),
in contrast to Kripke models, where all the di erent versions collapse to the same
notion (see also van Benthem and Sarenac, 2004 and Bezhanishvili and van der
Hoek, 2014, Section 12.4.2.5 for a discussion on the di erent formalizations of
common knowledge on topological spaces). Similarly, in this evidence-based set-
ting, the standard notion of distributed knowledga&loes not seem appropriate to
capture a group'sepistemic potential Standardly, a group of agentss is said to
have distributed (implicit) knowledge of' if ' is implied by the knowledge of
all individuals in G pooled together (see, e.g., Fagin et al., 1995, Chapter 2 for
a standard treatment of distributed knowledge based on relation models). In our
setting though, a natural way to think about a group's epistemic potential is to
let the agents share all their evidence, and computestheir knowledge based on the
evidence family obtained by taking the uniorE§ = — _,; E2 of all the evidence
families E§ of all agentsa in G. This corresponds to moving to the smallest topol-
ogy that includes all agents' evidential topologies?, which also gives us a natural
way to de ne a consistent notion of (potential)group belief However, this setting
has some apparent "defects’, that is, some facts known by one individual in the
group might be defeated by another member's false or misleading evidence, there-
fore, the individual knowledge of these facts will be lost after the group members
share all their evidence. This is in contrast with the standard notion of distributed
knowledge that is group monotonic: the distributed knowledge of a larger group
always includes the distributed knowledge of any of its subgroups, and so in par-
ticular it includes everything known by any member of the group. One option is
to simply give up the dogma that groups are always wiser than their members,



100 Chapter 5. Justi ed Belief, Knowledge and the Topology of Evidence

and retain the evidence-based model of group knowledge as providing a better
representation of the epistemic potential of a group. Learning from others might
not always be epistemically bene cial: it all depends on the quality of the oth-
ers' evidence. There are also ways to avoid this conclusion, pursued by Ramirez
(2015), via natural modi cations of our models and by de ning knowledge to
be undefeated by any potential evidence that the agent may learn. This way
Ramirez (2015) re-establishes group monotonicity, but showing completeness for
the resulting logic possess technical challenges (see Ramirez, 2015, for details).
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Chapter 6
Topological Subset Space Semantics

In this chapter, we present the two topological frameworks, on the basis of which

the work presented in the second part of this dissertation was developed. The
rst is the so-called subset space semantics of Moss and Parikh (1992), and its
topological version developed by Georgatos (1993, 1994) and Dabrowski et al.
(1996). The second is the topological public announcement formalism introduced
by Bjorndahl (2016). We also point out the connections and di erences between

the epistemic use of topological spaces in Parts | and Il of this thesis, especially
regarding the types of evidence represented and the notion of knowledge studied.

Outline

In Section 6.1, we present the subset space framework, providing its syntax and
semantics as well as the complete axiomatizations of the associated logics with
respect to subset spaces and topological spaces. Section 6.2 introduces the topo-
logical public announcement logic of Bjorndahl (2016), and provides several ex-
pressivity results concerning the languages studied in the aforementioned settings.

6.1 The Subset Space Semantics and Topologic

The formalism of \topologic”, introduced by Moss and Parikh (1992), and inves-
tigated further by Dabrowski et al. (1996), Georgatos (1993, 1994), Weiss and
Parikh (2002) and others, represents aingle-agentsubset space logicgSL) for
the notions of knowledge ane ort . One of the crucial aspects of this framework
is that it is concerned not only with the representation of knowledge, but also
aimed at giving an account of information gain or knowledge increase in terms
of observational e ort.! It is the latter feature of this work that makes the use

IMoss and Parikh (1992) is partly inspired by Vickers' work on reconstruction of topology
via a logic of nite observation (Vickers, 1989).

103
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of subset spaces signi cant. While the knowledge modaliti’ has the stan-
dard reading \the agent knows' (is true)", in the subset space setting, the e ort
modality 2' captures a notion of e ort as any action that results in an increase in
knowledge and is read as'\ stays true no matter what further evidence-gathering

e orts are made". The modality 2 therefore captures a notion oftability under
evidence-gathering. E ort can be in the form of measurement, computation, ap-
proximation, or even announcement, depending on the context and the informa-
tion source. To illustrate the underlying intuition of the subset space semantics,
and the notions of knowledge, e ort, and evidence it represents, suppose for in-
stance, that you have measured your height and obtained a reading of 5 feet and
10 inches 3 inches. The measuring devices we use to calculate such quantities al-
ways come with a certain error range, therefore giving us an approximation rather
than the precise value. With this measurement in hand, you cannot be said to
know whether you are less than 6 feet tall, as your measurement, i.e., the current
evidence you have, does not rule out that you are taller or shorter. However, if
you are able to spend more resources and take a more precise measurement, e.g.,
by using a more accurate meter with 1 error range, you come to know that
you are less than 6 feet tall (Bjorndahl anddzgun, 2017). Subset space logics are
designed to represent such situations, and therefore involve two modalities: one
for knowledgeK , and the other one for e ort 2.

The formulas in the bimodal language are interpreted on subset spac&s Q),
where X is a nonempty domain andO is an arbitrary nonempty collection of
subsets ofX . The elements ofO representpossible observationsaand more e ort
corresponds to a more re ned truthful observation, thus, a possible increase in
knowledge. A subset space is not necessarily a topological space, however, topo-
logical spaces do constitute a particular case of subset spaces and topological
reasoning provides the intuition behind this semantics, as we will elaborate be-
low.2 While presenting the most general case of subset spaces in this section, our
main results in later sections will still be based on purely topological models.

In this section, we provide the formal background for the subset space seman-
tics of Moss and Parikh (1992), explaining how these \topological" structures
constitute models that are well-equipped to give an account for evidence-based
knowledge and its dynamics. We also point out the di erences and the connec-
tion between the two topological approaches developed in Chapter 5 and Part I,

2The subset space setting also comes with an independent technical motivation. Many of the
aforementioned sources are concerned with axiomatizing the logics of smaller classes of subset
spaces meeting particular closure conditions on the set of subse@. For example, while Moss
and Parikh (1992) axiomatized the logic of subset spaces, Georgatos (1993, 1994) and Dabrowski
et al. (1996) provided an axiomatization of the logic of topological spaces, and complete lattice
spaces. Moreover, Georgatos (1997) axiomatized the logic of treelike spaces, and Weiss and
Parikh (2002) presented an axiomatization for the class of directed spaces. These results are
quite interesting from a modal theoretical perspective, however, in this dissertation, we are
primarily interested in the applications of topological ideas in epistemic logic. We therefore
focus on the epistemic motivation behind the topologic formalism.
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respectively. In particular, we compare the evidence representation on evidence
models of van Benthem and Pacuit (2011) with the one on subset models of Moss
and Parikh (1992), and in turn, the type of evidence-based knowledge studied on
these structures.

6.1.1 Syntax and Semantics

In their in uential work, Moss and Parikh (1992) consider the bimodal language
Lk 2 given by the grammar

sEpjt AT K2y
and interpret it on subset spaces, a class of models generalizing topological spaces.

6.1.1. Definition.  [Subset Space/Model] Asubset spaces a pair (X; O), where
X is a nonempty set of states an@ is a collection of subsets oX . A subset model
is atuple X = (X; O;V), where (X; O) is a subset space an¥ : prop !P (X)
a valuation function.

It is not hard to see that subset spaces are just like the evidence models of van
Benthem and Pacuit (2011) (given in De nition 5.2.1), but with no constraints on
the set of subset©.®> However, the way the truth of a formula is de ned on subset
models leads to a crucial di erence between the two settings, especially concerning
the type of evidence represented by the elements Of and the characterization
of the notion of knowledge interpreted based on evidence. This point will become
clear once we present the formal semantics below.

Subset space semantics interprets formulas not at worldsbut at epistemic
scenariosof the form (x;U), wherex 2 U 2 O. Let ES(X) denote the collection
of all such pairs inX. Given an epistemic scenariox( U) 2 ES(X), the setU is
called itsepistemic range intuitively, it represents the agent's current information
as determined, for example, by the measurements she has taken. The language
Lk is interpreted on subset spaces as follows:

6.1.2. Definition.  [Subset Space Semantics fdck ] Given a subset space
model X = (X; O;V) and an epistemic scenariox;U) 2 ES(X), truth of a
formula in the languagel ¢ » is de ned recursively as follows:

X;GU)FEPp [ x 2 V(p); wherep 2 prop

X;(GU)F I not X;(x;U)F"

X506U)E " A I XS5GU)FE T and X5 (X U) F

X; (G U) F K i (8y2U)X;(y;U)F ")

X;(x;U) FE 2° i (8020)(x20 U impliesX;(x;O)F ")

SWe could in fact de ne the subset spaces exactly the same way as evidence models by
putting the constraints X 2 O and; 62 O. This would technically make no di erence, however,
we here prefer to present the most general case.
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We say that a formula' isvalid in a modelX, and write X = ' ,if X;(x;U) '
for all scenarios x;U) 2 ES(X). We say' is valid, and write £ ', if X = '
forall X. We let [ Jf = fx 2 U j X;(x;U) F ' g denote thetruth set, or
equivalently, extension of under U in the modelX. We again omit the notation
for the model, writing simply (x;U) F ' and [ ]V, wheneverX is xed.

Epistemic readings of subset space semantics: current vs potential ev-
idence

In subset space semantics, the points of the space represent \possible worlds"
(or, statesof the world). However, having the units of evaluation as pairs of the
form (x; U)|rather than a single state x|allows us to distinguish the evidence
that the agent currently has in hand from the potential evidence she cam
principle obtain. More precisely, elements 0© can be thought of as potential
pieces of evidence meant to encompass all the evidence that might be learnt in the
future, while the epistemic rangeU of an epistemic scenariox; U) corresponds

to the current evidence, i.e., \evidence-in-hand" by means of which the agent's
knowledge is evaluated.This is made precise in the semantic clause fi& , which
stipulates that the agent knows justin case' is entailed by herfactive® evidence-
in-hand. The knowledge modalityK therefore behaves like the global modality
within the given epistemic rangeJ. For this reason, in various places, we will often
refer to K as the global modality. Thus, the type of knowledge captured by the
modality K in this setting is absolutely certain, infallible knowledge based on the
agent's current truthful evidence. These points already underline the substantial
di erences between the two evidence-based epistemic frameworks studied in this
thesis: while By of an evidence modelX; Ey; V) represents the set of evidence
pieces the agenhas already acquired about the actual situatipmhe set O of a
subset model X; O;V) represents the set opotential evidence the agent can in
principle discover, even if she does not happen to personally have it in hand at
the moment A subset model is therefore intended to carry all pieces of evidence
the agent currently has and can potentially gather later, hence, supports model-
internal means to interpret evidence-based information dynamics, as displayed,
e.g., by the e ort modality. ® In this framework, more e ort means acquiring more
evidence for the actual state of a airs, therefore, a better approximation of the
real state. The e ort modality 2" is thus interpreted in terms ofneighbourhood-
shrinking and read as \ is stably true under evidence-acquisition", i.e., is true,
and will stay true no matter what further factive evidence is obtained.

4The term \evidence-in-hand" is borrowed from (Bjorndahl and ©zgan, 2017), where the
elements ofO are described as \evidence-out-there".

SAs in the previous chapters,x 2 U expresses the factivity of evidence.

6In later sections, we study other dynamic modalities, such as the so-called public and
arbitrary announcement modalities, interpreted on topological spaces in the style of the e ort
modality, that is, without leading to any global change in the initial model.
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As every topological space is a subset space, the above readings of the modal-
ities also apply to the topological models. However, the additional structure that
topological spaces possess helps us to formalize naturally some further aspects of
evidence aggregation (similar to Part I). For example, whe® is closed under
nite intersections, we can consider the epistemic rangd of a given epistemic

has received and put togetherx 2 U = , ~O; 2 O (Baltag et al., 2015c).
Moreover, as noted in (Moss and Parikh, 1992), we can express some topological
concepts in the languagé ¢ , that, in fact, lead to concise modal reformulations

of veri able and falsi able propositions (as also noted in Georgatos, 1993). To
be more precise, given a topo-mod& = (X; ;V ) and a propositional variable
p2 prop, V(p)isopenin i p! 3Kp isvalidin X. Recall that the open
sets of a topology are meant to represent potential evidence, i.e., properties of
the actual state that are in principle veri able: whenever they are true, they are
supported by a sound piece of evidence that the agent can in principle obtain,
therefore, can be knowiiVickers, 1989; Kelly, 1996). Therefore, we can state that

pisveriable in X i p! 3Kp isvalidin X.

In contrast, V(p) is closed in i 2Kp ! pis valid in X, and closed sets
correspond to properties that are in principldalsi able: whenever they are false,
their falsity can be known In a similar manner, this can be formalized in the
languagelL ., as

pisfalsiable in X i :p! 3K:p, or equivalently, 2Kp ! pis valid in
X.

As remarked in (Vickers, 1989; Kelly, 1996), the closure properties of a topology
are satis ed in this interpretation. First, contradictions (;) and tautologies X)
are in principle veri able (as well as falsi able). The conjunctionp” q of two
veri able facts is also veri able: if p~ qis true, then both p and g are true, and
since both are assumed to be veri able, they can both be known, and henze g
can be known. Finally, iff piWi 2 1 g is a (possibly in nite) family of veri able
facts, then their disjunction ,, p; is veriable: in order for the disjunction to
be true, then there must exist some 2 | such that p; is trquand sop; can be
known (since it is veri able), and as a result the disjunction ,, pi can also be
known (by inference fromp,).

6.1.2 Axiomatizations: SSLand TopolLogic

Moss and Parikh (1992) provided a sound and complete axiomatization of their
logic of knowledge and e ort with respect to the class of subset spaces. Its purely
topological version was later studied by Georgatos (1993, 1994), and Dabrowski
et al. (1996), who independently provided complete axiomatizations and proved
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decidability. In this section, we give the axiomatizations for the logic of sub-
set spaces $SL) and of topological spacesTopoLogi¢. We state the relevant
completeness, decidability and nite model property results, and refer to the
aforementioned sources for their proofs.

The axiomatization of the subset space logic, denoted I8SL, is obtained by
augmenting the logicS5 + S4 for the languagelL ¢ » with the additional axiom
schemes (AP) and (CA) presented in Table 6.1.

(AP) (p! 2p~™ (G p! 2:p),;forp2 prop Atomic Permanence
(CA) K2'! 2K Cross Axiom

Table 6.1: Additional axiom schemes oBSL

Therefore, the e ort modality on subset spaces iS4like. The axiom (AP)
states that the truth value of the propositional variables does not depend on the
given epistemic range, but only depends on the actual state. In fact, this is the
case for all Boolean formulas ik », and can be proven in the systen$SL The
cross axiom is also interesting since it links the two modalities of this system.

6.1.3. Theorem (Moss and Parikh, 1992). SSLis sound and complete with
respect to the class of all subset spaces.

It was shown in (Dabrowski et al., 1996) that the logic of subset spaces does not
have the nite model property, however, its decidability was proven by using non-
standard models calleccross axiommodels (see Dabrowski et al., 1996, Section
2.3).

Concerning the logic of topological spaces fbk », i.e., the so-calledlopoLogi¢
it is axiomatized by adding the following axiom schemes to the axiomatization of
SSL

(wp) 32' 1! 23° Weak Directedness
(UN) 3'~K3 1| 3(3"'~K3 ~K3K(" _ )) Union Axiom

Table 6.2: Additional axiom schemes ofopoLogic

6.1.4. Theorem (Georgatos, 1993, 1994). TopoLogics sound and complete
with respect to the class of all topological spaces. Moreover, it has the nite model
property, therefore, it is decidable.

The literature on subset space semantics goes far beyond the presentation of
this section. However, we here con ne ourselves to the material we will use in
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later sections, and refer the reader to (Parikh et al., 2007) for a survey of the
further technical results, extensions, and variations of the topologic formalism.
In this dissertation, we are particularly interested in revealing the connection

between the e ort modality, and the well-known dynamic epistemic modalities

such as the public and arbitrary announcement modalities. To that end, we use
the topological public announcements introduced by Bjorndahl (2016), presented
in the next section.

6.2 Topological Public Announcements

The epistemic motivation behind the subset space semantics and the dynamic na-
ture of the e ort modality clearly suggests a link between the subset space setting
and dynamic epistemic logic, in particular dynamics known as public announce-
ments (Plaza, 1989, 2007; Gerbrandy and Groeneveld, 1997). The information
intake represented by the e ort modality intuitively encompasses any method of
evidence acquisition, including public announcements, a precise and well-studied
instance. This connection was also noted by Georgatos (2011), and further stud-
ied in (Baskent, 2011, 2012; Balbiani et al., 2013; WWang andégotnes, 2013b;
Bjorndahl, 2016), proposing di erent interpretations for the so-called public an-
nouncement modalities. For example, Baskent (2011, 2012) and Balbiani et al.
(2013) propose modelling public announcements on subset spaces by deleting the
states or the neighbourhoods falsifying the announcement, following the com-
mon approach in public announcement logics (see, e.g., van Ditmarsch et al.,
2007). However, this method is obviouslyiot in the spirit of the e ort modal-
ity, in the sense that e ort, as interpreted on subset spaces, does not lead to a
global model change but manifests itselbcally as a transition from one neigh-
bourhood to a smaller one, i.e., as a neighbourhood shrinking operator. To the
best of our knowledge, Wang andAgotnes (2013b) were the rst to propose se-
mantics for public announcements on subset spaces in terms of epistemic range
re nement rather than model restriction. Bjorndahl (2016) then proposed a re-
visedtopological semanticgin the style of subset space semantics) for the syntax
of public announcement logic ithout the e ort modality), that assumes as pre-
condition of learning' the sentenceint(' ), saying, roughly speaking, that' is
(potentially) knowable Topologically, this corresponds to the interior operator of
McKinsey and Tarski (1944). Bjorndahl's formalism therefore brings three sepa-
rate yet connected logical frameworks together: public announcement logic, the
interior semantics of McKinsey and Tarski (1944), and the subset space seman-
tics of Moss and Parikh (1992). It thus constitutes a rich enough background
to study the connection between e ort and the public announcements as well as
their connection to so-called arbitrary announcements.

In this section, we present Bjorndahl's topological public announcement logic,
and brie y explain the main intuition and motivation behind his formalism. The
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main body of the work presented in Part Il crucially relies on Bjorndahl's setting,
and explores its extensions with the aforementioned dynamic modalities both in
single and multi-agent cases.

6.2.1 Syntax and Semantics

Bjorndahl (2016) considers the languagk ;,, given by the grammar
CrEpint A K GintC) I

whereK' is as in Section 6.1,'[] is the public announcement operator, and
int is called the \knowability" modality, which, in this setting, plays the role of
a precondition of an announcement (Bjorndahl, 2016). The operator] is of-
ten denoted by [!] in the public announcement logic literature (as well as in
Part 1); we skip the exclamation sign, but we will use the notation [!] for this
modality when we do not want to specify the announcement formula (so that
I functions as a placeholder for the content of the announcement). We prefer
this notation here to emphasize the di erence from the update operators stud-
ied in Part | (which were interpreted in a standard way via model restrictions,
where the precondition of an announcement is only that the announced formula
is true). The dual modalities forK' and [ ] are de ned as usual, and we let
cl ):= int(: ).

Bjorndahl (2016) interprets the above language on topological spaces, in the

style of subset space semantics, by extending the subset space semantics of the
epistemic languagd.x with semantic clauses for the additional modalities.

6.2.1. Definition.  [Topological Semantics forl, ] Given a topo-modelX =
(X; ;V ) and an epistemic scenariox; U) 2 ES(X), truth of formulas inLi

is de ned for the propositional variables and the Boolean cases as in De nition
6.1.2, and the semantics foK , int(" ) and [ ] is given recursively as

(x;U) F K i (8y2U)(Y;U)F ")
U EINC) i x2Int( 1Y)
GU)YFIT] i (xU)F int(" ) implies (x; Int([' 1)) F

wherelnt is the interior operator of (X; ), and [ ] is as de ned on p. 106.

To elaborate, the semantic clause foK is exactly the same as in De nition
6.1.2, and is repeated here: as is standard in subset space semantics, knowledge is
entailed by the agent's current evidencé&). On the other hand, the precondition
of an announcement in Bjorndahl's setting is captured by the topological inte-
rior operator that refers to the existence of a piece of factivgotential evidence
entailing the announcement:

(U)E intC )i (902 )x20 [ 1Y):
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More precisely,int(" ) means that' is knowable at the actual statéhough not
necessarily knowable in general, at other states) in the sense that there exists
some potential evidence|an open set containing the actual state|that entails ' .
Therefore, for the precondition of an announcement, Bjorndahl (2016) requires
not only that the announced formula is true, but also that it is entailed by a
piece of (factive) evidence the agent could possibly obtain. In this respect, a true
proposition cannot be announced if it does not have amgpen subsets including
the actual state. For example, on a topo-model with no singleton opens, the
agents can never know the actual state, not every true proposition can come
to be known (as in Georgatos, 1994, Example 1, p. 149). It is this evidence-
based interpretation of public announcements that makes Bjorndahl-style updates
di erent than standard update operators (interpreted via model restrictions). In

a framework where knowledge is based on the agent's current evidence, and every
piece of evidence the agent might acquire later is represented within the given
model in terms of open sets of a topology, the operatort as the precondition for
learning something seems to be the right notion to consider. It is a good t with
the intuition behind the subset space/topological semantics and the evidence-
based learning we study in this part (see Bjorndahl, 2016, for some examples).

6.2.2. Remark. It is worth noting that the intuition behind reading int(' ) as
\" is knowable" can falter when' is itself an epistemic formula. For instance, if
' is the Moore sentence@”: Kp, then K' is not satis able in any subset model,
in particular, 3 K" is never true. Therefore, in this sense, can never be known;
nonethelessjnt(' ) is satis able. This is becausant(’ ) abstracts away from the
temporal and dynamic dimension of knowability, and is simply concerned with
potential knowledge. On the other hand3 K' is a dynamic schema that states
\the agent comes to know after having spent some e ort, having acquired some
further evidence". In this respect,int(' ) might be more accurately glossed as
\one could come to know what' used to expresgbefore you came to know
it)". Since primitive propositions do not change their truth value based on the
agent's epistemic state, this subtlety is irrelevant for propositional knowledge and
knowability (Bjorndahl and ©zgan, 2017)/

Bjorndahl (2016) then proceeds with providing a sound and complete axiom-
atization for the associated dynamic logidPAL;, (called public announcement
logic with int), using natural analogues of the standard reduction axioms of pub-
lic announcement logic, and shows that this formalism is co-expressive with the
simpler (and older) logic of interiorint(' ) and global modality K' (previously

"For a discussion of di erent notions of knowability and their link to Fitch's famous Paradox
of Knowability (Fitch, 1963; Brogaard and Salerno, 2013), we refer the interested reader to
(Fuhrmann, 2014; van Ditmarsch et al., 2012). In particular, Fuhrmann (2014) discusses a
notion of knowability as potential knowledge in the spirit of ours, and van Ditmarsch et al.
(2012) consider dynamic notions of knowability.
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investigated by Goranko and Passy (1992); Bennett (1996); Shehtman (1999);
Aiello (2002), extending the work of McKinsey and Tarski (1944) on interior se-
mantics). The axiomatizationsEL;,; and PAL;, for the languaged  ins and L,
respectively, are given in Table 6.8.

() Axioms of system  ELjy:

(CPL) all classical propositional tautologies and Modus Ponens
(S%) all S5axioms and rules for the knowledge modaliti
(S4nt) all S4axioms and rules for the interior modalityint
(K -int) Knowledge implies knowability K' ! int(")
(I1) Additional reduction axioms of PAL;,:
(Rp) [Ip$ (int(")! p)
(R.) [ $ (intC)!: [])
(R+) [1C~)$[] "~[]
(Rk) [[IK & (int(")! K[])
(Rint) [ IintC )$ (intC")! int(["] )
(Ricomp1) (101 $ [intC )" T lint( )]

Table 6.3: The axiomatizations forEL;,, and PAL;,.

We conclude the section by stating the completeness results fBt,; and
PAL;,,, and continue our presentation in the next section with a detailed discussion
on the expressive power of ;. and its fragments, also in comparison td y »,
with respect to topo-models.

6.2.3. Theorem (Shehtman, 1999). ELn is sound and complete with respect
to the class of all topo-models.

Bjorndahl (2016) also presents a canonical topo-model construction fet;,; (see
Bjorndahl, 2016, Theorem 1). He moreover proves the completeness and sound-
ness ofPAL;,:

6.2.4. Theorem (Bjorndahl, 2016). PAL;, is sound and complete with re-
spect to the class of all topo-models.

8In Table 6.3, we present Bjorndahl's original axiomatization as it appears in (Bjorndahl,
2016). In Chapter 7, we propose an alternative set of axioms for the public announcement
modality from which Bjorndahl's axioms are derivable. For this reason, we denote his original
system by PAL;H, and reserve the more standard notationPALj; for our version presented in
Chapter 7.
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6.2.2 EXpressivity

This section provides several expressivity results concerning the above de ned
languages with respect to topo-models. We focus in particular on the expressive
power ofL, ., and its fragments as provided in (Bjorndahl, 2016), as well as the
connection betweerlL i, and Lk, (see, e.g., Parikh et al., 2007, Section 4.3). The
reader who is familiar with the aforementioned sources can skip this section.

6.2.5. Theorem (Bjorndahl, 2016). Licint» Lkine @nd L are equally expres-
sive with respect to topo-models.

Proof:

For the proof details of the co-expressivity betweeh |, and L i, we refer to
(Bjorndahl, 2016, Proposition 5).L ;. and its fragmentL . are equally expressive
since the modalityint can be de ned in terms of the public announcement modal-
ities. In particular, for all * 2 L i,,, we haveint(" ) $ h' i> valid in all topo-
models. To prove this, letX = (X; ;V ) be a topo-models andX; U) 2 ES(X).

(x;U)FE int(")i x2Int([' 1Y) (by the semantics ofint)
i x2Int([' 1Y) and (x;Int([' 1) F >
i (x;U)F hHi> (by the semantics of public announ. [!])

2

On the other hand, not surprisingly, the modalityint increases the expressive
power of the purely epistemic fragment . And, similarly, the global modality
K increases the expressivity of jy:

6.2.6. Theorem. Ly is strictly more expressive tharh« , and thanL,.. More-
over, Lk and L, are incomparable.

Proof:

In order to show that L, is strictly more expressive thanLg, we use the
example in (Bjorndahl, 2016, Proposition 3¥. Consider the topo-modelsX =

(fx;yg;2Y9;V) and Y = (fx;yg;f; ;fyg;fx;ygg V) such that V(p) = fxg
(see Figure 6.1). Letintx and Inty denote the interior operators ofX and
Y, respectively. It is obvious that X and Y are modally equivalent with re-
spect toLk . In other words, for all' 2 Lk and all (z;U) 2 ES(X)\ ES(Y),

we haveX;(z;U) F ' i Y;(z;U) ' (in Bjorndahl, 2016, this argument is
given by a notion of bisimulation). However, whileX ; (x; fx;yg) F int(p) since

9The topo-models presented in this proof are in fact quite standard examples that are used
in order to compare the expressivity of the global modality and anS4type Kripke modality
on relational structures. We here adopt these relational structures to our setting by presenting
them as topo-models.
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(@ X (b) Y
Figure 6.1: Squares represent the open sets in the corresponding topologies.

x 2 fxg = Intx ([p]™*¥9), we also havex 62 ;= Inty([p]'*¥9). Therefore,int(p)
can distinguish X; (x; fx;yg) from Y;(x; fx; yg), thus it cannot be equivalent to
any formula in L .

To show that Lk, is strictly more expressive thanL iy, consider again the
model X = (fx;yg; 2"%Y9; V), and the topo-modelX° = (fx;yg; 2Y9; V9 such
that V{p) = ; (see Figure 6.2).

poX F.)y :oX :oy

(a) X (b) X°

Figure 6.2: Squares represent the open sets in the corresponding topologies.

Observe that, for all' 2 L, X;(y;fyg) F ' i X%(y;fyg) F ' (this can be
shown easily by a subformula induction oh ). On the other hand, X; (y;fyg) E
Kp whereasX® (y;fyg) 6j Kp. Therefore, Kp can distinguish X ; (y;fyg) from
X% (y;fyg), thus it cannot be equivalent to any formula inL .

Moreover, the rst example shows thatint(p) 2 L i is not equivalent to any
formula in L« , and the second example shows th#p 2 L « is not equivalent to
any formula in L, hence,Li; and Lk are incomparable. 2

We also compard._j; and Lk », and thereby, see the exact connection between
the interior semantics and the subset space style topological semantics. We here
follow the presentation in (Parikh et al., 2007, Section 4.3). We rst show that
Lint iIs embedded in the languagé ¢ , via the following translation:

6.2.7. Definition.  [Translation : L !L k2] Foreach' 2Ly, the transla-
tion (') of' into Lg, is de ned recursively as follows:

p = p; wherep 2 prop
') =)
(~) =N

(int(" ) 3K
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6.2.8. Definition.  [Bi-persistent Formula ofLk , (on topo-models)] A formula
" 2 Lk is called bi-persistent if for all topo-models X = (X; O;V), and all
x;U);(x;0) 2 ES(X)we have K, O) " i (x;U)EF ".

6.2.9. Proposition. For all * 2 Ly, the corresponding formula® 2 L, is
bi-persistent on topo-models.

Proof:

The proof follows by subformula induction on ; cases for the propositional vari-
ables and the Boolean connectives are elementary. So assume inductively that
the result holds for ; we must show that it holds also for' := int( ). Let

X =(X; ;V ) be atopo-model and X; O); (x;U) 2 ES(X). We then have

(x;U)EC(int( ) i (x;U)F 3K (by the de nition of )
i (9U%2 )x2U° Uand (x;U9YF K )
(by the semantics of2)

i (9U°2 )x2U®° Uand[ ¥ = U9
(by the semantics ofK)

Now, consider the setU%\ O. It is easy to see thatU®\ O 2 (since is a topol-
ogy), and thatx 2 UA O O. So, we only need to show that¢UA O) F K
i.e., that U% O=[ ]Y“©. But, since is bi-persistent (by induction hypothe-
sis),UA O  Uland[ J'"= U%wehave[ J'"°=[ J'\ O= UA O. There-
fore, (x;UA O) F K . Moreover,asx 2 UA O O, we obtain (x;O0) F 3K
The other direction follows similarly. 2

6.2.10. Proposition (Dabrowski et al., 1996, Proposition 3.5). For all
" 2 Lin, all topo-modelsX = (X; ;V ) and all (x;U) 2 ES(X),

XUFE"1T XU)E'

Proof:

The proof follows by subformula induction on ; cases for the propositional vari-
ables and the Boolean connectives are elementary. So assume inductively that
the result holds for ; we must show that it holds also for' := int( ). Let
X =(X; ;V ) be atopo-model and x;U) 2 ES(X) such that (x;U) F int( ),
i.e., x 2 Int([ JY). This means that there isO 2 suchthatx 2 O [ JV.
Then, by induction hypothesis, we obtainO [ ]Y, i.e., (y;U) E for all
y 2 O. By Proposition 6.2.9, we know that is bi-persistent on topo-models.
Therefore, we infer that §/; O) F for all y 2 O. Hence, by the semantics of
K, we obtain x;O) F K . Asx2 O U, we conclude x;U) F 3K . The
other direction follows similarly. 2



116 Chapter 6. Topological Subset Space Semantics

Therefore, the languagé_x » completely embeds the language;; as its frag-
ment consisting of the propositional variables, and closed under the Boolean oper-
ators and the modalities3 K. As shown in (Parikh et al., 2007, Proposition 6.8),
the languageL ¢ » is in fact strictly more expressive thanL,; on topo-models:

6.2.11. Proposition (Parikh et al., 2007, Proposition 6.8). Lk is
strictly more expressive tharl i, with respect to topo-models.

Proof:

It follows from Proposition 6.2.10 that for every' 2 L iy, there exists , namely

" ,such that' and' are true at the same epistemic scenarios of every topo-
model. Moreover, the second example in the proof of Theorem 6.2.6 shows that
Kp is not equivalent on the class of topo-models to forany' 2 L i (see Parikh

et al., 2007, Proposition 6.8 for a di erent example). 2

6.3 Conclusions and Continuation

In this chapter, we presented the subset space semantics introduced by Moss
and Parikh (1992), mainly focusing on its topological versions. While the stan-
dard TopoLogicformalisma la Georgatos (1993, 1994); Dabrowski et al. (1996)
completely axiomatizes the logic of topological spaces for the langudge, of
knowledge and e ort, Bjorndahl (2016) studies the variantL g iy with the inte-

rior operator of McKinsey and Tarski (1944) and the knowledge modalitK ,
and its extensionL ;. with a topological update operator. We therefore have
di erent axiomatizations for the class of topological spaces, using subset space
style semantics based on di erent languages. The expressivity results concerning
the aforementioned languages and their fragments have been discussed in Sec-
tion 6.2.2, and are summarized in Figure 6.3 below. As we see in Figure 6.3, the
languaged_x, and L iy are also co-expressive with respect to topo-models. We
leave the proof of this result for the next chapter (see Theorem 7.1.19).

At this stage we still do not have a logical formalism that analyzes the pub-
lic announcement modality and the e ort modality in one system, although
Bjorndahl (2016) provides topological semantics for public announcements that
matches the way e ort is evaluated on topological spaces. This constitutes one
of the topics of the next chapter: we extend the topologic framework with the
Bjorndahl-style update modalities, or equivalently, study the extensions df i
and L, by the e ort modality 2, and develop a formal framework that eluci-
dates the relation between e ort and public announcements.
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Thm 7.1.19

' Thm 6.2.5
I—Kint ~ >

/4m 6.2.6

I—in'[

Thm 6.2.5
L:<int I-!K

Figure 6.3: Expressivity diagram (Arrows point to the more expressive languages,
and re exive and transitive arrows are omitted. Arrows without tags can be ob-
tained as easy consequences from the others.)






Chapter 7
TopolLogicas Dynamic Epistemic Logic

This chapter studies two di erent extensions of Bjorndahl's setting for topological
public announcements: one with thee ort modality of Moss and Parikh (1992),
and the other with the so-calledarbitrary announcement modalityof Balbiani

et al. (2008). We rst explore the logic of topological spaces for the language
L« int2 » Obtained by extending Bjorndahl's languagé , ;. with the e ort modality
introduced in the previous chapter. This way, we design a formal framework which
reveals the link between e ort and (topological) public announcements, resulting
in both conceptual and technical advantages.

Yet another close relative of both the e ort modality and the public announce-
ment modalities is the so-calledarbitrary announcement modality that was
introduced by Balbiani et al. (2008) and studied on Kripke models. Roughly
speaking, the arbitrary announcement modality ' is read as\ stays true after
every announcement”. It therefore generalizes public announcements by quanti-
fying over all such announcements. On the other hand, the e ort modalitgeems
stronger than the arbitrary announcement modality as the former quanti es over
all open neighbourhoods of the actual state, not only over the epistemically de-
nable ones. In this chapter, we also look at the connection between these three
dynamic operators, by providing a topological semantics for' that quanti es
universally over Bjorndahl-style public announcements (similar to the way stan-
dard arbitrary public announcement in (Balbiani et al., 2008) quanti es over
standard public announcements).

Outline

Section 7.1 presents the Dynamid@opolLogicwhich combines the topologic for-
malism with Bjorndahl's public announcements presented in Chapter 6. While
Section 7.1.2 provides several expressivity results, Section 7.1.3 focuses on the
completeness proof of the proposed axiomatization for Dynami@poLogic In
Section 7.2, we study arbitrary announcements on topo-models and demonstrate
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120 Chapter 7. TopolLogicas Dynamic Epistemic Logic

that, in fact, the arbitrary announcement and the e ort modality are equivalent
in our single-agent framework.

This chapter is based on (van Ditmarsch et al., 2014; Baltag et al., 2017).

7.1 Dynamic TopolLogic

In this section, based on (Baltag et al., 2017), we investigate a natural extension
of topologic, obtained by adding to it Bjorndahl's topological update operators. In
other words, we revisitTopoLogicas a dynamic epistemic logic with public an-
nouncements. The resulting \DynamiclTopoLogi¢ forms a logic of evidence-based
knowledgeK' , knowability int(" ), learning of new evidence'[] , and stability
2' (of some truth' ) under any such evidence-acquisition.

To recall briey, Moss and Parikh (1992) gave a sound and complete ax-
iomatization with respect to the class of all subset spaces (Theorem 6.1.3). The
axiomatization for topological spaces was later studied by Georgatos (1993, 1994)
and Dabrowski et al. (1996), who independently provided completeness and de-
cidability proofs for TopoLogic(Theorem 6.1.4). These existing completeness and
decidability results involve technically interesting, yet rather complicated con-
structions. Moreover, one of the main axioms of the originalopoLogi¢ the so-
called Union Axiom, capturing closure of the topology under binary unions (see
Table 6.2), is very complex and looks rather unintuitive from an epistemic per-
spective. Against this background, our investigations in this chapter lead to results
of conceptual and technical interest as the extended syntax explicates the notion
of e ort in terms of public announcements, and entertains an epistemically more
intuitive and clear complete axiomatization.

In the following, we present several expressivity results concerning this ex-
tended language, denoted by | ..., , and its fragments, and thus expand Figure
6.3. In particular, we show that this extension is co-expressive with Bjorndahl's
languagel | ;. of topological public announcements (Bjorndahl, 2016), and there-
fore with the simpler languagel  in;. This elucidates the relationships between
TopoLogicand other modal (and dynamic-epistemic) logics for topology. In par-
ticular, TopoLogicis directly interpretable in the simplest logic of topo-models for
Lk int, Which immediately provides an easy decidability proof both fofopolLogic
and for our extension.

We also give a complete axiomatization for DynamiGopoLogi¢ which is in a
sense more transparent than the standard axioms ®bpolLogic Although we have
more axioms, each of them is natural and easily readable, directly re ecting the
intuitive meanings of the connectives. More precisely, our axiomatization consists
of a slightly di erent version of Bjorndahl's axiomatization of PAL;, (ours includes
a few other standard axioms and rules of public announcement logic), together
with only two additional proof principles governing the behavior of the topologic
\e ort" modality (2', what we call \stable truth"): an introduction rule and an
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elimination axiom. Everything to be said about the e ort modality is therefore
fully captured by these two simple principles, which together express the fact that
this modality quanti es universally over all updates with any new evidence. In
particular, the complicated Union Axiom of TopoLogic(see Table 6.2) is not
needed in our system (though of course it can be proved from our axioms). Unlike
the existing completeness proofs dopolLogic(Georgatos, 1993; Dabrowski et al.,
1996), ours makes direct use ofstandard canonical topo-model constructioiias,
e.g., the canonical topo-model construction fog4 in Aiello et al., 2003, Section
3).! This simplicity shows the advantage of adding dynamic modalities: when
considered as a fragment of a dynamic-epistemic logic, topologic becomes a more
transparent and natural formalism, with intuitive axioms and canonical behavior.

7.1.1 Syntax, Semantics and Axiomatizations

The languagel i .., of Dynamic TopolLogicis obtained by extending Bjorndahl's
languageL i ., With the e ort modality 2 from the language of topologid_ »
(Moss and Parikh, 1992); or, equivalently, by extending the usual syntax of topo-
logic with both the interior operator int of McKinsey and Tarski (1944) and with
Bjorndahl's dynamic modalities for topological public announcements. As noted
earlier, the interior operator is de nable using topological public announcements
(by putting int(" ) = K i>). Therefore, keeping the modalityint in the language
as primitive is mainly a design decision, but it also simpli es our completeness
proof. Therefore, our syntax is essentially given by adding the languafjg , of
topologic only the dynamic public announcement modalities, hence, we use the
name \Dynamic TopoLogi¢. We start our presentation by formally introducing
the syntax and semantics for DynamiclopoLogic

Syntax and Semantics.  The languagel | ., of Dynamic TopoLogicis de ned
recursively by the grammar

= pit AT K i) LT 28

wherep 2 prop . Several fragments of the languagej ., are of both technical
and conceptual interest. To recall, for the fragments df, ., , we use our standard
notational convention listing all the modalities of the corresponding language as a
subscript ofL except that ! for public announcements appears as a superscript. For
example,L denotes the fragment oL’Kint2 having only the modality int; Lk int
having only the modalitiesK and int; L, having only the modalitiesK and 2
Lk it having the modalitiesK , int and ['] etc.

IDabrowski et al. (1996) also consider a canonical model, but their completeness proof of
TopoLogic uses McKinsey-Tarski's theorem of the topological completeness o84 (Theorem
3.1.6). In our setting, having the modality int that matches the topological interior operator in
the language makes it easier to directly build a canonical model.
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We interpret this language on topo-models in an obvious way by putting
together the subset space semantics fark , (De nition 6.1.2) and Bjorndahl's
semantics for the fragment_ ;,, (De nition 6.2.1). This is recapitulated in the
following de nition.

7.1.1. Definition.  [Topological Semantics fol j .., ] Given a topo-modelX =
(X; ;V ) and an epistemic scenariox; U) 2 ES(X), truth of formulas inLi >
is de ned for the propositional variables and the Booleans as in De nition 6.1.2,
and the semantics for the modalities is given recursively as follows:

(x;U) F K i (8y2U)(Y;U)F ")

GUYEIntC) i x2Int( 1Y)

GU)FEI] i (xU) Fint(") implies (x; Int([' 1Y) F
x;U)F 2' i (802 )(x20 Uimplies(x;0O)F ")

Axiomatizations . Given a formula' 2 L .., We denote by P the set of all
propositional variables occurring i (we will use the same notation for the neces-
sity and possibility forms de ned in De nition 7.1.22). The Dynamic TopolLogi¢
hereby denoted aDTL;y, is the smallest subset of |, that contains the ax-
ioms, and is closed under the inference rules given in Table 7.1 below. The system
EL: is de ned in a similar way over the languagd g i,y by the axioms and in-
ference rules in group (l) of Table 7.1 (as also given in Table 6.3), afAL, is
de ned over the languageL  ;,, by the axioms and inference rules in groups (1)
and (I).

The rst six items in Table 7.1 are standard. The Replacement of Equivalents
rule (['|RE) for [!] says that updates are extensionakhat is, learning equivalent
sentences gives rise to equivalent updates, while the reduction axiom X¥R) says
that updating with tautologies is redundantThe reduction axioms (R), (R.)
and (Rg) are exactly the same as in the axiomatizatiorPAL;, of Bjorndahl
(2016), and the reduction law (R;) for the iterative announcements is equivalent
to (Rcomp)) but formulated in a simpler way (see Table 6.3 foPAL;,). Bjorndahl's
axiomatization also includes reduction laws for the connectivé (denoted by
(R~)) and the modality int (denoted by (Rnt)), however, as shown in Proposition
7.1.2, these can be derived iRAL;y;.The only key new components of our system
are the last axiom and inference rule fo2 , i.e., the elimination axiom (['R -elim)
and the introduction rule ([']2-intro) for the e ort modality. Taken together,
they state that is a stable truth after learning’ i is true after learning
every stronger evidencé . The left-to-right implication in this statement is
directly captured by ([']2 -elim), while the converse is captured by the rule (R]-
intro). The \freshness" of the variable p in this rule ensures that it represents
any \generic" further evidence. This is similar to the introduction rule for the
universal quanti er. In essence, the e ort axiom and rule express the fact that
the e ort modality is a universal quanti er (over potential evidence One can
compare the transparency and simple nature of our axioms with the complexity
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() Axioms and rules of system ELpn:

(CPL) all classical propositional tautologies and Modus Ponens
(S5¢) all S5axioms and rules for the knowledge modalitK
(S4nt) all S4axioms and rules for the interior modalityint
(K -int) Knowledge implies knowability K" ! int(")
(1) Additional axioms and rules for PAL:
(Ky) 1t H)r C¢1rtrin)
(Neq) from , infer[ ]
(["RE) Replacement of Equivalents fof]:

from' $ infer[] $ [ ]

Reduction axioms

(R[>]) [>1 $°
(Rp) [Ip$ (int(")! p)
(R) [] & (int()!: [])
(Rk) [[IK & (int()! K[])
(Rp) (] $MHi]
(1) Axioms and rules of the e ort modality for DTLjnt:
M2-elim) 112 ' [ ™ ] ( 2Ly, arbitrary formula)

([12-intro) from ! [ ~p],infer ! [']2 (p62P [P [ P)

Table 7.1: The axiomatizations ofDTL;,; PALy and ELy

of the standard axiomatization of TopoLogicthat contains, among others, the
rather intricate Union Axiom (also given in Table 6.2):

3" AK3 I 3(8' ~"K3 ~K3K( _ ) (UN)

Proposition 7.1.2 states some important theorems and inference rules derivable
in DTLjy, which will be used in our completeness proofs. While the denotations
for the other items listed in the following proposition are obvious, (RE) is the full
rule of Replacement of Equivalentsvhere' f = g denotes the formula obtained
by replacing the occurrences of in' by

7.1.2. Proposition.  The rst seven schemas and the rul¢RE) are provable
both in PALy, and DTL;, (for languagesL ., and Li .,, respectively. The
ninth schema and the inference rule below can be derived in our full proof system
DTLjnt:
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1. (hi) Hi $ (int")"['])

2. (R») [1?7%: int(")

3. (Rn) [1C~)$ 1 ~T11)

4. (Rint) [ lint( )$ (int(" ) ! int(["] ))

5. (R[int]) [int" )] $ ']

6. (Rycomp)) [ 1 $ [intC )T Jint( )]

7. (Ryp) ['lpl $ [ ~pl  (p2prop arbitrary)
8. (RE) from $ ,infer' $ 'f= ¢

9. (2-elim) 2 1 [] ( 2Ly, arbitrary formula)
10. (2 -intro) from ! [p],infer ! 2 (p62P [ P atom)
Proof:

We here present abridged derivations, some of the obvious steps are omitted. We
start with the 2 -axioms and inference rules.

(2 -elim):
172 $ [>]2 (R[>])
2°[>12 ' [~ 1; (forarbitrary 2L ) (]2 -elim)
3°>~ 12 ' [1; (forarbitrary 2Lii,) C ™ )$ and (IRE))
472 ! []; (forarbitrary 2L y,) (1-3, CPL)

(2 -intro): proof follows analogously to the above case by using K], and
[']2 -intro with ' = >.

(RE): The proof follows standardly by subformula induction on' . Suppose

$ . For the base casé = , we have' f = g = . Therefore, the

equivalence™ ' $ 'f = g boils down to" $ , hence follows from the
assumption. Now assume inductively that the statement holds for and . The
cases for the Booleands and int are standard, where the latter two follows from
the corresponding K-axioms and Necessitation rules. For [!], we use KNec),
(['IRE). For 2, it is su cient to show that we can derive the K-axiom (K,) and
the Necessitation rule (Neg) for 2. The derivation of (NeG ) easily follows from
(Nec) and (2 -intro). For (K ,), we have

L-@Ct )r2)t (el ! )™ Iel) (p62P [ P, (2-elim))

2 (It )™M P ) ! IRl (Ky)

72! )yr2) Ipl (1, 2, CPL)

42! )yr2 )1 2 (p62P [ P, (2-intro))
(Hi): follows from the de nition i = : [ ]: and the axiom (R ).

(R~): follows from (K,) and (Neg).
(R»): is an easy consequence of {R (R,) and (['|RE)
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(Rint):
Loint( )$: [ 1? (R>)
2 [int( )$ []:[1? (1, (MRE))
IOLLE01?8 (ntC)!: [ 1?) (R:)
4 (it ) [0 12)$ (int(C ) ! int(H i) (Rp). (R2))
57 [ Jint( )$ (int(")! int(Hi )) (2-4, CPL)
6: (int(")! int(hi ))$ (intC")! int(intC ) T[] )) ((Hi), (RE))
77 (int(") ! int(intC )N ] NS (int(" ) ! (int(" ) Nint([" ] )
(S4nt, (RE))
8 (int(")! (intC()~Nint("1 ) $ (int(")! int(" ] ) (CPL)
9 ['Qint( )$ (int(")! int(["' 1)) (5-8, CPL)
(R[int]): follows by subformula induction on by using the reduction axioms
and the fact that int is an S4modality. For case := 2 , we use (['2 -elim) and
([M2 -intro).

Base case = p

L7 [int( )lp$ (int(int(" )) ! p) (Rp)
2. (int(int(" )) ! p)$ (int(")! p) (S4int)
3 (ntC)! PSS [p (Rp)
4: " [intC )p$ ['Ip (2-3, CPL)
The casesfor :=: , = ~ | =K and :=int( ) follow in a similar
way by using the corresponding reduction axioms.
Case =[]
LofintC)IL ] $ [hnt(" )i ] (Rp)
2. [Ant(" )i 1 $ [int(int(" )) ~ [int(" )] ] (hi)
3 [int(int(" )) ~ [int(" )] 1 $ [int(" )~ [int(" )] ] (S4nt, (RE))
4: " [int(" )M [int(" )] ] $ [int(C )~[] ] (IHon , (RE))
S°int( )M T $ [Hi] ((hi), (RE))
6" Mi] $[1] (Rp)
rofintCOIL ] $ 0 (1-6, CPL)
Case =2

We here only show the direction [int(" )]2 ! [ ]2 ; the other direction
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Lo [int(")]2 ' [int(" )" p] (p62P [ P, ([']2-elim))

2. [int(" )M pl $ [int(int(" )™ p)] (IH)

3 [int@int(" )~ p)] $ [int(" ~ p)] (S4nt, (RE))

47 [int(" ~pl $ [ ~pl (IH)
5°0int(")]2 ! [~ p] (1-4, CPL)

6: [int(")]2 ! []2 (P 6Pintcy [ P, ([']2-intro))

(R[comp]):

Lo fint(" )~ [ lint( )] $ [int(" )~ int[ ] )] ((Rint), (RE))

2.7 [int(" )~ int[" ] )] $ [int(int(" )) ~int[" ] )] (S4nt, (RE))

37 [int(int(" )) M int["] )] $ [int(int(" )~ ['] )] (S4nt, (RE))

4 [int(intC )N ] )] $ [intC)"N[] ] (R[int])
Stifint(C)M[] ] $ [Hi] ((hi), (RE))
6: i ] $[1] (Rpy)

7.0 intC )~ Jint( )] $ '] (1-6, CPL)

(Rep):

L[ Iel $ [Hip] (Rp)

227 [Hipl $ [intC )" [ Ip] ((hi), (RE))

3 [intC )M [ Ipl $ [int(" )" pl ((Rp), (RE))

4: " [int(" )~ p] $ [int(int(" )" p)] (R[int])

5 [int(int(" )~ p)] $ [int(" "~ p)] (S4n and (RE))

6: " [int(" *p] $ [ " pl (R[int])

77 [l $ [ "pl (1-6, CPL)

2

7.1.3. Corollary. PAL; is sound and complete with respect to the class of all

topo-models.

Proof:

Soundness oPAL; is easy to see. The completeness proof follows from Theorem
6.2.4 and Proposition 7.1.2: since Bjorndahl's axiomatizatioRAL;, is complete
and our systemPAL;,; can prove all his additional reduction rules (R), (Rint)
and (Rycomp)), our systemPAL;,; is complete as well. 2
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7.1.2 Soundness and Expressivity

In this section, we introduce a more general class of models for our full language
L int2» Called pseudo-modelsThese are a special case of the (even more general)
subset models of Moss and Parikh (1992). Pseudo-models include all topo-models,
as well as other subset models, but they have the nice property that the interior
operator int(" ) can still be interpreted in the standard way. These structures,
though interesting enough in themselves, are for us only an auxiliary notion,
playing an important technical role in our completeness proof &®TL;,.. For now
though, we rst prove the soundness of our full systenDTL;,; with respect to
pseudo-models (and thus also with respect to topo-models), and then provide
several expressivity results concerning the above de ned languages with respect
to both topo and pseudo-models.

The de nition of pseudo-models requires a few auxiliary notions, such as a
more general class of models callgule-models

7.1.4. Definition.  [Lattice spaces and Pre-models] A subset spack;©) is

called alattice spaceif ;; X 2 O, and O is closed under nite intersections and
nite unions. A pre-model(X; O; V) is a triple where (X; O) is a lattice space and
V :Prop!P (X) is a valuation map.

Although a lattice space ¥K; O) is not necessarily a topological space, the
family O constitutes a topological basis oveK . Therefore, every pre-modeX =
(X; O; V) has anassociated topo-modeX = (X; o;V), where ¢ is the topology
generated byO (i.e., the smallest topology onX such that O 0)-

Given a pre-modelX = (X; O;V), we de ne the semantics forL; ., on pre-
models forall pairs of the form (x; Y ), whereY X is an arbitrary subset such
that x 2 Y. It is important to notice that, for a given evaluation pair (x;Y) on
a pre-model, the setY is not necessarilyan element ofO. The reason for this
adjustment will be explained in Remark 7.1.6, after we have de ned the semantics
for Li i, ON pre-models.

7.1.5. Definition.  [Pre-model Semantics fot ,,,] Given a pre-model and a
pair of the form (x; Y) suchthatx 2 Y X, truth of formulas inL |, is de ned
for the propositional variables and the Booleans as in De nition 6.1.2, and the
semantics for the modalities is given recursively as follows:

(X Y)F K o (8y2Y)(y;Y)F ")

xY)Eint(") i x2Int{'T)

Y)FI['] i (X Y)F int(" ) implies (x; Int([' 1)) F
xY)F 2' i (8020)(x20 Y implies(x;0)F ")

wherelnt is the interior operator of o.
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7.1.6. Remark. Notice that the consequent of the semantic clause for] re-
quires x; Int ([' J)) to be a \well-de ned" evaluation pair. If we were to restrict
the evaluation pairs in a pre-model to the so-called epistemic scenarios of the
form (x;U) with x 2 U 2 O (as in the case for topo-models), we could not have
guaranteed that a pair of the form &; Int ([' J¥)) would be well-de ned: since pre-
models arenot necessarily based on topological spaces, the open e[’ V)
might not be an element ofO. Therefore, in order to render the above de ned
semantics well-de ned for the public announcement modalities | , and thus, for
the languageL ., ,» Wwe have generalized the satisfaction relation on pre-models
to any pair (x;Y) with x2Y X.

Validity on pre-models on the other hand is de ned byestricting to epistemic
scenarios(x; U) such that x 2 U 2 O, as in the case for the topo-models. More
precisely, we say that a formuld is valid in a pre-modelX, and write X |= ', if
X;(x;U) g ' for all epistemic scenariogx;U) 2 ES(X). A formula ' is valid,
denoted by ', if X ="' for all X. We are now ready to de ne pseudo-models
for the languageL i, -

7.1.7. Definition.  [Pseudo-models fot | ,»] A pseudo-modeX = (X; O;V)
is a pre-model such that pt(" )]Y 20, forall' 2Ly, andU 20.

It is obvious that the class of pseudo-models includes all topo-models, and
that all formulas of Lj ., that are valid on pseudo-models are also valid on
topo-models: this is because theatisfaction relation for epistemic scenariosn
any pseudo-model that happens to be a topo-model agrees with the topo-model
satisfaction relation.

Soundness of DTLy

We now continue with the soundness proofs fddTL;, with respect to topo and
pseudo-models. Once we prove the soundnessDdiLi,; for pseudo-models, its
soundness for topo-models follows from the facts that every topo-model is a
pseudo-model and that validity on both structures is de ned with respect to
epistemic scenarios. It is not hard to see that all the axiom schemas in group (1)
and (I) in Table 7.1 are valid, and the inference rules (Netand (['|RE) pre-
serve validity on pseudo-models. In the following, we focus on the axiom schema
([')2 -elim) and the inference rule ([2 -intro).

7.1.8. Lemma. Let X = (X; 0;V) and X%= (X; O;V9 be two pseudo-models
and' 2L, such thatX and X°dier only in the valuation of somep 62P. .
Then, for all U 2 O, we have[' I¥ =[' 1¥o.

Proof:
The proof follows by subformula induction on' . The base case := q follows
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from the fact that V(q) = VYqg) for all q 2 P.. The cases for Booleans are
straightforward, we here only prove the cases for the modalities.

Case' = K : Note that Px =P . Then, by induction hypothesis (IH),
we have that [ I =[ I{.. Due to the semantics oK, we have two cases (1) if
U=s[ I =1 Kothen[K J¥ =[K J¥o= U, and Qif[ ¥ =[ -6 U,
then we have K ¥ =[K 1¥o= ;.

Case' := int( ): Note that Py y = P . By the semantics ofint, we have
[int( )I¥ = Int([ 1%). SinceX and X °generate the same topologyo (they are
based on the same lattice space), by IH, we obtaint ([ 1) = Int([ 1}.), i.e.,

[int( )IxX = [int( )Xo
Case' =[] : Notethat P,y =P [ P . Supposex 2 [[ ] I{ and

x 2 Int([ 1%0). By IH, we have [ 1{o=[ 1% . Therefore, sinceX and X °generate
the same topology o, we obtainint ([ %) = Int([ 1{). Hence, sincex 2 [[ ] ]IX

andx 2 Int([ I¥) U, we haveX;(x;Int([ 1Y) F ,ie,x2 [ ]l'm('[ 10,

Similarly, by IH, we then obtainx 2 [ ]II)?Z(II Ixo and thereforex 2 [[ ] I{o- The

other direction follows similarly.

Case' =2 : Supposex 2 [2 ]{. This means, by the semantics a2, that
forall 02 O with x 2 O U we have thatX;(x;0) F ,i.e.,thatx2 [ IY.
Therefore, by IH and the fact that P, = P , we obtainx 2 [ ]{.. SinceX
and X ° carry the same collectionO, we conclude thatx 2 [2 ]%.. The opposite
direction follows similarly. 2

7.1.9. Theorem. DTL;, is sound with respect to the class of all pseudo-models
(and hence also with respect to the class of all topo-models

Proof:
The soundness proof follows by a simple validity check. We here only prove that
([']2 -elim) is valid and ([!]2 -intro) preserves validity on pseudo-models.

(M2 -elim): Let X =(X; O;V) be a pseudo-model andx{U) 2 ES(X) such
that (x;U) E[ ]2' . This means that ifx 2 Int ([ ]Y) then for all O 2 O with
x2 O Int([ ]Y), we have &0O) F '. Now let 2 L, and suppose
x2Int([ A JY). Sincelnt([ » V)= Int([ IH\ Int([ J¥) Int( JY), we
obtain x 2 Int ([ JY). Thus, by the rst assumption that (x;O) E ' forall 02O
such thatx 2 O Int([ J¥), we in particular obtain (x;Int([ ~ V) F '
Hence, GGU) FIC ~ )T -

(['2 -intro): Suppose, toward a contradiction, that ' [ ~p' and
6 I' []2" wherep 62P [ P [ P.. The latter means that there is a
pseudo-modelX = (X; O;V) and an epistemic scenarioxU) 2 ES(X) such
that X;(x;U) F but X;(x;U) §[ 12", i.e, X;(x;U) F hi3:". There-
fore, applying the semantics, we obtairx 2 Int([ ]}) and there exists Uy
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Int ([ I¥) such that x 2 Uy and X;(x;Up) F :'. Now, consider the model
X0 = (X; O;V9Y such that V{p) = Uy and VYq) = V(q) for all q 2 prop
with p 6 g. Then, by Lemma 7.1.8, we have that [I{ = [ 1Yo [ 1% = [ 1¥o,
and [ ' 1{° = [: ' I)2. Therefore, X% (x;U) F  and X% (x;Up) F :' . Itis
easy to see thatint ([ ~ plRo) = Int([ 1%0) \ Int([plks) = VAp) = U (since
Int ([plyo) = Uo  Int([ 1%) = Int([ IY0)). We therefore obtain (1)x 2 Int([ ~
plo) and (2) X% (x; Int ([ ~ plko) F : ' . Hence, by the semantics of [!], we have
X%(x;U) E h ~pi: *. Then, sinceX;(x;U)F and[ I{¥ =[ 1}. we obtain
X%(x;U)E ~h ~pi: . Therefore, X% (x;U) 6 ! [ ~p] , contradicting
the validity of ! [ ~p]' . 2

Expressivity on pseudo and topo-models

In this part, we establish several expressivity results with respect to both pseudo
and topo-models, concerning our full languade; ., and its important fragments

Li i Lkine @and Lx o studied in Chapter 6. The reason to consider the more
general case of pseudo-models (not only topo-models) is that the co-expressivity of
the languaged ¢ iy and L ., for pseudo-models will be used in the completeness
proof of DTL;y; (Corollary 7.1.37).

We rst show the co-expressivity ofL ., and Ly with respect to pseudo-
models (Proposition 7.1.11). Its proof is standard, using the reduction laws to
push dynamic modalities inside the formulas and then eliminating them. This
requires an inductive proof on a non-standard complexity measure on formulas
in Li i Which induces a well-founded strict partial order oriL} ;,, satisfying the
properties given in Lemma 7.1.10. Such a complexity measure is de ned by Bjorn-
dahl (2016) to prove the co-expressivity ok } ;.. and Lk for topo-models (see
Bjorndahl, 2016, Proposition 5), as well as for the completeness resultRAL;,
(see Bjorndahl, 2016, Corollary 1). Bjorndahl's simple complexity measure on
Lk ine Would in fact su ce for our expressivity result on pseudo-models for the
languaged.  inx and L ;... However, in order to prove the completeness &TL;y
(in Section 7.1.3), we need a complexity measure on the formulas of the extended
languagel | ,.» taking into account the e ort modality 2 as well. A similar com-
plexity measure will also be needed in Lemma 8.3.16 in Chapter 8. To this end, we
de ne a more elaborate complexity measure dnj ., that we can use throughout
this and the next chapter. The de nition of this complexity measure is given in
Appendix A.1.

7.1.10. Lemma. There exists a well-founded strict partial ordex S on formulas
of L, such that

1.' 2 Sul( ) implies'< S 3.intC ) 1 <ST]
2.int(")! p<S[1Ip 411 ~ATT<S1C 7~ )
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5.int(") ! int("'] ) <ST Jint( ), 7.0 1<ST1].
6. int()! K[]<S[IK ,

Proof:
See Lemmas A.1.4 and A.1.5. 2

7.1.11. Proposition. L{mt and L i are co-expressive with respect to pseudo-
models. In other words, for every formula 2 L, there exists a formula 2
Lk int such that' $ is valid in all pseudo-models.

Proof:

The proof follows by <S-induction on ' . The base case := p follows from
the fact that the languagesL i ;,, and L i; are de ned based on the same set of
propositional variablesprop . The cases for the Booleans .= : ,' = " |
and the cases for the modalities := K and' := int( ) follow standardly using
Lemma 7.1.10-(1). We here only prove the cases for= K ,and' :=[ ] :

Case' := K : Since < SK (Lemma 7.1.10-(1)), by induction hypothesis,
there exists a °2 L ki suchthat $ Cis valid in all pseudo-models. Then, by
the soundness of (RE) (which follows from Proposition 7.1.2 and Theorem 7.1.9),
we obtainF K $ K © whereK %2 L gjq.

Case' :=[ ] : Theorem 7.1.9 implies that the reduction laws given in Table
7.1 and Proposition 7.1.2 for the languageky ;,, are valid in all pseudo-models.
Therefore, applying the appropriate reduction (e.g., if = p apply (Rp), if

= : apply (R.) etc.) we obtain a formula 2 L, suchthat[ ] $
is valid in all pseudo-models. By Lemma 7.1.10.(2-7), we know that< S [ ] .
Hence, by induction hypothesis, there exists® 2 L i such that $ O
As is semantically equivalent to [] , we conclude thatr [ | $ © where
°2L Kint- 2

Next, we prove thatL, ., and Ly are equally expressive with respect to
pseudo-models. This result will also be useful in the completeness proobadi. .
for topo-models (Corollary 7.1.38). In proving the co-expressivity df} ;,, and
Lk int, We follow a similar strategy as in (Balbiani et al.,, 2008; van Ditmarsch
et al., 2014). Our proof follows the same steps as in the proof of co-expressivity
betweenL i and L}, for topo-models (see van Ditmarsch et al., 2014, Theo-
rem 19), whereL} ;, denotes the extension of | ;,, with the so-called arbitrary
announcement modality . We will study the arbitrary announcement modality

" and its connection to the e ort modality 2" in Section 7.2.

The proof of the co-expressivity result betweeh | ;, and Lxint (as well as
the co-expressivity ofLx i and Li ;. ) relies on the fact that for every formula
" in Lkinx, there exists a 2 Lk in \normal form" such that and are
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semantically equivalent in pseudo(topo)-models. Normal forms for formulas in
the languageL ¢ i,y are de ned similarly to the normal forms of the basic modal
language in such a way that the modalityint can occur in the scope oK (see
Meyer and van der Hoek, 1995, for normal forms for the basic epistemic language).

7.1.12. Definition.  [Normal form for the languagelL «ix] We say a formula
2 L kint IS in normal form if it is a disjunction of conjunctions of the form

= N K AK 1/\ A}en
where ; ; 2Ly foralll i n.

Our normal forms for the languagé. g in: are similar to the so-calledlisjunctive
normal forms introduced in (Georgatos, 1993, De nition 34) for the language
Lk 2. More precisely, given a formula irL ¢ i in normal form, we obtain a formula
in Lk, in disjunctive normal form in the sense of Georgatos (1993) by replacing
every occurrence of the modalitynt by 3 K.

7.1.13. Lemma (Normal From Lemma). For every formula’ 2 L g there
is a formula 2 Lkiy in normal form such that' $ is valid in all pseudo-
models, therefore, also valid in all topo-models.

Proof:
The proof is given in Appendix A.2. 2

Having proven the Normal Form Lemmalthe rst crucial step toward the
desired expressivity results|we now proceed with the proof of Theorem 7.1.17.
For this, we need a few more validities in whiclbi-persistent formulas on pseudo-
modelsin the languageL ., play an important role. Bi-persistent formulas in
Lk int2 for pseudo-models are de ned similarly as in De nition 6.2.8 with respect
to epistemic scenariosinformally speaking, these are the formulas &f; ., whose
truth value on pseudo-models dependsnly on the actual state,not on the epis-
temic range.

7.1.14. Lemma. Every formula of L, is bi-persistent on pseudo-models.

Proof:

The proof is similar to the proof of Proposition 6.2.9, by subformula induction on

' . cases for the propositional variables and the Boolean connectives are elemen-
tary. So assume inductively that the result holds for ; we must show that it holds
also for' := int( ). Let(X; O;V) be a pseudo-model andx{ O); (x;U) 2 ES(X).

We then have

(x;U)E int( )i x2Int({ 1Y)
i (9U°20)(x2U° [ 1Y) (sinceO is a basis for o)



7.1. Dynamic TopolLogic 133

Now, consider the open set®\ O. It is easy to see thatx 2 U°\ O. So,
we only need to show thatu®\ O [ J°. Lety 2 U°\ O. Sincey 2 U° we
have that (y;U) £ (by U° [ ]Y). Then, by induction hypothesis, we obtain
(y;O)E ,ie.y2[ ]°. We therefore have thatx 2 U°\ O [ ]°, i.e., that
x 2 Int([ J°) (sinceU®\ 020 o). Therefore, x;O) F int( ). The other

direction follows similarly. 2
7.1.15. Proposition.  Forany';' ; 2Ly, the following is valid in all pseudo-
models:
N N
3( MK oN R DS (Nint( ) R(@nt( )N ') (EL2)
1 i n 1in
Proof:

The proof follows similarly to the proof of (van Ditmarsch et al., 2014, Proposition
18). Let X =(X; O;V) be a pseudo-model andx¢ U) 2 ES(X). It is important
to notice that every';' ; 2 L, is bi-persistent, we will use this fact several times.
We prove the statement only forn = 1.
() ) Suppose K;U) F 3(" ~K' o~ K" ;). By the semantics, we have

(UYE 3( 2K *K' )i (9V20)x2V Uand(xV)E" ' "K' "K' 1)

We therefore have (1) X;V) FE ', (2) (x;V) E K' o, and 3) (x;V) F K' 1.
We want to show that (x; U) E * ~int(" o) K(int(* )" 1). Now (1) and Lemma
7.1.14 imply k;U) F ' ; and (2) implies that (x; V) F int(' o). Then, by Lemma
7.1.14, we havex;U) E int(' o) (sinceint(’ o) is bi-persistent).

In order to show (;U) E K (int(' o) * ' 1), we need to prove that there is a
y 2 U such that (y; U) F int(' ¢)"' 1. Item (3) implies that there is az 2 V such
that (z;V) F ' 1. Then, by Lemma 7.1.14, we havez(U) F ' ;. Moreover, (2)
implies (z; V) F K' o, and thus (z; V) F int(' o). Then again by Lemma 7.1.14,
(z;VU) F int(* o). So, z;U) F int(" o) * ' 1, and thus (x;U) E K (int(" o) * ' 1).

(( ) Suppose K;U) F ' ~int(" o) » K(int(" ) * ' 1). We have:

OGU)E A int(* o) A R(int( o)~ ' 1)
I (x;U)F" and (x;U) F int(" ) and 9y 2 U with (y;U) F int(" o) * ' 1
i (x;U)F " and (x;U) F int(" o) and 9y 2 Int ([' o]Y) with (y;U) F ' 1

We want to show §;U) F 3( ~ K' ¢~ K' ,), i.e., we want to prove that there
isaV 20 with x2V Usuchthat (;V)E "' *K' o~ K" 1.

We now claim that for V := Int([' ¢]V), we obtain the desired result. It is
easy to see thatx 2 Int([' o]V) U (since &;U) [ int(' )). And, since X is
a pseudo-model, it is guaranteed thatnt ([' oY) 2 O. We want to show that
o Int ([ o]Y) F ' MK o™ R 1 Since k;U) F ', by Lemma 7.1.14, we obtain
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< Int ([ o]Y)) F ' . Sincelnt([' o]Y)) T olY, we have that (z;U) ' o for
all z2 Int([' o]Y). Therefore, as' ( is bi-persistent (Lemma 7.1.14), we obtain
(z;int([' o]Y) E 'o forall z 2 Int([' o]Y), thus, (x;Int([' o]V)) E K' o. By
the assumption, we havedy 2 Int ([' o]Y) such that (y;U) E ' 1, and thus, by
Lemma 7.1.14, we obtainy; Int ([' 0]V)) F ' 1. Therefore, by the semantics, we
have (; Int ([' o]V)) F K' 1. 2

The proof of the following lemma is straightforward, and follows directly from
the semantics for3 and _

7.1.16. Lemma. Forall ; 2L, the formula3( _ )$ (3' _3 )is
valid in all pseudo-models.

We now have su cient machinery to show that L int2 and Lk ine are equally
expressive with respect to pseudo-models.

7.1.17. Theorem. Li,., and Lk are co-expressive with respect to pseudo-
models.

Proof:
We need to prove that for all' 2 L ., there exists 2 Ly suchthat' $ s
valid in all pseudo-models. The proof follows by subformula induction dn. The
base caseé := p follows from the fact the languages$ iy and L ;,., are de ned
based on the same set of propositional variablpsop . The cases for the Booleans
"= " = N | and the cases for the modalities = K and = int( )
foIIow standardly We here only show the casés:=[ ] and' =3

Case' :=[ ] : Since and are subformulas of , by mduction hypothesis,
there exists ¢ %2 Ly suchthat(@)F $ Cand (b)j= $ O Then, by (a)
and the soundness of (['|RE),weobtaig [ 1] $ [ 9 . Moreover, by (b) and the
soundness of (RE), wehave[ 9 $ [ 9 © Therefore,c[ 1 $ [ 9 ° Notice
that[ 9 °2 L Nl int- Then, by Proposition 7.1.11, there exists 2 L i Such
that E[ 9 °¢ . Wethenconcludethat=[ ] $ ,i.e.,[] issemantically
equivalent to 2 L in With respect to pseudo-models.

Case' := 3 : By induction hypothesis, there exists °2 L xi, such that
F $ 0 Then, by Lemma 7.1.13, there exists a 2 L ¢ i, in normal form with
F 9% ,hence,wealsohave $ . Therefore, by the soundness of (RE), we
obtain 3 $ 3 . BylLemma 7.1.16, we can distribute8 over the disjunction

. Since is in normal form, each disjunct of the resulting formula is of the form

3( MK oMK AR oA AR where' 2L forall0O i n. Then,
by Proposition 7.1.15, we can reduce these formulas to semantically equivalent
formulas of the form' 2~ int(" o)~ K(int(' o)~ ' 1)~ ~ K(int(' o)* ' ,), hence,
obtain a formula in Lg iy that is semantically equivalent to3  with respect to
pseudo-models. 2
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Theorem 7.1.17 will be used in the completeness proof BT L;,; for topo-
models (Corollary 7.1.38). Concerning expressivity df, ..., we also obtain the
following result with respect to topo-models.

7.1.18. Corollary. Lii> and Liine are co-expressive with respect to topo-
models.

Proof:
This proof proceeds similarly to the proof of Theorem 7.1.17. Since every topo-
model is a pseudo-model, Proposition 7.1.15 holds for topo-models as well. More-
over, recall thatL « iy and L ;,, are equally expressive with respect to topo-models
(see Theorem 6.2.5). Therefore, we can argue along the same lines as in Theo-
rem 7.1.17 and prove that for every formuld 2 L, there exists a formula

2 Lkint such that' and are semantically equivalent with respect to topo-
models. 2

SinceLkz L i, Corollary 7.1.18 also establishes thdt i is at least as
expressive as o on topo-models. As shown in the next theoren, « i,y and Lk »
are in fact equally expressive for topo-models.

7.1.19. Theorem. Lk, and Lk are also co-expressive with respect to topo-
models.

Proof:
Corollary 7.1.18 shows that for every 2 L , thereis 2L iy suchthat' $
is valid in all topo-models. We only need to show that for every 2 L « irt there is
2Lk, suchthatEe $ . Thus, suppose 2 L kin. By Lemma 7.1.13, there is
92 L kint in normal form such thatE $ % As Cis in normal forms, we have
0= , . whereeach;:= ~K ~K ;& ~K ,with ;; 2L
forall1 i n.Now take an arbittary { = ~K ~K ;~ ~ R ,.By
Proposition 6.2.10 and the soundness of (RE), we haye ; $ NK(C A
K( )~ ~ KR(,) where :Lix!L g, isas given in De nition 6.2.7. Notice
that ~K( )"K(,)" ~ K(,) 2Lk,. Therefore, each canonical con-
junction ; of Cis semantically equivalent to a formula inLk, with respect to
topo-models. Let ; denote the formula inLk, that is semantically equivalent
to ; (this is abuse of notation since is not de ned for K). Hence, we obtain

(again by the soundness of (RE)) that= °% ,_ _ .. AsfF $ % we
concluder $ ,_ _ ,,where ,_ _ [ 2Lga>. 2
7.1.20. Corollary. Licint2: Licines Lk int @and L > are all co-expressive with re-

spect to topo-models.
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Proof:
The proof follows easily from Corollary 7.1.18 and Theorem 7.1.19, sircgin
I-!Kint L i(int2' 2

Moreover, recall thatint can be de ned by the public announcement modalities
asint(' ) := H i>, hence, we also obtain that., andL, , are equally expressive
as their extensions with the modalityint. These results are summarized in Figure

7.1 below.
Lk
\ Cor. 7.12.20 , int("):=Hi>
L2 K int2 K2
Thm. 6.2.6
Thm. 7.1.19 Cor. 7.1.20
Prop. 6.2.1
Thm. 6.25 ., Thm. 6.2.5
I—Kint D 'Li<int Li(

/4m. 6.2.6

Figure 7.1: Expressivity diagram-updated with2 (Arrows point to the more
expressive languages, and re exive and transitive arrows are omitted. Arrows
without tags can be obtained as easy consequences from the others.)

Lint

As a direct corollary of the above expressivity results, we obtain decidabil-
ity and the nite model property for the dynamic logic of topo-models for the
languageL i ., as well as for its fragments.

7.1.21. Corollary. The logic of topo-models for the languade, ., is decid-
able and has the nite model property (and thus all its fragments, including in
particular TopoLogi¢ have these properties).

Proof:

This follows from Corollary 7.1.20, together with the fact thatL i IS eas-
ily shown to have these properties by a standard ltration argument (see e.g.,
Goranko and Passy, 1992, and Shehtman, 1999). 2



7.1. Dynamic TopolLogic 137

7.1.3 Completeness of DTLijn

In this section we prove the completeness of the proof systedTL;, with re-
spect to (both pseudo and) topo-models. The plan of our proof is as follows.
We rst prove completeness oDTL;,; with respect to acanonical pseudo-model
consisting ofmaximally consistent witnessed theorieRRoughly speaking, a max-
imally consistent theory is witnessed if ever' occurring in every \existential
context" in the theory is \witnessed" by some atomic formulap meaning that
hpi* occurs in the same existential context in the theory. Next, we use the co-
expressivity ofL{<int2 and Lk i, as well as the fact thatL « i,y cannot distinguish
between a pseudo-model and its associated topo-model, to show tlAEL;, is
complete with respect to thecanonical topo-model(associated with the canonical
pseudo-model).

The appropriate notion of \existential context” is represented bypossibility
forms (dual of necessity forms), in the following sense.

7.1.22. Definition.  [Necessity and possibility forms foi_} ;,.,] For any nite
stings2 (f''j " 2Ly d[f Kg[f J 2Lki9 = NF, we dene
pseudo-modalitiesg] and hsi. These pseudo-modalities are functions mapping any
formula' 2L, toanother formulafs] 2L ., (necessity forn), respectively
ksi' 2 L., (possibility form). The necessity forms are de ned recursively as
[T =", ;s =" 1 [g],[Kis] =KJ[s]',[;s] =[ ls] ,where is the
empty string. For possibility forms, we sethsi’ = : [s]: ' .

7.1.23. Lemma. For every necessity fornis], there exist formulas; 2L >
such that for all' 2 Ly, we have

S I O

Proof:
The proof is as in (Balbiani et al., 2008, Lemma 4.8). Fos := , take = >
and := >. It then follows by the axiom (R[>]). Otherwise, by the de nition of

a necessity form, §]' is a formula ofL} ., such that' is entirely on the right
(or at the bottom), and is successively bounded by nitely many implications
I, knowledge modalitiesK , and announcements [9, in arbitrary order. By
rearranging the order of these symbols in a provably equivalent way, we can ob-

tain the required form ~ ' [T . We start with the public announcement
modalities. By using the reduction laws ofDTL;,, we can push all the public
announcement modalities binding the components ! and K of the necessity
form to the top of ' . To push them passK, we use (R ), and for ! we use
(R.) and (R~). We then obtain a formula that is provably equivalent to f|' ,
but in which all public announcement modalities occurring irs are stacked on
top of ' . By using the axiom (Ry), we can write all these public announcement
modalities as one announcement. We therefore obtain a formula that is provably
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equivalent to [s]' of the following shape: a formula of the form |' is entirely
on the right, and is successively bounded by nitely many implications ! , and
knowledge modalitiesK , in arbitrary order. This is still not in the required form
since we might have [|' at the bottom preceded by a knowledge modality, i.e.,
the resulting formula might have the shape ( ! KJ[ ] ). However, sinceK is
of S5type, we knowthat® ! K i K | . Therefore, we can push every
occurrence of the modalityK bounding the consequent of an implication to the
antecedent as the epistemic possibility modalit) . This way, we obtain a theo-

rem of the form ! (! :::( ! [T1)). Thep/, by classical propositional
logic, we know™ 1! (2! yi(a! [TNS$ (4, 0! [1) thus we
have™ I [] (where := . . ). Since every axiom used in the above
argument is an equivalence, we also have ! [ ] implies™ [s]' . 2

7.1.24. Lemma. The following rule is admissible irDTL;py;:
if ~ [S]p]' then ~ [s]2'; wherep62Ps[ P :

Proof:

Suppose’ [s][p]' . Then, by Lemma 7.1.23, there exist; 2 L}, such that

! []pl' . By the auxiliary reduction law (Rpy;) in Proposition 7.1.2, we get
' [ ”~ p] . By the construction of the formulas and , we know that

PP Ps, and sop 62P [ P [ P.. Therefore, by (['R -intro)), we have

© 1 []2". Applying again Lemma 7.1.23, we obtain [s]2"' . 2

7.1.25. Definition.  For every countable set of propositional variables P, let
L« int2 (P) be the language oDTL;,, based only on the propositional variables in
P. Similarly, let NFP denote the corresponding set of strings de ned based on

L ;< int2 (P)

A P-theory is a consistentset of formulas inL .., (P), where \consistent"
means consistent with respect to the axiomatization dDTL;, formulated
for L :< int2 (P)

A maximal P-theory is a P-theory that is maximal with respect to
among all P-theories; in other words, cannot be extended to another
P-theory.

A P-witnessed theoryis a P-theory such that, for every s 2 NFP and

" 2 Liime(P), if ksi3" is consistent with then there is p 2 P such

that hsihpi' is consistent with (i.e., if ~ [s][p]: * for all p 2 P, then
T s]2: ).

A maximal P-witnessed theory is a P-witnessed theory that is not a proper
subset of any P-witnessed theory.
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7.1.26. Lemma. For every maximal P-witnessed theory , and every formula
l; 2L i(intZ(P)’

1. either’ 2 or:' 2

2.'"~ 2 i1 "2 and 2

3."2 and' ! 2 implies 2
7.1.27. Lemma. For every L «i2(P), if is aP-theory and 6 :' for

some' 2L (P), then [f ' gis aP-theory. Moreover, if is P-witnessed,
then [f ' gis alsoP-witnessed.

Proof:
Let L 2 (P) be a P-theory and' 2 L, (P) such that 6" :'. Itis
then easy to see that [f ' gis consistent, and thus, is a P-theory. Now suppose
that is P-witnessed but [f ' g is not P-witnessed. By the previous state-
ment, we know that [f ' g consistent. Therefore, the latter means that there
iss2 NFPand 2L, (P)suchthat [f'gis consistentwithlsi3 but
[f'g :hsihpi forall p2 P. This impliesthat [f 'g  [g][p]: for all
p2 P. Therefore, ~ ' ! [s][pl: forallp2 P. Thismeans " [ ! ;g][p]:
forall p2 P (since’ ! [s][pl: :=1[""! ;s][pl: )- Hence, as is P-witnessed
and [ ! ;s] is a necessity form, we obtain ~ ['! ;s]2: . By unraveling the
necessity form ! ;s], we get -~ ' ! [s]2: ,thus, [f'g [s]2: , e,
[f'g :hsi3 , contradicting the assumption that [f ' gis consistent with
hsi3 . 2

7.1.28. Leg1ma. If f igion IS an increasing chain ofP-theories such that ;
i+1, then . n is a P-theory.

Proof:
The proof is standard. 2

7.1.29. Lemma (Lindenbaum’'s Lemma). Every P-witnessed theory can be
extended to a maximaP-witnessed theoryT .

Proof:

The proof proceeds by constructing an increasing chainy 1 n

... of P-witnessed theories, wherey := , and each ; is recursively de ned.

Since we have to guarantee that each; is P-witnessed, we follow a two-fold
+

construction, where ¢ = = . Let o; 1;:::; n;i:: be an enumeration of
all pairs of the form ; = (s;;' ;) consisting of any necessity forns; 2 NF P and
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any formula’' ; 2 L o (P). Let (s,;' 1) be the nth pair in the enumeration. We

then set
+ n[fhsyi'ng if nO0:hsyi'y

n n otherwise

Note that the empty string is in NFP, and for every 2 L ., (P) we have

hi := by the de nition of possibility forms. Therefore, the above enumeration
of pairs includes every formula of L ., (P) in the form of its corresponding
pair (; ). By Lemma 7.1.27, each | is P-witnessed. Then, if ,, is of the form

'n=3 forsome 2L, (P),there exists ap2 P such that } is consistent
with hsyihpi  (since [ is P-witnessed). We then de ne

g if ,0:hs,i',and', is not of the form 3
[fh syihpi g if ,0:hsyi',and' ,:= 3 for some 2L‘Kim2(P)
otherwise

n+l —

S S +5+

wherep 2 P such that | is consistent withhs,ihpi . Again by Lemmad.1.27, it
is guaranteed that each , is P-witnessed. Now consider the uniol =, n.
By Lemma 7.1.28, we know thafl is a P-theory. To show thatT is P-withessed,
lets2 NFPand 2L, (P)andsupposesi3 isconsistent withT . The pair
(s;3 ) appears in the above enumeration of all pairs, thuss(3 ) = (sm;' m)
for somem 2 N. Hence,hsi3 = Is,i' . Then, sincelsi3 is consistent with
T and ,, T ,weknowthathsi3 isin particular consistent with ,. There-
fore, by the above constructionfsihpi 2 ., for somep 2 P such that 7} is
consistent with hsihpi . Thus, asT is consistent and 47 T , we have that
hsihpi  is also consistent withT . Hence, we conclude thaT is P-witnessed. Fi-
nally, T is also maximal by construction: otherwise there would be a P-witness
theory T such that T ( T. This implies that there exists' 2 L iy, (P) with

" 2 T but' 62T . Then, by the construction of T , we obtain ; ~: ' for all
i 2 N. Therefore, sincer T, we haveT " : ' . Hence, sincé 2 T, we conclude
T °? (contradicting T being consistent). 2

7.1.30. Lemma (Extension Lemma). Let P be a countable set of propositional
variables andP®be a countable set dfeshpropositional variables, i.e.,P\ P°= ;.

Let P =P [ P Then, everyP-theory can be extended to #-witnessed theory
, and hence to a maximaP-witnessed theoryT

Proof:

Let o; 1;:::; n:i:: an enumeration of all formulas of the form; ;= hsi3"';
consisting of anys; 2 NF P, and every formula' ; 2 L i ;,.» (P) in the language. We
will recursively construct a chain ofP-theories o ::: n ... such that

1. o=,
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2. PP :=fp2 P% poccursin ,gis nite for every n 2 N, and

3. for every , = hsni3' , with s, 2 NFP and', 2 Li,(P), if O
‘hspi3'  then there ispy, \fresh” such that hs,ihpyi' 2 h+1. Otherwise
we willdene .41 = ..

For every ,, let P{n) := fp 2 P°%j p occurs either ins, or' ,g: Clearly every

Pqn) is always nite. We now construct an increasing chain oP-theories recur-
sively. We set o := , and let

_ n [fh spihpmi' ng if , 0:hsyi3'
n+l = n otherwise,
wherem is the least natural number greater than the indices in [ PYn), i.e.,
Pm is fresh. We now show that := |, n is aP-witnessed theory. First show
that isa P-theory. By Lemma 7.1.28, it su ces to show by induction that every

n IS a P-theory. Clearly g is a P-theory. For the inductive step suppose , is
consistent but ,.; is not. Hence, , 6 41 and moreover ,.1 ? . Then,

since n+1 = n[fh spihpyi' hg, we have , ° [shllpm]: ' n- Thereforevthere ex-
istsf q;::0; kO nsuch thatf q1;:::5 w9 [Sallom]: 0. Let = | .
Then ~ U [sallpm]: " ny sO° [! ispllpm]: "0 with py 2 P [ Ps, [ P .
Thus, by the admissible rule in Lemma 7.1.24, we obtaih [ ! ;s,]2: " 4, i.e.,

I' [sn]2: ' n. Therefore, ":h s,i3"' ,. Sincef 1;:::; kg n,» we therefore

have , :h s,i3' ,. But, thiswould mean , = .41, contradicting our assump-
tion. Therefore .1 is consistent and thus aP-theory. Hence, by Lemma 7.1.28,
is a P-theory. Condition (3) above implies that is also P-witnessed. Then, by
Lindenbaum's Lemma (Lemma 7.1.29), there is a maximd®-witnessed theory
T suchthatT : 2

We are now ready to build the canonical pseudo-model. For a xed countable
set of propositional variables P, we let for any maximal P-witnessed theorids
and S,

T Si(8 2Lg;xP)K' 2T) ' 29):

7.1.31. Definition.  [Canonical Pseudo-Model foily] Let Ty be a maximal P-
witnessed theory. Thecanonical pseudo-model fofy is a tuple X ¢ = ( X ¢; O V©)
such that

X¢=fT L ki2(P)]jT isamaximal P-witnessed theory withT  Tog,

OC¢=fhmt()j"' 2Lk, »,(P)g whereb=fT 2 X¢j 2 Tg for any
2 Licint2 (P),
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Ve(p)=fT2 X jp2Tg

We let € denote the topology generated byD¢. The associated topo-modeX ¢ =
(X% ¢ V°is called thecanonical topo-model forTy.

In order to show that X°¢ = (X ¢ 0% V) is indeed a pseudo-model, we need
a Truth Lemma for the languageL i ., . We therefore postpone the proof oK °
being a pseudo-model until after the proof of the Truth Lemma (Lemma 7.1.35)
for the completeness oDTL;;. For now, we show thatX® = (X ¢ O¢ V°) is at
least a pre-model, hence, it is well-de ned for the languade, .., (P).

7.1.32. Lemma. X°¢=(X¢O0¢%V° is a pre-model.

Proof:

It is easy to see thatX¢;; 2 O €, since iht(>) = X°¢and iht(?) = ;. We need
to show that O° is closed under (1) nite intersections and (2) nite unions.
(1) closure under nite intersection follows from the normality ofint, namely
from the fact that = int(" )~ int( ) $ int(" ~ ). (2) closure under nite union
follows from the fact that = (int(" ) _int( )) $ int(int(" ) _ int( )), and that
int(int(" ) _int( )) 2L i 0 (P). 2

7.1.33. Lemma. For every maximalP-witnessed theoryT, the setf jK 2 Tg
is a P-witnessed theory.

Proof:

Observe that, by axiom (Tx),f jK 2 Tg T. Therefore, asT is consistent,
the setf j K 2 Tgis consistent. Lets 2 NFP and 2 L, (P) such that
f jK 2Tg [s][p]: " for all p2 P. Then, by normality of K, T = K[s][p]: '

for all p 2 P. SinceK|[s][p]: ' = [K;s][p]: ' is a necessity form andT is P-
witnessed, we obtainT ~ [K;s]2:',ie., T = KJ[s]2:'. As T is maximal, we
haveK[s]2:' 2 T,thus[s]2: " 2f jK 2 Tg. 2

7.1.34. Lemma (Existence Lemma). LetT 2 X®and', 2L (P) such
thatint( ) 2 T and K[ ]' 62T. Then, there isS 2 X°¢ with int( ) 2 S and
[ 1 62S.

Proof:

Let 2 Liimz(P) such that int( ) 2 T and K[ ] 62T. The latter im-
pliesthatf jK 2 Tg6[ ], hence,f jK 2 Tg6 =[] . Then, by
Lemma 7.1.33 and Lemma 7.1.27, we obtain thdt | 2 Tg[f: [ gis
a P-witnessed theory. Note that™ : [ ]' $ (int( )~ [ ]. ") (see Proposition
7.1.2-(i)). We therefore obtain thatf jK 2 Tg[f. [ ] g int( ), thus,
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f jJK 2 Tg[fi []1 g6 :int( ) (sincef jK 2 Tg[f [] gis con-
sistent). Therefore, by Lemma 7.2.27f j K 2 Tg[fi [ ] g[f int( )gis
also a P-witnessed theory. We can then apply Lindenbaum’'s Lemma (Lemma
7.1.29) and extend it to a maximal P-witnessed theory such thatint( ) 2 S
and [ ]' 62S. 2

7.1.35. Lemma (Truth Lemma). Let X°®=(X¢; 0% V°) be the canonical pseu-
do-model for a maximalP-witnessed theoryT, and' 2 L i ,» (P). Then, for all
2 L icim2 (P) we have

[0 =hit

Proof:
The proof follows by < 3-induction on ' (the well-founded partial order<3 on
Lk int2 iS de ned in Appendix A.1).

Base case = p

o™ ) = nt( )\ [ (sincep is bi-persistent)
= nt( )\ V<(p) (by the semantics of p)
=it( )\ p (by the de nition of V°)
=int( )" p
= W(lnt(/)' p) (by propositional tautologies)
= int( )~ [ Ip (by (Ry))
=hip (Proposition 7.1.2-(1i))

Induction Hyposthesis: For< $' ,we have [ ["()=h i foral 2L}, (P).

Case' =:

L ]Iiht( ) — ?nt( )n[ ]Iiht( ) (by the semantics of; )
= nt( )nh i (by IH)
= int( )\ (X°nhi )
= ht( )\:h (sinceXenhi =:h i)
= int( )A:h i

=hi (Proposition 7.1.2-(t))
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Case' = A~
[ ~ MO = JrOy [ o (by the semantics of")
=hi \h i (by IH)
=hi ~hi (by propositional tautologies)
=hi( ~ ) C(i *hi)sh i ™)
Case' = K

() ) SupposeT 2 [K M), This implies, by the semantic clause oK , that

T 2 ht( )and [ JM ) = int( ). We want to show that T 2 h iK . By Propo-
sition 7.1.2-(i) and the reduction axiom (R¢ ), we obtain " h iK $ int( )"

K[ ] . We therefore only need to show that 2 ?Y]t( )andT 2 K[ ] . We have

the former by the assumption. Suppose toward contradiction thal 62K [ | ,
i.e., K[ ] 62ZT.Then, by Lemma 7.1.34, there existS 2 X ¢ such thatint( )2 S
and[] 62S.Since h i ! [] ,weobtainhi 62S. Therefore, by IH, we
haveS 62 JM(). SinceS 2 int( ), we then conclude [J™( ) & ht( ). By the se-
mantics ofK , this means that [K_]™() = ;, contradicting our rst assumption.
Hence, T 2int( )" K[ ] =hiK

(( ) SupposeT 2 h iK . Then, by the equality h iK $ int( )~ K[ ] ,

we haveT 2 t( Yand T2 K[ ] .LetS2 t( ). SinceS TandT2K][ ],
we also have [] 2 S. Therefore, by Proposition 7.1.24¢i), we obtainh i 2 S.

This implies, by IH, that S 2 [ J"( ). As this holds for all S 2 t( ), we have
[ TMO) = int( ). Hence, K J"() = t( )3 T.

Case' = int( )
() ) SupposeT 2 [int( )J"(). Then, by the semantics ofint, there exists

U20°suchthatT 2 U [ JMO) (since O° constitutes a basis for ¢). Then,

by IH, we haveU hi. By the construction of O¢, we know that U = i\nt( )
for some 2L ., (P). We therefore obtain that

T2ht() hi:

This means that, for all S 2 }nt( ), we haveS 2 h i . Therefore, the setf 2
Lz P) K 2 Tg[f: (int( )!'h i )gisinconsistent. Otherwise, by Lemma
7.1.29, it could be extended to a maximally consistent P-witnessed thedFy such
that T TC%int( ) 2 T°andh i 62T° a contradiction. Then, there exists a
formula 2f 2Ly ,»(P)jK 2Tgsuchthat™ ! (int( )!'h i ). Thus,
by the normality of K, we have K I K(nt( )!'h 1 ). AsK 2T, we
obtain K(int( ) ' h i ) 2 T. Then by axiom (K -int), we haveint(int( ) !



7.1. Dynamic TopolLogic 145

hi )2 T. Sinceint is an S4 modality, we getint( ) ! int(hi ) 2 T. Since
T2 |\nt( ), this implies int(h i ) 2 T. Moreover, we have

Lointthi )$ int(int( )~[]) (Proposition 7.1.2-Hi), (RE))
2 int(int( )~ [ ])$ (int( )~ int( ] ) (S4nt)
7 (int( )Nint([ ] ))$ (int( )~ (intC ) ! [ lint( )))

(Proposition 7.1.2-(Rnt))
4 (int( )~ (intC ) ! [ ]int( ))) $ (int( )~ [ ]int( )))
57 (int( )N [ Jint( ) $h iint( ) (Proposition 7.1.2-(li))
6: intthi )$h iint( ) (2-5, CPL)

Therefore, asT is maximal, we obtainh iint( )2 T,i.e.,T 2h iint( ).
() SupposeT 2 h iint( ). This implies, by the above derivation, thatT 2
int(h i ). By the constraction of O, we haveint(h i ) 2 O°. Moreover, by

the axiom (Tiy), we obtai\nw [ )\h/ i . By IH, we also have thath i =
[ TMO). ThereforeT 2 intthi ) h i =[ MO, ie, T 2 Int( MO) =
[int( )JitC).

Case' = hi

[hi MO =fT2ht()j(Tntd I"O)E g
= fT 2t ) j(T:nt( )™ Y E g (by the semantics ofint)
=fT2?Y\t( )i (T;hiint( )F g (by IH, sinceint( )<3hi )

=g phiintC) (sinceh iint( ) it ))
= hhiint( )i (by IH, since < Shi)
=hih | Chih i $hh iint( )i )

Note that “h ih i $hh iint( )i follows from (Ry) and (R[int])).

Case' =2

() ) SupposeT 2 [2 JMC), ie., (T:\nt( )) F 2 . This means that for all
U20 with T2 U fht( ), we have (T;U) g . This in particular implies that
(T;fht( ) F[p] forall p2 P. To show, letp 2 P and suppose T;l\'ut( ) F
int(p), i.e., T 2 Int([p]™?) = [int(p)]™ ). Sinceint(p) <§ 2 (see Lemma
A.1.5-(2,4)), we know by IH that [int(p)]™( ) = h iint(p). But, as shown in the
case for the modalityint above,” h iint(p) $ int(h ip), hence, [nt(p)]™M() =
int(h ip), thus, [int(p)]"() 2 O°. Hence, by the rst assumption, we obtain
(T:Int ([l ) £, thus, (T:nt( ) F [p] . Therefore, T 2 [p] JMC) for
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—_—

all p2 P. Then, by IH (since p] < $ 2 ), we have [p] ") = hi[p] ,
thus, h i[p] 2 T. Hence, by Proposition 7.1.24i), int( )~ [ ][p] 2 T for all
p 2 P. SinceT is P-withessed and maximal, we then obtaimt( )~ [ ]2 2 T.
Then, by Proposition 7.1.2-fi), we concludeh i2 2 T.

(() SupposeT 2 h i2 . This means (by Proposition 7.1.24fi)) that
T2int( )M[ ]2 ,ie,thatint( )2 Tand[ ]2 2 T. Then, by axiom ([']2 -
elim), we have that [ ~ ] 2 T forall 2L, (P). We want to show that
T2[2 "), LetU20°suchthatT 2 U int( ) and showT 2 [ ]Y. By the
construction of O¢, we know that U = }nt( ) for SOMZ(P).Mm-
fore have thatT 2 U = Int( ) = t( )\ mt( ) = int( )~ int( ) = int( ~ ).
Hence,int( ~ )~[ ~ ] 2 T. Therefore, by Proposition 7.1.24fi) and the
fact that T is maximal, we obtainh ~ i 2 T. Thus, by IH (since < 32 ),

T2 MC "™ Die, T2 V. 2

7.1.36. Lemma. X°¢=(X°¢0¢%V° is a pseudo-model.

Proof:
Theorem 7.1.32 shows thaX ¢ = (X ¢ 0% V°) is a pre-model. In order to show
that it is indeed a pseudo-model, let 2 L ., (P) and U 2 O°. We should show

that [int(' )]V 2 O, i.e., that [int(" )]V = t( ) for some 2L, (P). By the
construction of O¢, we know thatU = f‘nt( )forsome 2L k int2 (P). By the Truth
Lemma (Lemma 7.1.35), we haverft(' )]I““()\:/hi int(' ). As argued in the case
for the modality int in the Truth Lemma, h iint(" ) = int(h i* ). Therefore, we
conclude that fint(' )]V = [int( )J™) = int(hi') for int(hi') 2 L ,p (P).
Hence,X ¢ = (X ¢ 0%V is a pseudo-model. 2

The next lemma shows that the languagé k iy cannot distinguish a pseudo-
model from its associated topo-model.

7.1.37. Lemma. Let X = (X; O;V) be a pseudo-model and = (X; o;V) be
the associated topo-model. Then, for all 2 L iy and (x;U) 2 ES(X), we have
X;6U)FE" 1 XS(GU)FE .

Proof:

The proof goes by subformula induction on and it is straightforward. We only
show the case fol := int( ). Note thatif U 2 O thenU 2 ¢ (but not the other
way around).

X;(U)Eint( )i x2Int([' 1Y) (wherelnt is the interior operator of X )
i x2Int([ 1% ) by IH: ['1x =1"1%)
i X5 U) Foint( )
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7.1.38. Corollary. DTL;y is complete for the canonical pseudo-models and
canonical topo-modelgand so also complete with respect to the class of all pseudo-
models, as well as the class of all topo-models

Proof:

Let ' be anDTLy-consistent formula, i.e., it is a P-theory. Then, by Lemma
7.1.30, it can be extended to a maximaprop -witnessed theoryT. Let X°¢ =
(X% 0% V®) denote the canonical pseudo-model fof. Since' 2 T, by ax-

iom (R[>]), we obtain h>i' 2 T, i.e.,, T 2 h>i' . Thus, by Truth Lemma
(Lemma 7.1.35), we have thatT 2 [ ]Ii;"cm, l.e., that X% (T; X E ' (since

iht(>) = X°). This proves the rst completeness claim. As for the second, by the
co-expressivity ofL i and Li ., on pseudo-models (Corollary 7.1.18), there
exists a 2 Lkix such that' $ is valid in all pseudo-models. We therefore
have X¢; (T; X E . By Lemma 7.1.37, we obtainX®;(T; X E  whereX®
is the canonical topo-model. Using again the semantic equivalence'ofand
(applied to the model X ), we conclude thatX ¢ (T; X)) F ' . 2

This result concludes the present section. In the next section, we present a
topological semantics for the so-called arbitrary announcement modality intro-
duced by Balbiani et al. (2008), and investigate its link to the e ort modality of
Moss and Parikh (1992).

7.2 Topological Arbitrary Announcement Logic

Balbiani et al. (2008) proposed an extension of public announcement logic with a
dynamic operator that quanti es over public announcements and expressehat
becomes true after any announcemeniore precisely, they consider the language
Li (in its single-agent version here)

CaEpl T ATIKOGIT

where the construct [] stands for the standard public announcement modal-
ity stating "after public announcement of' , (is true)', and ' represents the
arbitrary (public) announcement modality which is read as \after any announce-
ment, ' is true". Balbiani et al. (2008) studied this modality on Kripke models
with equivalence relations by using the standard semantics for public announce-
ments in terms of model restrictions. More precisely, given a re exive, transitive
and symmetric Kripke modelM = (X;R;V ) and x 2 X, Balbiani et al. (2008)
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propose to interpret the modality ' as

MixFE " i (8 2L )M;xE[ 1)
i (8 2Ly )M ;xF impliesM ;xE")

whereM = (k k;R ;V ) is the restriction of M to the truth set of in
M .2 Unlike the e ort modality 2' which is read as \ stays true no matter
what further evidence-gathering e orts are made", the arbitrary announcement
modality ' means\ stays true afterany epistemic announcemeiit The latter
therefore quanti es only overepistemically de nablesubsets ( -free formulas of
the language) of a given modé.

In this case, for example, K' means that the agent comes to know, but
in the interpretation that there is a -free formula such that after announc-
ing it the agent knows' . What becomes true or known by an agent after an
announcement can be expressed in this language without explicit reference to
the announced formula. Clearly, the meaning of the e ort modality2' and of
the arbitrary announcement modality ' are related in motivation, and their
readings suggest that while ' generalizes []' , the e ort modality 2' seems
more general than ' . However, we cannot yet see the precise connection be-
tween these modalities at the formal level as they have been studied on dier-
ent semantic structures. In this section, we aim to explore the link between the
Bjorndahl-style topological updates, the e ort modality, and a topological version
of the arbitrary announcement modality. To this end, based on (van Ditmarsch
et al., 2014), we extend the languagk, . by the arbitrary announcement oper-
ator ' and propose a topological semantics for this modality by interpreting it
as a quanti cation over Bjorndahl-style updates on topological spaces. We then
show not only thatL,,, andLi ., are co-expressive for topo-models, but also
that|quite surprisingly| the e ort modality 2 and the topological arbitrary an-
nouncement modality are equivalentin the single-agent setting.

2TorecalL k k=k kM , R =R\k k k k,andV (p)= V(p)\k kforall p2 prop .

3To be more precise, by an\epistemically de nable subset" of a modeM = (X;R;V ), we
mean a subset ofX that corresponds to a truth set of a formula 2 L in M. Since the
languagesLk and Li are equally expressive with respect to Kripke models with equivalence
relations (Plaza, 1989), quantifying over the formulas ofL} or the formulas of Lk in the
semantic clause for ' amounts to the same interpretation. Moreover, the reason as to why
the arbitrary announcement modality quanti es only over the formulas without is to avoid a
possible circularity. Otherwise, if ' were an announcement that plays a role in the evaluation
of ', checking the truth of ' would require checking its truth (see Balbiani et al., 2008,
Section 2.3.1 for a more detailed discussion on the semantics of' ). Van Ditmarsch et al.
(2016) present an arbitrary announcement logic, calledfully arbitrary public announcement
logic, that allows ' to quantify over formulas having arbitrary announcement operators, yet
does not encounter the above mentioned circularity. This logic is de ned based on a language
with a proper class of auxiliary arbitrary announcement operators indexed by ordinals.
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Syntax and Semantics.  We consider the languagé |, obtained by extend-
ing Li;; With the arbitrary announcement modality . In other words, L}, is
de ned by the grammar

tosEpirt A K JintC) T g

wherep 2 prop . We sometimes call the formulas i, -free formulas

Given a topo-modelX = ( X; ;V ) and an epistemic scenario U) 2 ES(X),
truth of a formula in Ly, is de ned for Boolean cases, and the modalitigs ,
int and [!] as forLj, in De nition 6.2.1. For the modality , we propose the
following semantic clause.

7.2.1. Definition.  [Semantics of arbitrary announcement] Given a topo-model
X =(X; ;V ) and an epistemic scenariox; U) 2 ES(X), the semantic clause for
the arbitrary announcement modality reads

X;06U)FE " 1 (8 2Lk )X (GU)YFEL 1)
In other words, unravelling the above semantic clause, we model as

(GUYE "0 (8 2Ly V) F int( ) implies (x; Int ([ 1°)) F *)

We therefore work with a topological version of the arbitrary announcement
modality in the sense that it quanti es over Bjorndahl's public announcements
whose pre-condition is captured by the interior modality, and whose e ect is
modelled in terms of neighbourhood shrinking.

Expressivity of L, On topo-models

We will now prove that L ;, and Ly are equally expressive with respect to
topo-models in the single-agent case (this will not be the case for the multi-
agent version we present in Chapter 8). The proof of this result follows similar to
the proof of Theorems 7.1.17 and 7.1.18. Thus, we rst provide similar auxiliary
lemmas for the languagéd |, -

7.2.2. Proposition.  The rule of Replacement of Provable Equivalen{RE) is
sound for L, Wwith respect to topo-models. More precisely, for alj ; 2
Liie »if $ isvalid in all topo-models then sois $ ' f = g.

Proof:

Let ; ; 2 Liiw and supposee  $ . We want to show thatE ' $

"f =' g, and the proof follows by subformula induction on , where the base
case is' = . Let X =(X;;V ) be atopo-model and x;U) 2 ES(X). For
the base case := , we then have' f = g= . Therefore," $ 'f = g boils
downtoF $ , hence follows from the assumption. Now assume inductively
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that the statement holds for and . The cases for the BooleanK , int and [!]
are standard. We here only show the case of the new modality.
Case' .= :Notethat( )f= g= (f= g). Wethen have

xUYF(C =9
F(xU)F (f= 9
i (8 2Lk )(XU)EL (= 0) (by the semantics of )

i (8 2Lyin)((x V) F int( ) implies (x; Int([ 1)) F f = 9
(by the semantics of [!])

i (8 2L )((xU) F int( ) implies (x; Int([ 1) F )
(by the induction hypothesis on )

i (8 2Ly (XU EL 1) (by the semantics of [!])
I (x;U) F (by the semantics of )
2
7.2.3. Proposition.  For any ;' i 2 Liy, the following is valid in all topo-
models:
N N
F (CAK or RS (~int(ogn R(int( o)* ")) (EL,)
1in 1in
Proof:
The proof is similar to the proof of Proposition 7.1.15. For the direction from
right-to-left, we take ' ( as the witness for . 2
7.2.4. Lemma. Forall; 2Ly, ,theformula ( _ )$ ( ' _ ) is

valid in all topo-models.

7.2.5. Theorem. Li,, andLgiy are equally expressive with respect to topo-
models.

Proof:
Analogous to the proof of Theorem 7.1.17. 2

We have therefore obtained the extended Figure 7.2 summarizing all the ex-
pressivity results we have provided on topo-models concerning the languages
Licintz» Lkine » @and their subfragments.
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\ Cor. 7.1.20 , Int("):=Hi>

Lz « " Lkint2 ™ >

Lk

K2
Thm. 6.2.6
Thm. 7.1.19 Cor. 7.1.20
Prop. 6.2.1
Y Thm. 6.2.5 Thm. 6.2.5
Liint < 'L!Kint L!K
/4m. 6.2\
Thm. 7.2.5
I—int
Cooint(")=hi> 7
kit —— Lg

Figure 7.2: Expressivity diagram-updated with  (Arrows point to the more
expressive languages, and re exive and transitive arrows are omitted. Arrows
without tags can be obtained as easy consequences from the others.)

We moreover prove that not only areLj;, and Lj ., Co-expressive for
topo-models, but also thatthe e ort modality 2 and the topological arbitrary
announcement modality are equivalent in the following sense (Baltag et al.,
2017):

7.2.6. Theorem. Lett:Lyw 'L ke b€ the map that replaces each instance
of with 2. Then for every' 2 L, , we have that $ t(') is valid in all
topo-models.

Proof:

The proof is by subformula induction o' . We skip the proof details, which could
be easily reconstructed, and provide only a sketch. The cases for the propositional
variables, the Booleans, and the modalitiek and int are straightforward, since
tp) = pit(c ) = tC )tC A )=t )Mt )t(K )= Kt( )t(int( )) =
int(t( )) and t([ 1 ) =[t( )]t( ). The relatively complicated case is := ,
wheret( )= 3t( ). The crucial part of the proof is that the elimination pro-
cedure for3 and are the same: they both go via normal forms and the
corresponding equivalences ELand EL, (see Corollary 7.1.18 and Theorem
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7.2.5). Hence, two formulas only diering in the occurrences @ and are
semantically equivalent to the same formula ik i,y On topo-models. 2

Therefore, given the sound and complete axiomatization &TL;,, (Table 7.1)
and the above link between the e ort modality2' and the arbitrary announce-
ment modality ', we immediately obtain a sound and complete axiomatization
for the single-agent logicAAPAL;,; of knowledgeK' , knowability int(" ), public an-
nouncements'[] , and arbitrary announcenements ' with respect to the class
of all topo-models. The axiomatization ofAPAL;, is again given by the axiom
schemas in Table 7.1 de ned over the languads, . (instead ofL i .,)- In par-
ticular, the axiom ([']2 -elim) and the inference rule ([2 -intro) are replaced by
(['l -elim) and ([!] -intro) given in Table 7.2, respectively

([ -elim) 'y '~ ( 2L}, arbitrary formula)
(['] -intro) from ! [ ~p],infer ! [] (p62P [P [ P)

Table 7.2: The axiom for -elimination and the rule for -introduction

We therefore obtain the following which, together with Theorem 7.2.6, gives
us the soundness and completenessARAL;,;.

7.2.7. Lemma. Forall ' 2Ly ,We have apar,, " i o1, t():

7.2.8. Corollary. APAL;, is sound and complete with respect to the class of
all topo-models.

Proof:
For soundness, we focus only on the new axiom schema and the inference rule, and
show that ([!] -elim) is valid and ([!] -intro) preserves validity on topo-models.

([l -elim): Let X =(X; ;V )and (x;U) 2 ES(X) suchthat (x;U) F[']
Then, by Theorem 7.2.6, we obtainX; U) F [t(" )]2t( ). Thus, by the soundness
of ([']2-elim) for topo-models (Theorem 7.1.9), we havex{(U) F [t(" ) ]Jt()
forall 2 Ljn,-Let ©2 L, - Hence,t( 9 2 Li ., therefore we have
(x;U) E[t( )M t( 9)t( ). Observe that (" )~ t( Ot( )= t(" » 9 ). Therefore,
by Theorem 7.2.6 again, we obtainx(U) E [' »~ 9 . As ©has been chosen
arbitrarily from L, , we have the desired result.

(['] -intro): SupposefE ' [ ~p] for somep 62P [ P [ P.. Then,
by Theorem 7.26,F t( ! [ ~p]), thatis, F t( )! [t(" )" plt( ), by the
de nition of t. Then, by the soundness of ([g-intro) (Theorem 7.1.9), we obtain
that = t( ) ! [t(" )]2t( ). Observe thatt( )! [t(")2t()=tC 1! ['] ),
therefore,= t([ ]! [ ] ). Thus, again by Theorem 7.2.6, we have [ ]!
[]
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For completeness, let 2 L, such that' 62APALy. Hence, by Lemma
7.2.7, we obtain thatt(" ) 62DTL;,. Then, by Corollary 7.1.38, there exists a
topo-model X = (X; ;V ) and an epistemic scenariox; U) 2 ES(X) such that
X;(x;U) 6 t(" ). Therefore, by Theorem 7.2.6, we concludg; (x;U) ' . 2

7.3 Conclusions and Continuation

Our work presented in this chapter uses both the interior semantics of McKin-
sey and Tarski (1944) (together with the global modality as knowledge), and the
topological formalism introduced by Moss and Parikh (1992). Building on Bjorn-
dahl's logic of knowledgeK' , knowability int(* ), and learning of new evidence
[ T (formalized as a \topological" public announcement modality, whose pre-
condition is captured byint(* )), we developed the so-called Dynami€opolLogic
that is obtained by adding the e ort modality to Bjorndahl's system. This way,
we believe that, at the very least, the meaning of the e ort modality has become
more transparent as it is linked to the public announcement modalities | which
can be seen as a particular case of e ort. This connection has been made precise
in the corresponding proof system by the axiom (R]-elim) and the inference rule
([']2 -intro). In Dynamic TopoLogicthe behaviour of the e ort modality is de-
scribed by using only the aforementioned axiom and inference rule, avoiding the
complicated Union Axiom of TopoLogic While our completeness proof oD TLjq
goes by a standard canonical model construction based on maximally consistent
witnessed theories, our expressivity results (Corollary 7.1.20) imply decidability
and the nite model property of the logics of topological spaces over the language
Lo and its fragments (Corollary 7.1.21), by relying on the known decidability
and nite model property of L int.

We moreover study a topological semantics for the arbitrary announcement
modality, and investigate its interplay with the e ort modality. To the best of
our knowledge, the known completeness proofs for arbitrary announcement logics
(topological or relational) rely on in nitary axiomatizations formalized by using
necessity forms (see, e.g., Balbiani et al., 2008, 2013; Balbiani, 2015; Balbiani and
van Ditmarsch, 2015; also see Sections 8.2 and 8.3 for the multi-agent case). Al-
though Balbiani et al. (2008) propose a nitary axiomatization similar to ours
(Table 7.2), its completeness proof goes via the completeness of an in nitary sys-
tem*. On the other hand, our completeness proof of the nitary systenAPAL
does not involve a detour through an in nitary logic. Therefore, the e ort modal-
ity helps to simplify and streamline the axiomatization ofAPAL;;.

4The nitary axiomatization proposed in (Balbiani et al., 2008) was later proven to be
unsound for the multi-agent case (see http://personal.us.es/hvd/APAL_counterexample.
pdf), and the error in the complexity measure in (Balbiani et al., 2008, Truth Lemma 4.13,
p. 327) is corrected in (Balbiani, 2015).
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Higher-order knowledge and dynamics of information change become more
interesting when more than one agent is involved. However, extending the sub-
set space style semantics to a setting involving multiple agents comes with some
challenges concerning the evaluation of higher-order knowledge. In particular, the
multi-agent case requires solving the complication of \jJumping out of the epis-
temic range". In the next chapter, we explain this problem and propose a solution
for it. We then study the multi-agent versionsELj, and PALY, of ELy,; and PALy,
respectively, as well as a multi-agent logic of arbitrary public announcements,
denoted byAPALT,, interpreted on topological spaces in the style of subset space
semantics. The e ort modality in multi-agent setting creates many challenges,
both technically and conceptually. We leave investigations for the e ort modality
in a multi-agent setting for future.



Chapter 8

Multi-Agent Topo-Arbitrary
Announcement Logic

In this chapter, we propose amulti-agent logic of knowledge, knowability, public
and arbitrary announcements, interpreted on topological spaces in the style of
subset space semantics. More precisely, we generalize the single-agent setting
presented in Section 7.2 to a multi-agent setting wherein the multi-agent version
of Li;x is dened similarly but with nitely many knowledge modalities K;'
indexed for each agent, meaning thaagenti knows' .

As also recognized in (Baskent, 2007, Chapter 6) and (Wang andigotnes,
2013a), a rst step toward developing a multi-agent epistemic logic using topolog-
ical subset space semantics requires solving the problem of \jumping out of the
epistemic range" of an agent while evaluating higher-order knowledge formulas.
This issue occurs independently from the dynamic extensions. The general setup
is for any nite number of agents, but to demonstrate the challenges, consider
the case of two agents. If we extend the setup from the single agent case in the
straightforward way, then for each of two agents and | there is an open set and
the semantic primitive becomes a triple X; U;; U;) instead of a pair ; U). Now
consider a formula IikeKK,— Kip, for \agent i knows that agentj considers pos-
sible that agenti knows propositionp". If this is true for a triple ( x;U;;U;),
then I@,- Kip must be true for anyy 2 U;; but y may not be in U;, in which
case {;U;;U;) is not well-de ned: we cannot interpret K\j Kip. Our solution to
this dilemma is to consider neighbourhoods that are not only relative to each
agent, but that are alsorelative to each stateThis means that, when shifting the
viewpoint from x to y 2 U;, in (x;U;; U;), we simultaneously have to shift the
neighbourhood(and not merely the point in the actual neighbourhood) for the
other agent. Thus, we go fromX; U;; U;) to (y; U;;V;), whereV, may be di erent
from U;: while the open setU; representsj's current evidence atx, the openV,
representg 's evidence (i.e., epistemic range) at. Therefore, the neighbourhood
shift from U; to V; does not mean a change of agejis evidence sett the actual
state. While the tuple (x; U;; Uj) represents the actual state and the view points
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of both agents, the componenty(; ;) of the latter tuple merely represents agent
] 's epistemic state from agent's perspective aty, a possibly di erent state from
the actual state x.

In order to de ne the epistemic range of each agent with respect to the state
in question, we employ a technique inspired by the standard neighbourhood se-
mantics (see, e.g., Chellas, 1980). We use a senhefghbourhood functionsdeter-
mining the epistemic range relative to both the given state and the corresponding
agent. These functions need to be partial in order to render the semantics well-
de ned for the dynamic modalities in the system, namely for the public and
arbitrary announcement modalities.

Moreover, using topological spaces enriched with a set of (partial) neighbour-
hood functions as models allows us to work with di erent notions of knowledge. In
the standard (single-agent) subset space setting (as in Chapters 6 and 7), as the
knowledge modality quanti es over the elements of a xed neighbourhood, th&5
type knowledge is inherent to the way the semantics de ned. With the approach
developed in this chapter, however, the epistemic range of an agent changes
according to the neighbourhood functions when the evaluation state changes.
Therefore, the valid properties of knowledge are determined by the constraints
imposed on the neighbourhood functions. To this end, we work with bot85and
S4types of knowledge in this chapter: while the former is the standard notion
of knowledge in the subset space setting, the latter reveals a novel aspect of our
approach, namely, the ability to capture di erent notions of knowledge.

Outline

Section 8.1 de nes the syntax, structures, and semantics of our multi-agent logic
of arbitrary public announcements, APALY,, interpreted on topological spaces
equipped with a set of neighbourhood functions. Without arbitrary announce-
ments we get the logicPAL],, and with neither arbitrary nor public announce-
ments, the logicELY;. In this section we also give two detailed examples illus-
trating the proposed semantics. In Section 8.2 we provide axiomatizations for
the logics: PAL, extendsELy, and APAL;, extendsPAL],. We moreover prove
their soundness and compare the expressive power of the associated multi-agent
languaged i, Lk iy @nd Lk ine With respect to multi-agent topo-models. In Sec-
tion 8.3 we demonstrate completeness for these logics. The completeness proof for
the epistemic fragment,EL},, is rather di erent from the completeness proof for
the full logic APAL},. Section 8.4 adapts the logics to the case 8#tknowledge. In
Section 8.5 we compare our work to that of others, and Section 8.6 provides a
brief summary of the chapter while also discussing a possible interpretation of
the e ort modality in the current multi-agent setting.

This chapter is based on (van Ditmarsch et al., 2015b,c).
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8.1 The Multi-Agent Arbitrary Announcement
Logic APALY,

We de ne the syntax, structures, and semantics of our multi-agent logic of knowl-
edge, knowability, public and arbitrary announcements. From now orA denotes
a nite and nonempty set of agents.

8.1.1 Syntax and Semantics
The (multi-agent) languagelL ,,, is de ned by

CnEpirt A K GintC) 0T g
wherep 2 prop, and i 2 A. Abbreviations for the connectives and the dual
modalities are de ned as in the previous chapters; to recall, we in particular em-
ploy I@i' =:K;:',and ' :=: :'.Notice that we use the same denotation
Lk for both the single and multi-agent version of the above de ned syntax.
Since we study the multi-agent version in this chapter, and the single-agent lan-
guage constitutes just a special case of the multi-agent extension, this should not
lead to any confusions. Similarly, we let s and L} ;,, denote the corresponding
multi-agent languages.

We interpret the languagel . on topological spaces endowed with (partial)
neighbourhood functions thatfor each ageni 2 A assign an open neighbourhood
at a given statex. More precisely, given a topological spac&( ), such a neigh-
bourhood function is de ned from X to A'! (i.e., the set of functions #
from A to ) as apartial function, denoted by : X * Al . We let D( )
denote thedomain of , that is, the set of states inX for which is de ned.

8.1.1. Definition.  [(Partial) Neighbourhood Function]

Given a topological spaceX; ), a neighbourhood function seton ( X; ) is a set
of (partial) neighbourhood functions : X * Al such that for all x 2 D ( ),
foralli2 A, and for allU 2

1. x2 (x)(i),

2. (x)(i) D (),

3. forally2 X,ify2 (x)(i)theny2D()and (x)(i)= (y)(i),
4. Y2 ,

where D( ) is the domain of , and Y is the restricted/updated neighbourhood
function with D( Y)= D( )\ Uand Y(x)(i)= (x)(i)\ U.
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The main role of the neighbourhood functions is to assign to each agent an
epistemic range at a given state. It simply de nes the current evidence set of each
agent at the state in question. Each condition given in De nition 8.1.1 guarantees
certain requirements that render the semantics well-de ned and meaningful for
the languageL  ;,, - In particular, with the help of the neighbourhood functions
we solve the problem of \jumping out of the epistemic range" explained in the
introduction. We will provide a more detailed explanation regarding the de nition
of the neighbourhood functions together with our proposed semantics given in
De nition 8.1.4.

8.1.2. Definition.  [Multi-agent Topo-model] A multi-agent topo-modelis a
tuple X = (X; ; ;V), where (X; ) is a topological space, a neighbourhood
function set, andV : prop ! P (X) a valuation function. The tuple (X; ; ) is
called amulti-agent topo-frame

Throughout this chapter, we call a multi-agent topo-model(-frame) simply a
topo-mode(-frame). It will be clear from the context when we consider a single-
agent topo-model ¥; ;V ). Similar to the case of the single-agent framework,
given a topo-modelX = (X; ; ;V), the open sets in are meant to represent
the evidence pieces that argotentially available forall the agents. In our multi-
agent setup, all agents have the same observational power, represented by each
topo-model carrying only one topology.

Formulas of L}, are interpreted on topo-models with respect to pairs of
the form (x; ), where 2 and x 2D ( ). Such a pair is called aneighbourhood
situation, and (x)(i) corresponds to theepistemic range of agent at x (with
respect to ). The epistemic range (x)(i) represents theactual, current evidence
of the agenti at x and it is her only source of knowledge at statg with respect
to the neighbourhood situation §&; ). This is stipulated in the semantic clause
for K; in De nition 8.1.4 below. If (x; ) is a neighbourhood situation inX we
write (X; )2 X.

The following lemma shows that the domain of every neighbourhood function
is open.

8.1.3. Lemma. For any topo-frame(X; ; ) and 2 , we haveD( )2

Proof:

Let (X; ; ) be atopo-frame, 2 and x 2 D( ). By De nition 8.1.1-(1) and
-(2), we havex 2 (x)(i) 2 and (x)(i) D (). Therefore,x 2 Int(D()).
Hence,D( )= Int(D( )),i.e., D( )2 . 2

8.1.4. Definition.  [Topo-semantics for (multi-agent)L} ;. ]
Given a topo-modelX = (X; ; ;V) and a neighbourhood situationx; ) 2 X,
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the truth of a formula in the language. ,,, is de ned recursively as follows:

X506 )F P i x2V(p)

X5 )FE i not X;(x; )fF"

X506 )R~ 0 X )R and X5 (x; ) F

X5 ) FE KD 0 (8y2 ()(NX(y; )F ")

X5 )FEint() i o x21Int(['1)

X506 )FI']T 10 X5(x ) Fint(" ) implies X;(x; ") F
X506 )F 0 (8 2L YFEL D)

wherep2 prop ,['] =fy2D()jX;(y; ) F ' gand anupdated neighbourhood
function ' X * Al is de ned such that ~ = " @T1) More precisely,
D( )= Int(['])and "~ (X)(i)= ()@)\ Int(['])forall x2D( ).

When the model is not xed, we use subscripts and write, e.g., [« , to denote the
model we work with. A formula' 2 L}, isvalid in a topo-modelX, denoted
XpE",i X;(x;)F "' forall (x; )2 X;" isvalid, denotediE ', i for all
topo-modelsX we haveX j= '. Soundness and completeness with respect to
topo-models are de ned as usual.

Let us now elaborate on the structure of topo-models and the above semantics

we have proposed fot | ,,, . For any topo-modelX = (X; ; ;V), the agents'
current evidence, i.e., the epistemic range of each agent at a given stateis
de ned by (partial) functions 2 , where X * Al . We allow for par-

tial functions in , and close under restricted functions Y whereU 2 (see
De nition 8.1.1, condition 4), so that updated neighbourhood functions are guar-
anteed to be well-de ned elements of . As brie y mentioned in Section 6.1.1,
one important feature of the subset space semantics is the local interpretation of
propositions: in the single-agent case, once the epistemic scenaxid)) has been
picked, the rest of the model does not have any e ect on the truth of the proposi-
tion in question. Similarly in our multi-agent setup, by choosing a neighbourhood
situation (x; ), we localize the interpretation to an open subdomain of the whole
space, namely td( ), that includes the actual statex, and embeds an epistemic
range for each agent 2 A at every state inD( ). Forevery 2 and x2D( ),
the function (x): A'! is de ned to be atotal function. It is therefore guar-
anteed that, given a neighbourhood situationX; ), the neighbourhood function
assigns toevery agent inA an open neighbourhood ok. Moreover, the con-
ditions of neighbourhood functions given in De nition 8.1.1 make the semantics
work for the multi-agent setting. To be more precise, condition 1 guarantees that
always returns a factive evidence set for each agent at the actual state. Since the
neighbourhoods given by the neighbourhood functions depend not only on the
agent but also on the current state of the agent, and since2 (x)(i) D () for
everyx 2 D( ) and everyi 2 A (due to conditions 1 and 2), our semantics does
not face the problem of \jumping out of the epistemic range”, and thus does not
end up with ill-de ned evaluation pairs in the interpretation of iterated epistemic



160 Chapter 8. Multi-Agent Topo-Arbitrary Announcement Logic

f