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Chapter 1

Introduction

This dissertation brings together epistemic logic and topology. It studies formal
representations of the notion of evidence and its link to justi�cation, justi�ed
belief, knowledge, and evidence-based information dynamics, by using tools from
topology and (dynamic) epistemic logic.

Epistemic logic is an umbrella term for a species of modal logics whose main
objects of study are knowledge and belief. As a �eld of study, epistemic logic uses
modal logic and mathematical tools to formalize, clarify and solve the questions
that drive (formal) epistemology, and its applications extend not only to philoso-
phy, but also to theoretical computer science, arti�cial intelligence and economics
(for a survey, see van Ditmarsch et al., 2015a). Hintikka (1962) is considered the
founding father of modern epistemic logic. In his bookKnowledge and Belief:
An Introduction to the Logic of the Two Notions(1962)|inspired by insights
in (von Wright, 1951)|Hintikka formalizes knowledge and belief as basic modal
operators, denoted byK and B, respectively, and interprets them using standard
possible worlds semantics based on (relational) Kripke structures. Ever since|as
Kripke semantics provides a natural and relatively easy way of modelling epis-
temic logics|it has been one of the prominent and most commonly used semantic
structures in epistemic logic, and research in this area has widely advanced based
on the formal ground of Kripke semantics.

However, standard Kripke semantics possesses some features that make the
notions of knowledge and belief it implements too strong|leading to the problem
of logical omniscience|and is lacking the ingredients that make it possible to talk
about the nature and grounds of acquired knowledge and belief. What triggered
the work presented in this dissertation is the latter issue: we not only seek an
easy way to model knowledge and belief, but also study the emergence, usage,
and transformation of evidenceas an inseparable component of arational and
idealizedagent's justi�ed belief and knowledge.

For this purpose, topological spaces are proven to be natural mathematical
objects to formalize the aforementioned epistemic notions, and, in turn, evidence-
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2 Chapter 1. Introduction

based information dynamics: while providing a deeper insight into the evidence-
based interpretation of knowledge and belief, topological semantics also general-
izes the standard relational semantics of epistemic logic. Roughly speaking, topo-
logical notions like open, closed, dense and nowhere dense sets qualitatively and
naturally encode notions such asmeasurement/observation, closeness, smallness,
largeness and consistency, all of which will recur with an epistemic interpretation
in this dissertation. Moreover, topological spaces are equipped with well-studied
basic operators such as the interior and closure operators which|alone or in
combination with each other|succinctly interpret di�erent epistemic modalities,
giving a better understanding of their axiomatic properties. To that end, we see
topological spaces as information structures equipped with an elegant and strong
mathematical theory that help to shed some light on the philosophical debates
surrounding justi�ed belief and knowledge, and to gain more insights into learning
via evidence-acquisition.

The epistemic use of topological spaces as information structures can be
traced back to the 1930s and 1940s, where topological spaces served as models
for intuitionistic languages, and open sets are considered to be `pieces of evi-
dence', `observable properties' concerning the actual state (see, e.g., Troelstra
and van Dalen, 1988). This interpretation assigned to open sets constitutes the
basic epistemic motivation behind our use of topological models, and will return
often at various places (in modi�ed forms) in the main body of this disserta-
tion. Variations of this idea can also be found in domain theory in computer
science (Abramsky, 1987, 1991; Vickers, 1989), and guide the research program of
\topological" formal learning theory initiated by Kelly and others (Kelly, 1996;
Schulte and Juhl, 1996; Kelly et al., 1995; Kelly and Lin, 2011; Baltag et al.,
2015c) in formal epistemology.

The literature connecting (modal) epistemic logic and topology is developed
based on two separate, yet strongly related topological settings. Our work in
this dissertation justly bene�ts from both approaches. The �rst direction stems
from the interior-based topological semantics of McKinsey (1941) and McKin-
sey and Tarski (1944) for the language of basic modal logic (some of the ideas
could already be found in Tarski, 1938 and Tsao-Chen, 1938). In this seman-
tics the modal operator 2 is interpreted on topological spaces as the interior
operator. These investigations took place in an abstract, mathematical context,
independent from epistemic/doxastic considerations. McKinsey and Tarski (1944)
not only proved that the modal systemS4 is the logic of all topological spaces
(under the above-mentioned interpretation), but also showed that it is the logic
of any dense-in-itself separable metric space, such as the rational lineQ, the real
line R, and the Cantor space, among others. This approach paved the way for
a whole new area of spatial logics, establishing a long standing connection be-
tween modal logic and topology (see, e.g., Aiello et al., 2007 for a survey on this
topic, in particular, see van Benthem and Bezhanishvili, 2007). Moreover, the
completeness results concerning the epistemic systemS4have naturally attracted
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epistemic logicians, and led to anepistemicre-evaluation of the interior seman-
tics, seeing topologies as models for information. One branch of the epistemic
logic-topology connection has thus been built on the interior-based topological
semantics, where the central epistemic notion studied is knowledge (see, e.g.,van
Benthem and Sarenac, 2004). What we add to this body of work, in Part I of this
dissertation, are the missing epistemic componentsevidenceand belief, as well
as thedynamics of learning new evidence, strengthening the connection between
epistemic logic and topology. We do so by reanalyzing the neighbourhood-based
evidence models of van Benthem and Pacuit (2011) from a topological perspec-
tive. The way we represent evidence and how it connects to justi�ed belief are
inspired by the approach in (van Benthem and Pacuit, 2011), and the evidence
transforming actions considered are adapted from the aforementioned in
uential
work.

The second topological approach to epistemic logic was initiated by Moss and
Parikh (1992). They introduced the so-calledtopologic, a bimodal framework to
formalize reasoning about sets and points in a single modal system. Their topo-
logical investigations have a strong motivation from epistemic logic, suggesting
that \simple aspects of topological reasoning are also connected with special-
purpose logics ofknowledge" (Moss and Parikh, 1992, p. 95). The key element
Moss and Parikh (1992) introduced to the paradigm of epistemic logic is the ab-
stract notion of epistemice�ort . E�ort can, roughly speaking, be described as any
type of evidence-gathering|via, e.g., measurement, computation, approximation,
experiment or announcement|that can lead to an increase in knowledge. The
formalism of topologic therefore combines the static notion of knowledge with
the dynamic notion of e�ort, thus, it is strongly related to dynamic epistemic
logic (Baltag et al., 1998; van Ditmarsch et al., 2007; van Benthem, 2011; Baltag
and Renne, 2016). In Part II of this thesis, we build a bridge between the two
formalisms, which results in both conceptual and technical advantages. While
dynamic epistemic logic expands the array of dynamic attitudes it studies, the
topologic setting obtains epistemically more intuitive axiomatizations, clarifying
the meaning ofe�ort by linking it to well-understood instances such aspublicand
arbitrary announcements.

***

The contributions of this thesis are presented in two parts. Below, we give a brief
overview of each chapter. Every chapter starts with a brief introduction further
elaborating its content and links to the relevant literature.

Chapter 2 provides the technical preliminaries that are essential for both parts
of the dissertation. This includes, in the �rst half, a very brief introduction to
the standard Kripke semantics for the basic modal logic. We recall the commonly
studied static systems for epistemic/doxastic logics and the corresponding rela-
tional properties that render these logics sound and complete. In the second part,
we introduce the elementary topological notions that will be used throughout this
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dissertation.

PART I: From Interior Semantics to Evidence Models

Part I is concerned with evidence-based interpretations of justi�ed belief and
knowledge. Starting with a by-now-standard topological interpretation of knowl-
edge as the interior operator, we develop, in a gradual manner, a topological
framework that (1) can talk about evidence not only semantically, but also at
the syntactic level, thereby making the notion of evidence more explicit; (2)
takes evidence as the most primitive notion, and de�nes belief and knowledge
purely based on it, thereby linking these two crucial notions of epistemology at
a deeper, more basic level. These investigations have considerable philosophical
consequences as they allow us to discern, isolate, and study various aspects of the
notion of evidence, and its relation to justi�cation, knowledge and belief.

Chapter 3 introduces the interior-based topological semantics of McKinsey and
Tarski (1944) as a way to model knowledge, points out its link to the standard
relational semantics, and motivates the interpretation of knowledge as the topo-
logical interior operator. It then discusses an existing topological semantics for
belief based on the derived set operator, and argues that it does not constitute
a satisfactory semantics for belief, especially when considered in tandem with
knowledge as the interior.

Chapter 4 shifts our focus from the topological interpretation of knowledge to the
topological interpretation of belief, and presents the �rst step toward developing a
topological theory of belief that works well in combination with knowledge as the
interior operator. More precisely, the �rst part of this chapter presents a review of
the topological belief semantics of (•Ozg•un, 2013; Baltag et al., 2013), addressing
the following questions:

� Given the interior-based topological semantics for knowledge, how can we
construct a topological semantics for belief that can also address the problem
of understanding the relation between knowledge and belief? To what extent
do topological notions capture the intuitive meaning of the intended notion
of belief?

The proposed semantics for belief is derived from Stalnaker's logical framework in
which belief is realized as a weakened form of knowledge (Stalnaker, 2006), which
leads to a belief logic ofextremally disconnected spaces. While this static setting
provides a satisfactory answer for the above questions, the dynamic extension
with public announcement modalities runs into problems due to the structural
properties of extremally disconnected spaces. This leads to the search for a public
announcement friendly logic of knowledge and belief. The second part of this
chapter (based on Section 4.2 of Baltag et al., 2015a) is devoted to solving this
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issue, and the proposed solution consists in interpreting knowledge and belief on
hereditarily extremally disconnected spaces.

While this semantics for belief works well for Stalnaker's strong notion of belief
assubjective certainty, from a more general perspective, it can be seen somewhat
restrictive for two reasons. It is based on rather exotic classes of topological spaces,
and the corresponding logics do not comprise evidence in a real sense as there
is no syntactic representation of it. This constitutes part of the motivation for
the next chapter, leading to more general and fundamental questions addressed
there.

Chapter 5 contains the main contribution of Part I. Resting on the assumption
that an agent's rational belief is based on the available evidence, we try to unveil
the concrete relationship between an agent's evidence, beliefs and knowledge,
and study the evidence dynamics that the designed static account supports. This
project is motivated by both philosophical and technical questions, as well as the
aforementioned drawbacks of our own work in Chapter 4. To be more precise, we
focus on the following questions, among others:

� How does a rational agent who is in possession of some possibly false, pos-
sibly mutually contradictory pieces of evidence put her evidence together in
a consistent way, and form consistent beliefs?

� What are the necessary and su�cient conditions for a piece of evidence to
constitute justi�cation for one's beliefs? What properties should a piece of
justi�cation possess to entail(defeasible) knowledge?

� How does our formalization of the aforementioned notions help in under-
standing the discussions in formal epistemology regarding the link between
justi�ed belief and knowledge?

� What are the complete axiomatizations of the associated logics of justi�ed
belief, knowledge and evidence? Do they have the �nite model property? Are
they decidable?

The above questions also drive the approach of van Benthem and Pacuit (2011);
van Benthem et al. (2012, 2014), which inspired our work considerably. Address-
ing the �rst question requires de�ning a \smart" way of aggregating the available
evidence, based on�nite and consistent subcollections of it. Topologically, this
leads to a move from a topological subbasis to a basis. This generates a topo-
logical evidence structure that allows us to work with many epistemic modalities
capturing di�erent notions of evidence, belief, and knowledge interpreted using
topological notions. The explicit use of topologies is one of the features of our
setting which separates it from that of van Benthem and Pacuit (2011). Once the
evidence aggregation method is set, we take acoherentist and holistic view on
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justi�cation, and, roughly speaking, de�ne it as a piece of evidence that is consis-
tent with every available evidence. Moreover, in our setting, defeasible knowledge
requires a true justi�cation. We then use our topological setting to formalize sta-
bility and defeasibility theories of knowledge (Lehrer and Paxson, 1969; Lehrer,
1990; Klein, 1971, 1981), as well as relevant notions such as (non-)misleading ev-
idence, clarifying some of the philosophical debates surrounding them. Our main
technical results concern completeness, decidability and the �nite model property
for the associated logics.

PART II: From Public Announcements to E�ort

In Part II of this dissertation, we no longer discuss belief, but rather focus on
notions of knowledge as well as various types of information dynamics compris-
ing learning new evidence. This part takes the subset space setting of Moss and
Parikh (1992) as a starting point, and is centered around the notions ofabsolutely
certain knowledgeand knowabilityas \potential knowledge", as well as the connec-
tions between the abstract notion of epistemice�ort encompassing any method
of evidence acquisition and the well-studied dynamic attitudes such aspublic and
arbitrary public announcements.

Chapter 6 provides the background for Part II and motivates the paradigm shift
between the two parts of this thesis. In particular, it introduces the subset space
semantics of Moss and Parikh (1992) and the topological public announcement
logic of Bjorndahl (2016).

Chapter 7 investigates extensions of the topological public announcement logic
of Bjorndahl (2016) with the e�ort modality of Moss and Parikh (1992), as well
as with a topological version of the arbitrary announcement modality of Balbiani
et al. (2008). This work is of both conceptual and technical interest, aiming at
clarifying the intuitively obvious, yet formally elusive connection between the
dynamic notionse�ort and its seemingly special instances: public and arbitrary
announcements. In particular, we address the following questions, and answer
them positive:

� Can we clarify the meaning of the e�ort modality by linking it to the afore-
mentioned dynamic modalities?

� Does treating the e�ort modality together with public announcements in a
topological setting provide any technical advantages regarding the complete
axiomatization of its associated logic, decidability and the �nite model prop-
erty?

We give a complete axiomatization for thedynamic topologic of e�ort and public
announcements, which is epistemically more intuitive and, in a sense, simpler than
the standard axioms of topologic (Georgatos, 1993, 1994; Dabrowski et al., 1996).
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Our completeness proof is also more direct, making use of a standard canonical
model construction. Moreover, we study the relations between this extension and
other known logical formalisms, showing in particular that it is co-expressive with
the simpler and older logic of interior and global modality (Goranko and Passy,
1992; Bennett, 1996; Shehtman, 1999; Aiello, 2002), which immediately provides
an easy decidability proof both for the original topologic and for our extension.

Chapter 8 is concerned with the multi-agent generalization of the setting pre-
sented in the previous chapter. Modelling multi-agent epistemic systems in the
style of subset space semantics is not a trivial task. We start the chapter by lay-
ing out some problems one encounters while working with multi-agent extensions
of subset space logics. Our proposal for a multi-agent logic of knowledge and
knowability and its further extensions with public and arbitrary announcements
does not run into these problems and constitutes a novel semantics for the afore-
mentioned notions. In addition, the multi-agent setting presented in this chapter
is general enough not only to model fully introspective, i.e.S5-type knowledge,
but also to interpret S4, S4:2 and S4:3-types of knowledge. This contrasts with
and enriches the existing approaches to subset space semantics for knowledge,
since the other approaches, to the best of our knowledge, can only work withS5
knowledge.

Origin of the material

� Chapter 4 is based on:

Baltag, A., Bezhanishvili, N., •Ozg•un, A., and Smets, S. (2015a). The topo-
logical theory of belief.Under review. Available online at
http://www.illc.uva.nl/Research/Publications/Reports/PP-2015-18.text.pdf.

Part I of Chapter 4 (Sections 4.1-4.2.1) provides a review of (•Ozg•un, 2013;
Baltag et al., 2013), whereas the remainder of the chapter contains material
not covered in (•Ozg•un, 2013; Baltag et al., 2013) but presented in (Baltag
et al., 2015a).

� Chapter 5 is based on two papers, where the latter is an extended version
of the former:

Baltag, A., Bezhanishvili, N., •Ozg•un, A., and Smets, S. (2016a). Justi�ed
belief and the topology of evidence. InProceedings of 23rd Workshop on
Logic, Language, Information and Computation(WoLLIC 2016), pp. 83-
103.

Baltag, A., Bezhanishvili, N., •Ozg•un, A., and Smets, S. (2016b). Justi�ed
belief and the topology of evidence{Extended version. Available online at
http://www.illc.uva.nl/Research/Publications/Reports/PP-2016-21.text.pdf.
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� Chapter 7 is based on:

van Ditmarsch, H., Knight, S., and •Ozg•un, A. (2014). Arbitrary announce-
ments on topological subset spaces. InProceedings of the 12th European
Conference on Multi-Agent Systems(EUMAS 2014), pp. 252-266.

Baltag, A., •Ozg•un, A., and Vargas-Sandoval, A. L. (2017). Topo-Logic as
dynamic epistemic logic. InProceedings of the 6th International Workshop
on Logic, Rationality and Interaction (LORI 2017). To appear.

� Chapter 8 is based on:

van Ditmarsch, H., Knight, S., and •Ozg•un, A. (2015b). Announcements
as e�ort on topological spaces. InProceedings of the 15th Conference on
Theoretical Aspects of Rationality and Knowledge(TARK 2015), pp. 283-
297.

van Ditmarsch, H., Knight, S., and •Ozg•un, A. (2015c). Announcements as
e�ort on topological spaces{Extended version. Accepted for publication in
Synthese.

Moreover, although the main results of the following papers are not included in
this dissertation, the discussion concerning their conceptual content contributes
to the present work to a great extent.

van Ditmarsch, H., Knight, S., and •Ozg•un, A. (2017). Private announce-
ments on topological spaces.Studia Logica. Forthcoming.

Bjorndahl, A., and •Ozg•un, A. (2017). Logic and Topology for Knowledge,
Knowability, and Belief. In Proceedings of the 16th Conference on Theoret-
ical Aspects of Rationality and Knowledge(TARK 2017), pp. 88-101.



Chapter 2

Technical Preliminaries

In this chapter, we provide the technical preliminaries essential for the main body
of the thesis. The original work presented in Parts I and II is based on two di�er-
ent, yet related topological frameworks. However, we occasionally resort to their
connection with the relational semantics and the well-developed completeness
results therein in order to obtain similar conclusions for the topological coun-
terpart. We therefore primarily use three di�erent formal settings in developing
our original contribution: the standard relational semantics for the basic modal
logic, the interior-based topological semantics �a la McKinsey and Tarski (1944),
and the subset space semantics introduced by Moss and Parikh (1992). While
the relational setting serves only as a technical tool utilized in Parts I and II,
the latter two topological settings have inspired the developments presented in
these parts. We leave the background details of these topological settings for later
chapters, and present here only the formal tools that are commonly used in both
parts.

Outline

Our presentation in this chapter is two-fold. Section 2.1 brie
y discusses the stan-
dard relational semantics for the language of basic modal logic, and the unimodal
epistemic and doxastic systems that will be studied in later chapters. Section
2.2 introduces the purely topological preliminaries that will be used throughout
the thesis. Additionally, this chapter also serves the purpose of �xing our nota-
tion for the main body of this dissertation. Readers who are familiar with the
aforementioned topics should feel free to skip this chapter.

9
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2.1 Relational Semantics for Modal Logics (of
Knowledge and Belief)

Starting from the pioneering work of Hintikka (1962), if not earlier, modal logic
and its relational semantics|also known as Kripke semantics|have been the
main tools utilized in the formalization of knowledge and belief. Hintikka (1962)
interpreted knowledge and belief as normal modal operators,K and B, respec-
tively, on Kripke models. This enables us to formulate the properties of various
notions of knowledge and belief (of di�erent strength and type) by using modal
formulas of a given epistemic/doxastic language.

In this section, we brie
y present the standard relational semantics for the
basic modal language and de�ne some well-known epistemic and doxastic logics.
This is in no way an exhaustive presentation of relational semantics for modal
epistemic and doxastic logics: we here aim to �x notation in order to ease the
presentation in the main chapters and summarize the results we later refer to.
The presentation in this section is based on the basic modal language since we
make use of the technical aspects of the relational setting to prove results almost
exclusively regarding unimodal epistemic/doxastic systems.

2.1.1. Definition. [Syntax of L 2 ] The language ofbasic modal logicL 2 is de-
�ned recursively as

' ::= pj : ' j ' ^ ' j 2 ';

wherep 2 prop , a countable set ofpropositional variables.

Abbreviations for the Boolean connectives_; ! and $ are standard, and? is
de�ned as p ^ : p. We employ3 ' as an abbreviation for: 2 : ' .

Since we, in general, work with the above de�ned modal language in an epis-
temic/doxastic setting, the particular languages we consider in this work typically
include, instead of2 , modalities such asK and B for knowledge and belief, re-
spectively. Accordingly,L K denotes thebasic epistemic languageand L B the basic
doxastic languagede�ned as in De�nition 2.1.1.

We are particularly interested in the modal systems that are commonly used
in the formal epistemology literature to represent notions of knowledge and be-
lief. Some of the interesting and widely used axioms and an inference rule formal-
izing properties of these notions are listed in Table 2.1.

We again use a similar notational convention as we did in case of the lan-
guages. For example, the axiom of Consistency forbelief is denoted by (DB )
B' ! : B : ' , Positive Introspection for knowledgeis written as (4K ) K' !
KK' , etc.

Let CPL denote all instances of classical propositional tautologies (see, e.g.,
Chagrov and Zakharyaschev, 1997, Section 1.3 for an axiomatization of classical
propositional logic). Throughout this thesis, we use Hilbert-style axiom systems in
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(K 2 ) 2 (' !  ) ! (2 ' ! 2  ) Normality
(D2 ) 2 ' ! : 2 : ' Consistency
(T 2 ) 2 ' ! ' Factivity
(42 ) 2 ' ! 22 ' Positive Introspection
(.22 ) : 2 : 2 ' ! 2 : 2 : ' Directedness
(.32 ) 2 (2 ' !  ) _ 2 (2  ! ' ) Connectedness
(52 ) : 2 ' ! 2 : 2 ' Negative Introspection
(Nec2 ) from ' , infer 2 ' Necessitation
(MP) from ' !  and ' , infer `  Modus Ponens

Table 2.1: Some unimodal axiom schemes and a rule of inference for2

order to provide the syntactic de�nitions of the modal logics we work with. Recall
that, the weakest/smallestnormal modal logic, denoted byK2 , is de�ned as the
least subset ofL 2 containing all instances of propositional tautologies (CPL) and
(K 2 ), and closed under the inference rules (MP) and (Nec2 ). Then, following
standard naming conventions, we de�ne the following normal modal logics that
are used to represent knowledge and belief of agents with di�erent reasoning
power, whereL+( ' ) denotes the smallest modal logic containingL and ' . In other
words,L+( ' ) is the smallest set of formulas (in the corresponding language) that
contains L and ' , and is closed under the inference rules ofL. For example:

KT2 = K2 + (T 2 )
S42 = KT2 + (4 2 )

S4:22 = S42 + (.2 2 )
S4:32 = S42 + (.3 2 )

S52 = S42 + (5 2 )
KD452 = K2 + (D 2 ) + (4 2 ) + (5 2 )

Table 2.2: Some normal (epistemic/doxastic) modal logics

While the systemsS4K ; S4:2K ; S4:3K and S5K are considered to be logics for
knowledge of di�erent strength, much work on the formal representation of belief
takes the logical principles ofKD45B for granted (see, e.g., Baltag et al. (2008);
van Ditmarsch et al. (2007); Baltag and Smets (2008)). Hintikka (1962) consid-
ered S4K to be the logic of knowledge,S4:2K is defended by Lenzen (1978) and
Stalnaker (2006). Van der Hoek (1993); Baltag and Smets (2008) studiedS4:3K

as epistemic logics for agents of stronger reasoning power. While the systemS5K

is used in applications of logic in computer science (Fagin et al., 1995; Meyer and
van der Hoek, 1995; van Ditmarsch et al., 2007), it is, as a logic of knowledge,
often deemed to be too strong and rejected by philosophers (see, e.g., Hintikka,
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1962; Voorbraak, 1993, for arguments againstS5K ). In this thesis, we examine
each of the above systems in di�erent topological frameworks. In the following,
we �rst present their standard relational semantics.

Before moving on to the standard relational semantics for the basic modal
logic, we brie
y recall the following standard terminology for Hilbert-style axiom
systems, and set some notation. Given a logicL de�ned by a (�nitary) 1 Hilbert-
style axiom system, anL-derivation/proof is a �nite sequence of formulas such
that each element of the sequence is either an axiom ofL, or obtained from the
previous formulas in the sequence by one of the inference rules. A formula'
is called L-provable, or, equivalently, a theorem of L, if it is the last formula of
someL-proof. In this case, we write` L ' (or, equivalently, ' 2 L). For any set
of formulas � and any formula ' , we write � ` L ' if there exist �nitely many
formulas ' 1; : : : ; ' n 2 � such that ` L ' 1 ^ � � � ^ ' n ! ' . We say that � is L-
consistentif � 6L̀ ? , and L-inconsistentotherwise. A formula' is consistent with
� if � [ f ' g is L-consistent (or, equivalently, if � 6L̀ : ' ). Finally, a set of formulas
� is maximally consistentif it is L-consistent and any set of formulas properly
containing � is L-inconsistent, i.e. � cannot be extended to anotherL-consistent
set. We drop mention of the logicL when it is clear from the context.

2.1.2. Definition. [Relational Frame/Model] A relational frame F = ( X; R ) is
a pair where X is a nonempty set andR � X � X . A relational model M =
(X; R; V ) is a tuple where (X; R ) is a relational frame andV : prop ! P (X ) is
a valuation map.

Relational frames/models are also calledKripke frames/models. Throughout
this thesis, we use these names interchangeably. We sayM = ( X; R; V ) is a
relational modelbased on the frameF = ( X; R ). While elements ofX are called
statesor possible worlds, one of which represents the actual state of a�airs, called
the actual or real state, R is known as theaccessibility or indistinguishability
relation. We let R(x) = f y 2 X j xRyg. The setR(x) represents the set of states
that the agent considers possible atx. This way, roughly speaking, a relational
structure models the agent'suncertainty about the actual situation via the truth
conditions given in the following de�nition.

2.1.3. Definition. [Relational Semantics forL 2 ] Given a relational modelM =
(X; R; V ) and a state x 2 X , truth of a formula in the languageL 2 is de�ned
recursively as follows:

M ; x j= p i� x 2 V(p); wherep 2 prop
M ; x j= : ' i� not M ; x j= '
M ; x j= ' ^  i� M ; x j= ' and M ; x j=  
M ; x j= 2 ' i� for all y 2 X; if xRy then M ; y j= ':

1In Chapter 8, we work with a proof system with an in�nitary inference rule. The notion of
derivation for this in�nitary logic, and other relevant notions, will be explained in Chapter 8.
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It follows from the above de�nition that

M ; x j= 3 ' i� there is y 2 X such that xRy and M ; y j= ':

We adopt the standard notational conventions and abbreviations (see e.g.,
Blackburn et al., 2001, Chapter 1.3). IfM does not make' true at x, we write
M ; x 6j= ' . In this case, we say that' is falseat x in M . When the corresponding
model is clear from the context, we writex j= ' for M ; x j= ' .

We call a formula ' valid in a relational model M = ( X; R; V ), denoted
by M j = ' , if M ; x j= ' for all x 2 X , and it is valid in a relational frame
F = ( X; R ), denoted by F j= ' , if M j = ' for every relational model based
on F . Moreover, we say' is valid in a classK of relational frames, denoted by
K j= ' , if F j= ' for every member of this class, and it isvalid, denoted byj= ' ,
if it is valid in the class of all frames. These de�nitions can easily be extended to
sets of formulas in the following way: a set �� L 2 is valid in a relational frame
F i� F j= ' for all ' 2 �. We de�ne k' kM = f x 2 X j M ; x j= ' g and call
k' kM the truth set, or equivalently, extensionof ' in M . In particular, we write
x 2 k ' kM for M ; x j= ' . We omit the superscript M when the model is clear
from the context. The crucial concepts ofsoundnessand completenessthat link
the syntax and the semantics are de�ned standardly (see, e.g., Blackburn et al.,
2001, Chapter 4.1).

We conclude the section by listing the relational soundness and completeness
results for the important epistemic and doxastic logics de�ned in Table 2.2. To
do so, we �rst list in Table 2.3 some important frame conditions, and then de�ne
some useful order theoretic notions that will also be used in later chapters.

Re
exivity ( 8x)(xRx )
Transitivity ( 8x; y; z)(xRy ^ yRz ! xRz)
Symmetry (8x; y)(xRy ! yRx)
Antisymmetry ( 8x; y)(xRy ^ yRx ! x = y)
Seriality (8x)(9y)(xRy)
Euclideanness (8x; y; z)(xRy ^ xRz ! yRz)
Directedness (8x; y; z)(( xRy ^ xRz) ! (9w)(yRw ^ zRw))
No right branching (8x; y; z)(( xRy ^ xRz) ! (yRz _ zRy _ y = z))
Total (Connected) (8x; y)(xRy _ yRx)

Preorder re
exive and transitive
Partial order re
exive, transitive and antisymmetric
Equivalence relation re
exive, transitive and symmetric

Table 2.3: Relevant Frame Conditions



14 Chapter 2. Technical Preliminaries

Following the traditional conventions in order theory, we also call a re
exive
and transitive relational frame (X; R ) a preordered set; and a re
exive, transitive
and antisymmetric frame apartially ordered set, or, in short, aposet. The following
order theoretic notions will be useful in later chapters.

2.1.4. Definition. [Up/Down-set,Upward/Downward-closure] Given a preor-
dered set (X; R ) and a subsetA � X ,

� A is called anupward-closed set(or, in short, an up-set) of (X; R ) if for
eachx; y 2 X , xRy and x 2 A imply y 2 A;

� A is called adownward-closed set(or, in short, a down-set) of (X; R ) if for
eachx; y 2 X , yRx and x 2 A imply y 2 A;

� the upward-closureof A, denoted by " A, is the smallest up-set of (X; R )
that includes A. In other words, " A = f y 2 X j 9x 2 A with xRyg;

� the downward-closureof A, denoted by #A, is the smallest down-set of
(X; R ) that includes A. In other words, #A = f x 2 X j 9y 2 A with xRyg:

For every elementx 2 X , we simply write " x and #x for the upward and
downward-closure of the singletonf xg, respectively.

We can now state some of the well-known relational soundness and com-
pleteness results. For a more detailed discussion, we refer to (Chagrov and Za-
kharyaschev, 1997; Blackburn et al., 2001).

2.1.5. Theorem (Relational (Kripke) Completeness).

� S42 is sound and complete with respect to the class of preordered sets;

� S4:22 is sound and complete with respect to the class of directed preordered
sets;

� S4:32 is sound and complete with respect to the class of total preordered
sets;

� S52 is sound and complete with respect to the class of frames with equiva-
lence relations;

� KD452 is sound and complete with respect to the class of serial, transitive
and Euclidean frames.

Following Theorem 2.1.5, we sometimes refer to a class of relational frames/
models by the name of its corresponding logic. For example, a preordered set is
also called anS4-frame. Similarly, a relational model based on a serial, transitive
and Euclidean frame is also called aKD45-model, etc.
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2.2 Background on Topology

In this section, we introduce the topological concepts that will be used through-
out this thesis. We refer to (Dugundji, 1965; Engelking, 1989) for a thorough
introduction to topology.

2.2.1. Definition. [Topological Space] Atopological spaceis a pair (X; � ), where
X is a nonempty set and� is a family of subsets ofX such that

� X; ; 2 �; and

� � is closed under �nite intersections and arbitrary unions.

The set X is a space; the family � is called atopologyon X . The elements of
� are calledopen sets(or opens) in the space. If for somex 2 X and an open
U � X we havex 2 U, we say thatU is an open neighborhoodof x. A set C � X
is called aclosed setif it is the complement of an open set, i.e., it is of the form
X nU for someU 2 � . We let �� = f X nU j U 2 � g denote the family of all closed
sets of (X; � ). Moreover a setA � X is calledclopenif it is both closed and open.

A point x is called an interior point of a set A � X if there is an open
neighbourhoodU of x such that U � A. The set of all interior points of A is
called the interior of A and is denoted byInt (A). Then, for any A � X , Int (A)
is an open set and is indeed the largest open subset ofA, that is

Int (A) =
[

f U 2 � j U � Ag:

Dually, for any x 2 X , x belongs to theclosureof A, denoted byCl(A), if and
only if U \ A 6= ; for each open neighborhoodU of x. It is not hard to see that
Cl (A) is the smallest closed set containingA, that is

Cl (A) =
\

f C 2 �� j A � Cg;

and that Cl (A) = X nInt (X nA) for all A � X . It is well known that the interior
Int and the closureCl operators of a topological space (X; � ) satisfy the follow-
ing properties (the so-called Kuratowski axioms) for anyA; B � X (see, e.g.,
Engelking, 1989, pp. 14-15)2:

(I1) Int (X ) = X (C1) Cl(; ) = ;
(I2) Int (A) � A (C2) A � Cl (A)
(I3) Int (A \ B) = Int (A) \ Int (B ) (C3) Cl(A [ B) = Cl(A) [ Cl (B )
(I4) Int (Int (A)) = Int (A) (C4) Cl(Cl (A)) = Cl(A)

2The properties (I1)� (I4) (and, dually, (C1) � (C4)) are what render the knowledge modality
interpreted as the topological interior operator an S4-type modality. We will elaborate on this
in Chapter 3.



16 Chapter 2. Technical Preliminaries

A set A � X is calleddensein X if Cl (A) = X and it is callednowhere dense
if Int (Cl (A)) = ; . Moreover, theboundaryof a setA � X , denoted byBd(A), is
de�ned as Bd(A) = Cl(A)nInt (A).

A point x 2 X is called alimit point (or accumulation point) of a setA � X if
for each open neighborhoodU of x, we haveA \ (Unf xg) 6= ; . The set of all limit
points of A is called thederived setof A and is denoted byd(A). For any A � X ,
we also lett(A) = X nd(X nA). We call t(A) the co-derived setof A. Moreover, a
set A � X is calleddense-in-itselfif A � d(A). A spaceX is calleddense-in-itself
if X = d(X ).

2.2.2. Definition. [Topological Basis] A family B � � is called abasis for a
topological space (X; � ) if every non-empty open subset ofX can be written as
a union of elements ofB.

We call the elements ofB basic opens. We can give an equivalent de�nition
of an interior point by referring only to a basisB for a topological space (X; � ):
for any A � X , x 2 Int (A) if and only if there is an open setU 2 B such that
x 2 U and U � A.

Given any family � = f A � j � 2 I g of subsets ofX , there exists a unique,
smallest topology� (�) with � � � (�) (Dugundji, 1965, Theorem 3.1, page 65).
The family � (�) consists of ; , X , all �nite intersections of the A � , and all arbitrary
unions of these �nite intersections. � is called asubbasisfor � (�), and � (�) is
said to begeneratedby �. The set of �nite intersections of members of � forms
a basis for� (�).

2.2.3. Definition. [Subspace] Given a topological space (X; � ) and a nonempty
subsetP � X , the topological space (P; � P ) is called asubspaceof (X; � ) ( induced
by P) where � P = f U \ P j U 2 � g.

The closureClP , the interior Int P and the derived setdP operators of the
subspace (P; � P ) can be de�ned in terms of the closure and interior operators of
(X; � ) as, for all A � P,

ClP (A) = Cl(A) \ P

Int P (A) = Int ((X nP) [ A) \ P

dP (A) = d(A) \ P:

2.2.4. Definition. [Hereditary Property] A property of a topological space is
called hereditary if each subspace of the space possesses this property.

2.2.5. Lemma. For any two topological space(X; � ) and (X; � 0), if � � � 0 then
Int � (A) � Int � 0(A) for all A � X .

We here end the presentation of the background material for this dissertation.
In the next chapter, we introduce the interior-based topological semantics for the
basic modal language and motivate the use of topological models in epistemic
logic.
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Chapter 3

The Interior Semantics

In this chapter, we provide the formal background for the interior-based topologi-
cal semantics for the basic modal logic that originates from the work of McKinsey
(1941), and McKinsey and Tarski (1944). In this semantics the modal operator2
is interpreted on topological spaces as the interior operator. As brie
y discussed
in Chapter 1, among other reasons, the fact that the epistemic systemS4 is the
logic of all topological spaces, and the interpretation of open sets as `observable
properties' or `pieces of evidence' put the interior-based topological semantics on
the radar of epistemic logicians.

In the following, we brie
y introduce the so-called topological interior seman-
tics, focusing particularly on its epistemic insights, and explain how and why
it constitutes a satisfactory interpretation for (evidence-based) knowledge, and,
consequently, why|in certain contexts|it forms a richer semantics than the re-
lational semantics. Our contribution in Part I is inspired by and developed on the
basis of this setting. In later chapters, we extend and enrich the interior semantics
in order to formalize di�erent notions of (evidence-based) knowledge and justi�ed
belief, as well as various notions of evidence possession.

Outline

Section 3.1 is a technical section introducing the interior semantics together with
its connection to the relational semantics (Section 3.1.2). In Section 3.1.3, we
list the general topological soundness and completeness results for the systems
S4; S4:2 and S4:3 that will be used in later chapters. Section 3.2 then explains
the motivation behind the use of the interior operator as a knowledge modality,
where the main focus will be on the underlying evidence-based interpretation.
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3.1 Background on the Interior Semantics

This section gives an overview of the essential technical preliminaries of the inte-
rior semantics. The presentation of this section follows (van Benthem and Bezhan-
ishvili, 2007, Section 2). The reader who is familiar with the source and topic
should feel free to continue with Section 3.2.

3.1.1 Syntax and Semantics

We work with the basic epistemic languageL K as given in De�nition 2.1.1. Since
we examine the interior semantics in an epistemic context, we prefer to use the
modality K' (instead of 2 ' ) that is read as \the agent knows' (is true)". The
dual modality K̂ for epistemic possibilityis de�ned asK̂' := : K : ' .

3.1.1. Definition. [Topological Model] Atopological model(or, in short, a topo-
model) X = ( X; �; V ) is a triple, where (X; � ) is a topological space andV :
prop ! P (X ) is a valuation function.

3.1.2. Definition. [Interior Semantics forL K ] Given a topo-modelX =( X; �; V )
and a statex 2 X , truth of a formula in the langaugeL K is de�ned recursively
as follows:

X ; x j= p i� x 2 V(p)
X ; x j= : ' i� not X ; x j= '
X ; x j= ' ^  i� X ; x j= ' and X ; x j=  
X ; x j= K' i� ( 9U 2 � )(x 2 U and 8y 2 U; X ; y j= ' )

It is useful to note the derived semantics for̂K' :

X ; x j= K̂' i� ( 8U 2 � )(x 2 U implies 9y 2 U; M ; y j= ' )

Truth and validity of a formula ' of L K are de�ned in the same way as for
the relational semantics. We here apply similar notational conventions as we have
set in Section 2.1. We let [[' ]]X = f x 2 X j X ; x j= ' g denote the truth set,
or equivalently, extension of a formula ' in topo-model X . We emphasize the
di�erence betweenjj ' jjM and [[' ]]X : while the former refers to the truth set in a
relational model under the standard relational semantics (De�nition 2.1.3), the
latter is de�ned with respect to topo-models and the interior semantics (De�nition
3.1.2). We again omit the superscript for the model when it is clear from the
context.

The semantic clauses forK and K̂ give us exactly the interior and the closure
operators of the corresponding model. In other words, according to the interior
semantics, we have

[[K' ]] = Int ([[' ]])
[[K̂' ]] = Cl([[' ]]):
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3.1.2 Connection between relational and topological mod-
els

As is well known, there is a tight link between the relational semantics and the
interior semantics at the level of re
exive and transitive frames: every re
exive
and transitive Kripke frame corresponds to anAlexandro� space. The class of
re
exive and transitive frames therefore forms a subclass of all topological spaces.
This connection does not only help us to see how the interior semantics and the
relational semantics relate to each other and how the former extends the latter,
but it also provides a method to prove topological completeness results by using
the already established results for the relational counterpart.

3.1.3. Definition. [Alexandro� space] A topological space (X; � ) is an Alexan-
dro� space if � is closed under arbitrary intersections, i.e.,

T
A 2 � for any A � �:

A topo-model X = ( X; �; V ) is called an Alexandro� model if (X; � ) is an
Alexandro� space. A very important feature of an Alexandro� space (X; � ) is
that every point x 2 X has a smallest open neighbourhood. Given a re
exive and
transitive Kripke frame (X; R ), we can construct an Alexandro� space (X; � R) by
de�ning � R to be the set of all up-sets of (X; R ). The up-set R(x) = " x = f y 2
X j xRyg forms the smallest open neighborhood containing the pointx. It is then
not hard to see that the set of all down-sets of (X; R ) coincides with the set of
all closed sets in (X; � R), and that for any A � X , we haveCl � R (A) = #A, where
Cl � R denotes the closure operator of (X; � R). Conversely, for every topological
space (X; � ), we de�ne a specialization preorderv � on X by

x v � y i� x 2 Cl(f yg) i� ( 8U 2 � )(x 2 U implies y 2 U):

(X; v � ) is therefore a re
exive and transitive Kripke frame, i.e., a preordered
set. Moreover, we have thatR = v � R , and that � = � v � if and only if (X; � ) is
Alexandro� (see, e.g., van Benthem and Bezhanishvili, 2007). Hence, there is a
natural one-to-one correspondence between re
exive and transitive Kripke models
and Alexandro� models. In particular, for any re
exive and transitive Kripke
model M = ( X; R; V ), we set B(M ) = ( X; � R ; V), and for any Alexandro�
modelX = ( X; �; V ), we can form a re
exive and transitive Kripke modelA(X ) =
(X; v � ; V). Moreover, any two models that correspond to each other in the above
mentioned way make the same formulas ofL K true at the same states, as shown
in Proposition 3.1.4.

3.1.4. Proposition. For all ' 2 L K ,

1. for any re
exive and transitive Kripke modelM = ( X; R; V ) and x 2 X ,

M ; x j= ' i� B (M ); x j= ' ;
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2. for any Alexandro� model X = ( X; �; V ) and x 2 X ,

X ; x j= ' i� A(X ); x j= ':

Therefore, re
exive and transitive Kripke models and Alexandro� models are
just di�erent representations of each other with respect to the languageL K .
In particular, the modal equivalence stated in Proposition 3.1.4-(1) constitutes
the key step that allows us to use the relational completeness results to prove
completeness with respect to the interior semantics.

3.1.3 Soundness and Completeness for S4K , S4:2K and S4:3K

Having explained the connection between re
exive-transitive Kripke models and
Alexandro� models, we can now state the topological completeness results for
S4K and its two normal extensionsS4:2K and S4:3K that are of interests in later
chapters. In fact, Proposition 3.1.4-(1) entails the following more general result
regarding all Kripke complete normal extensions ofS4K .

3.1.5. Proposition (van Benthem and Bezhanishvili, 2007). Every nor-
mal extension ofS4K (over the languageL K ) that is complete with respect to the
standard relational semantics is also complete with respect to the interior seman-
tics.

Proof:
Let LK be a normal extension ofS4K that is complete with respect to the rela-
tional semantics and' 2 L K such that ' 62LK . Then, by relational completeness
of LK , there exists a relational modelM = ( X; R; V ) and x 2 X such that
M ; x 6j= ' . Since LK extends the systemS4K , which is complete with respect
to re
exive and transitive Kripke models, R can be assumed to be at least re-

exive and transitive. Then, by Proposition 3.1.4-(1), we obtainB(M ); x 6j= ' . 2

We can therefore prove completeness of the Kripke complete extensions of
S4K with respect to the interior semantics via their relational completeness. What
makes the interior semantics more general than Kripke semantics is tied to sound-
ness. For example,S4K is not only sound with respect to Alexandro� spaces, but
also with respect to all topological spaces.

3.1.6. Theorem (McKinsey and Tarski, 1944). S4K is sound and complete
with respect to the class of all topological spaces under the interior semantics.

Similar results have also been proven forS4:2K and S4:3K for the following
restricted classes of topological spaces.

3.1.7. Definition. [Extremally Disconnected Space] A topological space (X; � )
is calledextremally disconnectedif the closure of each open subset ofX is open.
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For example, Alexandro� spaces constructed from directed preorders, i.e.,
from S4:2K -frames, are extremally disconnected. To elaborate, it is routine to
verify that, given a directed preordered set (X; R ) and an up-setU of (X; R ), the
downward-closure#U of the set U is still an up-set. Recall that Cl � R (U) = #U,
where (X; � R) is the corresponding Alexandro� space andCl � R is its closure op-
erator. Therefore, since the set of all up-sets of (X; R ) forms the corresponding
Alexandro� topology � R , we conclude that (X; � R) is extremally disconnected.
This, in fact, establishes the topological completeness result forS4:2K via Propo-
sition 3.1.5. It is also well known that topological spaces that are Stone-dual to
complete Boolean algebras, e.g., the Stone-�Cech compacti�cation � (N) of the set
of natural numbers with a discrete topology, are extremally disconnected (Siko-
rski, 1964).

3.1.8. Definition. [Hereditarily Extremally Disconnected Space] A topological
space (X; � ) is calledhereditarily extremally disconnected(h.e.d.) if every subspace
of (X; � ) is extremally disconnected.

Alexandro� spaces corresponding to total preorders, i.e., corresponding to
S4:3K -frames, are hereditarily extremally disconnected. To see this, observe that
for every nonempty Y � X , the subspace (Y;(� R)Y ) of (X; � R) is in fact the
Alexandro� space constructed from the subframe (Y; R \ (Y � Y)) of (X; R ).
Moreover, every subframe of a total preorder (X; R ) is still a total preorder,
thus, is also a directed preorder. Therefore, the correspondence between total
preorders and h.e.d spaces follows from the fact that Alexandro� spaces con-
structed from directed preorders are extremally disconnected. Another inter-
esting and non-Alexandro� example of an hereditarily extremally disconnected
space is the topological space (N; � ) where N is the set of natural numbers and
� = f; ; all co�nite subsets ofNg. In this space, the set of all �nite subsets ofN
together with ; and X completely describes the set of closed subsets with respect
to (N; � ). It is not hard to see that for any U 2 � , Cl (U) = N and Int (C) = ; for
any closedC with C 6= X . Moreover, every countable Hausdor� extremally dis-
connected space is hereditarily extremally disconnected (Blaszczyk et al., 1993).
For more examples of hereditarily extremally disconnected spaces, we refer to
(Blaszczyk et al., 1993).

3.1.9. Theorem (Gabelaia, 2001). S4:2K is sound and complete with respect
to the class of extremally disconnected topological spaces under the interior se-
mantics.

3.1.10. Theorem (Bezhanishvili et al., 2015). S4:3K is sound and com-
plete with respect to the class of hereditarily extremally disconnected topological
spaces under the interior semantics.
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3.2 The Motivation behind Knowledge as Inte-
rior

Having presented the interior semantics, we can now elaborate on its epistemic
signi�cance that has inspired our work in this dissertation, in particular, the
content of Chapter 4 and Chapter 5.

We would �rst like to note that the conception of knowledge as interior is
not the only type of knowledge we study in this thesis. We even question whether
knowledge as interioris the \only" type of knowledge that a topological semantics
can account for and answer in the negative (see Chapters 5-7). However, the
aforementioned semantics can be considered as the most primitive, in a sense
as the most direct way of interpreting an epistemic modality in this setting. We
therefore argue that, even in this very basic form, the interior semantics works at
least as well as the standard relational semantics for knowledge, and, additionally,
it extends the relational semantics while admitting an evidential interpretation
of knowledge.

The interior semantics is naturally epistemic and extends the relational
semantics. The initial reason as to why the topological interior operator can
be considered as knowledge is inherent to the properties of this operator. As
noted in Section 2.2, the Kuratowski axioms (I1)-(I4) correspond exactly to the
axioms of the systemS4K , when K is interpreted as the interior modality (see
Table 3.1 for the one-to-one correspondence). Therefore, elementary topological

S4K axioms Kuratowski axioms
(K K ) K (' ^  ) $ (K' ^ K ) Int (A \ B) = Int (A) \ Int (B )
(T K ) K' ! ' Int (A) � A
(4K ) K' ! KK' Int (A) � Int (Int (A))
(NecK ) from ' , infer K' Int (X ) = X

Table 3.1: S4K vs. Kuratowski axioms

operators such as the interior operator, or, dually, the closure operator produces
the epistemic logicS4K with no need for additional constraints (also see Theorem
3.1.6). In other words, in its most general form, topologically modelled knowledge
is Factive and Positively Introspective, however, it does not necessarily possess
stronger properties. On the other hand, this in no way limits the usage of interior
semantics for stronger epistemic systems. In accordance with the case for the
relational semantics, we can restrict the class of spaces we work with and interpret
stronger epistemic logics such asS4:2K ; S4:3K (see Theorems 3.1.9 and 3.1.10)
and S5K in a similar manner (see, e.g., van Benthem and Bezhanishvili, 2007,
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p. 253). To that end, topological spaces providesu�ciently 
exible structures
to study knowledge of di�erent strength. They are moreovernaturally epistemic
since the most general class of spaces, namely the class of all topological spaces,
constitutes the class of models of arguably the weakest, yet philosophically the
most accepted normal systemS4K . Moreover, as explained in Section 3.1.2, the
relational models for the logicS4K , and for its normal extensions, correspond to
the subclass of Alexandro� models (see Proposition 3.1.4). The interior semantics
therefore generalizes the standard relational semantics for knowledge.

One may however argue that the above reasons are more of a technical nature
showing that the interior semantics works as well as the relational semantics,
therefore motivate \why we could use topological spaces" rather than \why we
shoulduse topological spaces" to interpret knowledge as opposed to using rela-
tional semantics. Certainly the most important argument in favour of the con-
ception of knowledge as the interior operatoris of a more `semantic' nature: the
interior semantics provides a deeper insight into the evidence-based interpretation
of knowledge.

Evidence as open sets. The idea of treating `open sets as pieces of evidence' is
adopted from the topological semantics for intuitionistic logic, dating back to the
1930s (see, e.g., Troelstra and van Dalen, 1988). In a topological-epistemological
framework, typically, the elements of a given open basis are interpreted as observ-
able evidence, whereas the open sets of the topology are interpreted as properties
that can be veri�ed based on the observable evidence. In fact, the connection be-
tween evidence and open sets comes to exist at the most elementary level, namely
at the level of a subbasis. We can think of a subbasis as a collection of observable
evidence that isdirectly obtained by an agent via, e.g., testimony, measurement,
approximation, computation or experiment. The family of directly observable
pieces of evidence therefore naturally forms an open topological basis: closure
under �nite intersection captures an agent's ability to put �nitely many pieces
into a single piece, i.e., her ability to derive more re�ned evidence from direct
ones by combining �nitely many of them together. Therefore, a topological space
does not only account for the plain conception ofevidence as open sets, but it
is rich enough to di�erentiate various notions of evidence possession. The above-
mentioned correspondence between evidence and open sets constitutes the main
motivation behind the topological frameworks developed in this dissertation and
we will elaborate on di�erent views and interpretations oftopological evidencein
later chapters, starting with Chapter 5.

On the other hand, the basic epistemic languageL K interpreted by the in-
terior semantics is clearly not expressive enough to distinguish di�erent types of
open sets, e.g., it cannot distinguish a basic open from an arbitrary open, simply
because the only topological modalityK is interpreted as an existential claim of
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an open neighbourhood of the actual state that entails the known proposition:

x 2 KP i� x 2 Int (P) (3.1)

i� ( 9U 2 � )(x 2 U and U � P) (3.2)

i� ( 9U 2 B � )(x 2 U and U � P) (3.3)

where B� is a basis for� . Therefore, in its current form, the interior semantics
does not form a su�ciently strong setting to account for (various type of) evi-
dence possession alone. However, even based on this basic shape, the notion of
knowledge as the interior operator yields an evidential interpretation at a purely
semantic level. More precisely, from an extensional point of view1, a proposition
P is true at world x if x 2 P. If an openU is included in a setP, then we can say
that proposition P is entailed/supportedby evidenceU. Open neighbourhoodsU
of the actual world x play the role of sound (correct, truthful) evidence. There-
fore, as basic open sets are the pieces of observable evidence, (3.3) means that
the actual world x is in the interior of P i� there exists a sound piece of evidence
U that supports P. That is, according to the interior semantics, the agentknows
P at x i� she has a sound/correct piece of evidence supportingP. Moreover,
open sets will then correspond to properties that are in principle veri�able by the
agent: whenever they are true, they are supported by a sound piece of evidence,
therefore, can be known. Dually, we have

x 62Cl(P) i� ( 9U 2 � )(x 2 U and U � X nP) (3.4)

meaning that closed sets correspond to falsi�able properties:whenever they are
false, they are falsi�ed by a sound piece of evidence.These ideas have also been
used and developed in (Vickers, 1989; Kelly, 1996) with connections to episte-
mology, logic and learning theory.

The interior-based semantics for knowledge has been extended to multiple
agents (van Benthem et al., 2005), to common knowledge (Barwise, 1988; van
Benthem and Sarenac, 2004) to logics of learning and observationale�ort (Moss
and Parikh, 1992; Dabrowski et al., 1996; Georgatos, 1993, 1994), to topological
versions of dynamic-epistemic logic (Zvesper, 2010) (see Aiello et al., 2007, for a
comprehensive overview on the �eld). Belief on topological spaces, rather surpris-
ingly, has not been investigated and developed as much as knowledge, especially
in connection with topological knowledge.

3.3 Belief on Topological Spaces?

As explained in Section 3.2, as far as an evidential interpretation of knowledge
is concerned, the interior semantics improves the standard relational semantics,

1Extensional here means any semantic formalism that assigns the same meaning to sentences
having the same extension.
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most importantly, for the reason that evidential justi�cation for knowing some-
thing is embedded in the semantics. It then seems natural to ask whether a
topological semantics can also account for notions of (evidentially) justi�ed be-
lief. Answering this question constitutes one of the main goals of Part I of this
dissertation.

One of the crucial properties that distinguishes knowledge from belief is its
veracity (formalised by the axiom (TK )). However, no matter how idealized and
rational the agent is, it must be possible for her to believe false propositions,
yet she is expected to hold consistent beliefs (formalized by the axiom (DB )). To
the best of our knowledge, the �rst worked out topological semantics for belief is
proposed by Steinsvold (2006) in terms of the co-derived set operator. According
to the co-derived set interpretation of belief,

x 2 BP i� ( 9U 2 � )(x 2 U and Unf xg � P); (3.5)

i.e., x 2 BP i� x 2 t(P). We here note that this topological semantics inter-
preting the modal operator2 as the co-derived set operator, or dually,3 as the
derived set operator was also pioneered by McKinsey and Tarski (1944), and later
extensively developed by the Georgian logic school led and inspired by Esakia,
and their collaborators (see, e.g., Esakia, 2001, 2004; Bezhanishvili et al., 2005,
2009; Beklemishev and Gabelaia, 2014; Kudinov and Shehtman, 2014). Steinsvold
(2006) was the �rst to propose to use this semantics to interpret belief, and proved
soundness and completeness for the standard belief systemKD45B . This account
still requires having atruthful piece of evidence for the believed proposition, how-
ever, the proposition itself does not have to be true. Therefore, it is guaranteed
that the agent may hold false beliefs. However, as also discussed in (Baltag et al.,
2013; •Ozg•un, 2013), and brie
y recapped here, this semantics further guarantees
that in any topo-model and any state in this model, there is at least one false
belief, that is, the agent always believes the false propositionX nf xg at the actual
state x. This is the case because for any topological space (X; � ) and x 2 X ,
we havex 62d(f xg), i.e., x 2 t(X nf xg), therefore, the clause (3.5) entails that
x 2 B(X nf xg) always holds. This is an undesirable and disadvantageous prop-
erty, especially if we also want to study dynamics such as belief revision, updates
or learning. Always believingX nf xg prevents the agent to ever learning the ac-
tual state unless she believes everything. Formally speaking,x 2 B(f xg) i� the
singleton f xg is an open, and in this case, the agent believes everything atx.
In order to avoid these downsides and obtainKD45B , we have to work with the
so-call DSO-spaces, as shown by Steinsvold (2006). ADSO-spaceis de�ned to
be a dense-in-itself space (i.e., a space with no singleton opens) in which every
derived setd(A) is open.

Moreover, in a setting where knowledge as the interior and belief as the co-
derived set operator are studied together, we obtain the equality

KP = P \ BP;
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stating that knowledge is true belief. Therefore, this semantics yields a formal-
ization of knowledge and belief that is subject to well-known Gettier counterex-
amples (Gettier, 1963).2

In the next chapter, we present another topological semantics proposed by
Baltag et al. (2013) for belief, in particular, for Stalnaker's notion of belief as
subjective certainty(Stalnaker, 2006), in terms of theclosure of the interior op-
erator on extremally disconnected spaces. Baltag et al. (2013) have argued that
this semantics is better behaved, especially when considered together with the
notion of knowledge as the interior operator. They moreover provided a sound-
ness and completeness result for the belief systemKD45B with respect to the class
of extremally disconnected spaces, which extends the class of DSO-spaces. How-
ever, this setting still encounters problems when extended forpublic announce-
ments. We then propose a solution consisting in interpreting belief in a similar
way based on hereditarily extremally disconnected spaces, and axiomatize the
belief logic of hereditarily extremally disconnected spaces.

2This connection has also been observed in (Steinsvold, 2006, Section 1.11), and an alterna-
tive topological semantics for knowledge in terms of clopen sets is suggested without providing
any further technical results. Steinsvold (2006) does not elaborate on to what extend his pro-
posed semantics for knowledge could give new insight into the Gettier problem and leaves this
point open for discussion.



Chapter 4

A topological theory of \justi�ed"
belief: an initial attempt

Understanding the relation between knowledge and belief is an issue of central
importance in epistemology. Especially after Gettier (1963) shattered the tradi-
tional account of knowledge asjusti�ed true belief, many epistemologists have
attempted to strengthen the latter to attain a satisfactory notion of the former.
According to this approach, one starts with a weak notion of belief (which is at
least justi�ed and true) and tries to reach knowledge by making the chosen no-
tion of belief stronger in such a way that the de�ned notion of knowledge would
no longer be subject to Gettier-type counterexamples (Gettier, 1963).1 More re-
cently, there has also been some interest in reversing this project|deriving belief
from knowledge|or, at least, putting \knowledge �rst" (Williamson, 2000). In
this spirit, Stalnaker (2006) has proposed a formal framework in which belief is
realized as a weakened form of knowledge. More precisely, beginning with a logical
system in which both belief and knowledge are represented as primitives, Stal-
naker formalizes some natural-seeming relationships between the two, and proves
on the basis of these relationships that belief can bede�ned from knowledge. To
this end, Stalnaker's syntactic formalization seems to be analogous to the afore-
mentionedstatus quoof the interior semantics for knowledge and of a topological
interpretation for belief, where the interpretation of knowledge is given and a
good semantics for belief is to be unveiled.

Baltag et al. (2013) and •Ozg•un (2013), starting from Stalnaker's formalism,
proposed to interpret belief, in particular Stalnaker's belief, assubjective cer-
tainty, in terms of the closure of the interior operatoron extremally disconnected
spaces (Section 4.2 explains the reason for restriction to extremally disconnected

1Among this category, we can mention thedefeasibility analysis of knowledge(Lehrer and
Paxson, 1969; Lehrer, 1990; Klein, 1971, 1981), \no false lemma" account (Clark, 1963), the
sensitivity account (Nozick, 1981), the contextualist account (DeRose, 2009) and thesafety
account (Sosa, 1999). For an overview of responses to the Gettier challenge and a detailed
discussion, we refer the reader to (Ichikawa and Steup, 2013; Rott, 2004).

29
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spaces). This static setting, developed based on extremally disconnected spaces,
however could not be extended with updates forpublic announcementsdue to
some structural properties of the extremally disconnected spaces (see Section
4.2.2). One way of dealing with this problem based onall topological spaces, lead-
ing to weakening of the underlying knowledge and belief logics, has been presented
in (Baltag et al., 2015b). In this chapter, we present a solution approaching the is-
sue from the opposite direction, namely, we propose to restrict the class of spaces
we work with to the class ofhereditarily extremally disconnected spaces.

Outline

Section 4.1 presents Stalnaker's combined system of knowledge and belief, and
lists the important aspects of his work that inspired (•Ozg•un, 2013; Baltag et al.,
2013). In Section 4.2, we review the topological belief semantics of (•Ozg•un, 2013;
Baltag et al., 2013), and, Section 4.2.2 recalls why updates do not work on ex-
tremally disconnected spaces. In Section 4.3, we introduce the material that goes
beyond (•Ozg•un, 2013; Baltag et al., 2013), and model belief, conditional beliefs
and public announcements on hereditarily extremally disconnected spaces and
present several completeness results regardingKD45B and its extensions with
conditional beliefs and public announcements.

This chapter is based on (Baltag et al., 2015a).

4.1 Belief as subjective certainty

Stalnaker (2006) focuses on the properties of knowledge, belief and the relation
between the two. He approaches the problem of understanding the precise con-
nection between knowledge and belief from an unusual perspective by following
a \knowledge-�rst" approach. That is, unlike most proposals in the formal epis-
temology literature, he starts with a chosen notion of knowledge and weakens it
to obtain belief. He bases his analysis on a strong conception of belief as \subjec-
tive certainty": from the point of the agent in question, her belief issubjectively
indistinguishable from her knowledge.

Stalnaker (2006) works with thebimodal languageL KB given by the grammar

' ::= p j : ' j ' ^ ' j K' j B';

augmenting the logicS4K with the additional axioms schemes presented in Table
4.1.

Let Stal denote this combined logic.2 Most of the above axioms, such asS4K ,

2 What justi�es the properties of knowledge and belief stated in Stal may be debatable,
though not in the scope of this dissertation. We refer to (Bjorndahl and •Ozg•un, 2017) for a
topological-based reformulation of Stalnaker's system.
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(DB ) B' ! : B : ' Consistency of belief
(sPI) B' ! KB' Strong positive introspection
(sNI) : B' ! K : B' Strong negative introspection
(KB) K' ! B' Knowledge implies belief
(FB) B' ! BK' Full belief

Table 4.1: Stalnaker's additional axiom schemes

(DB ), (KB), are widely taken for granted by many formal epistemologists (see
Section 2.1 for some sources). The properties (sPI) and (sNI) state that Stal-
naker's agent has full introspective access to her beliefs. Finally, (FB) constitutes
the key property of belief as subjective certainty, the notion of belief Stalnaker
seeks to capture. In his setting,the agent fully believes' i� she believes that
she knows it.3 He therefore studies a strong notion of belief that is very close to
knowledge.

From these �rst principles formalizing the interplay between knowledge and
belief, Stalnaker (2006) extracts the properties regarding the unimodal fragments
for knowledge and for belief, as well as a de�nition of belief in terms of knowledge.
More precisely, he shows that

� Stal derivesS4:2K as the pure logic of knowledge (although onlyS4K was
initially assumed);

� Stal derivesKD45B as the pure logic of belief; and

� it proves the equivalenceB' $ K̂K' .

He therefore argues|based on the �rst principles of the systemStal|that the
\true" logic of knowledge is S4:2K , that the \true" logic of belief is KD45B , and
that belief is de�nable in terms of knowledge as theepistemic possibility of knowl-
edge. As a conclusion of the last item,Stalconstitutes a formalization of knowledge
and belief admitting conceptual priority of belief over knowledge. Moreover, given
the interior semantics for knowledge, the equationB' $ K̂K' yields a natural
topological semantics for full belief (Baltag et al., 2013;•Ozg•un, 2013).

4.2 The Topological Semantics for Full Belief

The topological semantics forStal, and in particular for full belief, was �rst stud-
ied in (Baltag et al., 2013; •Ozg•un, 2013). They propose to extend the interior
semantics for knowledge by a semantic clause for belief, and model belief as the
closure of the interior operatoron extremally disconnected spaces. The restriction

3The converse direction of (FB) is easily derivable inStal.



32 Chapter 4. A topological theory of \justi�ed" belief: an initial attempt

to the class of extremally disconnected spaces is imposed by the axioms ofStal,
that is, e.g., the axiom (DB ) as well as the derived principles such as (KB ) and
(.2K ) de�ne extremally disconnectness whenK is interpreted as the interior op-
erators andB is interpreted as the closure of the interior operator (see Gabelaia,
2001, Theorem 1.3.3 for (.2K ), and •Ozg•un, 2013, Propositions 11 and 12 for (DB )
and (KB )). Baltag et al. (2013) provide several topological soundness and com-
pleteness results for both bimodal and unimodal cases, in particular forStal and
KD45B , with respect to extremally disconnected spaces. In this section we give an
overview of their proposal and list some of the results. The proofs can be found
in ( •Ozg•un, 2013; Baltag et al., 2015a).

4.2.1. Definition. [Closure-interior semantics forL KB ] Given a topo-model
X = ( X; �; V ), the semantics for the formulas inL KB is de�ned for Boolean
cases andK' in the same way as in De�nition 3.1.2. The semantics forB' is
given by

[[B' ]] = Cl(Int ([[' ]])):

Truth and validity of a formula as well as soundness and completeness of logics
are de�ned in the same way as for the interior semantics.

4.2.2. Theorem (Baltag et al., 2013). Stal is the sound and complete logic
of knowledge and belief on extremally disconnected spaces under the closure-
interior semantics.

Moreover, Stalnaker's combined logic of knowledge and belief yields the sys-
tems S4:2K and KD45B . It has already been proven thatS4:2K is sound and
complete with respect to the class of extremally disconnected spaces under the
interior semantics (see Theorem 3.1.9). This raises the question of topological
soundness and completeness forKD45B under the proposed semantics for belief
in terms of the closure and the interior operator.

4.2.3. Theorem (Baltag et al., 2013). KD45B is sound and complete with
respect to the class of extremally disconnected spaces under the closure-interior
semantics.

Theorem 4.2.3 therefore shows that the logic of extremally disconnected spaces
is KD45B when B is interpreted as the closure of the interior operator. Besides
these technical results, the closure-interior semantics of belief comes with an in-
trinsic philosophical and intuitive value, and certain advantages compared to the
co-derived set semantics as elaborated in the next section.
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4.2.1 What motivates topological full belief

The closure-interior semantics provides an intuitive interpretation of Stalnaker's
conception of (full) belief assubjective certainty. It does so through the de�nitions
of the interior and closure operators and the concepts they represent, namely, the
notions ofevidenceand closeness. We have discussed the role of open sets as pieces
of evidence, and of open neighbourhoods of the actual state as pieces of truthful
evidence in Section 3.2. Moreover, it is well known that the closure operator
captures a topological, qualitative notion ofcloseness: x is said to beclose toa
set A � X i� x 2 Cl(A). Recalling the proposed topological semantics for full
belief, given a topological space (X; � ) and P � X , we have

x 2 BP i� x 2 Cl(Int (P)) (4.1)

i� x 2 Cl(K (P)) (4.2)

i� ( 8U 2 � )(x 2 U implies U \ KP 6= ; ) (4.3)

Therefore, following (4.2),topologically, the set of states in which the agent be-
lieves P is very closeto the set of states in which the agent knowsP. Taking
open sets as evidence pieces, (4.3) moreover states that an agent (fully) believes
P at a state x i� every sound piece of evidence she has atx is consistent with her
knowing P, i.e., she does not have any truthful evidence that distinguishes the
states in which she has belief ofP from the states in which she has knowledge
of P. Belief, under this semantics, therefore becomes subjectively indistinguish-
able from knowledge. Hence, the closure-interior semantics naturally captures the
conception of belief as \subjective certainty".

Moreover, the closure-interior belief semantics improves on the co-derived set
semantics for the following reasons: (1) belief as the closure of the interior op-
erator does not face the Gettier problem, at least not in the easy way in which
the co-derived set semantics does, when considered together with the conception
of knowledge as interior. More precisely, knowledge as interior cannot be de-
�ned as (justi�ed) true full belief since, in general, Int (P) 6= Cl(Int (P)) \ P, i.e.,
KP 6= BP ^ P; (2) the class of DSO-spaces with respect to whichKD45B is sound
and complete under the co-derived set semantics is a proper subclass of the class
of extremally disconnected spaces (see•Ozg•un, 2013, Proposition 13). Therefore,
the closure-interior semantics forKD45B is de�ned on a larger class of spaces.

Additionally, •Ozg•un (2013) and Baltag et al. (2013) have studied a topologi-
cal analogue of static conditioning|capturing static belief revision|by providing
a topological semantics for conditional beliefs based on extremally disconnected
spaces. However, this framework encounters problems when extended to a dy-
namic setting by adding update modalities for public announcements, formalized
as model restriction by means of subspaces.
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4.2.2 Problems with updates for public announcements

The topological semantics and associated logics we have studied so far werestatic,
representing the epistemic state of an agent as isolated from receiving further in-
formation. Following the methodology of Dynamic Epistemic Logic (DEL), we
can also represent knowledge and belief change brought about by a piece of new
information by extending the static language withdynamic modalities, and de-
signingan update mechanismthat transforms the initial model into an \updated"
structure. The resulting updated model expresses what is known/believed after
the chosen epistemic action has been performed (see, e.g., van Ditmarsch et al.,
2007; van Benthem, 2011; Baltag and Renne, 2016, for a detailed presentation of
DEL).

The �rst, and maybe the most well-known, epistemic action studied in the lit-
erature of DEL is the so-calledpublic announcementsintroduced by Plaza (1989)
and Gerbrandy and Groeneveld (1997). Public announcements are concerned with
learning \hard" information, i.e. information that comes with an inherent war-
ranty of veracity, e.g. because of originating from an infallibly truthful source.4 In
DEL, in a qualitative setting based on relational semantics or a plausibility order,
public announcements are standardly modelled by restricting the initial model to
the truth set of the new information (see, e.g., Plaza, 1989, 2007; Gerbrandy
and Groeneveld, 1997; van Ditmarsch et al., 2007). Its natural topological ana-
logue, as recognized by Zvesper (2010); Baskent (2011, 2012) (among others), is
a topological update operator using the restriction of the original topology to the
subspace induced by a nonempty subsetP. The described update mechanism for
public announcements is sometimes calledupdate for hard information, or hard
update(van Benthem, 2011). In what follows, we simply refer to it asupdate.

In order for this interpretation to be successfully implemented, the subspace
induced by the new informationP should possess the same structural properties
as the initial topology that renders the axioms of the underlying static knowl-
edge/belief system sound. More precisely, we demand that the subspace induced
by the new information P be in the class of structures with respect to which
the (static) knowledge/belief logics in question are sound and complete. How-
ever, since extremally disconnectedness is not a hereditary property, the above
mentioned topological interpretation of conditioning with true, hard informa-
tion cannot be implemented on extremally disconnected spaces. This is obviously
analogous to the problem of implementing updates on relational models based
on directed preorders (see, e.g., Balbiani et al., 2012, for a more general explana-
tion regarding preserving frame conditions in public announcement logic). Baltag
et al. (2015b) present a solution for this problem by changing the semantics for
belief as theinterior of the closure of the interiors operator, and modelling public
announcements on all topological spaces. In Section 4.3 though, we con�ne the

4The \public" aspect of an announcements is relevant only in a multi-agent settings, encoding
the fact that all agents receive the same information conveyed by the announcement.
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topo-models to the largest subclass that preserves extremally disconnectedness
under taking arbitrary subspaces, namely to the class ofhereditarily extremally
disconnected(h.e.d.) spaces. This also requires a re-evaluation of the underly-
ing static knowledge and belief systems. Before presenting the modi�ed setting
based on h.e.d spaces, we explain the problem regarding updates on extremally
disconnected spaces in a more precise manner.

Topological updates for public announcements. We now consider the lan-
guageL !

KB obtained by adding to the languageL KB (existential) dynamic public
announcement modalitiesh!' i  , reading \' is true and after the public announce-
ment of ' ,  becomes true". The dual operator [!' ] is de�ned as usual as:h !' i: ,
and [!' ] reads as\after the public announcement of' ,  becomes true".

4.2.4. Definition. [Restricted Model] Given a topo-modelX = ( X; �; V ) and
' 2 L !

KB , the topo-modelX ' = ([[ ' ]]; � ' ; V ' ) is called therestricted model, where

� [[' ]] = [[ ' ]]X ,

� � ' = f U \ [[' ]] j U 2 � g, and

� V ' (p) = V(p) \ [[' ]], for any p 2 prop .

In other words, ([[' ]]; � ' ) is the subspace of (X; � ) induced by [[' ]]. The semantics
for the dynamic modalitiesh!' i  is then given as

[[h!' i  ]]X = [[  ]]X
'
:

Updates in general are expected to cause changes in an agent's knowledge
and belief in some propositions, however, the way she reasons about her epis-
temic/doxastic state, in a sense the de�ning properties of the type of agent we
consider, should remain una�ected. This amounts to saying that any restricted
model should as well make the underlyingstatic knowledge and belief logics
sound. In particular, as we work with rational, highly idealized normal agents
that hold consistent beliefs, we demand them not to lose these properties after
an update with true information. With respect to the closure-interior semantics,
these requirements are satis�ed if and only if the resulting structure is extremally
disconnected: under the topological belief semantics, both the axiom ofNormality

B(' ^  ) $ (B' ^ B ) (K B )

and the axiom ofConsistency of Belief

B' ! : B : ' (DB )

characterize extremally disconnected spaces (•Ozg•un, 2013, Propositions 11 and
12). Therefore, if the restricted model is not extremally disconnected, the agent
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comes to have inconsistent beliefs after an update with hard true information. In
order to avoid possible confusions, we note thatB? is never true with respect
to the closure-interior semantics since [[B? ]] = Cl(Int (; )) = ; . By an agent
having inconsistent beliefs, we mean that she believes mutually contradictory
propositions such as' and : ' at the same time, without in fact believingB? ,
as also illustrated by the following example.

4.2.5. Example. Consider the Alexandro� topo-modelX = ( X; �; V ) where
X = f x1; x2; x3; x4g, � = f X; ; ; f x4g; f x2; x4g; f x3; x4g; f x2; x3; x4gg and V(p) =
f x1; x2; x3g and V(q) = f x2; x4g for somep; q 2 prop . It is easy to see that
X corresponds to a directed re
exive transitive relational frame as depicted in
Figure 4.1a, where the re
exive and transitive arrows are omitted. It is easy to
check that (X; � ) is an extremally disconnected space andBq ! : B : q is valid
in X . We stipulate that x1 is the actual state andp is truthfully announced. The
updated (i.e., restricted) model is thenX p = ([[ p]]; � p; V p) where [[p]] = f x1; x2; x3g,
� p = f [[p]]; ; ; f x2g; f x3g; f x2; x3gg, V p(p) = f x1; x2; x3g and V p(q) = f x2g. Here,
([[p]]; � p) is not an extremally disconnected space (similarly, the underlying Kripke
frame is not directed) sincef x3g is an open subset of ([[p]]; � p) but Clp(f x3g) =
f x1; x3g is not open in ([[p]]; � p). Moreover, asx1 2 [[Bq]]X

p
= Clp(Int p(f x2g)) =

f x1; x2g and x1 2 [[B : q]]Xp = Clp(Int p(f x1; x3g)) = f x1; x3g, the agent comes to
believe both q and : q, implying that the restricted model falsi�es (DB ) at x1.
Consequently, it also falsi�es (KB ) since [[B (q^ : q)]]X p

= ; .

x3

x1

x2

x4

(a) (X; �; V )

x3

x1

x2

x4

(b) ([[ p]]; � p; V p)

Figure 4.1: Update of (X; �; V ) by p.

One possible solution for this problem is extending the class of spaces we
work with: we can focus on all topological spaces instead of working with only
extremally disconnected spaces and provide semantics for belief in such a way that
the aforementioned problematic axioms become valid on all topological spaces.
This way, we do not need to worry about any additional topological property that
is supposed to be inherited by subspaces. This solution, unsurprisingly, leads to a
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weakening of the underlying static logic of knowledge and belief. It is well known
that the knowledge logic of all topological spaces under the interior semantics
is S4K (Theorem 3.1.6), and the (weak) belief logic of all topological spaces is
studied in (Baltag et al., 2015b). In the next section, we work out another solution
which approaches the issue from the opposite direction: we further restrict our
attention to hereditarily extremally disconnected spaces, thereby guaranteing that
no model restriction leads to inconsistent beliefs. As the logic of hereditarily
extremally disconnected spaces under the interior semantics isS4:3K (Theorem
3.1.10), the underlying static logic, in this case, would consist inS4:3K as the
logic of knowledge but againKD45B as the logic of belief as shown in the next
section.5

4.3 The Belief Logic of H.E.D Spaces

In this section, we present the underlying static logic of belief for the closure-
interior semantics, and then extend this setting based on h.e.d. spaces for condi-
tional beliefs and public announcements.

Even though we work with a more restricted class, the belief logic of h.e.d.
spaces is stillKD45B . While the soundness of this system follows from Theorem
4.2.3 since every h.e.d. space is extremally disconnected, its topological complete-
ness will be shown by using its Kripke completeness. To this end, we �rst need to
build a connection betweenKD45-frames and h.e.d. spaces that is similar to the
one presented in Section 3.1.2, and prove their modal equivalence for the language
L B analogous to Proposition 3.1.4-(1).

4.3.1 Connection between KD45-frames and h.e.d. spaces

Recall that KD45-frames are serial, transitive and Euclidean Kripke frames. Since
truth of modal formulas with respect to the standard relational semantics is pre-
served under taking generated submodels (see, e.g., Blackburn et al., 2001, Propo-
sition 2.6), we can use the following simpli�ed relational structures as Kripke
frames ofKD45B .

4.3.1. Definition. [Brush/Pin]

� A relational frame (X; R ) is called abrushif there exists a nonempty subset
C � X such that R = X � C ;

� A brush is called apin if jX nCj= 1.

5The logical counterpart of the fact that extremally disconnected spaces (S4:2-spaces) are
not closed under subspaces is thatS4:2 is not a subframe logic (see Chagrov and Zakharyaschev,
1997, Section 9.4). The logical counterpart of the fact that hereditarily extremally disconnected
spaces (S4:3-spaces) are extremally disconnected spaces closed under subspaces is that the
subframe closure ofS4:2 is S4:3, (see Wolter, 1993, Section 4.7).
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C

(a) Brush

C

(b) Pin

Figure 4.2: An example of a brush and of a pin, where the top ellipses illustrate
the �nal clusters and an arrow relates the state it started from to every element
in the cluster.

Clearly, if such aC exists, it is unique; call it the �nal cluster of the brush.
It is easy to see that every brush is serial, transitive and Euclidean (see Figure
4.2). For the proof of the following lemma see, e.g., (Chagrov and Zakharyaschev,
1997, Chapter 5) and (Blackburn et al., 2001, Chapters 2, 4).

4.3.2. Lemma. KD45B is a sound and complete with respect to the class of
brushes, and with respect to the class of pins. In fact,KD45B is sound and com-
plete with respect to the class of �nite pins.

Similar to the construction in Section 3.1.2, we can build an Alexandro� h.e.d.
space from a given pin. The only extra step consists in taking the re
exive closure
of the initial pin. More precisely, for any frame (X; R ), let R+ denote there
exive
closure of R, de�ned as

R+ = R [ f (x; x) j x 2 X g:

Given a pin (X; R ), the set � R+ = f R+ (x) j x 2 X g constitutes a topology on
X . In fact, in this special case of pins, we have� R+ = f X; C; ;g where C is the
�nal unique cluster of (X; R ). Therefore, it is easy to see that (X; � R+ ) is an
Alexandro� h.e.d. space. In fact, (X; � R+ ) is a generalized Sierpi�nski space where
C does not have to be a singleton (see Figure 4.3).

This construction leads to a natural correspondence between pins and Alexan-
dro� h.e.d. spaces. In particular, for any Kripke modelM = ( X; R; V ) based on
a pin, we setI (M ) = ( X; � R+ ; V). Moreover, any two such modelsM and I (M )
make the same formulas ofL B true at the same states, as shown in Proposition
4.3.4.

4.3.3. Lemma. Let (X; R ) be a pin andC denote the �nal cluster of (X; R ),
and let Int and Cl denote the interior and closure operators, respectively, in the
topological space(X; � R+ ). Then for all x 2 X and everyA � X :

1. R(x) = C 2 � R+ ;
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C

(a) (X; R )

C

(b) ( X; � R + )

1

0
(c) Sierpi�nski space

Figure 4.3: From pins to Alexandro� h.e.d. spaces

2. Int (A) \ C 6= ; if and only if A � C ;

3. Cl(A) = X if and only if A \ C 6= ; ;

4. if Cl (Int (A)) 6= ; then Cl(Int (A)) = X .

Proof:
(1) follows from the fact that R = X � C (De�nition 4.3.1). (2) and (3) are direct
consequences of the construction of� R+ , that is, � R+ = f X; C; ;g . And, (4) follows
from (2) and (3), sinceCl(Int (A)) 6= ; implies that Int (A) 6= ; . 2

4.3.4. Proposition. For all ' 2 L B , any Kripke modelM = ( X; R; V ) based
on a pin andx 2 X ,

M ; x j= ' i� I (M ); x j= ':

Proof:
The proof follows by subformula induction on' ; cases for the propositional vari-
ables and the Boolean connectives are elementary. So assume inductively that the
result holds for  ; we must show that it holds also for' := B .

M ; x j= B i� R(x) � jj  jjM (the relational semantics ofB)

i� C � jj  jjM (Lemma 4.3.3-1)

i� C � [[ ]]I (M ) (induction hypothesis)

i� Int ([[ ]]I (M )) \ C 6= ; (Lemma 4.3.3-2)

i� Cl (Int ([[ ]]I (M ))) = X (Lemma 4.3.3-3)

i� x 2 Cl(Int ([[ ]]I (M ))) (Lemma 4.3.3-4)

i� I (M ); x j= B (the closure-interior semantics ofB)

2
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4.3.5. Theorem. KD45B is sound and complete with respect to the class of
hereditarily extremally disconnected spaces under the closure-interior semantics.

Proof:
Soundness follows from Theorem 4.2.3 and the fact that every hereditarily ex-
tremally disconnected space is extremally disconnected. For completeness, let
' 2 L B such that ' 62KD45B . Then, by Lemma 4.3.2, there exists a relational
model M = ( X; R; V ), where (X; R ) is a pin, and x 2 X such that M ; x 6j= ' .
Therefore, by Proposition 4.3.4, we obtainI (M ); x 6j= ' . SinceI (M ) is heredi-
ratily extremally disconnceted, we obtain the desired result. 2

Theorem 4.3.5 therefore shows that the (belief) logic of h.e.d. spaces is also
KD45B . The class of h.e.d. spaces of course restricts the class of extremally dis-
connected spaces, however, it is still a larger class than the class of DSO-spaces.

4.3.6. Proposition. Every DSO-space is hereditarily extremally disconnected,
however, not every h.e.d. space is a DSO-space.

Proof:
Recall that a DSO-space is a dense-in-itself topological space (i.e., a space with no
singleton opens) in which every derived setd(A) is open. Let (X; � ) be a DSO-
space and (P; � P ) its subspace induced by the nonempty setP � X . Observe
that, for all A � P, we havedP (A) 2 � P sinced(A) 2 � and dP (A) = d(A) \ P.
Now supposeU 2 � P and considerClP (U). Since ClP (U) = dP (U) [ U and
dP (U) 2 � P , we immediately obtain that ClP (U) 2 � P . Therefore (P; � P ) is ex-
tremally disconnected. Hence, every subspace of (X; � ) (including in particular
(X; � ) itself) is extremally disconnected. As an example of an h.e.d. space that is
not DSO, consider the Sierpi�nski space given in Figure 4.3c: the Sierpi�nski space
has a singleton open, therefore, it is not dense-in-itself. 2

We can further generalize the belief semantics on h.e.d. spaces for static con-
ditioning.

4.3.2 Static conditioning: conditional beliefs

Static conditioning captures the agent's revised beliefs about how the world was
before learning new information. This is in general implemented by conditional
belief operatorsB '  read as\if the agent would learn ' , then she would come
to believe that was the case before the learning"(Baltag and Smets, 2008, p.
12). Conditional beliefs therefore are static and hypothetical by nature, hinting at
possible future belief changes of the agent. In the DEL literature, the semantics
for conditional beliefs is generally given in terms of sphere models (Grove, 1988),
or equivalently, in terms of plausibility models (van Benthem, 2007; Baltag and
Smets, 2008; van Benthem and Pacuit, 2011).
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In this section, we provide a topological semantics for conditional beliefs based
on h.e.d. spaces. This topological semantics has been studied in (•Ozg•un, 2013;
Baltag et al., 2013) based on extremally disconnected spaces, where the dynamic
extension encountered the problem explained in Section 4.2.2.

We can obtain the semantics for a conditional belief modalityB '  in a natural
and standard way by relativizing the semantics for the simple belief modality to
the extension of the learned formula' . By relativization we mean a local change
that only a�ects one occurrence of the belief modalityB' , and that does not cause
a real change in the model. Similar to the case in (•Ozg•un, 2013; Baltag et al.,
2013) for extremally disconnected spaces, we can relativize the belief semantics
in two di�erent ways. To recap, given a topo-modelX = ( X; �; V ) based on an
extremally disconnected topology� , we can describe the extension of a belief
formula in the following equivalent ways

[[B' ]]
(1)
= Cl(Int ([[' ]]))

(2)
= Int (Cl (Int ([[' ]]))) :

While the relativization of (1) leads to

[[B '  ]] = Cl([[' ]] \ Int ([[' ]] ! [[ ]])); (4.4)

the relativization of (2) results in

[[B '  ]] = Int ([[' ]] ! Cl ([[' ]] \ Int ([[' ]]M ! [[ ]]))) ; (4.5)

where [[' ]] ! [[ ]] is used as an abbreviation for (X n[[' ]]) [ [[ ]].
However, as elaborated in (•Ozg•un, 2013), the �rst semantics (4.4) does not

work well as a generalization of belief on extremally disconnected spaces, and
the same arguments still hold on h.e.d. spaces. For example, it validates the
equivalences

K' $ : B : ' > $ : B : ' : '

which give a rather unusual de�nition of knowledge in terms of conditional be-
liefs. The �rst of these equivalences also shows that theconditional belief operator
is not a normal modality (as the Necessitation rule for conditional beliefs stated
in Theorem 4.3.7 does not preserve validitiy). Moreover, this semantics validates
only a few of the AGM postulates stated in terms of conditional beliefs as in The-
orem 4.3.7 (see Alchourr�on et al., 1985, for the classical AGM theory). On the
other hand, the second relativization does not possess any of the above 
aws, and
moreover validates all the AGM postulates formulated in terms of conditional be-
liefs as shown below (see Baltag and Smets, 2008, 2006, for the treatment of AGM
theory in terms of conditional beliefs as a theory of static belief revision). We refer
to (Baltag et al., 2015a) for the proofs of the results stated in the remaining of
this chapter.
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4.3.7. Theorem. The following formulas are valid in h.e.d. spaces with respect
to the topological semantics for conditional beliefs and knowledge given in(4.5)

Normality: B � (' !  ) ! (B � ' ! B �  )
Factivity: K' ! '
Persistence of Knowledge: K' ! B � '
Strong Positive Introspection: B � ' ! KB � '
Success of Belief Revision: B ' '
Consistency of Revision: : K : ' ! : B ' ?
Inclusion: B ' ^  � ! B ' ( ! � )
Rational Monotonicity: B ' ( ! � ) ^ : B ' :  ! B ' ^  �

Moreover, the Necessitation rule for conditional beliefs

from '; infer B  '

preserves validity.

Given the semantics in (4.5), we also obtain the following validities de�ning
conditional beliefs in terms of knowledge, and simple belief in terms of conditional
belief, respectively:

� B '  $ K (' ! h K i (' ^ K (' !  ))),

� B' $ B > ':

Adding these two equivalences to a complete axiomatization ofS4:3K therefore
yields a complete logic of knowledge and conditional beliefs with respect to h.e.d.
spaces.

4.3.8. Theorem. The sound and complete logicKCB of knowledge and condi-
tional beliefs with respect to the class of h.e.d. spaces is obtained by adding the
following equivalences to any complete axiomatization ofS4:3K :

1. B '  $ K (' ! h K i (' ^ K (' !  )))

2. B' $ B > '

Against this static background, we can further axiomatize the logic of public
announcements, knowledge and conditional beliefs, following the standard DEL{
technique: This is done by adding toKCB a set of reduction axioms that give
us a recursive rewriting algorithm to step-by-step translate every formula con-
taining public announcement modalities to a provably equivalent formula in the
static language. The completeness of the dynamic system then follows from the
soundness of the reduction axioms and the completeness of the underlying static
logic (see, e.g., Section 7.4 of van Ditmarsch et al., 2007 for a detailed presenta-
tion of completeness by reduction, and see Wang and Cao, 2013 for an elaborate
discussion of axiomatizations of public announcement logics).
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4.3.9. Theorem. The sound and complete dynamic logic!KCB of knowledge,
conditional beliefs and public announcements with respect to the class of h.e.d.
spaces is obtained by adding the following reduction axioms to any complete ax-
iomatization of the logicKCB:

1. h!' i p $ (' ^ p)

2. h!' i:  $ (' ^ :h !' i  )

3. h!' i ( ^ � ) $ (h!' i  ^ h!' i � )

4. h!' i K $ (' ^ K (' ! h !' i  ))

5. h!' i B �  $ (' ^ B h!' i � h!' i  )

6. h!' ih! i � $ h !h!' i  i �

4.4 Conclusions and Continuation

In this chapter, we presented our very �rst attempt to formalize a notion of
evidence-based \justi�ed" belief by using topological semantics based on ex-
tremally disconnected spaces, �rst proposed in (•Ozg•un, 2013; Baltag et al., 2013).
The belief semantics based on hereditarily extremally disconnected spaces was
later investigated in (Baltag et al., 2015a).

To summarize, starting with the conception of knowledge as the interior opera-
tor, and building on Stalnaker's principles regarding the relation between knowl-
edge and belief (Table 4.1), we proposed a topological semantics of belief as
subjective certainty in terms of the closure of the interior operator. While the
proposed topological semantics provides an intuitive and natural interpretation
for the conception of belief as subjective certainty (see Section 4.2.1), it also yields
the standard logic of beliefKD45B both on extremally and hereditarily extremally
disconnected spaces (Theorems 4.2.3 and 4.3.5, respectively). The transition from
extremally disconnected spaces to hereditarily extremally disconnected spaces is
motivated by the fact that the topological semantics based on extremally dis-
connected spaces falls short of dealing with public announcements as shown in
Section 4.2.2. However, even this restricted class of h.e.d. spaces generalizes the
topological belief semantics based on the co-derived set operator sinceKD45B is
the logic of DSO-spaces when belief is interpreted as the co-derived set opera-
tor, and the class of DSO-spaces is a proper subclass of the class of h.e.d. spaces
(Proposition 4.3.6). Moreover, when studied in tandem with the notion of knowl-
edge as the interior, the belief semantics in terms of the closure of the interior
operator does not yield a de�nition of knowledge as true belief (unlike belief as
the co-derived set operator, see Section 3.3).

At a high level, this chapter takes a further small step toward developing
a satisfactory epistemic/doxastic formal framework in which we can talk about
evidential grounds of knowledge and belief. It does so by extending the interior-
based topological semantics for knowledge by a semantic clause for belief, which
arguably works better than the aforementioned proposal based on the co-derived
set operator. However, within the current setting, everything we can say about
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evidence has to be said at a purely semantic level (see Section 3.2 and Section
4.2.1 to recall the topological, evidence-related readings of knowledge and belief,
respectively). As we have not yet introduced any \evidence modalities", the modal
language cannot really say anything concerning the link between evidence and
belief, or evidence and knowledge, let alone represent di�erent notions of evidence
possession.

This provides motivation for the framework we develop in the next chap-
ter. Chapter 5, improving on the evidence logic of van Benthem and Pacuit (2011)
based on neighbourhood semantics, introduces a new topological semantics for
various notions of evidence, evidence-based justi�ed belief, knowledge and learn-
ing, where the studied notions of evidence are made explicit in the corresponding
syntax via matching modalities.



Chapter 5

Justi�ed Belief, Knowledge and the
Topology of Evidence

In this chapter, we propose a topological semantics for various notions ofevidence,
evidence-based justi�cation, belief, and knowledge, and explore the connection be-
tween these epistemic notions. The work presented in this chapter is to a great
extent based on taking a new,topologicalperspective to the models for evidence,
belief and evidence-management proposed by van Benthem and Pacuit (2011),
and developed further by van Benthem et al. (2012, 2014). The framework de-
veloped in this chapter moreover generalizes and improves on our own work on a
topological semantics for Stalnaker's doxastic-epistemic logic presented in Chap-
ter 4.

The in
uential approach, initiated by van Benthem and Pacuit (2011); van
Benthem et al. (2012, 2014), represents evidence semantically|roughly speaking,
as sets of possible worlds|based on neighbourhood structures as well as syntac-
tically by introducing evidence modalities. Their setting goes beyond and gener-
alizes the formal treatment of the aforementioned epistemic notions in terms of
relational structures, such as Kripke and plausibility models, and non-relational
models, such as Grove sphere models. We here take a further step toward im-
proving the formal, modal theoretical treatment of evidence, justi�ed belief and
knowledge by revealing the hidden topological structure of the evidence models of
van Benthem and Pacuit (2011). The topological perspective enables more �ne-
grained and re�ned mathematical representations of various notions of evidence,
such asbasic evidence, combined evidence, factive evidenceand (non-)misleading
evidence, as well as relevant epistemic notions such asargument and justi�ca-
tion (based on evidence), and, in turn,justi�ed belief and (in-)defeasible knowl-
edge. Consequently, we obtain a semantically and syntactically rich setting that
provides a more in-depth logical analysis regarding the role of evidence in reaching
an agent's epistemic/doxastic state. We also examine several types of evidence
dynamics introduced in (van Benthem and Pacuit, 2011) and apply this setting to
analyze and address key issues in epistemology such as \no false lemma" Gettier

45
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examples, misleading defeaters, and undefeated justi�cation versus undefeated
belief. Our main technical results are concerned with completeness, decidability
and �nite model property for the associated logics.

Outline

Section 5.1 serves as a semi-formal introduction and summary of the chapter,
emphazising the important features of its content. In Section 5.2, we introduce
the evidence models of van Benthem and Pacuit (2011) as well as ourtopolog-
ical evidence models, and provide semantics for the notions of basic, combined
and factive evidence. We moreover provide topological de�nitions for argument
and justi�cation. In Section 5.3, we propose a topological semantics for a no-
tion of justi�ed belief while comparing our setting to that of van Benthem and
Pacuit (2011). We then generalize our semantics of (simple) belief for conditional
beliefs. Section 5.4 de�nes the model transformations induced by evidence-based
information dynamics such as public announcements, evidence addition, evidence
upgrade and feasible evidence combination. In Section 5.5, we propose a topolog-
ical interpretation for a notion of fallible knowledge and connect our formalism
to some important discussions emerged in the post-Gettier epistemology litera-
ture, such as stability/defeasibility theories of knowledge, misleading vs. genuine
defeaters etc. Finally, Section 5.6 presents all our technical results. The reader
who is interested in the technical aspect only can jump to Section 5.6 directly.

This chapter is based on (Baltag et al., 2016a,b)

5.1 Introduction

One of our main goals in this chapter, that we also share with van Benthem and
Pacuit (2011); van Benthem et al. (2012, 2014), is to study notions ofbelief and
knowledge for a rational agent who is in possession of some(possibly false, possibly
mutually contradictory) pieces of evidence. A central underlying assumption is
that an agent's rational belief and knowledge is based on the available evidence,
namely, the evidence she has acquired via, e.g., direct observation, measurements,
testimony from others etc. We therefore do not take belief or knowledge as the
primitive notions, they are represented as \derived" notions purely based on
evidence. Toward designing a formal setting that can capture these ideas (among
others), we use the uniform evidence models of van Benthem and Pacuit (2011),
with a special focus on the topology generated by the evidence. In the following,
we provide a detailed overview of the epistemic notions studied in this chapter,
introduce the modalities we consider, and explain where our work stands in the
relevant literature.
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A crucial reason as to why the approach presented in this chapter improves
on the settings of Chapters 3 and 4 is that we here introduce evidence modali-
ties in order to also provide syntactic representations of notions of evidence, and
eventually to build evidence logics. In particular, we study the operator of \hav-
ing (a piece of) evidence for a propositionP" proposed by van Benthem and
Pacuit (2011), but we also investigate other interesting variants of this concept:
\having (combined) evidence forP", \having a (piece of) factive evidence for
P" and \having (combined) factive evidence forP". Table 5.1 below lists the
corresponding evidence modalities together with their intended readings.

E0' the agent has a basic (piece of) evidence for'
E' the agent has a (combined) evidence for'
2 0' the agent has a factive basic (piece of) evidence for'
2 ' the agent has factive (combined) evidence for'

Table 5.1: Evidence modalities and their intended readings

The basic pieces of evidencepossessed by an agent are modelled as nonempty
sets of possible worlds. Acombined evidence(or just \evidence", for short) is any
nonempty intersection of �nitely many pieces of evidence. This notion of evidence
is not necessarily factive1, since the pieces of evidence are possibly false (and pos-
sibly inconsistent with each other). The family of (combined) evidence sets forms
a topological basis, that generates what we call theevidential topology. This is
the smallest topology in which all the basic pieces of evidence are open, and it
will play an important role in our setting. In fact, the modality 2 ' capturing the
concept of \having factive evidence for' " coincides with the interior operator in
the evidential topology (see Section 5.2.2). We therefore use the interior semantics
of McKinsey and Tarski (1944) to interpret a notion offactive evidence (this is
unlike the case in Chapter 4, where the interior operator was treated as knowl-
edge). We also show that the two factive variants of evidence-possession operators
(2 0 and 2 ) are more expressive than the non-factive ones (E0 and E): when in-
teracting with the global modality, the two factive evidence modalities2 0' and
2 ' can de�ne the non-factive variantsE0' and E' , respectively, as well as many
other doxastic/epistemic operators.

The notion of justi�ed belief we study in this chapter will be de�ned purely
by means of the notions of evidence mentioned above. We propose a\coheren-
tist" semantics for justi�cation and justi�ed belief, that is obtained by extending,
generalizing, and (to an extent), streamlining the evidence-model framework for

1Factive evidence is true in the actual world. In epistemology it is common to reserve the
term \evidence" for factive evidence. But we follow here the more liberal usage of this term in
(van Benthem and Pacuit, 2011), which agrees with the common understanding in day to day
life, e.g. when talking about \uncertain evidence", \fake evidence", \misleading evidence" etc.
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beliefs introduced by van Benthem and Pacuit (2011). The main idea behind the
belief de�nition of van Benthem and Pacuit (2011) seems to be that the rational
agent tries to form consistent beliefs, by looking at allstrongest �nitely-consistent
collections of evidence, and she believes whatever is entailed by all of them.2 Their
belief de�nition therefore crucially depends on a notion of \strongest" evidence,
and it works well in the �nite case (whenever the agent has �nitely many pieces
of basic evidence) as well as insomein�nite cases. But, as already noted in (van
Benthem et al., 2014), this setting has the shortcoming that it can produceincon-
sistent beliefsin the general in�nite case. A more technical defect of this setting
is that the corresponding doxastic logic does not have the �nite model property
(see van Benthem et al., 2012, Corollary 2.7 or van Benthem et al., 2014, Corol-
lary 1). In this chapter, we propose an \improved" semantics for evidence-based
belief, obtained by, in a sense, weakening the de�nition from (van Benthem and
Pacuit, 2011). According to us, a propositionP is believed if P is entailed by
su�ciently strong �nitely-consistent collections of evidence. This de�nition co-
incides with the one of van Benthem and Pacuit (2011) for the models carrying
�nite evidence collections, but involves a di�erent generalization of their notion
in the in�nite case. In fact, our semanticsalways ensures consistency of belief,
even when the available pieces of evidence are mutually inconsistent. We also
provide a formalization of argument and a \coherentist" view on justi�cations .
An argument essentially consists of one or more evidence sets supporting the
same proposition (thus providing multiple evidential paths towards a common
conclusion); ajusti�cation is an argument that is not contradicted by any other
available evidence. Our de�nition of belief is equivalent to requiring thatP is
believed i� there is some(evidence-based) justi�cation for P, therefore, accurately
captures the concept of \justi�ed belief". Our proposal is also very natural from
a topological perspective; it is equivalent to saying thatP is believed i� it is true
in \almost all" epistemically possible states, where \almost all" is interpreted
topologically as \all except for a nowhere-dense set". We moreover generalize this
belief semantics for conditional beliefs. Table 5.2 below lists the belief modalities
we study in this chapter.

B' the agent has justi�ed belief in '
B '  the agent believes conditionally on '

Table 5.2: Belief modalities and their intended readings

2To be sure, this is still vague since we have not yet specied what a \strongest �nitely-
consistent collections of evidence" means (we return to formalize these notions in Section 5.2.1),
however, this much precision should be su�cient to explain the rough idea behind the belief
de�nition of van Benthem and Pacuit (2011), and our notion of justi�ed belief studied in this
chapter.
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Moving on to knowledge, there are a number of di�erent notions one may
consider. First, there is \absolutely certain" or \infallible" knowledge, akin to
Aumann's concept of partitional knowledge (Aumann, 1999) or van Benthem's
concept of hard information (van Benthem, 2007). In our single-agent setting,
this can be simply de�ned as the global modality (quantifying universally over
all epistemically possible states). There are very few propositions that can be
known in this infallible way (e.g., the ones known by introspection or by logical
proof). Most facts in science or real life are unknown in this sense. It is therefore
more interesting to look at notions of knowledge that are less-than-absolutely-
certain, namely, the so-calleddefeasible knowledge. In our framework, we consider
both absolutely certain knowledge and defeasible knowledge, but our main focus
will be on the latter notion. See Table 5.3 below for the corresponding knowledge
modalities and their readings.

[8]' the agent infallibly knows '
K' the agent fallibly (or defeasibly) knows'

Table 5.3: Knowledge modalities and their intended readings

The famous Gettier counterexamples (Gettier, 1963) show that simply adding
\factivity" to belief will not give us a \good" notion of defeasible knowledge:
true (justi�ed) belief is extremely fragile (i.e., it can be too easily lost), and
it is consistent with having only wrong justi�cations for an accidentally true
conclusion. We here formalize a notion of defeasible knowledge saying that \P
is (fallibly) known if there is a factive justi�cation for P". We therefore study a
notion of knowledge de�ned ascorrectly justi�ed belief. As elaborated in Section
5.5.1, this less-than-absolutely-certain notion of knowledge �nds its place in the
post-Gettier literature as being stronger than the one charaterized by the \no false
lemma" of Clark (1963) and weaker than the conception of knowledge described
by the defeasibility theory of knowledge championed by Lehrer and Paxson (1969);
Lehrer (1990); Klein (1971, 1981).

Yet another path leading to our setting in this chapter goes via our previ-
ous work (Baltag et al., 2013, 2015a), presented in Chapter 4, on a topological
semantics for the doxastic-epistemic axioms of Stalnaker (2006). Recall that Stal-
naker's systemStal (see Table 4.1) is meant to capture a notion of fallible knowl-
edge, in close interaction with a notion of \strong belief" de�ned assubjective
certainty. The main principle speci�c to this system was that \believing implies
believing that you know" captured by the axiom of Full Belief (B' ! BK' ). The
topological semantics that we proposed for these concepts in (•Ozg•un, 2013; Baltag
et al., 2013, 2015a) was overly restrictive (being limited to the rather unfamiliar
class of extremally disconnected and hereditarily extremally disconnected topolo-
gies). In this chapter, we show that these notions can be interpreted on arbitrary
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topological spaces, without changing their logic. Indeed, our de�nitions of belief
and knowledge can be seen as the natural generalizations to arbitrary topologies
of the notions in (•Ozg•un, 2013; Baltag et al., 2013, 2015a).

We completely axiomatize the various resulting logics of evidence, knowledge,
and belief, and prove decidability and �nite model property results. We moreover
study a few dynamic extensions, encoding di�erent types of evidential dynam-
ics. Our technically most challenging result is the completeness of the richest
logic containing the two factive evidence modalities2 0' and 2 ' , as well as the
global modality [8]' . This logic can de�ne all the modal operators mentioned
above. While the other proofs are more or less routine, the proof of this result
involves a nontrivial combination of known methods.

5.2 Evidence, Argument and Justi�cation

In this section, we introduce the (uniform) evidence models of van Benthem and
Pacuit (2011) as well as ourtopological version, and provide the formal seman-
tics of the evidence modalities given in Table 5.1. More precisely, we focus on
the operator \having a basic (piece of) evidence for a propositionP" (from van
Benthem and Pacuit, 2011), as well as the variants capturing \having (combined)
evidence forP", \having a basic (piece of) factive evidence forP" and \having
(combined) factive evidence forP". We explain how a rational agent can put
her basic evidence pieces together in a \�nitely consistent" way toward forming
combined evidence, strongestand strong enough evidence, and eventually, her be-
liefs. We moreover provide topological de�nitions forargument and justi�cation
purely based on evidence.

5.2.1 Evidence �a la van Benthem and Pacuit

5.2.1. Definition. [Evidence Models (van Benthem and Pacuit, 2011)] Anev-
idence modelis a tuple M = ( X; E0; V), where

� X is a nonempty set ofpossible world(or states),

� E0 � P (X ) is a family of sets calledbasic evidence sets(or pieces of evi-
dence), satisfying X 2 E0 and ; 62 E0, and

� V : prop ! P (X ) is a valuation function.

The evidence models presented in (van Benthem and Pacuit, 2011; van Ben-
them et al., 2014) are more general, covering cases in which evidence depends on
the actual world, i.e., in which each state may be assigned di�erent set of neigh-
bourhoods. In this chapter, however, we stick with what they call \uniform"
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models (given in De�nition 5.2.1), which corresponds to working with agents who
are \evidence-introspective"3.

Note that evidence models are not necessarily based on topological spaces,
i.e., E0 is not de�ned to be a topology (it may not even constitute a topological
basis). However, topo-models given in De�nition 3.1.1 constitute a special case of
evidence models.4 We would like to elaborate more on the structural properties of
evidence models and explain which epistemic concepts they intend to represent.

The family E0 is almost an arbitrary nonempty collection of subsets of a given
domain, carefully designed to capture certain aspects of the type of evidence
that is intended to be formalized. First of all, the subsetE0 represents the set
of evidence the agent has acquired about the actual situation5 directly via, e.g.,
testimony, measurement, approximation, computation or experiment. It is the
collection of evidence the agent gathered so far, and it is all our rational, idealized
agent has to form her beliefs and knowledge. The collection of evidence the agent
possesses is uniform across the states, i.e., the set of evidence the agent has does
not depend on the actual state. This corresponds to working with an \evidence-
introspective" agent, that is, the agent is absolutely sure about what evidence
she has and what it entails.

The two properties ofE0, namely, X 2 E0 and ; 62 E0 impose the following
constraints, respectively:

� Tautologies are always evidence, and

� Contradictions never constitute direct evidence.

Unlike the common practice in epistemology, where the term \evidence" is
generally reserved for factive evidence, van Benthem and Pacuit (2011) and van
Benthem et al. (2012, 2014) follow a more liberal, in a sense, more realistic view
on evidence which agrees with the common usage in day to day life, e.g. when
talking about \uncertain evidence", \fake evidence", \misleading evidence". They
not only consider evidence gathered from absolutely reliable and truthful sources,
but also take into account fallible information coming from a possibly unreli-
able source:a piece of evidence inE0 does not have to contain the actual state.
Moreover, the evidence gathered from di�erent sources (or even from a single
source) may be mutually inconsistent:the intersection of evidence pieces may be
empty. Therefore, the evidence models of van Benthem and Pacuit (2011) (as

3Since we never consider the more general case and focus only on the topological extension
of their uniform evidence models, we use the term \evidence model" exclusively for the uniform
evidence models of van Benthem and Pacuit (2011); van Benthem et al. (2014), given above in
De�nition 5.2.1.

4As an even more special case, we can also think of Grove/Lewis Sphere spaces. These are
topological spaces in which the open sets are \nested", i.e. for everyU; U0 2 � , we have either
U � U0 or U0 � U (see, e.g., Example 5.3.1).

5Standardly, as in the relational semantics and the interior semantics, the actual situation
is represented by a statex of X called the actual state or the real world.
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well as our topological evidence models) take into account that the agent might
be collecting evidence from di�erent sources that may or may not be reliable,
however, it is assumed that all her current sources are equally reliable (or equally
unreliable) as no special order or quantitative measure is de�ned on the elements
of E0. Under these assumptions, what is expected from a rational agent toward
forming consistent beliefs based on the collection of evidence pieces she has, is to
evaluate every piece of evidence she possesses in a coherent and holistic way, and
put them together in a �nite and consistent manner. This leads to the notions of
(�nite ) bodies of evidenceand combined evidence, conceptions with crucial roles
in formation of consistent beliefs based on fallible evidence, and of the evidential
topology. In what follows, we provide technical de�nitions of the evidence-related
auxiliary notions that are adopted from van Benthem and Pacuit (2011), and will
be used throughout this chapter.

Bodies of evidence, Evidential Support and Strength

We call a collection of evidence piecesF � E 0 consistent if
T

F 6= ; , and incon-
sistent otherwise. In order to ease the notation, we letA � f in B to be read asA
is a �nite subset of B.

5.2.2. Definition. [(Finite) Body of Evidence] Given an evidence modelM =
(X; E0; V), a body of evidenceis a nonempty familyF � E 0 of evidence pieces such
that every nonempty �nite subfamily is consistent. More formally, a nonempty
family F � E 0 is a body of evidence if

(8F 0 � f in F )(F 0 6= ; implies
\

F 0 6= ; ):

A �nite body of evidenceF � f in E0 is therefore simply a �nite set of mutually
consistent pieces of evidence, that is,F � f in E0 such that

T
F 6= ; .

Therefore, a body of evidence is simply a collection of evidence pieces that has
the �nite intersection property, and that represents the agent's ability of putting
evidence pieces together in a�nitely consistent way.

Given an evidence modelM = ( X; E0; V), we denote by

F := f F � E 0 j (8F 0 � f in F )(F 0 6= ; implies
\

F 0 6= ; )g

the family of all bodies of evidenceover M , and by

F f in := f F � f in E0 j
\

F 6= ;g

the family of all �nite bodies of evidence. Both the interpretation of evidence-
based belief of van Benthem and Pacuit (2011) and our proposal for justi�ed
belief, as well as the notion of defeasible knowledge we study in this chapter
crucially rely on the notion of body of evidence. But, in order to be able to talk
about theseevidence-basedinformational attitudes, we �rst need to specify what
it means for a proposition to besupportedby a body of evidence.
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5.2.3. Remark. Throughout Sections 5.2-5.5, we use the following conventions
to ease the presentation. Given an evidence modelM = ( X; E0; V) (or, a topo-
e-modelM = ( X; E0; �; V ) de�ned later), we call any subsetP � X a proposi-
tion. We say a propositionP � X is true at x if x 2 P. The Boolean connec-
tives : , ^ , _ , ! , on propositions are de�ned standardly as set operations: for
any P; Q � X , we set : P := X nP, P ^ Q := P \ Q, P _ Q := P [ Q and
P ! Q := ( X nP) [ Q. Moreover, the Boolean constants> and ? are given as
> := X and ? := ; . Following this convention, we de�ne the semantics of the
aforementioned modal operators for evidence, belief and knowledge introduced in
Tables 5.1-5.3 as set operators fromP(X ) to P(X ) (and for the binary modal-
ity of conditional belief, from P(X ) � P (X ) to P(X )). These set operators give
rise to the interpretations of the corresponding modalities of the full languageL
(given in Section 5.6) in a standard way.

5.2.4. Definition. [Evidential Support] Given an evidence modelM =( X; E0; V)
and a propositionP � X , a body of evidenceF supports P if P is true in every
state satisfying all the evidence inF , i.e., if

T
F � P.

It is easy to see that a body of evidenceF is inconsistent i� it supports every
proposition (since; � P, for all P). The strength orderbetween bodies of evidence
is given by inclusion: F � F 0 means that F 0 is at least as strong asF . Note
that stronger bodies of evidence support more propositions: ifF � F 0 then
every proposition supported byF is also supported byF 0. A body of evidence is
maximal (\strongest") if it is a maximal element of the poset (F ; � ), i.e., if it is
not a proper subset of any other such body. We denote by

Max � F := f F 2 F j (8F 0 2 F )(F � F 0 ) F = F 0)g

the family of all maximal bodies of evidenceof a given evidence model. By Zorn's
Lemma,every body of evidence can be strengthened to a maximal body of evidence,
i.e.,

8F 2 F 9 F 0 2 Max � F (F � F 0):

Therefore, in particular, every evidence model has at least one maximal body of
evidence, that is,Max � F 6= ; .

In fact, for �nite bodies of evidence, the notions of evidential support and
strength can be represented in a more concise way via the notion of combined
evidence, which, to anticipate further, is represented by basic open sets of the
evidential topology generated fromE0 (see Section 5.2.2).

Combined Evidence and Evidential Basis

5.2.5. Definition. [Combined Evidence]
Given an evidence modelM = ( X; E0; V), a combined evidence(or, evidence,
for short) is any nonempty intersection of �nitely many basic evidence pieces. In
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other words, a nonempty subsete � X is a combined evidence ife =
T

F , for
someF 2 F f in .

A combined evidence therefore is just a repackaging of a �nite body of evidence
in terms of its intersection. We denote by

E := f
\

F j F 2 F f in g

the family of all (combined) evidence, which in fact constitutes a topological basis
over X . We will return to the topological versions of evidence models in Section
5.2.2.

The de�nitions evidential supportand strengthare adapted for the elements of
E in an obvious way. A (combined) evidencee 2 E supportsa propositionP � X
if e � P. In this case, we also say thate is evidence forP. The natural strength
order between combined evidence sets therefore is given by the reverse inclusion:
e � e0 means thate0 is at least as strong ase. This is both to �t with the strength
order on bodies of evidence (sinceF � F 0 implies

T
F �

T
F 0), and to ensure

that stronger evidence supports more propositions (since, ife � e0, then every
proposition supported bye is supported bye0).

Recall that E0 represents the collection of evidence pieces that are directly
observed by the agent. The elements of the derived setE therefore serve as indirect
evidence which is obtained by combining �nitely many pieces of direct evidence
together in a consistent way. This does not mean that all of this evidence is
necessarily true. We say that some (basic or combined) evidencee 2 E is factive
evidenceat state x 2 X whenever it is true atx, i.e., if x 2 e. Similarly, a body of
evidenceF is factive if all the pieces of evidence inF are factive, i.e., ifx 2

T
F .

Having presented the primary semantic concepts used in the representation of
(basic and combined) evidence, we proceed with our topological setting.

5.2.2 Evidence on Topological Evidence Models

For any nonempty setX and any family � of subsets of X , we can construct a
topology on this domain by simply closing � under �nite intersections and arbi-
trary unions (see Section 2.2). Therefore, every evidence modelM = ( X; E0; V)
can be associated with anevidential topologythat is generated by the set of basic
evidence piecesE0, or equivalently, by the family of all combined evidenceE. In
this section, we introduce the topological evidence models, generated from evi-
dence models of van Benthem and Pacuit (2011) in the above described way, and
provide topological formalizations of a notion ofargument and a \coherentist"
form of justi�cation (in the spirit of Lehrer (1990)) based on the topological mod-
els. We moreover give the precise interpretations of the modalitiesE0' and E'
for basic and combined evidence possession, respectively, as well as their factive
versions2 0' and 2 ' .
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5.2.6. Definition. [Topological Evidence Model] Atopological evidence model
(or, in short, a topo-e-model) is a tuple M = ( X; E0; �; V ), where (X; E0; V) is an
evidence model and� = � E is the topology generated by the family of combined
evidenceE (or equivalently, by the family of basic evidence setsE0), which is
called theevidential topology.

The families E0 and E obviously generate the same topology:E is the closure of
E0 under nonempty �nite intersections. We denote the evidential topology by� E

only because the familyE of combined evidence forms abasis of this topology.
Since any familyE0 � P (X ) generates a topology overX , topo-e-models are just
another presentation of evidence models described in De�nition 5.2.1. We use this
special terminology to stress our focus on the topology, and to avoid ambiguities,
since our de�nition of belief in topo-e-models will be di�erent from the de�nition
of belief in evidence models of van Benthem and Pacuit (2011).

Argument and Justi�cation. Given a topo-e-modelM = ( X; E0; �; V ) and a
proposition P � X , we say

� an argument for P is a union U =
S

E0 of some nonempty family of (com-
bined) evidenceE0 � E , each separately supportingP (i.e., e � P for all
e 2 E0, or equivalently, U � P).

Epistemologically, an argument forP provides multiple evidential pathse 2 E0

to support the common conclusionP. Topologically, an argument forP is the
same as anonempty open subset ofP: a set of statesU is an argument forP i�
U 2 � and U � P. Therefore, the openInt (P) forms the weakest (most general)
argument for P, since it is the largest open subset ofP.

� A justi�cation for P is an argumentU for P that is consistent with every
(combined) evidence (i.e.,U \ e 6= ; for all e 2 E, that is, U \ U0 6= ; for
all U0 2 � nf;g ).

Justi�cations are thus de�ned to be arguments that are undefeated (i.e., whose
negations are not supported) by any available evidence or any other argument
based on this evidence. Topologically, a justi�cation forP is just a dense open
subsetof P: a set of statesU is a justi�cation for P i� U 2 � such that U � P
and Cl(U) = X . As for evidence, an argument or a justi�cationU for P is said
to be factive (or \correct") if it is true in the actual world, i.e., if x 2 U.

The fact that arguments are open in the generated topology encodes the prin-
ciple that any argument should be evidence-based: whenever an argument is cor-
rect, then it is supported by some factive evidence. To anticipate further: in our
setting, justi�cations will form the basis of belief, while correct justi�cations will
form the basis offallible (defeasible) knowledge. But before moving to justi�ed be-
lief and fallible knowledge, we introduce a stronger, irrevocable form of knowledge
that is captured by the global modality.
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Infallible Knowledge: possessing hard information. We use [8] for the
so-calledglobal modality, which associates to every propositionP � X , some
other proposition [8]P, given by putting:

[8]P :=
�

X if P = X
; otherwise:

In other words, [8]P holds (at any state) i� P holds at all states. In this setting,
[8]P is interpreted as \absolutely certain,infallible knowledge", de�ned as truth
in all the worlds that are consistent with the agent's information6. This is a limit
notion capturing a very strong form of knowledge encompassing all epistemic pos-
sibilities. It is irrevocable, i.e., it cannot be lost or weakened by any information
gathered later. In this respect, [8]P could be best described aspossession of hard
information. Its dual [9]P := : [8]: P expresses the fact thatP is consistent with
(all) the agent's hard information.

We would like to note here that infallible knowledge [8]' is not the most in-
teresting notion of knowledge we study in this chapter, and it is harshly criticized
by many epistemologists (see, e.g., Hintikka, 1962). However, having this strong
modality in our framework is useful for both conceptual and technical reasons:
while it helps us to see the di�erence between infallible and fallible knowledge,
the global modality, in general, adds to the expressive power of modal languages.
In particular, it will allow us to express all the other modalities we work with
in terms of only the modalities2 0' and 2 ' when interacting with the global
modality [8]' (see Proposition 5.6.2).

Having Basic Evidence for a Proposition. Van Benthem and Pacuit (2011)
de�ne, for every propositionP � X , another propositionE0P by 7:

E0P :=
�

X if 9e 2 E0 (e � P)
; otherwise:

The modal sentenceE0P therefore intends to capture possession of basic (direct)
evidence for the propositionP, thus reads as \the agenthas basic evidence forP".
In other words, E0P states that P is supported by some basic piece of evidence.
Additionally, we introduce a factive version of this proposition,2 0P, that is read
as \the agent hasfactive basic evidence forP", and is given by

2 0P := f x 2 X j 9e 2 E0 (x 2 e � P)g:
6In a multi-agent model, some worlds might be consistent with one agent's information, while

being ruled out by another agent's information. Therefore, in a multi-agent setting, [8i ] will
only quantify over all the states in agent i 's current information cell (according to a partition � i

of the state space re
ecting agenti 's hard information). We will present a multi-agent epistemic
system in Chapter 8.

7Van Benthem and Pacuit (2011) denote this by 2 P, and it is denoted by [E ]P in (van
Benthem et al., 2014). We useE0P for this notion, since we reserve the notationEP for having
combinedevidence forP, and 2 P for having combined factiveevidence forP.
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Having (Combined) Evidence for a Proposition. The above notions of
evidence possession based on having basic evidence for a propositions can be gen-
eralized to having (combined) evidence for a proposition. This way, we obtain two
other evidence operators:EP , meaning that \the agent has (combined) evidence
for P", and 2 P, meaning that \the agent has factive(combined) evidence for
P". More precisely,EP and 2 P are given as follows:

EP :=
�

X if 9e 2 E (e � P)
; otherwise

2 P := f x 2 X j 9e 2 E (x 2 e � P)g:

SinceE is a basis of the evidential topology� E, we have that the agent has
evidence for a propositionP i� she has an argument forP. So EP can also be
interpreted as \having an argument forP". Similarly, 2 P can be interpreted as
\having a correct argument for P". Moreover, 2 operator for having combined
factive evidence coincides with the topological interior operator (see equations
(3.1)-(3.3) in Section 3.2), thus, it coincides with the knowledge operator under
the interior semantics presented in Chapter 3. This observation therefore points
to a major di�erence between the framework introduced in this chapter and the
approach based on the interior semantics presented in Chapters 3 and 4: while in
the interior semantics the interior operator represents \knowledge of" something,
in our interpretation the interior represents only \having true evidence for" some-
thing. The di�erence arises from the fact that an agent may be in possession of
some evidence that happens to be true, without the agent necessarily knowing,
or even believing, that this evidence is true. To better understand the di�erence,
we need a topological understanding ofbelief.

5.3 Justi�ed Belief

In this section, we propose a topological semantics for a notion of evidence-based
justi�ed belief. We do this by modifying, and in a sense, eliminating the \bugs"
in the belief de�nition proposed by van Benthem and Pacuit (2011) based on evi-
dence models. While our proposal coincides with that of van Benthem and Pacuit
(2011) on evidence models carrying a �nite set of basic evidence piecesE0 and in
some in�nite cases, in general ours is \better" behaved. To name a few reasons,
among others, our proposal leads to a notion of belief that istopologically natural,
always consistent, and in fact, it satis�es the axioms of the standard doxastic logic
KD45 on all topo-e-models. To better explain the origins and inspiration of our
proposal, we �rst recapitulate the belief de�nition of van Benthem and Pacuit
(2011). We then introduce our de�nition of justi�ed belief, and show how and
when the two proposals coincide. We also provide several equivalent characteri-
zations of our proposed notion of justi�ed belief, and generalize this setting for
conditional beliefs.
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5.3.1 Belief �a la van Benthem and Pacuit

In their work, van Benthem and Pacuit (2011) present an evidence-based notion
of belief de�ned on the evidence models. According to their de�nition,

P is believed i� every maximal (i.e., strongest) body of evidence supportsP.

We denote this notion by Bel. More formally, given an evidence modelM =
(X; E0; V) and a propositionP � X ,

BelP holds (at any state) i� ( 8F 2 Max � F )(
\

F � P):8

However, as can be seen directly from the above de�nition,Bel is inconsistent on
evidence models whose every maximal body of evidence is inconsistent.

5.3.1. Example. Consider the evidence modelM = ( N; E0; V), where the state
space is the setN of natural numbers,V(p) = ; , and the basic evidence family
is E0 = f [n; 1 ) j n 2 Ng (see Figure 5.1). The only maximal body of evidence in
E0 is E0 itself. However,

T
E0 = ; . SoBel? holds in M .

: : : : : : : : :1 2 3 4

Figure 5.1: M = ( N; E0; V)

This phenomenon only happens in (some cases of)in�nite models, so it isnot
due to the inherent mutual inconsistency of the available evidence. At a high
level, the source of the problem seems to be the tension between the way the
agent combines her evidence pieces and the way she forms her beliefs based her
evidence: while she puts her evidence pieces together in a�nitely consistent way,
having consistent beliefs requires possibly in�nite collections to have nonempty

8As already noticed in (van Benthem and Pacuit, 2011; van Benthem et al., 2014), in many
but not all cases, this is equivalent to treating plausibility models as a special case of evidence
models where the plausibility relation is given by theevidential plausibility order v E de�ned as

x v E y i� ( 8e 2 E0)(x 2 e implies y 2 e) i� ( 8e 2 E)(x 2 e implies y 2 e);

and applying the standard semantics of belief on plausibility models as \truth in all the most
plausible states". The relation between evidence models and plausibility models, as well as the
connection between the notions of belief de�ned on these structures are subtle. We skip the
details on this issue here, and refer to (van Benthem and Pacuit, 2011, Section 5) and (van
Benthem et al., 2014, Section 3) for details.



5.3. Justi�ed Belief 59

intersections. More precisely, even though it is guaranteed by de�nition that every
�nite subfamily of a maximal body of evidence is consistent, the whole maximal
body of evidence may actually be inconsistent. Therefore, in order to avoid this
problem, we could instead focus onmaximal �nite bodies of evidence as blocks
of evidence forming beliefs: these are, by de�nition, guaranteed to be always
consistent. However, this solution inevitably restricts the class of evidence models
we can work with, simply because an in�nite evidence model might not bear any
maximal �nite body of evidence. To illustrate this, we can think of the evidence
model presented in Example 5.3.1: the set of basic evidenceE0 is the only maximal
body of evidence in (N; E0; V), and it is in�nite. Therefore, in order to eventually
be able to provide a belief logic of all evidence models that formalizes a notion of
consistent belief, further adjustments in the de�nition ofBel are warranted. To
this end, we propose to \weaken" the belief de�nition of van Benthem and Pacuit
(2011) in the sense that we focus onall �nite bodies of evidence that are \strong
enough" instead of focusing on all the \strongest" such bodies.

5.3.2 Our Justi�ed Belief

It seems to us that the intended goal (only partially ful�lled) in (van Benthem
and Pacuit, 2011) was to ensure that the agents are able to form consistent
beliefs based on the (possibly false and possibly mutually contradictory) available
evidence. We think this to be a natural requirement foridealized rationalagents,
and so we consider doxastic inconsistency to be \a bug, not a feature", of the van
Benthem-Pacuit framework. Hence, we now propose a notion that produces in a
natural way|with no need for further restrictions|only consistent beliefs, and
also that agrees with the one in (van Benthem and Pacuit, 2011) in many cases
speci�ed below.

The intuition behind our proposal is that a propositionP is believed i� it is
supported by all \su�ciently strong" evidence. We therefore say thatP is believed,
and write BP , i� every �nite body of evidence can be strengthened to some �nite
body of evidence which supportsP. More formally, given an evidence modelM =
(X; E0; V) and a propositionP � X ,

BP holds (at any state) i� 8F 2 F f in 9F 0 2 F f in (F � F 0 and
\

F 0 � P):

The notion of belief B (like Bel) is a \global" notion, which depends only on
the agent's evidence, not on the actual world, so it is either true in all possible
worlds, or false in all possible worlds. We therefore have

BP :=
�

X if 8F 2 F f in 9F 0 2 F f in (F � F 0 and
T

F 0 � P)
; otherwise:

This re
ects the assumption that beliefs are internal (and fully transparent) to
the agent (Baltag et al., 2008).
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It is easy to see that, unlikeBel, our notion of belief B is always consistent
(i.e., B? = B; = ; ), since no �nite body of evidence has an empty intersection.
Moreover, it satis�es the axioms of the standard doxastic logicKD45 (see Section
5.6.2). As shown in Example 5.3.2, our notion of beliefB and Bel are in general
incompatible (even in cases whenBel is consistent). On the other hand, these two
notions coincide on a restricted class of evidence models (see Proposition 5.3.3).

5.3.2. Example. We now present two models showing thatB and Bel are not
comparable in general. More precisely, the �rst example below illustrates that
BP does not implyBelP , and the second model shows thatBelP does not imply
BP even whenBel is consistent.

Consider the evidence modelM = ( N [ f•g ; E0; V), where N is the set of
natural numbers, V(p) = ; , and the set of basic evidence isE0 = f ei j i 2
Ng [ ff ng j n 2 Ng whereei = [ i; 1 ) [ f•g (see Figure 5.2).

: : : : : : •1

e1

2
e2

3
e3

4
e4

Figure 5.2: M = ( N [ f•g ; E0; V)

We then have that

Max � (F ) = ff ei j i 2 Ngg [ ff ei j i � ng [ ff mgg j n; m 2 N with m � ng:

Therefore, for anyF 2Max � (F ), we have

\
F =

�
f•g if F = f ei j i 2 Ng;
f mg if F = f ei j i � ng [ ff mgg with m � n:

We thus obtain that
S

F 2 Max � (F )

T
F = N[f•g . This means thatBel(N[f•g ) =

Bel> holds in M , and moreover,N [ f•g is the only proposition that is believed
according to the belief de�nition of van Benthem and Pacuit (2011). Thus, in
particular, Bel(N) = ; , hence, Bel(N) does not hold in M (i.e., no state in
N [ f•g makesBel(N) true). On the other hand, we haveF 2 F f in i� F =
f ei j i 2 I g; or F = f ei j i 2 I g [ ff mgg for someI � f in N and m � max(I ),
wheremax(I ) is the greatest natural number inI . Therefore, for everyF 2 F f in ,
we have

\
F =

�
[max(I ); 1 ) [ f•g if F = f ei j i 2 I g;
f mg if F = f ei j i 2 I g [ ff mgg for m � max(I ):

This implies that, any �nite body F of the form f ei j i 2 I g [ ff mgg already
supports N. Moreover, if F = f ei j i 2 I g, there exists a stronger �nite bodyF 0
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of the form F 0 = f ei j i 2 I g [ ff mgg for somem � max(I ) that supports N.
We therefore have thatB(N) holds in M . Hence, in general,BP does not imply
BelP .

Now consider the evidence modelM 0 = ( N [ f•g ; E0
0; V) based on the same

domain asM , and whereV(p) = ; and the basic evidence familyE0
0 = f [n; 1 ) [

f•g j n 2 Ng (see Figure 5.3). The only maximal body of evidence inE0
0 is E0

0

: : : : : : •1 2 3 4

Figure 5.3: M 0 = ( N [ f•g ; E0
0; V)

itself, and
T

E0
0 = f•g . Therefore, we have: Bel? in M 0, i.e., Bel is consistent in

M 0. Moreover, in particular, Belf•g holds in M . On the other hand, for all �nite
bodiesF 2 F f in , we havef•g (

T
F , implying that : B f•g in M 0. Therefore,

even whenBel is consistent,BelP does not implyBP .

There are some special cases whereBel and B do coincide. First of all, our
notion of belief B coincides with Bel on the evidence models with �nite basic
evidence setsE0. More generally,Bel and B coincide on allmaximally compact
evidence models: the ones in which every body of evidence is equivalent to a
�nite body of evidence. More formally, an evidence modelM = ( X; E0; V) is
called maximally compactif it satis�es the property

8F 2 F9 F 0 2 F f in (
\

F =
\

F 0) (MC)

5.3.3. Proposition. For all maximally compact evidence modelsM =( X; E0; V)
and P � X , we haveBelP = BP .

Proof:
Let M = ( X; E0; V) be a maximally compact evidence model andP � X .

(� ) SupposeBelP holds in M , i.e., suppose that for allF 2 Max � F , we
have

T
F � P. Now let F 0 2 F f in . By Zorn's Lemma, F 0 can be extended

to a maximal body of evidenceF 002 F . Note that, since F 00extends F 0, i.e.,
F 0 � F 00, we have

T
F 00�

T
F 0. SinceM is maximally compact, there isF0 2 F f in

such that
T

F 00 =
T

F0. Now consider the family of evidenceF0 [ F 0. SinceT
F0 =

T
F 00�

T
F 0, we have

T
(F0 [ F 0) =

T
F0 \

T
F 0 =

T
F0 6= ; . Therefore,

the family of evidenceF0 [ F 0 is a �nite body of evidence, i.e.,F0 [ F 0 2 F f in .
Obviously, F0 [ F 0 extendsF 0, i.e., F 0 � F0 [ F 0. Moreover, sinceBelP holds in
M , we have that

T
F 00� P. We then obtain

T
(F0 [ F 0) =

T
F0 =

T
F 00� P.

We have therefore proven that the �nite body of evidenceF0 [ F 0 extendsF 0 and
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it entails P. As F 0 has been chosen arbitrarily fromF f in , we conclude thatBP
holds in M .

(� ) SupposeBP holds in M , i.e., suppose that for allF 2 F f in , there ex-
ists F 0 2 F f in such that F � F 0 and

T
F 0 � P. Let F 00 2 Max � F . Then,

sinceM is maximally compact, there existsF0 2 F f in such that
T

F 00=
T

F0.
Moreover, sinceBP holds in M , there existsF1 2 F f in such that F0 � F1 andT

F1 � P. Besides, since
T

F1 �
T

F0 =
T

F 00and F 00 is maximal, we in fact
have F1 � F 00 (otherwise, there existse 2 E0 such that e 2 F1 but e 62F 00.
Therefore, as

T
F1 �

T
F 00, we would have

T
F1 �

T
(F 00[ f eg), and thusT

(F 00[ f eg) 6= ; , contradicting maximality of F 00.) Therefore,
T

F 00�
T

F1, and
thus,

T
F1 =

T
F 00. Then, together with

T
F1 � P, we obtain

T
F 00� P. As F 00

has been chosen arbitrarily fromMax � F , we conclude thatBelP holds in M . 2

Another important feature of our belief de�nition is that B is a purely topo-
logical notion, as stated in the following proposition which, in turn, constitutes a
justi�cation for our use of topo-e-models rather than working with only evidence
models.

5.3.4. Proposition. In every topo-e-modelM = ( X; E0; �; V ), the following are
equivalent, for any propositionP � X :

1. BP holds(at any state)
(i.e., 8F 2 F f in 9F 0 2 F f in (F � F 0 and

T
F 0 � P));

2. every evidence can be strengthened to some evidence supportingP
(i.e., 8e 2 E 9e0 2 E(e0 � e \ P));

3. every argument(for anything) can be strengthened to an argument forP
(i.e., 8U 2 � nf;g 9 U0 2 � nf;g (U0 � U \ P));

4. there is a justi�cation for P, i.e., there is some argument forP which is
consistent with any available evidence
(i.e., 9U 2 � (U � P and 8e 2 E(U \ e 6= ; ))) ;

5. P includes some dense open set
(i.e., 9U 2 � (U � P and Cl(U) = X ));

6. Int (P) is dense in � (i.e., Cl (Int (P)) = X ), or equivalently, X nP is
nowhere dense (i.e.,Int (Cl (X nP)) = ; );

7. [8]32 P holds(at any state) ( i.e., [8]32 P = X ), or equivalently,[8]32 P 6=
; .

Proof:
The equivalence between (1), (2) and (3) is easy, and follows directly from def-
initions of combined evidence and argument. The equivalence of (5) and (6) is
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also straightforward (recall that Int (P) is the largest open contained inP). The
equivalence between (4) and (5) simply follows from the de�nitions of arguments
and dense sets. For the equivalence of (6) and (7), recall that [8] is the global
modality, 2 is interior and 3 is closure. For the equivalence of (3) and (4):

(3)) (4): Suppose (3) holds and consider the open setInt (P). We will show
that Int (P) is a justi�cation for P, i.e., Int (P) \ e 6= ; for all e 2 E. Let e 2 E.
By (3), since e 2 E � � nf;g , there existsU0 2 � nf;g such that U0 � e \ P. We
then haveInt (U0) � Int (e \ P) = Int (e) \ Int (P). Therefore, sinceU0 and e are
open sets, we obtainU0 � e\ Int (P). As U0 6= ; , we conclude thate\ Int (P) 6= ; .

(4)) (3): Suppose (4) holds, i.e., suppose that there existsU0 2 � such that
(a) U0 � P and (b) U0 \ e 6= ; for all e 2 E. Let U 2 � with U 6= ; . Now
consider the open setU \ U0. SinceE is a basis of� , there existse 2 E such that
e � U. Therefore, by (b), the intersectionU \ U0 6= ; , thus, U \ U0 2 � nf;g . By
(a), we also haveU \ U0 � U \ P. 2

Proposition 5.3.4 deserves a closer look as it describes the topological proper-
ties of our notion of belief, as well as states that our belief is the same asjusti�ed
belief that is coherent with every available evidence. The equivalence between
(1), (2) and (3) shows that we can de�neBP in equivalent ways by using only
basic evidence pieces (i.e., the elements ofE0), or by using only combined evi-
dence (i.e., the elements ofE), or by using only the open sets of the generated
evidential topology � E. Proposition 5.3.4-(4) proves that our de�nition of belief
indeed gives us a conception ofevidentially justi�ed belief. The requirement that
any justi�cation of a believed proposition must beopenin the evidential topology
simply means that the justi�cation is ultimately based on the available evidence;
while the requirement that the justi�cation is dense(in the same topology) means
that all the agent's beliefs must be coherent with all her evidence. Therefore, be-
lieved propositions, according to our de�nition, are those for which there is some
evidential justi�cation that is consistent with all available (basic or combined)
evidence. Moreover, whenever a propositionP is believed, there exists aweak-
est (most general) justi�cation for P, namely the open setInt (P). Proposition
5.3.4-(5-7) provide topological reformulations of the above items. In particular,
Proposition 5.3.4-(6) shows that our proposal is very natural from a topological
perspective: it is equivalent to saying thatP is believed i� the complement ofP
is nowhere dense. Since nowhere dense sets are one of the topological concepts
of \small" or \negligible" sets, this amounts to believing propositions i� they are
true in almost all epistemically-possible worlds, where \almost all" spelled out
topologically as \everywhere but a nowhere dense part of the model". Finally,
Proposition 5.3.4-(7) tells us that belief is de�nable in terms of the operators [8]
and 2 .

We will provide further technical results such as the soundness and complete-
ness of the belief logic with respect to the topo-e-models in Section 5.6.2. We now
proceed with formalizing a notion of conditional beliefs on topo-e-models.
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5.3.3 Conditional Belief on Topo-e-models

The belief semantics given in Section 5.3.2 can be generalized toconditional be-
liefs B QP by relativizing the simple belief de�nition BP to the given condition
Q, in a way similar to how we obtained conditional belief semantics in Section
4.3.2. However, this current setting requires a somewhat more careful treatment
(as recognized already in van Benthem and Pacuit, 2011) since some of the agent's
evidence might be inconsistent with the conditionQ. While evaluating beliefs un-
der the assumption that the given conditionQ is true, one should focus only
on the evidence that is consistent withQ by neglecting the evidence pieces that
are disjoint with Q. Therefore, in order to de�ne conditional beliefs, we need a
\relativized" version of the notion of consistent (bodies of) evidence.

Given an evidence modelM = ( X; E0; V), for any subsetsQ; A � X , we say
that A is Q-consistent i� Q \ A 6= ; . Moreover, a body of evidenceF is called
Q-consistent i�

T
F \ Q 6= ; . We can then de�ne conditional beliefs based on

these notions of \conditional consistency". We say thatP is believed givenQ,
and write B QP, i� every �nite Q-consistent body of evidence can be strengthened
to some �nite Q-consistent body of evidence supporting the propositionQ ! P
(i.e. : Q [ P)).

An analogue of Proposition 5.3.4 providing di�erent characterizations can also
be proven for conditional belief:

5.3.5. Proposition. In every topo-e-modelM = ( X; E0; �; V ), the following are
equivalent, for any two propositionsP; Q � X with Q 6= ; :

1. B QP holds (at any state);

2. every Q-consistent evidence can be strengthened to someQ-consistent evi-
dence supportingQ ! P
(i.e., 8e 2 E(e \ Q 6= ; ) 9 e0 2 E(e0 \ Q 6= ; and e0 � e \ (Q ! P)))) ;

3. everyQ-consistent argument can be strengthened to aQ-consistent argument
for Q ! P
(i.e., 8U 2 � (U \ Q 6= ; ) 9 U0 2 � (U0\ Q 6= ; and U0 � U \ (Q ! P)))) ;

4. there is someQ-consistent argument forQ ! P whose intersection with
any Q-consistent evidence isQ-consistent
(i.e., 9U 2 � (U \ Q 6= ; and U � Q ! P and 8e 2 E(e \ Q 6= ; )
(U \ e) \ Q 6= ; ))) ;

5. Q ! P includes someQ-consistent open set which is dense inQ
(i.e., 9U 2 � (U \ Q 6= ; and U � Q ! P and Q � Cl(U \ Q))) ;

6. Int (Q ! P) is densein Q
(i.e., Q � Cl (Q \ Int (Q ! P))) ;
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7. 8(Q ! 3 (Q^ 2 (Q ! P))) holds(at any state) ( i.e., 8(Q ! 3 (Q^ 2 (Q !
P))) = X ), or equivalently,8(Q ! 3 (Q ^ 2 (Q ! P))) 6= ; .

Proof:
The equivalence between (1), (2), (3) is easy and directly follows from the se-
mantics of B QP, and the de�nitions of Q-consistent evidence andQ-consistent
argument. For the equivalence between (5) and (6), consider the weakest argu-
ment Int (Q ! P) for Q ! P. And, for the equivalence of (6) and (7), recall that
[8] is the universal quanti�er, 2 is interior and 3 is closure. We here show only
the equivalence between (3) and (4), and between (4) and (5) in details.

(3)) (4): Suppose (3) holds and consider the weakest argumentInt (Q ! P)
for Q ! P. SinceX 2 E and X is Q-consistent, by (3), there exists a stronger
U 2 � such that U \ Q 6= ; and U � Q ! P. SinceInt (Q ! P) is the largest
open with Int (Q ! P) � Q ! P, we obtain U � Int (Q ! P) � Q ! P
for any suchU, therefore, Int (Q ! P) is also Q-consistent. Let e 2 E be such
that e \ Q 6= ; . Therefore, sinceE � � , by (3), there existsU0 2 � such that
U0 \ Q 6= ; and U0 � e \ (Q ! P). By the previous argument, we know that
U0 � Int (Q ! P), thus, U0 � e\ Int (Q ! P) 6= ; . And, sinceU0 is Q-consistent,
the result follows.

(4)) (3): Suppose (4) holds, i.e., suppose that there isU0 2 � such that (a)
U0 \ Q 6= ; , (b) U0 � Q ! P and (c) for all e 2 E with e \ Q 6= ; , we have
(U0 \ e) \ Q 6= ; . Let U 2 � be such that U \ Q 6= ; and consider the open set
U \ U0. SinceU \ Q 6= ; and E is a basis for� , there existse0 2 E such that
e0 � U and e0 \ Q 6= ; . Therefore, by (c), we have that (U0 \ e0) \ Q 6= ; , thus,
the open setU0 \ e0 is Q-consistent. Moreover, sinceU0 � Q ! P and e0 � U,
we obtain U0 \ e0 � U \ (Q ! P).

(4), (5): For the left-to-right direction, suppose (4) holds as in the above case,
and toward showingQ � Cl(U0 \ Q), let x 2 Q and e 2 E such that x 2 e. There-
fore, e is Q-consistent, i.e.,e \ Q 6= ; . Then, by (4), we obtain (U0 \ e) \ Q 6= ; ,
implying that x 2 Cl(U0 \ Q). For the right-to-left direction, suppose (5) holds
with U0 the witness and lete 2 E be such thate\ Q 6= ; . This means that there
is y 2 e\ Q, thus, y 2 Q. Then, by (5), y 2 Cl(U0 \ Q). Therefore, asy 2 e 2 E,
we conclude (U0 \ Q) \ e 6= ; . 2

5.4 Evidence Dynamics

What we have presented so far focuses on how an agent forms beliefs based on
a �xed collection of evidence pieces shehas gathered so far. However, collecting
and evaluating evidence is not a one-time process: the agent might receive fur-
ther information or re-evaluate her current evidence set, thus, she might need to
revise her beliefs and knowledge accordingly. There are di�erent ways one can
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incorporate new information into the initial evidence structure depending on,
e.g., the information source and how the agent regards the new information. Van
Benthem and Pacuit (2011) presents a wide range of evidence dynamics as model
transformations, and in this section, we study their dynamic operators such as
public announcements, evidence addition, evidence upgrade and (a feasible ver-
sion of) evidence combination implemented on topo-e-models. While the only
domain changing operator is the so-called updates for public announcemets; ev-
idence addition, upgrade and combination only a�ect the agent's initial basic
evidence setE0, and thus the combined evidence setE and the generated topol-
ogy � E. We here only describe the corresponding model changes and leave the
presentation of the corresponding dynamic logics for Section 5.6.6. Throughout
this section, we are given a topo-e-modelM = ( X; E0; �; V ) and some proposition
P � X , with P 6= ; .

Public Annoucements. Public announcements involve learning a new factP
with absolute certainty. The announced propositionP is taken as \hard informa-
tion", that is, a true information coming from an infallible source. The standard
way of interpreting this|as also mentioned in Section 4.2.2|is via model re-
strictions, both on relational and neighbourhood structures (see, e.g., De�nition
4.2.4). For evidence models, this means keeping only the worlds inP and only
the P-consistent evidence pieces. Topologically, this is a move from the original
space (X; � ) to the subspace(P; � P ) induced by P.

5.4.1. Definition. [Public Announcements]
The model M !P = ( X !P ; E!P

0 ; � !P ; V !P ) is de�ned as follows: X !P = P, E!P
0 =

f e\ P j e 2 E0 with e\ P 6= ;g , � !P = f U \ P j U 2 � g, and V !P (p) = V(p) \ P
for eachp 2 prop .

It is easy to check thatM !P is a topo-e-model with the set of combined evidence

E!P = f e \ P j e 2 E with e \ P 6= ;g :

Evidence addition. An agent can also regard and admit the new information
on par with her old evidence without assuming it is hard information. In this
case, the natural thing to do is to add the new piece of evidence to the initial
basic evidence set and generate the evidential topology from the new evidence
collection. This action simply describes the most straightforward way an agent
collects individually consistent evidence pieces.

5.4.2. Definition. [Evidence Addition]
The modelM + P = ( X + P ; E+ P

0 ; � + P ; V+ P ) is de�ned as follows:X + P = X , E+ P
0 =

E0 [ f Pg, � + P is the topology generated byE+ P
0 , and V + P = V.
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Again, M + P is a topo-e-model, since; 62 E+ P
0 and X + P = X 2 E+ P

0 , and � + P is
the evidential topology generated byE+ P

0 . Moreover, the set of combined evidence
E+ P of M + P can be described as

E+ P = E [ f e \ P j e 2 E with e \ P 6= ;g ;

which clearly constitutes a basis for� + P .

Evidence upgrade. The operator ofevidence upgrade* P incorporatesP into
all other pieces of evidence, thus makingP the most important available evidence.

5.4.3. Definition. [Evidence Upgrade]
The modelM * P = ( X * P ; E* P

0 ; � * P ; V * P ) is de�ned as follows:X * P = X , E* P
0 =

f e [ P j e 2 E0g [ f Pg, � * P is the topology generated byE* P
0 , and V * P = V.

M * P is obviously a topo-e-model for the same reasons given above, and the set
of combined evidenceE* P of M * P can be described as

E* P = f e [ P j e 2 Eg [ f Pg:

The following observation proves that evidence upgrade withP in fact makes
the propositionP the most important evidence piece in the sense that the believed
propositions in M * P are exactly those entailed byP.

5.4.4. Proposition. Given a topo-e-modelM = ( X; E0; �; V ) and propositions
P; Q � X with P; Q 6= ; ,

P � Q i� BQ holds in M * P :

Proof:
SupposeP 6� Q. This means, by de�nition of E* P , that there is no argument
in M * P that supports Q (since every elemente of E* P includes P). Therefore,
by Proposition 5.3.4-(4), we obtain that BQ does not hold in M * P . For the
other direction, supposeP � Q and let e 2 E* P . By the de�nition of E* P , ei-
ther e = P or there is e0 2 E such that e = e0 [ P. If e = P, then obviously
e \ Q = P \ Q = P 6= ; (where we used the assumptionP � Q). If e = e0 [ P,
then e \ Q = ( e0 [ P) \ Q = ( e0 \ Q) [ (P \ Q) = ( e0 \ Q) [ P � P 6= ; (where
we again used the assumptionP � Q). Therefore, by Proposition 5.3.4-(4), we
obtain that BQ holds in M * P . 2
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Feasible evidence combination. Another dynamic operation considered in
(van Benthem and Pacuit, 2011) isevidence combination. We here adapt it to our
topological setting, which assumes that agents can combine only �nitely many
pieces of evidence at a given time. This is what we callfeasible evidence combi-
nation, in contrast to the in�nitary combinations allowed in (van Benthem and
Pacuit, 2011). The dynamic operation of evidence combination is concerned with
internal re-evaluation of the evidence pieces the agent possesses, it does not in-
volve any new external information. Feasible evidence combination, intuitively
speaking, produces a model in which every evidence previously regarded as com-
bined evidence becomes a basic piece of evidence.

5.4.5. Definition. [Feasible Evidence Combination]
The model M # = ( X # ; E#

0 ; � # ; V # ) is de�ned as follows: X # = X , E#
0 is the

smallest set closed under nonempty, �nite intersections and containingE0, and
� # is the topology generated byE#

0 , and V # = V.

M # is clearly a topo-e-model. In fact, sinceE#
0 is obtained by closingE0 under

�nite and nonempty intersections, we haveE#
0 = E# = E, and therefore, the

topology stays the same, i.e.,� = � # .
The precise syntax capturing the above evidence dynamics, and the complete

axiomatizations of the corresponding logics will be provided in Section 5.6. We
now continue with our proposal for a defeasible type of knowledge based on topo-
e-models.

5.5 Knowledge

The only notion of knowledge we have considered so far in this chapter was the so-
called infallible knowledge|represented by the global modality [ 8]|that conveys
absolute certainty (Section 5.2.2). However, there are very few things we could
know in this strong sense, maybe, say, only logical-mathematical tautologies. We
now de�ne a \softer" (weaker) notion of knowledge that approximates better the
common usage of the word than infallible knowledge. In particular, in this section,
we study a notion of (fallible) knowledge based onfactive justi�cation . Formally,
given a topo-e-modelM = ( X; E0; �; V ), we set

KP := f x 2 X j 9U 2 � (x 2 U � P and Cl(U) = X )g;

stating that KP holds atx i� P includes a dense open neighborhood ofx. Similarly
to the cases for belief and conditional beliefs (see Propositions 5.3.4 and 5.3.5),
we can provide several equivalent de�nitions ofKP on topo-e-models as follow.

5.5.1. Proposition. Let M = ( X; E0; �; V ) be a topo-e-model, and assumex 2
X is the actual world. The following are equivalent for allP � X :
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1. KP holds atx in M
(i.e., 9U 2 � (x 2 U � P and Cl(U) = X ));

2. there is some factive justi�cation for P at x, i.e., there is some factive
argument for P at x which is consistent with any available evidence
(i.e., 9U 2 � (x 2 U � P and 8e 2 E(U \ e 6= ; ))) ;

3. Int (P) contains the actual state and isdensein �
(i.e., x 2 Int (P) and Cl(Int (P)) = X );

4. 2 P ^ BP holds atx.

Proof:
The proof is similar to the proof of Proposition 5.3.4. For the equivalence between
(1) and (2), recall that E constitutes a basis for� . The equivalence of (2) and
(3) is also straightforward (recall that Int (P) is the largest open set contained in
P). For the equivalence of (3) and (4), see Proposition 5.3.4-(6) and recall that
2 is interpreted as the interior operator. 2

Therefore, as the equivalence between Proposition 5.5.1-(1) and (2) shows, we
propose to de�ne knowledge ascorrectly justi�ed belief. In other words, we here
study a notion of knowledge that is characterized asbelief based on true justi�-
cation. We would like to emphasize that the above-de�ned notion of knowledge
doesnot boil down to \justi�ed true belief". This would clearly be vulnerable to
Gettier-type counterexamples (Gettier, 1963). To explain better, we illustrate the
semantics we propose for justi�ed belief and knowledge, as well as the connection
between the two notions in the example below.

5.5.2. Example. Consider the topo-e-modelM = ([0 ; 1]; E0; �; V ), where E0 =
f (a; b) \ [0; 1] j a; b 2 R; a < bg and V(p) = ; . The generated topology� is
the standard topology on [0; 1]. Let P = [0; 1]nf 1

n j n 2 Ng be the proposition
stating that \the actual state is not of the form 1

n , for any n 2 N" (see Figure
5.4). Since the complement: P = [0; 1]nP = f 1

n j n 2 Ng is nowhere dense (i.e.,
Int (Cl (: P)) = Int (: P) = ; ), the agent believesP, and e.g. U =

S
n� 1( 1

n+1 ; 1
n )

is a justi�cation for P, that is, U is a dense open subset ofP. This belief is true
at world 0 2 P. But this true belief is not knowledgeat 0: no justi�cation for P
is true at 0, sinceP does not include any open neighborhood of 0, so 062Int (P)
and hence 062KP . This shows that KP 6= P ^ BP . Moreover, P is known in
all the other statesx 2 Pnf 0g, since

8x 2 Pnf 0g 9� > 0(x 2 (x � �; x + � ) � P);

thereforex 2 Int (P).
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Figure 5.4: ([0; 1]; � )

Going back to Stalnaker's epistemic-doxastic systemStal, it is easy to see
that K together with justi�ed belief B satis�es Stalnaker's Full Belief principle
BP = BKP (see Table 4.1). These operators in fact satisfy all the axioms and
rules of the systemStal on all topo-e-models, thus, onall topological spaces,
not only on the restricted class of extremally disconnected spaces. We prove the
soundness and completeness of Stalnaker's systemStal with respect to all topo-
e-models in Section 5.6.4.

One interesting property of this weaker type of knowledge is it beingdefea-
sible in the light of new information, even when the new information is true. In
contrast, the usual assumption in epistemic logic is thatknowledge acquisition is
monotonic. As a result, logicians typically assume that knowledge is \irrevoca-
ble": once acquired, it cannot be defeated by any further evidence gathered later.
In our setting, the only irrevocable knowledge is the absolutely certain one (true
in all epistemically-possible worlds), captured by the operator [8]. Clearly, K is
not irrevocable.

5.5.1 Knowledge is defeasible

Gettier (1963)|with his famous counterexamples against the account of knowl-
edge as justi�ed true belief|triggered an extensive discussion in epistemology
that is concerned with understanding what knowledge is, and in particular, with
identifying the exact properties and conditions that render a piece of justi�ed true
belief knowledge. Epistemologists have made various proposals such as, among
others, the no false lemma(Clark, 1963), the defeasibility analysis of knowl-
edge(Lehrer and Paxson, 1969; Lehrer, 1990; Klein, 1971, 1981), thesensitivity
account (Nozick, 1981), thesafety account (Sosa, 1999), and thecontextualist
account (DeRose, 2009)9. While there is still very little agreement about these
questions, the extent of the post-Gettier literature at the very least shows that
the relation between justi�ed belief and knowledge is very delicate, and it is not
an easy task, if possible, to identify a unique notion of knowledge that can deal
with all kinds of intuitive counterexamples. However, as Rott (2004) states, one
can accept that all these proposals \capture important intuitions that can in some
way or other be regarded as relevant to the question whether or not a given belief
constitutes a piece of knowledge" (Rott, 2004, p. 469). Providing an extensive
philosophical analysis regarding the aforementioned theories of knowledge is way

9For an overview of responses to the Gettier challenge and a detailed discussion, we refer
the reader to (Rott, 2004; Ichikawa and Steup, 2013).
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beyond the scope of this dissertation. However, in this section, we argue that
our conception of knowledge captured by the modalityK is stronger than Clark's
\no false lemma" (Clark, 1963), and very close to (though subtly di�erent from)
the so-called defeasibility theory of knowledge held by Lehrer and Paxson (1969);
Lehrer (1990); Klein (1971, 1981).

Clark's in
uential \no false lemma" proposal is to require acorrect \justi�-
cation" |one that doesn't use any falsehood|for a piece of belief to constitute
knowledge (Clark, 1963). As similar as this sounds to our knowledgeK , our
proposal imposes a stronger requirement than Clark's, since our concept of jus-
ti�cation requires consistency with all the available (combined) evidence. In our
terminology, Clark only requires a factiveargument for P. So Clark's approach
is `local', assessing a knowledge claim based only on the truth of the evidence
pieces (and the correctness of the inferences) that are used to justify it. Our
proposal is coherentist, and thus `holistic', assessing knowledge claims by their
coherence with all of the agent's acceptance system: justi�cations need to be
checked against all the other arguments that can be constructed from the agent's
current evidence.

On the other hand, the defeasibility theory of knowledge, roughly speaking,
defends that knowledge can be de�ned asjusti�ed belief that cannot be defeated by
any factive evidence gathered later(though it may be defeated by false evidence).
Therefore, knowledge is equated withundefeated justi�ed belief. In its simplest
version, as formalized by Stalnaker (2006),the agent knowsP if and only if

1. P is true

2. she believes thatP, and

3. her belief inP cannot be defeated by new factive information.

In other words, given a true propositionP, the agent knowsP i� she does not
give up her belief inP after receiving any true information, i.e., her belief inP is
stablefor true information. As Rott (2004) pointed out, this is a simple version
of defeasibility theory of knowledge as it requires only the belief inP itself to
be stable. For this reason, Rott (2004) calls thisstable belief theoryor stability
theory of knowledge. The above version has been challenged for being too weak
to form knowledge. The full-
edged version of the defeasibility theory, as held
by Lehrer and others, insists that, in order to knowP, not only the belief in P
has to stay stable, but also its justi�cation (i.e. what we call here \an argument
for P") should be undefeated. More precisely, according to this strong version of
defeasibility theory, the agent knowsP if and only if

1. P is true

2. she believes thatP,
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3. her belief inP cannot be defeated by new factive information, and

4. her justi�cation is undefeated by new factive information.

In other words, for the agent to knowP, there must exist an argument for
P that is believed conditional on every true evidence. Clearly, this implies that
the belief in P is stable, however, it is not at all obvious whether having stable
belief in P would imply its justi�cation being undefeated. Indeed, Lehrer claims
that this is not the case. The problem is that, when confronted with various new
pieces of evidence, the agent might keep switching between di�erent justi�cations
(for believing P); thus, she may keep believing inP conditional on any such new
true evidence, without actually having any good, robust justi�cation (i.e., one
that remains itself undefeated by all true evidence) (see Example 5.5.4). To have
knowledge, we thus need astable justi�cation.10

However, the above interpretation (of both the stability and the defeasibility
theory) was also attacked as beingtoo strong: if we allow as potential defeaters
all factive propositions (i.e. all sets of worldsP containing the actual world),
then there are intuitive examples showing that knowledgeKP can be defeated
(Klein, 1980, 1981). Here is such an example discussed by Klein (1981), a leading
proponent of the defeasibility theory. Loretta �lled in her federal taxes, following
very carefully all the required procedures on the forms, doing all the calculations
and double checking everything. Based on this evidence, she correctly believes
that she owes $500, and she seems perfectly justi�ed to believe this. So it seems
obvious that she knows this. But suppose now that, being aware of her own
fallibility, she asks her accountant to check her return. The accountant �nds no
errors (when there are in fact some errors in her calculation, yet not a�ecting the
correct result that she owes $500), and so he sends her his reply reading \Your
return contains no errors"; but he inadvertently leaves out the word \no". If
Loretta would learn the true fact that the accountant's letter actually reads \Your
return contains errors", she would lose her true belief that she owed $500! So it
seems that there exist defeaters that are true but \misleading". We can formalize
this counterexample as follows, and show that our knowledgeK is neither stable
nor indefeasible:

5.5.3. Example. Consider the modelM = ( X; E0; �; V ), whereX = f x1; x2; x3g,
V(p) = ; , E0 = f X; O1; O2g, O1 = f x1; x2g, O2 = f x2; x3g (see Figure 5.5). The
resulting set of combined evidence isE = f X; O1; O2; f x2gg. Assume the actual
world is x1. Then O1 is known, sincex1 2 Int (O1) = O1 and Cl(O1) = X . Now

10Lehrer uses the metaphor of anUltra-Justi�cation Game (Lehrer, 1990), according to which
`knowledge' is based on arguments that survive a game between the Believer and an omniscient
truth-telling Critic, who tries to defeat the argument by using both the Believer's current \jus-
ti�cation system" and any new true evidence(see Fiutek, 2013, Section 5.2 for a formalization
of Lehrer's ultra-justi�cation game).
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consider the modelM + O3 = ( X; E+ O3
0 ; � + O3 ; V) obtained by adding the new ev-

idenceO3 = f x1; x3g (as in De�nition 5.4.2). We have E+ O3
0 = f X; O1; O2; O3g,

so E+ O3 = f X; O1; O2; O3; f x1g; f x2g; f x3gg. Note that the new evidence istrue
(x1 2 O3). However,O1 is not even believedin M + O3 anymore, sinceO1\f x3g = ; ,
soO1 is no longer dense in� + O3 . Therefore,O1 is no longer knownafter the true
evidenceO3 was added!

x1 x2

x3

O1

O2

=)
O3

x1 x2

x3

O1

O2

O3

Figure 5.5: FromM to M + O3

Klein's story corresponds to takingO1 to represent Loretta's direct evidence
(based on careful calculations) that she owes $500,O2 to represent her prior
evidence (based on past experience) that the accountant doesn't make mistakes
in his replies to her, andO3 the potential new evidence provided by the letter.
In conclusion, our notion of knowledge is incompatible with the above-mentioned
strong interpretations of both stability and defeasibility theory, thus con�rming
the objections raised against them.

Klein's solution is that one should exclude suchmisleadingdefeaters, which
may \unfairly" defeat a good justi�cation. But how can we distinguish them from
genuine defeaters? Klein's diagnosis, in Foley's more succinct formulation, is that
\a defeater is misleading if it justi�es a falsehood in the process of defeating
the justi�cation for the target belief" (Foley, 2012, p. 96). In the example, the
falsehood is that the accountant had discovered errors in Loretta's tax return. It
seems that the new evidenceO3 (the existence of the letter as actually written)
supports this falsehood, but how? According to us, it is the combinationO2 \ O3

of the new (true) evidenceO3 with the old (false) evidenceO2 that supports
the new falsehood: the true fact (about the letter saying what it says) entails
a falsehoodonly if it is taken in conjunction with Loretta's prior evidence (or
blind trust) that the accountant cannot make mistakes. So intuitively,misleading
defeaters are the ones which may lead to new false conclusions when combined
with some of the old evidence.

Misleading evidence and weakly indefeasible knowledge. We proceed
now to formalize the distinction between misleading and genuine (i.e., nonmis-
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leading) defeaters. Given a topo-e-modelM = ( X; E0; �; V ), a state x 2 X and a
proposition Q � X ,

� Q is misleading at x 2 X with respect to E if evidence-addition with Q
produces some false new evidence;

equivalently, and more formally, if there is somee 2 E+ QnE such that x 62e, i.e.,
if there is somee 2 E such that x 62(e\ Q) and (e\ Q) 62 E [ f;g . A proposition
Q � X is callednonmisleadingif Q is not misleading. It is easy to see thatold
evidencee 2 E is by de�nition nonmisleading with respect toE (i.e., eache 2 E
is nonmisleading with respect toE), and new nonmisleadingevidence must be
true (i.e., if Q � X is nonmisleading atx and Q 62 E, then x 2 Q).

We are now in the position to formulate precisely the \weakened" versions of
both stability and defeasibility theories that we are looking for. The weak stability
theory will stipulate that the agent knowsP if and only if

1. P is true

2. she believes thatP,

3. her belief inP cannot be defeated by anynonmisleadingevidence,

On the other hand, the weak defeasibility theory requires that there exists some
justi�cation (argument) for P that is undefeated by every nonmisleading proposi-
tion. More precisely, the weak defeasibility theory strengthens the above described
weak stability theory by the following \stable justi�cation" clause:

4. her belief in its justi�cation is undefeated by anynonmisleadingevidence.

Finally, we also provide a third formulation, which one might callepistemic co-
herence theory, saying that P is known i� there exists some justi�cation (argu-
ment) for P which is consistent with every nonmisleading proposition. While our
proposed notion of knowledge is stronger than the one described by the weak
stability theory, as illustrated by Example 5.5.4, it coincides with the ones de-
�ned by the weak defeasibility and epistemic coherence theories (see Proposition
5.5.5). In particular, the following counterexample shows that weak stability is
(only a necessary, but) not a su�cient condition for knowledgeK :

5.5.4. Example. Consider the modelM = ( X; E0; �; V ), whereX = f x0; x1; x2g,
V(p) = ; , E0 = f X; O1; O2g with O1 = f x1g, O2 = f x1; x2g (see Figure 5.6). The
resulting set of combined evidence isE = E0. Assume the actual world isx0, and let
P = f x0; x1g. Then, P is believedin M (since its interior Int (P) = f x1g is dense
in � ) but it is not known (sincex0 62Int (P) = f x1g). However, we can show that
P is believed inM + Q for any nonmisleadingQ at x0. For this, note that the family
of nonmisleading propositions (atx0) is E [ f P; f x0gg = f X; O1; O2; P; f x0gg. It
is easy to see that for each setQ in this family, BP holds in M + Q.
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Figure 5.6: M = ( X; E0; V): The continuous ellipses represent the currently avail-
able pieces of evidence, while the dashed ones represent the other nonmisleading
propositions.

One should stress that our counterexample agrees with the position taken by
most proponents of the defeasibility theory: stability of (justi�ed) belief is not
enough for knowledge. Intuitively, what happens in the above example is that,
although the agent continues to believeP given any nonmisleading evidence, her
justi�cation keeps changing. For example, while the only justi�cation for believing
P in M is O1, the evidenceO1 is no longer dense in modelM + f x0g, therefore,
cannot constitute a justi�cation for P in M + f x0g. On the other hand, another
argument in M + f x0g, namely f x0; x1g forms a justi�cation for P in M + f x0g, thus
P is still believed in M + f x0g, but, based on a di�erent justi�cation. Therefore,
there isno uniform justi�cation for P that works for every nonmisleading evidence
Q.

The next result shows thatour notion of knowledge exactly matches the weak-
ened version of defeasibility theory, as well as theepistemic coherence formulation:

5.5.5. Proposition. Let M = ( X; E0; �; V ) be a topo-e-model, andx 2 X is the
actual world. The following are equivalent for allP � X :

1. KP holds atx in M .

2. There is an argument(justi�cation ) for P that cannot be defeated by any
nonmisleading proposition; i.e.9U 2 � nf;g such thatU � P and BU holds
in M + Q for all nonmisleadingQ � X (at x with respect toE).

3. There is an argument(justi�cation ) for P that is consistent with every non-
misleading proposition; i.e. 9U 2 � nf;g such thatU � P and U \ Q 6= ;
for all nonmisleadingQ � X (at x with respect toE).

Proof:
(1) ) (2): Supposex 2 KP . This means, by Proposition 5.5.1-(3), that

x 2 Int (P) and Cl(Int (P)) = X . Now consider the argumentInt (P). Obviously
Int (P) 2 � nf;g and Int (P) � P. Let Q be a nonmisleading proposition atx with
respect toE, and Cl+ Q and Int + Q denote the closure and the interior operators of
� + Q, respectively. We only need to show thatInt + Q(Int (P)) is dense in (X; � + Q),
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i.e., that for all e 2 E+ Q, we havee\ Int + Q(Int (P)) 6= ; . Let e 2 E+ Q. Then, by
the de�nition of E+ Q, we have two cases: (1)e 2 E, or (2) e 62 Ebut e = e0 \ Q
for somee0 2 E. SinceQ is nonmisleading, the latter case entails thatx 2 e. If
e 2 E, we havee\ Int + Q(Int (P)) 6= ; sinceInt (P) � Int + Q(Int (P)) (by Lemma
2.2.5) and Int (P) is dense in (X; � ). If e 62 Eand e = e0 \ Q for somee0 2 E
with x 2 e, we obtain x 2 e \ Int + Q(Int (P)) since x 2 Int (P) � Int + Q(Int (P)),
thus, e \ Int + Q(Int (P)) 6= ; . Therefore,Int + Q(Int (P)) is dense in (X; � + Q), i.e.,
B (Int (P)) holds in M + Q.

(2) ) (3): Suppose (2) holds, i.e., there is aU 2 � nf;g such that U � P
and Cl+ Q(Int + Q(U)) = X for all nonmisleadingQ � X (at x with respect to E).
Let Q be nonmisleading atx with respect to E. SinceCl+ Q(Int + Q(U)) = X , we
have that e \ Int + Q(U) 6= ; for all e 2 E+ Q. As Q is nonmisleading atx, we in
particular have ; 6= Q = Q\ X 2 E+ Q (by the de�nition of E+ Q and the fact that
X 2 E). Hence, it follows from (2) that Q \ Int + Q(U) 6= ; . SinceInt + Q(U) � U,
we obtain U \ Q 6= ; .

(3) ) (1): Assume that U 2 � nf;g is such that U � P and U \ Q 6= ; holds
for all nonmisleadingQ (at x with respect to E). Clearly, this implies that U is
consistent with all e 2 E, i.e., that e\ U 6= ; (since available evidence is by de�ni-
tion nonmisleading), soU is a justi�cation for P (i.e., X = Cl(U) = Cl(Int (P))).
So, to show thatKP holds at x, it is enough to show thatx 2 Int (P). For this,
take the proposition Q = f xg, which obviously is nonmisleading atx, hence by
(3) we must haveU \ f xg 6= ; , i.e. x 2 U. Then, x 2 U 2 � and U � P give us
x 2 Int (P), as desired. 2

5.6 Logics for evidence, justi�ed belief, knowl-
edge, and evidence dynamics

This section constitutes the technical heart of this chapter and is devoted to our
results concerning soundness, completeness, decidability and �nite model prop-
erty for several logics of evidence, belief and knowledge (Sections 5.6.2-5.6.5). We
then continue with introducing the formal syntax and the semantics for the afore-
mentioned dynamic evidence modalities for public announcements, evidence ad-
dition, evidence upgrade and feasible evidence combination, and provide sound
and complete axiomatizations for the associated logics (Section 5.6.6). In order
to keep this section self-contained and �x some notation, we �rst recapitulate, in
a concise way, the formal syntax and the semantics capturing the static notions
we have presented in the previous sections (Section 5.6.1).
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5.6.1 Logics for evidence, justi�ed belief and knowledge

Syntax. The full (static) language L of evidence, belief, and knowledge we
consider is de�ned recursively by the grammar

' ::= p j : ' j ' ^ ' j E0' j E' j 2 0' j 2 ' j B' j B ' ' j K' j [8]'

wherep 2 prop . We employ the usual abbreviations for propositional connectives
> , ? , _, ! , $ , and for the dual modalitiesB̂ , K̂ , Ê etc. except that some of them
have special abbreviations: [9]' := : [8]: ' and 3 ' := : 2 : ' . Several fragments
of the languageL is of particular interest: L B the fragment having the belief
modality B as the only modality; L K having only the knowledge modalityK ;
and some bimodal fragments such asL KB having only operatorsK and B; L [8]K

having only operators [8] and K ; and the trimodal fragment L [8]2 02 having only
the modalities [8], 2 0 and 2 .

Semantics. We interpret the languageL on topo-e-models in an obvious way,
following the de�nitions of the corresponding operators provided in previous sec-
tions.

5.6.1. Definition. [Topo-e-Semantics forL ] Given a topo-e-model
M = ( X; E0; �; V ), we extend the valuation mapV to an interpretation map
[[:]] : L ! P (X ) recursively as follows:

[[p]] = V(p)
[[: ' ]] = X n[[' ]]
[[' ^  ]] = [[ ' ]] \ [[ ]]
[[E0' ]] = f x 2 X j 9e 2 E0(e � [[' ]])g
[[E' ]] = f x 2 X j 9e 2 E (e � [[' ]])g
[[2 0' ]] = f x 2 X j 9e 2 E0 (x 2 e � [[' ]])g
[[2 ' ]] = f x 2 X j 9U 2 � (x 2 U � [[' ]])g
[[B' ]] = f x 2 X j 9U 2 � (U � [[' ]] and Cl(U) = X )g
[[B � ' ]] = f x 2 X j 9U 2 � (; 6= U \ [[� ]] � [[' ]] and Cl(U \ [[� ]]) � [[� ]])g
[[K' ]] = f x 2 X j 9U 2 � (x 2 U � [[' ]] and Cl(U) = X )g
[[[8]' ]] = f x 2 X j [[' ]] = X g

It is not hard to see that the above de�ned semantics for the modalities of
L corresponds exactly to the semantic operators given in Sections 5.2-5.5: e.g.
[[[8]' ]] = [ 8][[' ]], [[2 ' ]] = 2 [[' ]] = Int ([[' ]]), etc. Moreover, while all modalities
except for E0 and 2 0 capture topological properties of topo-e-models, i.e., they
can be interpreted directly in (X; � ), the expressivity of the full language goes
beyond the purely topological properties: the meaning ofE0 and 2 0 does not only
depend on the evidential topology, but also depends on the basic evidence setE0.
From the point of expressivity, the most important fragment ofL is the trimodal
languageL [8]2 02 since it is equally expressive as the full languageL with respect
to the topo-e-models:
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5.6.2. Proposition. The following equivalences are valid in all topo-e-models:

1: B' $ [8]32 ' 4: K' $ 2 ' ^ [8]32 '
2: E' $ [9]2 ' 5: B � ' $ [8](� ! 3 (� ^ 2 (� ! ' )))
3: E0' $ [9]2 0'

Proof:
The proof follows easily from the semantics clauses of the modalities given in
De�nition 3.1.2. 2

Therefore, all the other modalities ofL can be de�ned in L [8]2 02 . In fact,
all our dynamic modalities can also be expressed inL [8]2 02 (see Section 5.6.6).
For this reason, instead of focusing on the full languageL , we present soundness,
completeness and decidability results for thefactive evidence fragmentL [8]2 02 :
its importance comes from its expressive power. We moreover provide sound and
complete axiomatizations for the pure doxatic fragmentL B , the pure epistemic
fragments L K and L [8]K , and �nally for the epistemic-doxastic fragmentL KB .
As the semantics of [8], B and K can be de�ned only based on the evidential
topology (without referring to E0), we will state the corresponding soundness and
completeness results simply with respect to topo-models. ForL [8]2 02 , we need the
complete structure of the topo-e-models as the semantics of2 0 depends on the
basic evidence setE0, and cannot be recovered purely topologically.

5.6.2 The belief fragment L B : KD45B

In this section, we prove that the logic of belief on all topo-models is the standard
belief systemKD45B , and it moreover has the �nite model property with respect
to the class of topo-models.

Soundness of KD45B :

5.6.3. Lemma. Given a topological space(X; � ) and any two subsetsU1; U2 � X ,
if U1 is open dense andU2 is dense, thenU1 \ U2 is dense.

Proof:
Let (X; � ) be a topological space andU1; U2 � X . SupposeU1 is an open dense
and U2 is a dense set in (X; � ). SinceU1 is open and dense we have thatW \ U1

is open and non-empty for any non-empty open setW. Thus, sinceU2 is dense,
we also have that (W \ U1) \ U2 6= ; . Therefore, W \ (U1 \ U2) 6= ; for any
nonempty W 2 � , i.e., U1 \ U2 is dense as well. 2

5.6.4. Proposition. KD45B is sound with respect to the class of all topo-models.
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Proof:
The soundness, as usual, is shown by proving that all axioms are validities and
that all derivation rules preserve validities. The cases for the axioms (4B ) and (5B )
and the inference rules are elementary, whereas the validity of (KB ) in the class of
all topological spaces follows from Lemma 5.6.3 as follows. LetM = ( X; E0; �; V )
and ';  2 L B . We need to show that [[B (' ^  ) $ B' ^ B ]] = X , i.e.,
that [[B (' ^  )]] = [[ B' ^ B ]]. Let x 2 B(' ^  ). This implies, by the se-
mantics of B that [[B (' ^  )]] = X , i.e., Cl (Int ([[' ^  ]])) = X . We there-
fore obtain, X = Cl(Int ([[' ^  ]])) = Cl(Int ([[' ]]) \ Int ([[ ]])) � Cl (Int ([[' ]])) \
Cl (Int ([[ ]])) = [[ B' ^ B ]]. For the other direction, supposex 2 [[B' ^ B ]].
We therefore havex 2 [[B' ]] and x 2 [[B ]]. Then, by the semantics ofB ,
we obtain Cl(Int ([[' ]])) = X and Cl(Int ([[ ]])) = X . This means that both
Int ([[' ]]) and Int ([[ ]]) are dense in (X; � ). Hence, by Lemma 5.6.3, we obtain
Cl(Int ([[' ]]) \ Int ([[ ]])) = X . Similarly to the argument above, we then have
X = Cl(Int ([[' ]]) \ Int ([[ ]])) = Cl(Int ([[' ^  ]])) = [[ B (' ^  )]]. 2

Completeness of KD45B :

For completeness, we use the connection between theKD45-Kripke frames and
topological spaces presented in Section 4.3.1. We only need to show that the
two semantics|the relational semantics and the proposed semantics on topo-e-
models|are equivalent for the languageL B . To recall the de�nition of relational
frame called a pin, see De�nition 4.3.1, page 37.

5.6.5. Proposition. For all ' 2 L B and any Kripke modelM = ( X; R; V )
based on a pin,

k' kM = [[ ' ]]I (M ) :

Proof:
The proof follows by subformula induction on' ; cases for the propositional vari-
ables and the Boolean connectives are elementary. So assume inductively that
the result holds for  ; we must show that it holds also for' := B . Observe
that, given a Kripke model M = ( X; R; V ) based on a pin (X; R ) and ' 2 L B ,
we have

kB' kM =
�

X if k' kM � C
; otherwise

and, [[B' ]]I (M ) =
�

X if [[' ]]I (M ) � C
; otherwise

whereCis the �nal cluster of (X; R ). By induction hyposthesis, we have [[' ]]I (M ) =
k' kM , therefore, [[B' ]]I (M ) = kB' kM . 2

5.6.6. Theorem. KD45B is sound and complete with respect to the class of all
topo-e-models. Moreover,KD45B has the �nite model property.
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Proof:
Soundness is given in Proposition 5.6.4. For completeness, let' 2 L B such that
' 62KD45B . Then, by Lemma 4.3.2, there exists a �nite pinM = ( X; R; V )
with k' kM 6= X . Thus, by Propositition 5.6.5, we have that [[' ]]I (M ) 6= X ,
whereI (M ) = ( X; � R+ ; V) is the corresponding topological model. SinceI (M ) =
(X; � R+ ; V) is �nite, we have also shown thatKD45B has the �nite model prop-
erty. 2

5.6.3 The knowledge fragments L K and L [8]K : S4:2K and
Know[8]K

In this section, we focus on the two knowledge fragmentsL K and L [8]K , and
provide sound and complete axiomatizations for the associated logics. While the
fragment having only the modalityK leads to the familiar systemS4:2K , the full
knowledge fragment having bothK and [8] gives us the axiomatizationKnow[8]K

presented below.

Soundness and Completeness of S4:2K

The proof of soundness is again a standard validity check. The relatively harder
case of the normality axiom (KK ) for the knowledge modality K follows from
Lemma 5.6.3 and the fact that the interior operator commutes with �nite inter-
sections (see, e.g., Table 3.1). For completeness, we follow a similar strategy as
in the proof of Theorem 5.6.6.

Let (X; R ) be a transitive Kripke frame. A nonempty subsetC � X is called
cluster if (1) for eachx; y 2 C we havexRy, and (2) there is noD � X such that
C ( D and D satis�es (1). A point x 2 X is called amaximal point if there is no
y 2 X such that xRy and : (yRx). We call a cluster a�nal cluster if all its points
are maximal. It is not hard to see that for any �nal cluster C of (X; R ) and any
x 2 C, we haveR(x) = C. A transitive Kripke frame (X; R ) is called co�nal if it
has a unique �nal clusterC such that for eachx 2 X and y 2 C we havexRy.

5.6.7. Lemma. S4:2K is sound and complete with respect to the class of re
exive
and transitive co�nal frames.

Proof:
See, e.g., (Chagrov and Zakharyaschev, 1997, Chapter 5). 2

Recall that, given a re
exive and transitive Kripke frame (X; R ), we can
construct an Alexandro� space (X; � R) by de�ning � R to be the set of all upsets
of (X; R ) (see Section 3.1.2).
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5.6.8. Lemma. For every re
exive transitive co�nal frame (X; R ) and nonempty
U 2 � R , we haveCl(U) = X in (X; � R).

Proof:
Let (X; R ) be a re
exive and transitive co�nal frame and let C � X denote its
�nal cluster. By construction, C 2 � R and moreoverC � U, for all nonempty
U 2 � R . Therefore, for every nonemptyU; V 2 � R , we haveV \ U � C 6= ; .
Hence,Cl(U) = X for any nonempty U 2 � R . 2

5.6.9. Proposition. For every re
exive and transitive co�nal Kripke modelM =
(X; R; V ) and all ' 2 L [8]K ,

k' kM = [[ ' ]]B (M ) ;

whereB(M ) = ( X; � R ; V).

Proof:
The proof follows by subformula induction on' ; cases for the propositional vari-
ables, the Boolean connectives and the modality [8] are elementary. So assume in-
ductively that the result holds for  ; we must show that it holds also for' := K .
Let M = ( X; R; V ) be a re
exive and transitive co�nal Kripke model, x 2 X and
' 2 L K .

(� ) Supposex 2 kK kM . This implies that x 2 R(x) � k  kM . By induction
hypothesis, we obtainR(x) � [[ ]]B (M ) . Since x 2 R(x) 2 � R , we have x 2
Int ([[ ]]B (M )). Then, by Lemma 5.6.8,Cl (Int ([[ ]]B (M ))) = X . Therefore, x 2
[[K ]]B (M ) .

(� ) Supposex 2 [[K ]]B (M ) . This means, by the topological semantics ofK ,
that x 2 Int ([[ ]]B (M )) and that Cl (Int ([[ ]]B (M ))) = X . Then, by induction
hypothesis,x 2 Int (k kM ) and Cl(Int (k kM )) = X . The former implies that
there is an open setU 2 � R such that x 2 U � k  kM . In particular, since R(x)
is the smallest open neighbourhood ofx, we obtain R(x) � k  kM . Therefore,
x 2 kK kM . 2

5.6.10. Theorem. S4:2K is sound and complete with respect to the class of all
topo-models.

Proof:
For completeness, let' 2 L K such that ' 62S4:2K . Then, by Lemma 5.6.7, there
exists a Kripke modelM = ( X; R; V ) based on the re
exive and transitive co�-
nal frame (X; R ) such that k' kM 6= X . Thus, by Propositition 5.6.9, we have
[[' ]]B (M ) 6= X , whereB(M ) = ( X; � R ; V) is the corresponding topological model.
2
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Soundness and Completeness of Know[8]K :

The full knowledge fragmentL [8]K having both K and [8] yields the axiomatic
systemKnow[8]K given in Table 5.4 below.

(CPL) all classical propositional tautologies and (MP)
(S5[8]) all S5axioms and rules for the modality [8]
(S4K ) all S4axioms and rules for the modalityK
(Ax-1) [8]' ! K'
(Ax-2) [9]K' ! [8]K̂'

Table 5.4: The axiomatization ofKnow[8]K

5.6.11. Theorem. Know[8]K is sound and complete with respect to the class of
all topo-models.

Proof:
Soundness is easy to see, we here only prove that the axiom ([9]K' ! [8]K̂' )
is valid on all topo-models. LetM = ( X; �; V ) be a topo-model,' 2 L [8]K , and
x 2 X such that x 2 [[[9]K' ]]. This means that there existy 2 X such that
y 2 Int ([[' ]]) and Cl(Int ([[' ]])) = X . Note that for any z 2 X ,

z 2 [[K̂' ]] i� z 62Int ([[: ' ]]) or Cl (Int ([[: ' ]])) 6= X;

(see Proposition 5.5.1-(3)). Therefore, in order to show [[K̂' ]] = X , it su�ces to
show that Cl (Int ([[: ' ]])) 6= X . Sincey 2 Int ([[' ]]), we know that Int (Cl ([[' ]])) 6= ;
(as Int ([[' ]]) � Int (Cl ([[' ]]))). Hence, Cl (Int ([[: ' ]])) 6= X . We therefore obtain
[[K̂' ]] = X , hence, [8]K̂ holds everywhere inM .

For completeness, we use a well-known Kripke completeness result for the
logic obtained by extendingS4:2K with the universal modality [8]. More pre-
cisely, it has been shown in (Goranko and Passy, 1992) that the modal system
Know0

[8]K := S5[8] + S4:2K + ([ 8]' ! K' ), simply obtained by replacing (Ax-2)
in Table 5.4 by the axiom (.2K ):= K̂K' ! K K̂' , is complete with respect to the
class of re
exive and transitive co�nal Kriple frames whenK is interpreted as the
standard Kripke modality and [8] as the global modality. It is not hard to see that
the axiom (.2K ) is derivable inKnow[8]K (by using (Ax-1) and (Ax-2) in Table 5.4),
hence,Know[8]K is stronger thanKnow0

[8]K , i.e., that Know0
[8]K � Know[8]K . Let

' 2 L [8]K such that ' 62Know[8]K . Thus, ' 62Know0
[8]K . Then, by the relational

completeness ofKnow0
[8]K , there exists a re
exive and transitive co�nal Kripke

model M = ( X; R; V ) such that k' kM 6= X . Then, by Proposition 5.6.9, we
obtain [[' ]]B (M ) 6= X , whereB(M ) = ( X; � R ; V). 2



5.6. Logics for evidence, justi�ed belief, knowledge, and evidence dynamics83

5.6.4 The knowledge-belief fragment L KB : Stal revisited

In this section, we show that Stalnaker's systemStal of knowledge and belief (see
Table 4.1) is sound and complete with respect to the class of all topo-models under
the semantics of knowledge and belief presented in this chapter. Recall that, in
Chapter 4, we provided a topological completeness result for this system for the
restricted class of extremally disconnected spaces. Therefore, we here show that
the topological semantics presented in this chapter generalizes the one provided
in Chapter 4 for Stalnaker's combined systemStal.

5.6.12. Theorem. Stal is sound and complete with respect to the class of all
topo-models.

Proof:
For soundness, we here only show the validity of the axiom (FB): the validity
proofs of the other axioms are either trivial or follow from the previous results. Let
M = ( X; �; V ) be a topo-model,' 2 L KB and x 2 X . Supposex 2 [[B' ]]. Hence,
[[B' ]] 6= ; . This implies, by the semantics ofB , that [[B' ]] = Cl(Int ([[' ]])) = X .
Recall that x 2 [[K' ]] i� x 2 Int ([[' ]]) and Cl(Int ([[' ]])) = X . By the assumption,
we already know thatCl (Int ([[' ]])) = X . Thus, in this particular case, [[K' ]] =
Int ([[' ]]). Therefore, X = Cl(Int ([[' ]])) = Cl(Int (Int ([[' ]]))) = Cl(Int ([[K' ]]))
implying that BK' holds everywhere inM .

For completeness, we follow a similar method as in the proof of Theorem
5.6.11. Let ' 2 L KB such that ' 62Stal. Then, since` Stal B' $ K̂K' , there
exists a  2 L K such that ` Stal ' $  (this is obtained by replacing every oc-
currence ofB in ' by K̂K ). Therefore,  62Stal. Moreover, sinceS4:2K � Stal
(see Section 4.1), we obtain 62S4:2K . Then, by Theorem 5.6.10, there exists a
topo-model M = ( X; �; V ) such that [[ ]] 6= X . SinceStal is sound with respect
to all topo-models and` Stal ' $  , we conclude [[' ]] 6= X . 2

5.6.5 The factive evidence fragment L [8]2 02 : Log822 0

The logic Log822 0
of factive evidence is given by the axiom schemas and inference

rules in Table 5.5 over the languageL [8]2 02 .
This section presents the proof of the following theorem. Strong completeness

and strong �nite model property are de�ned standardly (see, e.g., Blackburn
et al., 2001, De�nition 4.10-Proposition 4.12 and De�nition 6.6, respectively).

5.6.13. Theorem. The logic Log822 0
of factive evidence is sound and strongly

complete with respect to the class of all topo-models. Moreover, it has the strong
�nite model property, therefore, it is decidable.
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(CPL) all classical propositional tautologies and (MP)
(S5[8]) all S5axioms and rules for the modality [8]
(S42 ) all S4axioms and rules for the modality2
(42 0 ) 2 0' ! 2 02 0'
Universality (U) [8]' ! 2 0'
Factive Evidence (FE) 2 0' ! 2 '
Pullout 11 (2 0' ^ [8] ) ! 2 0(' ^ [8] )
Monotonicity rule for 2 0 from ' !  , infer 2 0' ! 2 0 

Table 5.5: The axiomatization ofLog822 0

The proof of Theorem 5.6.13 is technically the most challenging result of this
chapter. The key di�culty consists in guaranteeing that the natural topology
for which 2 acts as interior operator is exactly the topology generated by the
neighborhood family associated to2 0. Though the main steps of the proof may
look familiar, involving known methods (a canonical quasi-model construction,
a �ltration argument, and then making multiple copies of the worlds to yield a
�nite model with the right properties), addressing the above-mentioned di�culty
requires a non-standard application of these methods, as well as a number of
additional notions and results, and a careful treatment of each of the steps. The
plan of the proof is as follows. Since the soundness proof is straightforward, we
here focus on completeness and the �nite model property (then decidability fol-
lows immediately). We �rst prove strong completeness ofLog822 0

with respect to
a canonical quasi-model. We then continue with proving the strong �nite quasi-
model property for Log822 0

via a �ltration argument. In the last step, we prove
that every �nite quasi-model is equivalent to a �nite Alexandro� quasi-model by
making multiple copies of the worlds in order to put the model in the right shape.
As Alexandro� quasi-models are modally equivalent to Alexandro� topo-e-models
(Proposition 5.6.14), the result follows.

Quasi-model Construction

A quasi-model is a tuple M = ( X; E0; � ; V), where (X; E0; V) is an evidence
model and � is a preorder such that everye 2 E0 is an up-set of (X; � ) (see
De�nition 2.1.4, page 14 to recall the de�nition of an up-set). Given a preordered
set (X; � ), the set Up� (X ) denotes theset of all up-sets of(X; � ). We use the
same notations as for topo-e-models, for example,E for the closure ofE0 under
nonempty �nite intersections, and � E for the topology generated byE.

The semantics for the languageL [8]2 02 on quasi-models is de�ned the same
way as on topo-e-models (see De�nition 5.6.1),exceptthat for 2 we (do not use
the topology, but instead we) use the standard Kripke semantics based on the
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relation � . More precisely, the semantics for the modalities [8], 2 0 and 2 are
given by the following clauses:

k[8]' kM = f x 2 X j k' kM = X g
k2 0' kM = f x 2 X j 9e 2 E0 (x 2 e � k ' kM )g
k2 ' kM = f x 2 X j 8y 2 X (x � y implies y 2 k ' kM )g

We again omit the superscripts for the model when it is clear from the context.
A quasi-modelM = ( X; E0; � ; V) is called Alexandro� if the topology � E is

Alexandro� and � = v E is the specialization preorder. There is a natural one-
to-one correspondence between Alexandro� quasi-models and Alexandro� topo-
e-models, given by putting, for any Alexandro� quasi-modelM = ( X; E0; � ; V),
B (M ) = ( X; E0; � E; V). Moreover, M and B(M ) satisfy the same formulas of
L [8]2 02 at the same points, as shown in Proposition 5.6.14 below.

5.6.14. Proposition. For all ' 2 L [8]2 02 and every Alexandro� quasi-model
M = ( X; E0; � ; V), we have

k' kM = [[ ' ]]B (M ) :

Proof:
The proof follows by subformula induction on' ; cases for the propositional vari-
ables, the Boolean connectives and the modalities [8] and 2 0 are trivial as the
semantics for these cases are de�ned exactly the same way in both structures.
For the modality 2 , recall that it is interpreted as the interior operator of the
topology � E, thus, this case is analogous to Proposition 3.1.4-(1). 2

Therefore, as stated by Proposition 5.6.14, Alexandro� quasi-models provide
just another presentation of Alexandro� topo-e-models with respect to the lan-
guageL [8]2 02 .

5.6.15. Proposition. For every quasi-modelM = ( X; E0; � ; V) the following
are equivalent:

1. M is Alexandro� (hence, equivalent to an Alexandro� topo-e-model);

2. � E = Up� (X );

3. for every x 2 X , " x is in � E.

Proof:
(1)) (3): SupposeM is Alexandro�, i.e., � E is Alexandro� and � = v E. Let

x 2 X . Then we have: " x = f y 2 X j x � yg = f y 2 X j x v E yg = f y 2
X j 8U 2 � E(x 2 U ) y 2 U)g =

T
f U 2 � E j x 2 Ug. Since� E is an Alexandro�

space, we have
T

f U 2 � E j x 2 Ug 2 � E, and hence" x =
T

f U 2 � E j x 2 Ug 2 � E.
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(3)) (2): It is easy to see that� E � Up� (X ) (since � E is generated byE0 and
every element ofE0 is upward-closed with respect to� ). Now let A 2 Up� (X ).
SinceA is upward-closed, we haveA =

S
f" x j x 2 Ag. Then, by (3) (and � E

being closed under arbitrary unions), we obtainA 2 � E.
(2)) (1): Suppose� E = Up� (X ) and let A � � E. By (2), every U 2 A is

upward-closed, hence,
T

A is upward-closed. Therefore, by (2),
T

A 2 � E. This
proves that � E is Alexandro�. (2) also implies that " x is the least open neigh-
bourhood of x in � E, i.e., " x � U, for all U such that x 2 U 2 � E. Therefore,
� is included in v E. For the other direction, supposex v E y. This implies, in
particular, that y 2 " x (sincex 2 " x 2 � E), i.e., x � y. 2

Having introduced the auxiliary notions and facts, we are ready to prove
Theorem 5.6.13. This proof goes throughthree steps:

1. strong completeness for quasi-models;

2. strong �nite quasi-model property; and

3. every �nite quasi-model is modally equivalent to a �nite Alexandro� quasi-
model (hence, to a topo-e-model).

Step 1: Strong Completeness for Quasi-Models. The proof follows via a
canonical quasi-model construction.

5.6.16. Lemma (Lindenbaum's Lemma). Every Log822 0
-consistent set can be

extended to a maximally consistent one.

Let us now �x a consistent set of sentence �0. Our goal is to construct a
quasi-model for �0. By Lemma 5.6.16, there exists a maximally consistent setT0

such that � 0 � T0. For any two maximally consistent setsT and S, we put:

T � S i� for all ' 2 L [8]2 02 : ([8]' 2 T ) ' 2 S) ;

T � S i� for all ' 2 L [8]2 02 : (2 ' 2 T ) ' 2 S) :

Since [8] is an S5 modality, � is an equivalence relation. Similarly, as2 is
an S4modality, � is a preorder. Moreover, sincè Log8 22 0

[8]' ! 2 ' (by axioms
(U) and (FE) in Table 5.5), we obtain that � is included in � .

5.6.17. Definition. [Canonical Quasi-Model forT0] The canonical quasi model
for T0 is de�ned asM = ( X; E0; � ; V), where

� X := f T � L [8]2 02 j T is a maximally consistent set withT � T0g;

� E0 := f d2 0' j ' 2 L [8]2 02 with [9]2 0' 2 T0g; where b� := f T 2 X j � 2 Tg
for any � 2 L [8]2 02 ;
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� � is the restriction of the above preorder� to X ; and

� V(p) := p̂.

In the following, variablesT; S; : : : range overX .

5.6.18. Lemma. M = ( X; E0; � ; V) is a quasi-model.

Proof:
In order to show that M is a quasi model, we need to show that (1)X 2 E0 and
; 62 E0, (2) � is a preorder, and (3) every element ofE0 is upward-closed with
respect to� . Note that (2) follows from the fact that 2 is an S4modality.

(1): Since ` Log8 22 0
2 0> (by Nec[8] and axiom (U) in Table 5.5), we have

d2 0> = X . Moreoever, by axiom (T[8]), we obtain [9]2 0> 2 T0, hence, d2 0> =
X 2 E0. And, obviously, ; 62 E0.

(3): Let e 2 E0. By the de�nition of E0, we havee = d2 0' for some' 2 L [8]2 02

such that [9]2 0' 2 T0. Now supposeT; S 2 X with T 2 d2 0' (i.e., 2 0' 2 T) and
T � S. Note that ` Log8 22 0

2 0' ! 22 0' (by axioms (42 0 ) and (FE)). Therefore,
22 0' 2 T. SinceT � S, we then obtain2 0' 2 S, i.e., S 2 d2 0' . Thus, asS has
been chosen arbitrarily, we conclude thate is upward-closed with respect to� .

2

5.6.19. Lemma (Existence Lemma for [8]). For every ' 2 L [8]2 02 ,

d[9]' 6= ; i� b' 6= ; :

Proof:
() ) Supposed[9]' 6= ; , i.e., there isT 2 X such that T 2 d[9]' . This means

[9]' 2 T. This implies that the set � := f [8] j [8] 2 Tg [ f ' g is consistent.
Otherwise, there exist �nitely many sentences [8] 1; : : : ; [8] n 2 T such that
[8] 1 ^ : : : ^ [8] n ! : ' is a theorem ofLog822 0

. But then, since [8] is an S5-
modality, we obtain that [8] 1 ^ : : : ^ [8] n ! [8]: ' is also a theorem. Hence, as
[8] 1 ^ : : : ^ [8] n 2 T, we get [8]: ' 2 T, which combined with [9]' 2 T, implies
that T is inconsistent, contradictingT being consistent. Therefore, given that �
is consistent, by Lindenbaum's Lemma, there exists some maximally consistent
set S such that � � S. It is easy to see that this implies' 2 S and S � T � T0

(i.e., S 2 X ). Therefore,S 2 b' implying that b' 6= ; .
(( ) Suppose b' 6= ; , i.e., there is T 2 X such that T 2 b' . Then, since

' ! [9]' 2 T (by axiom (T [8])), we obtain [9]' 2 T, implying that d[9]' 6= ; . 2

5.6.20. Lemma (Existence Lemma for 2 ). For every ' 2 L [8]2 02 and T 2
X , T 2 c3 ' i� there is S 2 b' such thatT � S.
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Proof:
() ) Assume T 2 c3 ' , that is, 3 ' 2 T. This implies that the set � :=

f 2  j 2  2 Tg [ f ' g is consistent. Otherwise there exist �nitely many sentences
2  1; : : : ; 2  n 2 T such that (2  1 ^ : : : ^ 2  n ) ! : ' is a theorem. But then,
since 2 is an S4-modality, we obtain that 2  1 ^ : : : ^ 2  n ! 2 : ' is also a
theorem. Hence, as2  1 ^ : : : ^ 2  n 2 T, we get 2 : ' 2 T, which combined
with 3 ' 2 T, implies that T is inconsistent, contradictingT being consistent.
Therefore, given that � is consistent, by Lindenbaum's Lemma, there exists some
maximally consistent setS such that � � S. It is easy to see that this implies
' 2 S and T � S. Since� is included in � , we also obtainS � T � T0, i.e.,
S 2 X . Therefore,S 2 b' .

(( ) Suppose there isS 2 b' such that T � S. Then, by de�nition of � ,
3 ' 2 T, i.e., T 2 c3 ' . 2

5.6.21. Lemma (Existence Lemma for 2 0). For every ' 2 L [8]2 02 and T 2
X , T 2 d2 0' i� there exist e 2 E0 such thatT 2 e � b' .

Proof:
() ) SupposeT 2 d2 0' , i.e. 2 0' 2 T. SinceT � T0, we get [9]2 0' 2 T0. This

means d2 0' 2 E0. Taking e := d2 0' , we get e 2 E0 and T 2 e. Moreover, since
` Log8 22 0

2 0' ! ' , we obtain e = d2 0' � b' .
(( ) Suppose there ise 2 E0 such that T 2 e � b' . Then, by the de�nition

of E0, we obtain that e = d2 0� for some� such that [9]2 0� 2 T0. Therefore,
T 2 e = d2 0� � b' . This implies that the set � := f 2 0� g [ f8  : 8 2 Tg [ f: ' g
is inconsistent. Otherwise, by Lindenbaum's Lemma, there exists aS 2 X such
that 2 0 2 S and : ' 2 S. The former means that S 2 d2 0� and the latter
means (sinceS is maximal) that S 62b' . Thus, S 2 d2 0� nb' , contradicting the
assumptiond2 0� � b' . Therefore, given that � is inconsistent, there exists a�nite
set f [8] 1; : : : ; [8] ng � � such that `

V
i � n [8] i ! (2 0� ! ' ). Since [8] is a

normal modality and T is maximal,
V

i � n [8] i = [ 8]
 for some [8]
 2 T. We then
have

1: ` [8]
 ! (2 0� ! ' )

2: ` ([8]
 ^ 2 0� ) ! '

3: ` 2 0([8]
 ^ 2 0� ) ! 2 0' (Monotonicity of 2 0)

4: ` 2 02 0([8]
 ^ � ) ! 2 0' (Pullout axiom)

5: ` 2 0([8]
 ^ � ) ! 2 0' (since` Log8 22 0
2 0' $ 2 02 0' )

6: ` ([8]
 ^ 2 0� ) ! 2 0' (Pullout axiom)

Therefore, since [8]
; 2 0� 2 T and T is maximal, we obtain 2 0' 2 T, i.e.,
T 2 d2 0' . 2
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5.6.22. Lemma (Truth Lemma). For every formula ' 2 L [8]2 02 , we have

k' kM = b':

Proof:
The proof follows standardly by subformula induction on' , where the inductive
step for each modality uses the corresponding Existence Lemma, as usual.2

5.6.23. Proposition. Log822 0
is sound and strongly complete for quasi-models.

Proof:
Let � 0 be a Log822 0

-consistent set of formulas. Then, by Lindenbaum's Lemma
(Lemma 5.6.16), �0 can be extended to a maximally consistent setT0. We can
then construct a canonical quasi-modelM = ( X; E0; � ; V) for T0 as in De�nition
5.6.17, and by Lemma 5.6.22 obtain thatM ; T0 j= ' for all ' 2 � 0. 2

Step 2: Strong Finite Quasi-Model Property. In this section, we prove
that the logic Log822 0

has the strong �nite quasi-model property. We do so via a
�ltration argument using the canonical model described in De�nition 5.6.17.

Let ' 0 be aLog822 0
-consistent formula. By Lemma 5.6.16, there exist a max-

imally consistent setT0 such that ' 0 2 T0. Consider the canonical quasi-model
M = ( X; E0; � ; V) for T0 (as given in De�nition 5.6.17). We will use two facts
about this model:

1. k' kM = b'; for all ' 2 L [8]2 02 ; and

2. E0 = f d2 0' j [9]2 0' 2 T0g = fk 2 0' kM j [9]2 0' 2 T0g:

Closure conditions for � : Let � be a �nite set such that: (1) ' 0 2 �; (2) � is
closed under subformulas; (3) if2 0' 2 � then 22 0' 2 �; (4) � is closed under
single negations; (5)2 0> 2 �. For x; y 2 X , put

x � � y i� for all  2 � ( x 2 k kM () y 2 k kM );

and denote byjxj := f y 2 X j x � � yg the equivalence class ofx modulo � � .
Also, put X f := fj xj j x 2 X g, and more generally putef := fj xj j x 2 eg for
every e 2 E0. We now de�ne a \�ltrated model " M f = ( X f ; Ef

0 ; � f ; V f ), where

� X f := fj xj j x 2 X g;

� j xj � f jyj i� for all 2  2 �
�
x 2 k2  kM ) y 2 k2  kM

�
;

� E f
0 := f ef j e = d2 0 = k2 0 kM 2 E0 for some such that 2 0 2 � g;
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� V f (p) := fj xj : x 2 V(p)g.

5.6.24. Lemma. M f is a �nite quasi-model (of size bounded by a computable
function of ' 0).

Proof:
Since � is �nite, there are only �nitely many equivalence classes modulo� � .
Therefore,X f is �nite. In fact, X f has at most 2j � j states. It is obvious that � f

is a preorder. Moreover, sinceX = k2 0>k M and 2 0> 2 �, we have X f 2 E f
0 .

Also, sincee 6= ; for all e 2 E0, we have eachef 2 E f
0 nonempty. So we only

have to prove that the evidence setsef are upward{closed. For this, letef 2 E f
0 ,

jxj; jyj 2 X f such that jxj 2 ef and jxj � f jyj. We need to show thatjyj 2 ef . By
the de�nition of Ef

0 , we know that e = d2 0 = k2 0 kM for some2 0 2 �. From
jxj 2 ef , it follows that there is somex0 � � x such that x0 2 e = k2 0 kM , and
since2 0 2 �, we have x 2 k2 0 kM . Therefore, sincè Log8 22 0

2 0 ! 22 0 
(this is easy to see from axioms (42 0 ) and (FE) stated in Table 5.5), we have
x 2 k22 0 kM . But 22 0 2 � (by the closure assumptions on �), so jxj � f jyj
gives usy 2 k22 0 jkM . By the axiom (T2 ), we obtain y 2 k2 0 kM = d2 0 = e,
hencejyj 2 ef . 2

5.6.25. Lemma (Filtration Lemma). For every formula ' 2 � , we have

k' kM f
= fj xj j x 2 k ' kM g:

Proof:
The proof follows by subformula induction induction on' 2 �; cases for the
propositional variables, the Boolean connectives and the modalities [8]' and 2 '
are treated as usual (in the last case using the �ltration property of� f that: if
x � y than jxj � f jyj). We only prove here the inductive case for' := 2 0 :

() ) Let jxj 2 k 2 0 kM f
. This means that there exists someef 2 E f

0 s.t.
jxj 2 ef � k  kM f

. By the de�nition of Ef
0 , there exists some� such that 2 0� 2 �

and e = d2 0� = k2 0� kM 2 E0. From jxj 2 ef , it follows that there is somex0 � � x
such that x0 2 e = k2 0� kM , and since2 0� 2 �, we have x 2 k2 0� kM = e. Now
let y 2 e be any element ofe. Then, by the de�nition of ef and the assumption
that ef � k  kM f

, we obtain jyj 2 ef � k  kM f
. So, jyj 2 k  kM f

. Therefore, by
the induction hypothesis,y 2 k kM , hence,e � k  kM . Thus, we have found an
evidence sete 2 E0 such that x 2 e � k  kM , i.e., shown that x 2 k2 0 kM .

(( ) Let x 2 k2 0 kM . It is easy to see that [9]2 0 2 x (since ` Log8 22 0

2 0 ! [9]2 0 ), and so also [9]2 0 2 T0 (since x 2 X , thus, x � T0). This
means that the sete := d2 0 = k2 0 kM 2 E0 is an evidence set in the canonical
model (see De�nition 5.6.17), and since2 0 2 �, we conclude that ef 2 E f

0 .
We obviously havex 2 e, and so jxj 2 ef . Since ` Log8 22 0

2 0 !  , we have



5.6. Logics for evidence, justi�ed belief, knowledge, and evidence dynamics91

e = k2 0 kM � k  kM , and henceef � fj yj j y 2 k kM g = k kM f
(by the

induction hypothesis). Thus, we have foundef 2 E f
0 such that jxj 2 ef � k  kM f

,
i.e., shown that jxj 2 k 2 0 kM f

. 2

5.6.26. Theorem. Log822 0
has strong �nite quasi-model property.

Proof:
Let ' 0 be aLog822 0

-consistent formula. Then, by Lindenbaum's Lemma (Lemma
5.6.16), ' 0 can be extended to a maximally consistent setT0 such that ' 0 2 T0.
We can then construct a canonical quasi-modelM = ( X; E0; � ; V) for T0 as
in De�nition 5.6.17, and by Lemma 5.6.22 obtain thatM ; T0 j= ' 0. Then, by
Lemma 5.6.25, we haveM f ; jT0j j= ' 0, where M f is the �ltrated model of M
through the �nite set � that is obtained by closing f ' 0g under the closure condi-
tions (1)-(5). By Lemma 5.6.24, we know thatM f is a �nite model whose size is
bounded by 2j � j , therefore we conclude thatLog822 0

has the strong �nite quasi-
model property. 2

Step 3: Equivalence of Finite Quasi-Models and Finite Alexandro�
Quasi-Models. In this section, we prove that every �nite quasi-model is modally
equivalent to a �nite Alexandro� quasi-model, and therefore, to a topo-e-model
with respect to the languageL [8]2 02 .

Let M = ( X; E0; � ; V) be a �nite quasi-model. We form a new structure
~M = ( ~X; ~E0; ~� ; ~V), by putting:

� ~X := X � f 0; 1g;

� ~V(p) := V(p) � f 0; 1g;

� (x; i ) ~� (y; j ) i� x � y and i = j ;

� ~E0 := f ei j e 2 E0; i 2 f 0; 1gg [ f ey
i j y 2 e 2 E0; i 2 f 0; 1gg [ f ~X g, where

we used notations

{ ei := e � f ig = f (x; i ) j x 2 eg, and

{ ey
i := " y � f ig [ e � f 1 � ig = f (x; i ) j y � xg [ e1� i .

5.6.27. Lemma. ~M is a �nite quasi-model.

Proof:
It is easy to see that ~M is �nite, in fact, it is of size 2�jX j. It is guaranteed by
de�nition that ~X 2 ~E0 and ; 62 ~E0. To show that every element of~E0 is upward-
closed with respect to~� , let ~e 2 ~E0 and (x; i ); (y; j ) 2 ~X such that (x; i ) 2 ~e and
(x; i ) ~� (y; j ). Then, by the de�nition of ~� , we know that x � y and i = j . We
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have two cases: if ~e = e � f ig for somee 2 E0, then y 2 e (since e is upward
closed with respect to� , x 2 e and x � y), therefore, (y; i) 2 e � f ig = ~e. If
~e = ez

k for somez 2 X and k 2 f 0; 1g, we again have two cases. Ifk = 1 � i , then
the result follows as in the �rst case. Ifk = i , then " z � i � ~e. Since (x; i ) 2 ~e, we
obtain that z � x, and thus, z � y (since� is transitive). We therefore conclude
that ( y; i) 2 " z � i � ~e. 2

Notation : For any set ~Y � ~X , put ~YX := f y 2 X j (y; i) 2 ~Y for somei 2
f 0; 1gg for the set consisting of �rst components of all members of~Y. It is easy
to see that we have (~Y [ ~Z)X = ~YX [ ~ZX , and ~X X = X .

5.6.28. Lemma. If y 2 e 2 E0, i 2 f 0; 1g and ~e 2 f ei ; ey
i g, then we have:

1. ~eX = e;

2. ey
i \ ei = " (y; i), where" (y; i) = f ~x 2 ~X j (y; i) ~� ~xg = f (x; i ) j y � xg.

Proof:
(1): If ~e = ei , then ~eX = ( e � f ig)X = e. If ~e = ey

i , then ~eX = ( " y � f ig)X [
(e � f 1 � ig)X = " y [ e = e (sincee is upward-closed andy 2 e, so " y � e).

(2): ey
i \ ei = ( " y � f ig [ e � f 1 � ig) \ (e � f ig) = ( " y \ e) � f ig = " y � f ig =

" (y; i) (since " y � e). 2

5.6.29. Lemma. ~M is an Alexandro� quasi-model(and thus also a topo-e-model).

Proof:
By Proposition 5.6.15, it is enough to show that, for every (y; i) 2 ~X , the upward-
closed set" (y; i) is open in the topology� ~E generated by ~E0: this follows directly
from Lemma 5.6.28-(2). 2

5.6.30. Lemma (Modal-Equivalence Lemma). For all ' 2 L [8]2 02 ,

k' k
~M = k' kM � f 0; 1g:

Proof:
The proof follows by subformula induction on' ; cases for the propositional vari-
ables, the Boolean connectives and the modalities [8]' and 2 ' are straightfor-
ward. We only prove here the inductive case for' := 2 0 .

() ) Suppose that (x; i ) 2 k2 0 k ~M . Then there exists some ~e 2 ~E0 such that
(x; i ) 2 ~e � k  k ~M = k kM �f 0; 1g (where we used the induction hypothesis for 
at the last step). From this, we obtain that x 2 ~eX � (k kM � f 0; 1g)X = k kM .
But by the construction of ~E0, ~e 2 ~E0 means that either ~e = ~X or there exist
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e 2 E0, y 2 e and j 2 f 0; 1g such that ~e 2 f ej ; ey
j g. If the former is the case, we

have x 2 ~eX = X � k  kM . SinceX 2 E0, by the semantics of2 0, we obtain
x 2 k2 0 kM . If the latter is the case, by Lemma 5.6.28-(1), we have ~eX = e, so
we conclude thatx 2 ~eX = e � k ' kM . Therefore, again by the semantics of2 0,
we havex 2 k2 0 kM .

(( ) Suppose thatx 2 k2 0 kM . Then, there exists somee 2 E0 such that
x 2 e � k  kM . Take now the set ei = e � f ig 2 ~E0. Clearly, we have
(x; i ) 2 ei � k  kM � f ig � k  kM � f 0; 1g = k k ~M (where we used the in-
duction hypothesis for at the last step), i.e., we have (x; i ) 2 k2 0 k ~M . 2

5.6.31. Theorem. Every �nite quasi-model is modally equivalent to a �nite
Alexandro� quasi-model, therefore, to a topo-e-model with respect to the language
L [8]2 02 .

Proof:
The proof immediately follows from Lemma 5.6.30: the same formulas are satis-
�ed at x in M as at (x; i ) in ~M . 2

Proof of Theorem 5.6.13: Theorem 5.6.13 (completeness and �nite model
property for topo-e-models) is thus obtained as an immediate corollary of Propo-
sition 5.6.23, Theorems 5.6.26 and 5.6.31.

5.6.6 Dynamics Extensions of L [8]2 02

Moving on to dynamic extensions, we considerPDL -style languagesL !
822 0

, L +
822 0

,
L *

822 0
, and L #

822 0
obtained by adding toL [8]2 02 dynamic modalities [!' ] for pub-

lic announcements, respectively [+' ] for evidence addition, [* ' ] for evidence
upgrade and [#] for feasible evidence combination with the following intended
readings:

[!' ] :=  becomes true after the public announcement of'

[+ ' ] :=  becomes true after' is accepted as an admissible piece of evidence

[* ' ] :=  becomes true after' is accepted as the most important evidence

[#]  :=  becomes true after the basic evidence is feasibly combined

The semantics for dynamic operators uses the corresponding model change
presented in Section 5.4 (as standard in Dynamic Epistemic Logic). More pre-
cisely, given a topo-e-modelM = ( X; E0; �; V ) and x 2 X , the semantics for the
above mentioned dynamic operators are de�ned as

x 2 [[[!' ] ]] i� x 2 [[' ]] implies x 2 [[ ]]M
![[ ' ]]

x 2 [[[+ ' ] ]] i� x 2 [[[9]' ]] implies x 2 [[ ]]M
+[[ ' ]]

x 2 [[[* ' ] ]] i� x 2 [[[9]' ]] implies x 2 [[ ]]M
* [[ ' ]]

x 2 [[[#] ' ]] i� x 2 [[' ]]M
#
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where we denote by [[ ]]M
![[ ' ]]

the extension of  in the updated model M ![[' ]],
etc. The precondition x 2 [[' ]] in the above clause for public announcements
encodes the fact that public announcements are factive: so one can only update
with true sentences' . The preconditionsx 2 [[[9]' ]] in the clauses for evidence
addition and upgrade encodes the fact that, in order to qualify as (new) evidence,
' has to beconsistent (i.e. [[' ]] 6= ; ). In the following, we present the sound and
complete axiomatizations for the corresponding dynamic systems. These will be
obtain by adding a set of reduction axioms for each dynamic modality to the
axiomatization Log822 0

, as standard in Dynamic Epistemic Logic (Baltag et al.,
1998; van Ditmarsch et al., 2007; van Benthem, 2011). We only prove the validity
of the reduction axiom for the modality2 0 in each case and leave the other cases
for the reader since they follow either trivially or similar to the case for2 0.

5.6.32. Theorem. The sound and complete logicLog!
822 0

of evidence and public
announcements with respect to the class of all topo-e-models is obtained by adding
the following reduction axioms to the systemLog822 0

:

1: [!' ]p $ (' ! p) 5: [!' ]2  $ (' ! 2 [!' ] )
2: [!' ]:  $ (' ! : [!' ] ) 6: [!' ][8] $ (' ! [8][!' ] )
3: [!' ]( ^ � ) $ ([!' ] ^ [!' ]� ) 7: [!' ][! ]� $ [!h' i  ]�
4: [!' ]2 0 $ (' ! 2 0[!' ] )

Proof:
Let M = ( X; E0; �; V ) be a topo-e-model,x 2 X and ';  2 L !

822 0
.

Axiom-4:

x 2 [[[!' ]2 0 ]] i� x 2 [[' ]] implies x 2 [[2 0 ]]M
![[ ' ]]

i� x 2 [[' ]] implies 9e 2 E ![[' ]]
0 (x 2 e � [[ ]]M

![[ ' ]]
)

i� x 2 [[' ]] implies 9e0 2 E0(x 2 e0 \ [[' ]] = e � [[ ]]M
![[ ' ]]

)
(by defn. of E![[' ]]

0 )

i� x 2 [[' ]] implies 9e0 2 E0(x 2 e0 � [[[!' ] ]])

i� x 2 [[' ]] implies x 2 [[2 0[!' ] ]]

i� x 2 [[' ! 2 0[!' ] ]]

2

5.6.33. Theorem. The sound and complete logicLog+
822 0

of evidence and evi-
dence addition with respect to the class of all topo-e-models is obtained by adding
the axiom K+ and the Necessitation rule(Nec+ ) for the evidence addition modal-
ities as well as the following reduction axioms toLog822 0

:
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1. [+ ' ]p $ ([9]' ! p)

2. [+ ' ]:  $ ([9]' ! : [+ ' ] )

3. [+ ' ]( ^ � ) $ ([+ ' ] ^ [+ ' ]� )

4. [+ ' ]2 0 $ ([9]' ! (2 0[+ ' ] _ (' ^ [8](' ! [+ ' ] ))))

5. [+ ' ]2  $ ([9]' ! (2 [+ ' ] _ (' ^ 2 (' ! [+ ' ] ))))

6. [+ ' ][8] $ ([9]' ! [8][+ ' ] )

Proof:
Let M = ( X; E0; �; V ) be a topo-e-model,x 2 X and ';  2 L +

822 0
. Observe that

x 2 [[[9]' ]] implies [[ ]]M
+[[ ' ]]

= [[[+ ' ] ]] (5.1)

Axiom-4:

x 2 [[[+ ' ]2 0 ]]

i� x 2 [[[9]' ]] implies x 2 [[2 0 ]]M
+[[ ' ]]

i� x 2 [[[9]' ]] implies 9e 2 E+[[ ' ]]
0 (x 2 e � [[ ]]M

+[[ ' ]]
)

i� x 2 [[[9]' ]] implies (9e0 2 E0(x 2 e0 � [[ ]]M
+[[ ' ]]

) or (x 2 [[' ]] � [[ ]]M
+[[ ' ]]

))
(by defn. of E+[[ ' ]]

0 )

i� x 2 [[[9]' ]] implies (9e0 2 E0(x 2 e0 � [[[+ ' ] ]]) or x 2 [[' ]] � [[[+ ' ] ]])
(by (5.1))

i� x 2 [[[9]' ]] implies ((x 2 [[2 0[+ ' ] ]]) or (x 2 [[' ]] and x 2 [[[8](' ! [+ ' ] ]]))

i� x 2 [[[9]' ]] implies (x 2 [[2 0[+ ' ] ]] or x 2 [[' ^ [8](' ! [+ ' ] ]]))

i� x 2 [[[9]' ! (2 0[+ ' ] _ (' ^ [8](' ! [+ ' ] )))]]

The proof for the modality 2 follows in a similar way with minor di�erences
because of the fact that for everye 2 E+[[ ' ]] there is some combined evidence
e0 2 E such that either e = e0 or e = e0 \ [[' ]]. Therefore, we have

Axiom-5:

x 2 [[[+ ' ]2  ]]

i� x 2 [[[9]' ]] implies 9e 2 E+[[ ' ]](x 2 e � [[ ]]M
+[[ ' ]]

)

i� x 2 [[[9]' ]] implies 9e0 2 E(x 2 e0 � [[ ]]M
+[[ ' ]]

or x 2 e0 \ [[' ]] � [[ ]]M
+[[ ' ]]

)

i� x 2 [[[9]' ]] implies 9e0 2 E((x 2 e0 � [[[+ ' ] ]])

or (x 2 [[' ]] and x 2 e0 � [[' ! [+ ' ] ]]))

i� x 2 [[[9]' ]] implies (x 2 [[2 [+ ' ] ]] or (x 2 [[' ]] and x 2 [[2 (' ! [+ ' ] ]]))

i� x 2 [[[9]' ! (2 [+ ' ] _ (' ^ 2 (' ! [+ ' ] )))]]
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2

5.6.34. Theorem. The sound and complete logicLog*
822 0

of evidence and evi-
dence upgrade with respect to the class of all topo-e-models is obtained by adding
the axiom K* and the Necessitation rule(Nec* ) for the evidence addition modal-
ities as well as the following reduction axioms toLog822 0

:

1. [* ' ]p $ ([9]' ! p)

2. [* ' ]:  $ ([9]' ! : [* ' ] )

3. [* ' ]( ^ � ) $ ([* ' ] ^ [* ' ]� )

4. [* ' ]2 0 $ ([9]' ! ((2 0[* ' ] _ ' ) ^ [8](' ! [* ' ] )))

5. [* ' ]2  $ ([9]' ! ((2 [* ' ] _ ' ) ^ [8](' ! [* ' ] )))

6. [* ' ][8] $ ([9]' ! [8][* ' ] )

Proof:
Let M = ( X; E0; �; V ) be a topo-e-model,x 2 X and ';  2 L *

822 0
. Similar to

the above case, we have

x 2 [[[9]' ]] implies [[ ]]M
* [[ ' ]]

= [[[ * ' ] ]] (5.2)

Axiom-4:

x 2 [[[* ' ]2 0 ]]

i� x 2 [[[9]' ]] implies 9e 2 E* [[' ]]
0 (x 2 e � [[ ]]M

* [[ ' ]]
)

i� x 2 [[[9]' ]] implies (9e0 2 E0(x 2 e0 [ [[' ]] � [[ ]]M
* [[ ' ]]

) or (x 2 [[' ]] � [[ ]]M
* [[ ' ]]

))
(by defn. of E* [[' ]]

0 )

i� x 2 [[[9]' ]] implies (9e0 2 E0(x 2 e0 [ [[' ]] � [[[* ' ] ]])

or (x 2 [[' ]] � [[[* ' ] ]])) (by (5.2))

i� x 2 [[[9]' ]] implies (9e0 2 E0(x 2 e0 � [[[* ' ] ]] and [[' ]] � [[[* ' ] ]])

or (x 2 [[' ]] � [[[* ' ] ]]))

i� x 2 [[[9]' ]] implies (x 2 [[2 0[* ' ] ]] and x 2 [[[8](' ! [* ' ] )]])

or (x 2 [[' ^ [8](' ! [* ' ] )]])

i� x 2 [[[9]' ! ((2 0[* ' ] _ ' ) ^ [8](' ! [* ' ] ))]]

The validity of the axiom 5 follows similarly where we replace the basic evidence
set E0 by the corresponding combined evidence setE. 2
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5.6.35. Theorem. The sound and complete logicLog#
822 0

of evidence and feasi-
ble evidence combination with respect to the class of all topo-e-models is obtained
by adding the axiom K# and the Necessitation rule(Nec# ) for the evidence addi-
tion modalities as well as the following reduction axioms toLog822 0

:

1: [#] p $ p 4: [#] 2 ' $ 2 [#] '
2: [#] : ' $ : [#] ' 5: [#] 2 0' $ 2 [#] '
3: [#]( ' ^  ) $ ([#] ' ^ [#]  ) 6: [#][ 8]' $ [8][#] '

Proof:
Let M = ( X; E0; �; V ) be a topo-e-model,x 2 X and ' 2 L #

822 0
.

Axiom-5:

x 2 [[[#] 2 0' ]] i� x 2 [[2 0' ]]M
#

i� 9e# 2 E#
0 (x 2 e# � [[' ]]M

#
)

i� 9e# 2 E#
0 (x 2 e# � [[[#] ' ]])

i� 9e 2 E(x 2 e � [[[#] ' ]]) (since E#
0 = E# = E)

i� x 2 [[2 [#] ' ]]

The validity of the axiom 5 follows similarly sinceE = E# . 2

5.7 Conclusions and Further Directions

In this chapter, we studied a topological semantics for various notions ofevidence,
evidence-based justi�cation, argument,(conditional) belief, and knowledge. We
did so by using topological structures based on the (uniform) evidence models of
van Benthem and Pacuit (2011). Several soundness, completeness, �nite model
property and decidability results concerning the logics of belief, knowledge and
evidence onall topological (evidence) models have been shown. We also discussed
some dynamic evidence modalities such as public announcements, evidence ad-
dition, evidence upgrade and feasible evidence combination, and provided sound
and complete axiomatizations for the associated logics by means of a set of re-
duction axioms for each dynamic modality.

Our topological approach contributes to the evidence setting of van Benthem
and Pacuit (2011); van Benthem et al. (2012, 2014) in many ways. First of all, this
topological approach, we believe, gives mathematically more natural meanings to
the epistemic/doxastic modalities we considered by providing a precise match be-
tween epistemic and topological notions. The list of the epistemic notions studied
together with their topological counterparts is given in Table 5.6 below.
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Epistemology Topology
Basic Evidence Subbasis of a topology (E0)
(Combined) Evidence Basis of a topology (E)
Arguments Open Sets (� E)
Justi�cations Dense Open Sets
Belief Dense interior (nowhere dense complement)
Knowledge (ofP) x 2 Int (P) and Int (P) is dense

Table 5.6: Matching epistemic and topological notions

Besides, concerning the belief interpretation, our proposal yields a notion of
belief that coincides with the one of van Benthem and Pacuit (2011) in \good"
cases, and that behaves better in general. More precisely, our justi�ed belief is
always consistent, in fact, it satis�es the axioms and rules of the standard belief
system KD45B on all topological spaces (Section 5.6.2). It moreover admits a
natural topological reading in terms of dense-open sets (or equivalently, in terms
of nowhere dense sets) as \truth in most states of the model", where \most" refers
to \everywhere but a nowhere dense part". We have also shown that the logic
of evidence models under our proposed semantics has the �nite model property,
whereas this was not the case in (van Benthem and Pacuit, 2011; van Benthem
et al., 2012, 2014).

The formalism developed in this chapter improves also on our own work on an-
other topological semantics for Stalnaker's epistemic-doxastic system, presented
in Chapters 4. While in Chapters 3 and 4 we could talk about evidential grounds
of knowledge and belief only on a semantic level, the current setting provides syn-
tactic representations of evidence, therefore, makes the notion of evidence a part
of the logic. Moreover, we showed that knowledge and belief can be interpreted
on arbitrary topological spaces (rather than on extremally disconnected or h.e.d.
spaces), without changing their logic. To this end, the semantics of knowledge
and belief proposed in this chapter generalizes the setting of Chapter 4.

In the rest of this section, we name a few directions for future research:

Connection to \topological" formal learning theory. One line of inquiry
involves adding to the semantic structure a larger setE3

0 � E 0 of potential evi-
dence, meant to encompass all the evidence that might be learnt in the future.
This would connect well with the topological program in Inductive Epistemology
started by Kelly and others (Kelly, 1996; Schulte and Juhl, 1996; Kelly et al.,
1995; Kelly and Lin, 2011; Baltag et al., 2015c), in which a topological version of
Formal Learning Theory is used to investigate convergence of beliefs to the truth
in the limit, when the agent observes a stream of incoming evidence. A formal
setting that involves both actual evidenceE0 and potential evidenceE3

0 � E 0
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would combine coherentist justi�cation with predictive learning. A logical syntax
appropriate for this setting could be obtained by extending our language with
operators borrowed from topo-logic (Moss and Parikh, 1992), such as an operator
3 ' , expressing the fact that' can become true after more evidence is learnt. In-
ductive learnability of ' is then captured by the formula3 K' , whereK is our
defeasible knowledge (rather than the absolutely certain knowledge operator of
topo-logic).

Multi-agent extensions. Another line of research involves extending our frame-
work to a multi-agent setting. It is straightforward to generalize our semantics to
multiple agents, though obtaining a completeness result might not be that easy.
However, the real interesting challenge comes when we look at notions ofgroup
knowledge, for some groupG of agents. Forcommon knowledge, there are at least
two di�erent natural options: (1) the standard Lewis-Aumann concept of the in�-
nite conjunctions of \everybody knows that everybody knows etc." (Lewis, 1969;
Aumann, 1976), and (2) a stronger concept, based onshared evidence(the inter-
section

T
a2 G Ea

0 of the evidence familiesEa
0 of all agentsa 2 G). The two concepts

di�er in general, and this is related to Barwise's older observation on the distinc-
tion of concepts of common knowledge in a topological framework (Barwise, 1988),
in contrast to Kripke models, where all the di�erent versions collapse to the same
notion (see also van Benthem and Sarenac, 2004 and Bezhanishvili and van der
Hoek, 2014, Section 12.4.2.5 for a discussion on the di�erent formalizations of
common knowledge on topological spaces). Similarly, in this evidence-based set-
ting, the standard notion of distributed knowledgedoes not seem appropriate to
capture a group'sepistemic potential. Standardly, a group of agentsG is said to
have distributed (implicit) knowledge of ' if ' is implied by the knowledge of
all individuals in G pooled together (see, e.g., Fagin et al., 1995, Chapter 2 for
a standard treatment of distributed knowledge based on relation models). In our
setting though, a natural way to think about a group's epistemic potential is to
let the agents share all their evidence, and compute their knowledge based on the
evidence family obtained by taking the unionEG

0 =
S

a2 G Ea
0 of all the evidence

familiesEa
0 of all agentsa in G. This corresponds to moving to the smallest topol-

ogy that includes all agents' evidential topologies� a, which also gives us a natural
way to de�ne a consistent notion of (potential)group belief. However, this setting
has some apparent `defects', that is, some facts known by one individual in the
group might be defeated by another member's false or misleading evidence, there-
fore, the individual knowledge of these facts will be lost after the group members
share all their evidence. This is in contrast with the standard notion of distributed
knowledge that is group monotonic: the distributed knowledge of a larger group
always includes the distributed knowledge of any of its subgroups, and so in par-
ticular it includes everything known by any member of the group. One option is
to simply give up the dogma that groups are always wiser than their members,
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and retain the evidence-based model of group knowledge as providing a better
representation of the epistemic potential of a group. Learning from others might
not always be epistemically bene�cial: it all depends on the quality of the oth-
ers' evidence. There are also ways to avoid this conclusion, pursued by Ramirez
(2015), via natural modi�cations of our models and by de�ning knowledge to
be undefeated by any potential evidence that the agent may learn. This way
Ramirez (2015) re-establishes group monotonicity, but showing completeness for
the resulting logic possess technical challenges (see Ramirez, 2015, for details).



Part II

From Public Announcements to
E�ort
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Chapter 6

Topological Subset Space Semantics

In this chapter, we present the two topological frameworks, on the basis of which
the work presented in the second part of this dissertation was developed. The
�rst is the so-called subset space semantics of Moss and Parikh (1992), and its
topological version developed by Georgatos (1993, 1994) and Dabrowski et al.
(1996). The second is the topological public announcement formalism introduced
by Bjorndahl (2016). We also point out the connections and di�erences between
the epistemic use of topological spaces in Parts I and II of this thesis, especially
regarding the types of evidence represented and the notion of knowledge studied.

Outline

In Section 6.1, we present the subset space framework, providing its syntax and
semantics as well as the complete axiomatizations of the associated logics with
respect to subset spaces and topological spaces. Section 6.2 introduces the topo-
logical public announcement logic of Bjorndahl (2016), and provides several ex-
pressivity results concerning the languages studied in the aforementioned settings.

6.1 The Subset Space Semantics and TopoLogic

The formalism of \topologic", introduced by Moss and Parikh (1992), and inves-
tigated further by Dabrowski et al. (1996), Georgatos (1993, 1994), Weiss and
Parikh (2002) and others, represents asingle-agentsubset space logic (SSL) for
the notions of knowledge ande�ort . One of the crucial aspects of this framework
is that it is concerned not only with the representation of knowledge, but also
aimed at giving an account of information gain or knowledge increase in terms
of observational e�ort.1 It is the latter feature of this work that makes the use

1Moss and Parikh (1992) is partly inspired by Vickers' work on reconstruction of topology
via a logic of �nite observation (Vickers, 1989).

103
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of subset spaces signi�cant. While the knowledge modalityK' has the stan-
dard reading \the agent knows' (is true)", in the subset space setting, the e�ort
modality 2 ' captures a notion of e�ort as any action that results in an increase in
knowledge and is read as \' stays true no matter what further evidence-gathering
e�orts are made". The modality 2 therefore captures a notion ofstability under
evidence-gathering. E�ort can be in the form of measurement, computation, ap-
proximation, or even announcement, depending on the context and the informa-
tion source. To illustrate the underlying intuition of the subset space semantics,
and the notions of knowledge, e�ort, and evidence it represents, suppose for in-
stance, that you have measured your height and obtained a reading of 5 feet and
10 inches� 3 inches. The measuring devices we use to calculate such quantities al-
ways come with a certain error range, therefore giving us an approximation rather
than the precise value. With this measurement in hand, you cannot be said to
know whether you are less than 6 feet tall, as your measurement, i.e., the current
evidence you have, does not rule out that you are taller or shorter. However, if
you are able to spend more resources and take a more precise measurement, e.g.,
by using a more accurate meter with� 1 error range, you come to know that
you are less than 6 feet tall (Bjorndahl and•Ozg•un, 2017). Subset space logics are
designed to represent such situations, and therefore involve two modalities: one
for knowledgeK , and the other one for e�ort 2 .

The formulas in the bimodal language are interpreted on subset spaces (X; O),
where X is a nonempty domain andO is an arbitrary nonempty collection of
subsets ofX . The elements ofO representpossible observations, and more e�ort
corresponds to a more re�ned truthful observation, thus, a possible increase in
knowledge. A subset space is not necessarily a topological space, however, topo-
logical spaces do constitute a particular case of subset spaces and topological
reasoning provides the intuition behind this semantics, as we will elaborate be-
low.2 While presenting the most general case of subset spaces in this section, our
main results in later sections will still be based on purely topological models.

In this section, we provide the formal background for the subset space seman-
tics of Moss and Parikh (1992), explaining how these \topological" structures
constitute models that are well-equipped to give an account for evidence-based
knowledge and its dynamics. We also point out the di�erences and the connec-
tion between the two topological approaches developed in Chapter 5 and Part II,

2The subset space setting also comes with an independent technical motivation. Many of the
aforementioned sources are concerned with axiomatizing the logics of smaller classes of subset
spaces meeting particular closure conditions on the set of subsetsO. For example, while Moss
and Parikh (1992) axiomatized the logic of subset spaces, Georgatos (1993, 1994) and Dabrowski
et al. (1996) provided an axiomatization of the logic of topological spaces, and complete lattice
spaces. Moreover, Georgatos (1997) axiomatized the logic of treelike spaces, and Weiss and
Parikh (2002) presented an axiomatization for the class of directed spaces. These results are
quite interesting from a modal theoretical perspective, however, in this dissertation, we are
primarily interested in the applications of topological ideas in epistemic logic. We therefore
focus on the epistemic motivation behind the topologic formalism.
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respectively. In particular, we compare the evidence representation on evidence
models of van Benthem and Pacuit (2011) with the one on subset models of Moss
and Parikh (1992), and in turn, the type of evidence-based knowledge studied on
these structures.

6.1.1 Syntax and Semantics

In their in
uential work, Moss and Parikh (1992) consider the bimodal language
L K 2 given by the grammar

' ::= p j : ' j ' ^ ' j K' j 2 ';

and interpret it on subset spaces, a class of models generalizing topological spaces.

6.1.1. Definition. [Subset Space/Model] Asubset spaceis a pair (X; O), where
X is a nonempty set of states andO is a collection of subsets ofX . A subset model
is a tuple X = ( X; O; V), where (X; O) is a subset space andV : prop ! P (X )
a valuation function.

It is not hard to see that subset spaces are just like the evidence models of van
Benthem and Pacuit (2011) (given in De�nition 5.2.1), but with no constraints on
the set of subsetsO.3 However, the way the truth of a formula is de�ned on subset
models leads to a crucial di�erence between the two settings, especially concerning
the type of evidence represented by the elements ofO, and the characterization
of the notion of knowledge interpreted based on evidence. This point will become
clear once we present the formal semantics below.

Subset space semantics interprets formulas not at worldsx but at epistemic
scenariosof the form (x; U), wherex 2 U 2 O . Let ES(X ) denote the collection
of all such pairs inX . Given an epistemic scenario (x; U) 2 ES(X ), the set U is
called itsepistemic range; intuitively, it represents the agent's current information
as determined, for example, by the measurements she has taken. The language
L K 2 is interpreted on subset spaces as follows:

6.1.2. Definition. [Subset Space Semantics forL K 2 ] Given a subset space
model X = ( X; O; V) and an epistemic scenario (x; U) 2 ES(X ), truth of a
formula in the languageL K 2 is de�ned recursively as follows:

X ; (x; U) j= p i� x 2 V(p); wherep 2 prop
X ; (x; U) j= : ' i� not X ; (x; U) j= '
X ; (x; U) j= ' ^  i� X ; (x; U) j= ' and X ; (x; U) j=  
X ; (x; U) j= K' i� ( 8y 2 U)(X ; (y; U) j= ' )
X ; (x; U) j= 2 ' i� ( 8O 2 O )(x 2 O � U implies X ; (x; O) j= ' )

3We could in fact de�ne the subset spaces exactly the same way as evidence models by
putting the constraints X 2 O and ; 62 O. This would technically make no di�erence, however,
we here prefer to present the most general case.
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We say that a formula' is valid in a modelX , and write X j= ' , if X ; (x; U) j= '
for all scenarios (x; U) 2 ES(X ). We say ' is valid, and write j= ' , if X j= '
for all X . We let [[' ]]UX = f x 2 U j X ; (x; U) j= ' g denote the truth set, or
equivalently, extension of' under U in the modelX . We again omit the notation
for the model, writing simply (x; U) j= ' and [[' ]]U , wheneverX is �xed.

Epistemic readings of subset space semantics: current vs potential ev-
idence

In subset space semantics, the points of the space represent \possible worlds"
(or, statesof the world). However, having the units of evaluation as pairs of the
form (x; U)|rather than a single state x|allows us to distinguish the evidence
that the agent currently has in hand from the potential evidence she canin
principle obtain. More precisely, elements ofO can be thought of as potential
pieces of evidence meant to encompass all the evidence that might be learnt in the
future, while the epistemic rangeU of an epistemic scenario (x; U) corresponds
to the current evidence, i.e., \evidence-in-hand" by means of which the agent's
knowledge is evaluated.4 This is made precise in the semantic clause forK' , which
stipulates that the agent knows' just in case' is entailed by herfactive5 evidence-
in-hand. The knowledge modalityK therefore behaves like the global modality
within the given epistemic rangeU. For this reason, in various places, we will often
refer to K as the global modality. Thus, the type of knowledge captured by the
modality K in this setting is absolutely certain, infallible knowledge based on the
agent's current truthful evidence. These points already underline the substantial
di�erences between the two evidence-based epistemic frameworks studied in this
thesis: while E0 of an evidence model (X; E0; V) represents the set of evidence
pieces the agenthas already acquired about the actual situation, the set O of a
subset model (X; O; V) represents the set ofpotential evidence the agent can in
principle discover, even if she does not happen to personally have it in hand at
the moment. A subset model is therefore intended to carry all pieces of evidence
the agent currently has and can potentially gather later, hence, supports model-
internal means to interpret evidence-based information dynamics, as displayed,
e.g., by the e�ort modality.6 In this framework, more e�ort means acquiring more
evidence for the actual state of a�airs, therefore, a better approximation of the
real state. The e�ort modality 2 ' is thus interpreted in terms ofneighbourhood-
shrinking and read as \' is stably true under evidence-acquisition", i.e.,' is true,
and will stay true no matter what further factive evidence is obtained.

4The term \evidence-in-hand" is borrowed from (Bjorndahl and •Ozg•un, 2017), where the
elements ofO are described as \evidence-out-there".

5As in the previous chapters,x 2 U expresses the factivity of evidence.
6In later sections, we study other dynamic modalities, such as the so-called public and

arbitrary announcement modalities, interpreted on topological spaces in the style of the e�ort
modality, that is, without leading to any global change in the initial model.
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As every topological space is a subset space, the above readings of the modal-
ities also apply to the topological models. However, the additional structure that
topological spaces possess helps us to formalize naturally some further aspects of
evidence aggregation (similar to Part I). For example, whenO is closed under
�nite intersections, we can consider the epistemic rangeU of a given epistemic
scenario (x; U) as a �nite stream of truthful information ( O1; : : : ; On ) the agent
has received and put together:x 2 U =

T
i � n Oi 2 O (Baltag et al., 2015c).

Moreover, as noted in (Moss and Parikh, 1992), we can express some topological
concepts in the languageL K 2 that, in fact, lead to concise modal reformulations
of veri�able and falsi�able propositions (as also noted in Georgatos, 1993). To
be more precise, given a topo-modelX = ( X; �; V ) and a propositional variable
p 2 prop , V(p) is open in � i� p ! 3 Kp is valid in X . Recall that the open
sets of a topology are meant to represent potential evidence, i.e., properties of
the actual state that are in principle veri�able : whenever they are true, they are
supported by a sound piece of evidence that the agent can in principle obtain,
therefore, can be known(Vickers, 1989; Kelly, 1996). Therefore, we can state that

� p is veri�able in X i� p ! 3 Kp is valid in X .

In contrast, V(p) is closed in � i� 2 K̂p ! p is valid in X , and closed sets
correspond to properties that are in principlefalsi�able: whenever they are false,
their falsity can be known. In a similar manner, this can be formalized in the
languageL K 2 as

� p is falsi�able in X i� : p ! 3 K : p, or equivalently, 2 K̂p ! p is valid in
X .

As remarked in (Vickers, 1989; Kelly, 1996), the closure properties of a topology
are satis�ed in this interpretation. First, contradictions (; ) and tautologies (X )
are in principle veri�able (as well as falsi�able). The conjunctionp ^ q of two
veri�able facts is also veri�able: if p ^ q is true, then both p and q are true, and
since both are assumed to be veri�able, they can both be known, and hencep^ q
can be known. Finally, if f pi j i 2 I g is a (possibly in�nite) family of veri�able
facts, then their disjunction

W
i 2 I pi is veri�able: in order for the disjunction to

be true, then there must exist somei 2 I such that pi is true, and sopi can be
known (since it is veri�able), and as a result the disjunction

W
i 2 I pi can also be

known (by inference frompi ).

6.1.2 Axiomatizations: SSLand TopoLogic

Moss and Parikh (1992) provided a sound and complete axiomatization of their
logic of knowledge and e�ort with respect to the class of subset spaces. Its purely
topological version was later studied by Georgatos (1993, 1994), and Dabrowski
et al. (1996), who independently provided complete axiomatizations and proved
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decidability. In this section, we give the axiomatizations for the logic of sub-
set spaces (SSL) and of topological spaces (TopoLogic). We state the relevant
completeness, decidability and �nite model property results, and refer to the
aforementioned sources for their proofs.

The axiomatization of the subset space logic, denoted bySSL, is obtained by
augmenting the logicS5K + S42 for the languageL K 2 with the additional axiom
schemes (AP) and (CA) presented in Table 6.1.

(AP) ( p ! 2 p) ^ (: p ! 2 : p); for p 2 prop Atomic Permanence
(CA) K 2 ' ! 2 K' Cross Axiom

Table 6.1: Additional axiom schemes ofSSL

Therefore, the e�ort modality on subset spaces isS4-like. The axiom (AP)
states that the truth value of the propositional variables does not depend on the
given epistemic range, but only depends on the actual state. In fact, this is the
case for all Boolean formulas inL K 2 , and can be proven in the systemSSL. The
cross axiom is also interesting since it links the two modalities of this system.

6.1.3. Theorem (Moss and Parikh, 1992). SSLis sound and complete with
respect to the class of all subset spaces.

It was shown in (Dabrowski et al., 1996) that the logic of subset spaces does not
have the �nite model property, however, its decidability was proven by using non-
standard models calledcross axiommodels (see Dabrowski et al., 1996, Section
2.3).

Concerning the logic of topological spaces forL K 2 , i.e., the so-calledTopoLogic,
it is axiomatized by adding the following axiom schemes to the axiomatization of
SSL:

(WD) 32 ' ! 23 ' Weak Directedness
(UN) 3 ' ^ K̂ 3  ! 3 (3 ' ^ K̂ 3  ^ K 3 K̂ (' _  )) Union Axiom

Table 6.2: Additional axiom schemes ofTopoLogic

6.1.4. Theorem (Georgatos, 1993, 1994). TopoLogicis sound and complete
with respect to the class of all topological spaces. Moreover, it has the �nite model
property, therefore, it is decidable.

The literature on subset space semantics goes far beyond the presentation of
this section. However, we here con�ne ourselves to the material we will use in
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later sections, and refer the reader to (Parikh et al., 2007) for a survey of the
further technical results, extensions, and variations of the topologic formalism.
In this dissertation, we are particularly interested in revealing the connection
between the e�ort modality, and the well-known dynamic epistemic modalities
such as the public and arbitrary announcement modalities. To that end, we use
the topological public announcements introduced by Bjorndahl (2016), presented
in the next section.

6.2 Topological Public Announcements

The epistemic motivation behind the subset space semantics and the dynamic na-
ture of the e�ort modality clearly suggests a link between the subset space setting
and dynamic epistemic logic, in particular dynamics known as public announce-
ments (Plaza, 1989, 2007; Gerbrandy and Groeneveld, 1997). The information
intake represented by the e�ort modality intuitively encompasses any method of
evidence acquisition, including public announcements, a precise and well-studied
instance. This connection was also noted by Georgatos (2011), and further stud-
ied in (Baskent, 2011, 2012; Balbiani et al., 2013; W�ang and�Agotnes, 2013b;
Bjorndahl, 2016), proposing di�erent interpretations for the so-called public an-
nouncement modalities. For example, Baskent (2011, 2012) and Balbiani et al.
(2013) propose modelling public announcements on subset spaces by deleting the
states or the neighbourhoods falsifying the announcement, following the com-
mon approach in public announcement logics (see, e.g., van Ditmarsch et al.,
2007). However, this method is obviouslynot in the spirit of the e�ort modal-
ity, in the sense that e�ort, as interpreted on subset spaces, does not lead to a
global model change but manifests itselflocally as a transition from one neigh-
bourhood to a smaller one, i.e., as a neighbourhood shrinking operator. To the
best of our knowledge, W�ang and�Agotnes (2013b) were the �rst to propose se-
mantics for public announcements on subset spaces in terms of epistemic range
re�nement rather than model restriction. Bjorndahl (2016) then proposed a re-
visedtopological semantics(in the style of subset space semantics) for the syntax
of public announcement logic (without the e�ort modality), that assumes as pre-
condition of learning ' the sentenceint(' ), saying, roughly speaking, that' is
(potentially) knowable. Topologically, this corresponds to the interior operator of
McKinsey and Tarski (1944). Bjorndahl's formalism therefore brings three sepa-
rate yet connected logical frameworks together: public announcement logic, the
interior semantics of McKinsey and Tarski (1944), and the subset space seman-
tics of Moss and Parikh (1992). It thus constitutes a rich enough background
to study the connection between e�ort and the public announcements as well as
their connection to so-called arbitrary announcements.

In this section, we present Bjorndahl's topological public announcement logic,
and brie
y explain the main intuition and motivation behind his formalism. The
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main body of the work presented in Part II crucially relies on Bjorndahl's setting,
and explores its extensions with the aforementioned dynamic modalities both in
single and multi-agent cases.

6.2.1 Syntax and Semantics

Bjorndahl (2016) considers the languageL !
K int given by the grammar

' ::= p j : ' j ' ^ ' j K' j int(' ) j [' ]';

where K' is as in Section 6.1, [' ] is the public announcement operator, and
int is called the \knowability" modality, which, in this setting, plays the role of
a precondition of an announcement (Bjorndahl, 2016). The operator [' ] is of-
ten denoted by [!' ] in the public announcement logic literature (as well as in
Part I); we skip the exclamation sign, but we will use the notation [!] for this
modality when we do not want to specify the announcement formula' (so that
! functions as a placeholder for the content of the announcement). We prefer
this notation here to emphasize the di�erence from the update operators stud-
ied in Part I (which were interpreted in a standard way via model restrictions,
where the precondition of an announcement is only that the announced formula
is true). The dual modalities for K' and [' ] are de�ned as usual, and we let
cl(' ) := : int(: ' ).

Bjorndahl (2016) interprets the above language on topological spaces, in the
style of subset space semantics, by extending the subset space semantics of the
epistemic languageL K with semantic clauses for the additional modalities.

6.2.1. Definition. [Topological Semantics forL !
K int ] Given a topo-modelX =

(X; �; V ) and an epistemic scenario (x; U) 2 ES(X ), truth of formulas in L !
K int

is de�ned for the propositional variables and the Boolean cases as in De�nition
6.1.2, and the semantics forK , int(' ) and [' ] is given recursively as

(x; U) j= K' i� ( 8y 2 U)(( y; U) j= ' )
(x; U) j= int(' ) i� x 2 Int ([[' ]]U )
(x; U) j= [ ' ] i� ( x; U) j= int(' ) implies (x; Int ([[' ]]U )) j=  

whereInt is the interior operator of (X; � ), and [[' ]]U is as de�ned on p. 106.

To elaborate, the semantic clause forK is exactly the same as in De�nition
6.1.2, and is repeated here: as is standard in subset space semantics, knowledge is
entailed by the agent's current evidenceU. On the other hand, the precondition
of an announcement in Bjorndahl's setting is captured by the topological inte-
rior operator that refers to the existence of a piece of factivepotential evidence
entailing the announcement:

(x; U) j= int(' ) i� ( 9O 2 � )(x 2 O � [[' ]]U ):
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More precisely,int(' ) means that ' is knowable at the actual state(though not
necessarily knowable in general, at other states) in the sense that there exists
some potential evidence|an open set containing the actual state|that entails ' .
Therefore, for the precondition of an announcement, Bjorndahl (2016) requires
not only that the announced formula is true, but also that it is entailed by a
piece of (factive) evidence the agent could possibly obtain. In this respect, a true
proposition cannot be announced if it does not have anyopen subsets including
the actual state. For example, on a topo-model with no singleton opens, the
agents can never know the actual state, not every true proposition can come
to be known (as in Georgatos, 1994, Example 1, p. 149). It is this evidence-
based interpretation of public announcements that makes Bjorndahl-style updates
di�erent than standard update operators (interpreted via model restrictions). In
a framework where knowledge is based on the agent's current evidence, and every
piece of evidence the agent might acquire later is represented within the given
model in terms of open sets of a topology, the operatorint as the precondition for
learning something seems to be the right notion to consider. It is a good �t with
the intuition behind the subset space/topological semantics and the evidence-
based learning we study in this part (see Bjorndahl, 2016, for some examples).

6.2.2. Remark. It is worth noting that the intuition behind reading int(' ) as
\ ' is knowable" can falter when' is itself an epistemic formula. For instance, if
' is the Moore sentencep^ : Kp, then K' is not satis�able in any subset model,
in particular, 3 K' is never true. Therefore, in this sense,' can never be known;
nonetheless,int(' ) is satis�able. This is becauseint(' ) abstracts away from the
temporal and dynamic dimension of knowability, and is simply concerned with
potential knowledge. On the other hand,3 K' is a dynamic schema that states
\the agent comes to know' after having spent some e�ort, having acquired some
further evidence". In this respect, int(' ) might be more accurately glossed as
\one could come to know what' used to express(before you came to know
it)". Since primitive propositions do not change their truth value based on the
agent's epistemic state, this subtlety is irrelevant for propositional knowledge and
knowability (Bjorndahl and •Ozg•un, 2017).7

Bjorndahl (2016) then proceeds with providing a sound and complete axiom-
atization for the associated dynamic logicPAL+

int (called public announcement
logic with int), using natural analogues of the standard reduction axioms of pub-
lic announcement logic, and shows that this formalism is co-expressive with the
simpler (and older) logic of interior int(' ) and global modality K' (previously

7For a discussion of di�erent notions of knowability and their link to Fitch's famous Paradox
of Knowability (Fitch, 1963; Brogaard and Salerno, 2013), we refer the interested reader to
(Fuhrmann, 2014; van Ditmarsch et al., 2012). In particular, Fuhrmann (2014) discusses a
notion of knowability as potential knowledge in the spirit of ours, and van Ditmarsch et al.
(2012) consider dynamic notions of knowability.
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investigated by Goranko and Passy (1992); Bennett (1996); Shehtman (1999);
Aiello (2002), extending the work of McKinsey and Tarski (1944) on interior se-
mantics). The axiomatizationsELint and PAL+

int for the languagesL K int and L !
K int ,

respectively, are given in Table 6.3.8

(I) Axioms of system ELint :
(CPL) all classical propositional tautologies and Modus Ponens
(S5K ) all S5axioms and rules for the knowledge modalityK
(S4int ) all S4axioms and rules for the interior modalityint
(K -int) Knowledge implies knowability: K' ! int(' )

(II) Additional reduction axioms of PAL+
int :

(Rp) [' ]p $ (int(' ) ! p)
(R: ) [' ]:  $ (int(' ) ! : [' ] )
(R^ ) [' ]( ^ � ) $ [' ] ^ [' ]�
(RK ) [' ]K $ (int(' ) ! K [' ] )
(R int ) [' ]int( ) $ (int(' ) ! int([' ] )
(R[comp]) [' ][ ]� $ [int(' ) ^ [' ]int( )]�

Table 6.3: The axiomatizations forELint and PAL+
int .

We conclude the section by stating the completeness results forELint and
PAL+

int , and continue our presentation in the next section with a detailed discussion
on the expressive power ofL !

K int and its fragments, also in comparison toL K 2 ,
with respect to topo-models.

6.2.3. Theorem (Shehtman, 1999). ELint is sound and complete with respect
to the class of all topo-models.

Bjorndahl (2016) also presents a canonical topo-model construction forELint (see
Bjorndahl, 2016, Theorem 1). He moreover proves the completeness and sound-
ness ofPAL+

int :

6.2.4. Theorem (Bjorndahl, 2016). PAL+
int is sound and complete with re-

spect to the class of all topo-models.

8In Table 6.3, we present Bjorndahl's original axiomatization as it appears in (Bjorndahl,
2016). In Chapter 7, we propose an alternative set of axioms for the public announcement
modality from which Bjorndahl's axioms are derivable. For this reason, we denote his original
system by PAL+

int , and reserve the more standard notationPALint for our version presented in
Chapter 7.
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6.2.2 Expressivity

This section provides several expressivity results concerning the above de�ned
languages with respect to topo-models. We focus in particular on the expressive
power ofL !

K int and its fragments as provided in (Bjorndahl, 2016), as well as the
connection betweenL int and L K 2 (see, e.g., Parikh et al., 2007, Section 4.3). The
reader who is familiar with the aforementioned sources can skip this section.

6.2.5. Theorem (Bjorndahl, 2016). L !
K int , L K int and L !

K are equally expres-
sive with respect to topo-models.

Proof:
For the proof details of the co-expressivity betweenL !

K int and L K int , we refer to
(Bjorndahl, 2016, Proposition 5).L !

K int and its fragmentL !
K are equally expressive

since the modalityint can be de�ned in terms of the public announcement modal-
ities. In particular, for all ' 2 L !

K int , we haveint(' ) $ h ' i> valid in all topo-
models. To prove this, letX = ( X; �; V ) be a topo-models and (x; U) 2 ES(X ).

(x; U) j= int(' ) i� x 2 Int ([[' ]]U ) (by the semantics ofint)

i� x 2 Int ([[' ]]U ) and (x; Int ([[' ]]U ) j= >

i� ( x; U) j= h' i> (by the semantics of public announ. [!])

2

On the other hand, not surprisingly, the modalityint increases the expressive
power of the purely epistemic fragmentL K . And, similarly, the global modality
K increases the expressivity ofL int :

6.2.6. Theorem. L K int is strictly more expressive thanL K , and thanL int . More-
over, L K and L int are incomparable.

Proof:
In order to show that L K int is strictly more expressive thanL K , we use the
example in (Bjorndahl, 2016, Proposition 3).9 Consider the topo-modelsX =
(f x; yg; 2f x;y g; V) and Y = ( f x; yg; f; ; f yg; f x; ygg; V) such that V(p) = f xg
(see Figure 6.1). LetInt X and Int Y denote the interior operators ofX and
Y, respectively. It is obvious that X and Y are modally equivalent with re-
spect to L K . In other words, for all ' 2 L K and all (z; U) 2 ES(X ) \ ES(Y),
we haveX ; (z; U) j= ' i� Y; (z; U) j= ' (in Bjorndahl, 2016, this argument is
given by a notion of bisimulation). However, whileX ; (x; f x; yg) j= int(p) since

9The topo-models presented in this proof are in fact quite standard examples that are used
in order to compare the expressivity of the global modality and anS4-type Kripke modality
on relational structures. We here adopt these relational structures to our setting by presenting
them as topo-models.
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yxp : p

(a) X

yxp : p

(b) Y

Figure 6.1: Squares represent the open sets in the corresponding topologies.

x 2 f xg = Int X ([[p]]f x;y g), we also havex 62 ;= Int Y ([[p]]f x;y g). Therefore, int(p)
can distinguishX ; (x; f x; yg) from Y; (x; f x; yg), thus it cannot be equivalent to
any formula in L K .

To show that L K int is strictly more expressive thanL int , consider again the
model X = ( f x; yg; 2f x;y g; V), and the topo-modelX 0 = ( f x; yg; 2f x;y g; V 0) such
that V 0(p) = ; (see Figure 6.2).

yxp : p

(a) X

yx: p : p

(b) X 0

Figure 6.2: Squares represent the open sets in the corresponding topologies.

Observe that, for all ' 2 L int , X ; (y; f yg) j= ' i� X 0; (y; f yg) j= ' (this can be
shown easily by a subformula induction on' ). On the other hand, X ; (y; f yg) j=
K̂p whereasX 0; (y; f yg) 6j= K̂p. Therefore, K̂p can distinguish X ; (y; f yg) from
X 0; (y; f yg), thus it cannot be equivalent to any formula inL int .

Moreover, the �rst example shows thatint(p) 2 L int is not equivalent to any
formula in L K , and the second example shows that̂Kp 2 L K is not equivalent to
any formula in L int , hence,L int and L K are incomparable. 2

We also compareL int and L K 2 , and thereby, see the exact connection between
the interior semantics and the subset space style topological semantics. We here
follow the presentation in (Parikh et al., 2007, Section 4.3). We �rst show that
L int is embedded in the languageL K 2 via the following translation:

6.2.7. Definition. [Translation � : L int ! L K 2 ] For each' 2 L int , the transla-
tion ( ' )� of ' into L K 2 is de�ned recursively as follows:

p� = p; wherep 2 prop
(: ' )� = : (' )�

(' ^  )� = ' � ^  �

(int(' )) � = 3 K' �
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6.2.8. Definition. [Bi-persistent Formula ofL K 2 (on topo-models)] A formula
' 2 L K 2 is called bi-persistent if for all topo-models X = ( X; O; V), and all
(x; U); (x; O) 2 ES(X ) we have (x; O) j= ' i� ( x; U) j= ' .

6.2.9. Proposition. For all ' 2 L int , the corresponding formula' � 2 L K 2 is
bi-persistent on topo-models.

Proof:
The proof follows by subformula induction on' ; cases for the propositional vari-
ables and the Boolean connectives are elementary. So assume inductively that
the result holds for  ; we must show that it holds also for' := int( ). Let
X = ( X; �; V ) be a topo-model and (x; O); (x; U) 2 ES(X ). We then have

(x; U) j= ( int( )) � i� ( x; U) j= 3 K � (by the de�nition of � )

i� ( 9U0 2 � )(x 2 U0 � U and (x; U0) j= K � )
(by the semantics of2 )

i� ( 9U0 2 � )(x 2 U0 � U and [[ � ]]U
0
= U0)

(by the semantics ofK )

Now, consider the setU0\ O. It is easy to see thatU0\ O 2 � (since� is a topol-
ogy), and that x 2 U0\ O � O. So, we only need to show that (x; U0\ O) j= K � ,
i.e., that U0\ O = [[  � ]]U

0\ O. But, since  � is bi-persistent (by induction hypothe-
sis),U0\ O � U0and [[ � ]]U

0
= U0, we have [[ � ]]U

0\ O = [[  � ]]U
0
\ O = U0\ O. There-

fore, (x; U0\ O) j= K � . Moreover, asx 2 U0\ O � O, we obtain (x; O) j= 3 K � .
The other direction follows similarly. 2

6.2.10. Proposition (Dabrowski et al., 1996, Proposition 3.5). For all
' 2 L int , all topo-modelsX = ( X; �; V ) and all (x; U) 2 ES(X ),

(x; U) j= ' i� (x; U) j= ' � :

Proof:
The proof follows by subformula induction on' ; cases for the propositional vari-
ables and the Boolean connectives are elementary. So assume inductively that
the result holds for  ; we must show that it holds also for' := int( ). Let
X = ( X; �; V ) be a topo-model and (x; U) 2 ES(X ) such that (x; U) j= int( ),
i.e., x 2 Int ([[ ]]U ). This means that there isO 2 � such that x 2 O � [[ ]]U .
Then, by induction hypothesis, we obtainO � [[ � ]]U , i.e., (y; U) j=  � for all
y 2 O. By Proposition 6.2.9, we know that � is bi-persistent on topo-models.
Therefore, we infer that (y; O) j=  � for all y 2 O. Hence, by the semantics of
K , we obtain (x; O) j= K � . As x 2 O � U, we conclude (x; U) j= 3 K � . The
other direction follows similarly. 2
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Therefore, the languageL K 2 completely embeds the languageL int as its frag-
ment consisting of the propositional variables, and closed under the Boolean oper-
ators and the modalities3 K . As shown in (Parikh et al., 2007, Proposition 6.8),
the languageL K 2 is in fact strictly more expressive thanL int on topo-models:

6.2.11. Proposition (Parikh et al., 2007, Proposition 6.8). L K 2 is
strictly more expressive thanL int with respect to topo-models.

Proof:
It follows from Proposition 6.2.10 that for every' 2 L int , there exists , namely
' � , such that ' and ' � are true at the same epistemic scenarios of every topo-
model. Moreover, the second example in the proof of Theorem 6.2.6 shows that
K̂p is not equivalent on the class of topo-models to' � for any ' 2 L int (see Parikh
et al., 2007, Proposition 6.8 for a di�erent example). 2

6.3 Conclusions and Continuation

In this chapter, we presented the subset space semantics introduced by Moss
and Parikh (1992), mainly focusing on its topological versions. While the stan-
dard TopoLogicformalism �a la Georgatos (1993, 1994); Dabrowski et al. (1996)
completely axiomatizes the logic of topological spaces for the languageL K 2 of
knowledge and e�ort, Bjorndahl (2016) studies the variantL K int with the inte-
rior operator of McKinsey and Tarski (1944) and the knowledge modalityK ,
and its extensionL !

K int with a topological update operator. We therefore have
di�erent axiomatizations for the class of topological spaces, using subset space
style semantics based on di�erent languages. The expressivity results concerning
the aforementioned languages and their fragments have been discussed in Sec-
tion 6.2.2, and are summarized in Figure 6.3 below. As we see in Figure 6.3, the
languagesL K 2 and L K int are also co-expressive with respect to topo-models. We
leave the proof of this result for the next chapter (see Theorem 7.1.19).

At this stage we still do not have a logical formalism that analyzes the pub-
lic announcement modality and the e�ort modality in one system, although
Bjorndahl (2016) provides topological semantics for public announcements that
matches the way e�ort is evaluated on topological spaces. This constitutes one
of the topics of the next chapter: we extend the topologic framework with the
Bjorndahl-style update modalities, or equivalently, study the extensions ofL K int

and L !
K int by the e�ort modality 2 , and develop a formal framework that eluci-

dates the relation between e�ort and public announcements.
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L K

L K 2

L K int

L int

L !
K int L !

K

Thm 6.2.6

Thm 7.1.19

Thm 6.2.5 Thm 6.2.5
Prop. 6.2.11

Thm 6.2.6

Figure 6.3: Expressivity diagram (Arrows point to the more expressive languages,
and re
exive and transitive arrows are omitted. Arrows without tags can be ob-
tained as easy consequences from the others.)





Chapter 7

TopoLogicas Dynamic Epistemic Logic

This chapter studies two di�erent extensions of Bjorndahl's setting for topological
public announcements: one with thee�ort modality of Moss and Parikh (1992),
and the other with the so-calledarbitrary announcement modalityof Balbiani
et al. (2008). We �rst explore the logic of topological spaces for the language
L !

K int2 , obtained by extending Bjorndahl's languageL !
K int with the e�ort modality

introduced in the previous chapter. This way, we design a formal framework which
reveals the link between e�ort and (topological) public announcements, resulting
in both conceptual and technical advantages.

Yet another close relative of both the e�ort modality and the public announce-
ment modalities is the so-calledarbitrary announcement modality� that was
introduced by Balbiani et al. (2008) and studied on Kripke models. Roughly
speaking, the arbitrary announcement modality� ' is read as \' stays true after
every announcement". It therefore generalizes public announcements by quanti-
fying over all such announcements. On the other hand, the e�ort modalityseems
stronger than the arbitrary announcement modality as the former quanti�es over
all open neighbourhoods of the actual state, not only over the epistemically de-
�nable ones. In this chapter, we also look at the connection between these three
dynamic operators, by providing a topological semantics for� ' that quanti�es
universally over Bjorndahl-style public announcements (similar to the way stan-
dard arbitrary public announcement in (Balbiani et al., 2008) quanti�es over
standard public announcements).

Outline

Section 7.1 presents the DynamicTopoLogicwhich combines the topologic for-
malism with Bjorndahl's public announcements presented in Chapter 6. While
Section 7.1.2 provides several expressivity results, Section 7.1.3 focuses on the
completeness proof of the proposed axiomatization for DynamicTopoLogic. In
Section 7.2, we study arbitrary announcements on topo-models and demonstrate

119
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that, in fact, the arbitrary announcement and the e�ort modality are equivalent
in our single-agent framework.

This chapter is based on (van Ditmarsch et al., 2014; Baltag et al., 2017).

7.1 Dynamic TopoLogic

In this section, based on (Baltag et al., 2017), we investigate a natural extension
of topologic, obtained by adding to it Bjorndahl's topological update operators. In
other words, we revisitTopoLogicas a dynamic epistemic logic with public an-
nouncements. The resulting \DynamicTopoLogic" forms a logic of evidence-based
knowledgeK' , knowability int(' ), learning of new evidence [' ] , and stability
2 ' (of some truth ' ) under any such evidence-acquisition.

To recall brie
y, Moss and Parikh (1992) gave a sound and complete ax-
iomatization with respect to the class of all subset spaces (Theorem 6.1.3). The
axiomatization for topological spaces was later studied by Georgatos (1993, 1994)
and Dabrowski et al. (1996), who independently provided completeness and de-
cidability proofs for TopoLogic(Theorem 6.1.4). These existing completeness and
decidability results involve technically interesting, yet rather complicated con-
structions. Moreover, one of the main axioms of the originalTopoLogic, the so-
called Union Axiom, capturing closure of the topology under binary unions (see
Table 6.2), is very complex and looks rather unintuitive from an epistemic per-
spective. Against this background, our investigations in this chapter lead to results
of conceptual and technical interest as the extended syntax explicates the notion
of e�ort in terms of public announcements, and entertains an epistemically more
intuitive and clear complete axiomatization.

In the following, we present several expressivity results concerning this ex-
tended language, denoted byL !

K int2 , and its fragments, and thus expand Figure
6.3. In particular, we show that this extension is co-expressive with Bjorndahl's
languageL !

K int of topological public announcements (Bjorndahl, 2016), and there-
fore with the simpler languageL K int . This elucidates the relationships between
TopoLogicand other modal (and dynamic-epistemic) logics for topology. In par-
ticular, TopoLogicis directly interpretable in the simplest logic of topo-models for
L K int , which immediately provides an easy decidability proof both forTopoLogic
and for our extension.

We also give a complete axiomatization for DynamicTopoLogic, which is in a
sense more transparent than the standard axioms ofTopoLogic. Although we have
more axioms, each of them is natural and easily readable, directly re
ecting the
intuitive meanings of the connectives. More precisely, our axiomatization consists
of a slightly di�erent version of Bjorndahl's axiomatization ofPAL+

int (ours includes
a few other standard axioms and rules of public announcement logic), together
with only two additional proof principles governing the behavior of the topologic
\e�ort" modality (2 ' , what we call \stable truth"): an introduction rule and an
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elimination axiom. Everything to be said about the e�ort modality is therefore
fully captured by these two simple principles, which together express the fact that
this modality quanti�es universally over all updates with any new evidence. In
particular, the complicated Union Axiom of TopoLogic (see Table 6.2) is not
needed in our system (though of course it can be proved from our axioms). Unlike
the existing completeness proofs ofTopoLogic(Georgatos, 1993; Dabrowski et al.,
1996), ours makes direct use of astandard canonical topo-model construction(as,
e.g., the canonical topo-model construction forS4 in Aiello et al., 2003, Section
3).1 This simplicity shows the advantage of adding dynamic modalities: when
considered as a fragment of a dynamic-epistemic logic, topologic becomes a more
transparent and natural formalism, with intuitive axioms and canonical behavior.

7.1.1 Syntax, Semantics and Axiomatizations

The languageL !
K int2 of Dynamic TopoLogicis obtained by extending Bjorndahl's

languageL !
K int with the e�ort modality 2 from the language of topologicL K 2

(Moss and Parikh, 1992); or, equivalently, by extending the usual syntax of topo-
logic with both the interior operator int of McKinsey and Tarski (1944) and with
Bjorndahl's dynamic modalities for topological public announcements. As noted
earlier, the interior operator is de�nable using topological public announcements
(by putting int(' ) = h' i> ). Therefore, keeping the modalityint in the language
as primitive is mainly a design decision, but it also simpli�es our completeness
proof. Therefore, our syntax is essentially given by adding the languageL K 2 of
topologic only the dynamic public announcement modalities, hence, we use the
name \Dynamic TopoLogic". We start our presentation by formally introducing
the syntax and semantics for DynamicTopoLogic.

Syntax and Semantics. The languageL !
K int2 of DynamicTopoLogicis de�ned

recursively by the grammar

' ::= p j : ' j ' ^ ' j K' j int(' ) j [' ]' j 2 ';

wherep 2 prop . Several fragments of the languageL !
K int2 are of both technical

and conceptual interest. To recall, for the fragments ofL !
K int2 , we use our standard

notational convention listing all the modalities of the corresponding language as a
subscript ofL except that ! for public announcements appears as a superscript. For
example,L int denotes the fragment ofL !

K int2 having only the modality int; L K int

having only the modalitiesK and int; L K 2 having only the modalitiesK and 2 ;
L !

K int having the modalitiesK , int and [!] etc.

1Dabrowski et al. (1996) also consider a canonical model, but their completeness proof of
TopoLogic uses McKinsey-Tarski's theorem of the topological completeness ofS4 (Theorem
3.1.6). In our setting, having the modality int that matches the topological interior operator in
the language makes it easier to directly build a canonical model.
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We interpret this language on topo-models in an obvious way by putting
together the subset space semantics forL K 2 (De�nition 6.1.2) and Bjorndahl's
semantics for the fragmentL !

K int (De�nition 6.2.1). This is recapitulated in the
following de�nition.

7.1.1. Definition. [Topological Semantics forL !
K int2 ] Given a topo-modelX =

(X; �; V ) and an epistemic scenario (x; U) 2 ES(X ), truth of formulas in L !
K int2

is de�ned for the propositional variables and the Booleans as in De�nition 6.1.2,
and the semantics for the modalities is given recursively as follows:

(x; U) j= K' i� ( 8y 2 U)(( y; U) j= ' )
(x; U) j= int(' ) i� x 2 Int ([[' ]]U )
(x; U) j= [ ' ] i� ( x; U) j= int(' ) implies (x; Int ([[' ]]U )) j=  
(x; U) j= 2 ' i� ( 8O 2 � ) (x 2 O � U implies (x; O) j= ' )

Axiomatizations . Given a formula ' 2 L !
K int2 , we denote by P' the set of all

propositional variables occurring in' (we will use the same notation for the neces-
sity and possibility forms de�ned in De�nition 7.1.22). The Dynamic TopoLogic,
hereby denoted asDTLint , is the smallest subset ofL !

K int2 that contains the ax-
ioms, and is closed under the inference rules given in Table 7.1 below. The system
ELint is de�ned in a similar way over the languageL K int by the axioms and in-
ference rules in group (I) of Table 7.1 (as also given in Table 6.3), andPALint is
de�ned over the languageL !

K int by the axioms and inference rules in groups (I)
and (II).

The �rst six items in Table 7.1 are standard. The Replacement of Equivalents
rule ([!]RE) for [!] says that updates are extensional, that is, learning equivalent
sentences gives rise to equivalent updates, while the reduction axiom (R[> ]) says
that updating with tautologies is redundant. The reduction axioms (Rp), (R : )
and (RK ) are exactly the same as in the axiomatizationPAL+

int of Bjorndahl
(2016), and the reduction law (R[!]) for the iterative announcements is equivalent
to (R [comp]) but formulated in a simpler way (see Table 6.3 forPAL+

int ). Bjorndahl's
axiomatization also includes reduction laws for the connectivê (denoted by
(R^ )) and the modality int (denoted by (Rint )), however, as shown in Proposition
7.1.2, these can be derived inPALint .The only key new components of our system
are the last axiom and inference rule for2 , i.e., the elimination axiom ([!]2 -elim)
and the introduction rule ([!]2 -intro) for the e�ort modality. Taken together,
they state that � is a stable truth after learning' i� � is true after learning
every stronger evidence' ^ � . The left-to-right implication in this statement is
directly captured by ([!]2 -elim), while the converse is captured by the rule ([!]2 -
intro). The \freshness" of the variable p in this rule ensures that it represents
any \generic" further evidence. This is similar to the introduction rule for the
universal quanti�er. In essence, the e�ort axiom and rule express the fact that
the e�ort modality is a universal quanti�er (over potential evidence). One can
compare the transparency and simple nature of our axioms with the complexity
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(I) Axioms and rules of system ELint :
(CPL) all classical propositional tautologies and Modus Ponens
(S5K ) all S5axioms and rules for the knowledge modalityK
(S4int ) all S4axioms and rules for the interior modalityint
(K -int) Knowledge implies knowability: K' ! int(' )

(II) Additional axioms and rules for PALint :
(K !) [' ]( ! � ) ! ([' ] ! [' ]� )
(Nec!) from � , infer [' ]�
([!]RE) Replacement of Equivalents for[!]:

from ' $  , infer [' ]� $ [ ]�

Reduction axioms:
(R[> ]) [> ]' $ '
(Rp) [' ]p $ (int(' ) ! p)
(R: ) [' ]:  $ (int(' ) ! : [' ] )
(RK ) [' ]K $ (int(' ) ! K [' ] )
(R[!]) [' ][ ]� $ [h' i  ]�

(III) Axioms and rules of the e�ort modality for DTLint :
([!]2 -elim) [' ]2 � ! [' ^ � ]� (� 2 L !

K int2 arbitrary formula)
([!]2 -intro) from  ! [' ^ p]� , infer  ! [' ]2 � (p 62P [ P� [ P' )

Table 7.1: The axiomatizations ofDTLint ; PALint and ELint

of the standard axiomatization ofTopoLogicthat contains, among others, the
rather intricate Union Axiom (also given in Table 6.2):

3 ' ^ K̂ 3  ! 3 (3 ' ^ K̂ 3  ^ K 3 K̂ (' _  )) (UN)

Proposition 7.1.2 states some important theorems and inference rules derivable
in DTLint , which will be used in our completeness proofs. While the denotations
for the other items listed in the following proposition are obvious, (RE) is the full
rule of Replacement of Equivalents, where' f  =� g denotes the formula obtained
by replacing the occurrences of in ' by � .

7.1.2. Proposition. The �rst seven schemas and the rule(RE) are provable
both in PALint and DTLint (for languagesL !

K int and L !
K int2 , respectively). The

ninth schema and the inference rule below can be derived in our full proof system
DTLint :
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1. (h!i ) h' i  $ (int(' ) ^ [' ] )
2. (R? ) [' ]? $ : int(' )
3. (R^ ) [' ]( ^ � ) $ ([' ] ^ [' ]� )
4. (Rint ) [' ]int( ) $ (int(' ) ! int([' ] ))
5. (R[int]) [int(' )] $ [' ] 
6. (R[comp]) [' ][ ]� $ [int(' ) ^ [' ]int( )]�
7. (R[p]) [' ][p] $ [' ^ p] (p 2 prop arbitrary)
8. (RE) from  $ � , infer ' $ ' f  =� g
9. (2 -elim) 2 � ! [� ]� (� 2 L !

K int2 arbitrary formula)
10. (2 -intro) from  ! [p]� , infer  ! 2 � (p 62P [ P� atom)

Proof:
We here present abridged derivations, some of the obvious steps are omitted. We
start with the 2 -axioms and inference rules.

(2 -elim):

1: ` 2 � $ [> ]2 � (R[> ])

2: ` [> ]2 � ! [> ^ � ]�; (for arbitrary � 2 L !
K int2 ) ([!]2 -elim)

3: ` [> ^ � ]2 � ! [� ]�; (for arbitrary � 2 L !
K int2 ) (` (> ^ � ) $ � and ([!]RE))

4: ` 2 � ! [� ]�; (for arbitrary � 2 L !
K int2 ) (1-3, CPL)

(2 -intro): proof follows analogously to the above case by using R[> ], and
[!]2 -intro with ' := > .

(RE): The proof follows standardly by subformula induction on' . Suppose
`  $ � . For the base case' :=  , we have ' f  =� g = � . Therefore, the
equivalence` ' $ ' f  =� g boils down to `  $ � , hence follows from the
assumption. Now assume inductively that the statement holds for� and � . The
cases for the Booleans,K and int are standard, where the latter two follows from
the corresponding K-axioms and Necessitation rules. For [!], we use (K!), (Nec!),
([!]RE). For 2 , it is su�cient to show that we can derive the K-axiom (K 2 ) and
the Necessitation rule (Nec2 ) for 2 . The derivation of (Nec2 ) easily follows from
(Nec!) and (2 -intro). For (K 2 ), we have

1: ` (2 (� ! 
 ) ^ 2 � ) ! ([p](� ! 
 ) ^ [p]� ) (p 62P� [ P
 , (2 -elim))

2: ` ([p](� ! 
 ) ^ [p]� ) ! [p]
 (K !)

3: ` (2 (� ! 
 ) ^ 2 � ) ! [p]
 (1, 2, CPL)

4: ` (2 (� ! 
 ) ^ 2 � ) ! 2 
 (p 62P� [ P
 , (2 -intro))

(h!i ): follows from the de�nition h' i  := : [' ]:  and the axiom (R: ).
(R^ ): follows from (K!) and (Nec!).
(R? ): is an easy consequence of (R^ ), (Rp) and ([!]RE)
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(R int ):

1: ` int( ) $ : [ ]? (R? )

2: ` [' ]int( ) $ [' ]: [ ]? (1, ([!]RE))

3: ` [' ]: [ ]? $ (int(' ) ! : [' ][ ]? ) (R : )

4: ` (int(' ) ! : [' ][ ]? ) $ (int(' ) ! int(h' i  )) ((R [!]), (R? ))

5: ` [' ]int( ) $ (int(' ) ! int(h' i  )) (2-4, CPL)

6: ` (int(' ) ! int(h' i  )) $ (int(' ) ! int(int(' ) ^ [' ] )) (( h!i ), (RE))

7: ` (int(' ) ! int(int(' ) ^ [' ] )) $ (int(' ) ! (int(' ) ^ int([' ] )))
(S4int , (RE))

8: ` (int(' ) ! (int(' ) ^ int([' ] ))) $ (int(' ) ! int([' ] )) (CPL)

9: ` [' ]int( ) $ (int(' ) ! int([' ] )) (5-8, CPL)

(R[int]): follows by subformula induction on by using the reduction axioms
and the fact that int is an S4modality. For case := 2 � , we use ([!]2 -elim) and
([!]2 -intro).

Base case := p

1: ` [int(' )]p $ (int(int(' )) ! p) (Rp)

2: ` (int(int(' )) ! p) $ (int(' ) ! p) (S4int )

3: ` (int(' ) ! p) $ [' ]p (Rp)

4: ` [int(' )]p $ [' ]p (1-3, CPL)

The cases for := : � ,  := � ^ � ,  := K� and  := int(� ) follow in a similar
way by using the corresponding reduction axioms.

Case := [ � ]�

1: ` [int(' )][� ]� $ [hint(' )i � ]� (R[!])

2: ` [hint(' )i � ]� $ [int(int(' )) ^ [int(' )]� ]� (h!i )

3: ` [int(int(' )) ^ [int(' )]� ]� $ [int(' ) ^ [int(' )]� ]� (S4int , (RE))

4: ` [int(' ) ^ [int(' )]� ]� $ [int(' ) ^ [' ]� ]� (IH on � , (RE))

5: ` [int(' ) ^ [' ]� ]� $ [h' i � ]� ((h!i ), (RE))

6: ` [h' i � ]� $ [' ][� ]� (R[!])

7: ` [int(' )][� ]� $ [' ][� ]� (1-6, CPL)

Case := 2 �
We here only show the directioǹ [int(' )]2 � ! [' ]2 � ; the other direction
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follows similarly.

1: ` [int(' )]2 � ! [int(' ) ^ p]� (p 62P' [ P� , ([!]2 -elim))

2: ` [int(' ) ^ p]� $ [int(int(' ) ^ p)]� (IH)

3: ` [int(int(' ) ^ p)]� $ [int(' ^ p)]� (S4int , (RE))

4: ` [int(' ^ p)]� $ [' ^ p]� (IH)

5: ` [int(' )]2 � ! [' ^ p]� (1-4, CPL)

6: ` [int(' )]2 � ! [' ]2 � (p 62Pint ( ' ) [ P� , ([!]2 -intro))

(R[comp]):

1: ` [int(' ) ^ [' ]int( )]� $ [int(' ) ^ int[' ] )]� ((R int ), (RE))

2: ` [int(' ) ^ int[' ] )]� $ [int(int(' )) ^ int[' ] )]� (S4int , (RE))

3: ` [int(int(' )) ^ int[' ] )]� $ [int(int(' ) ^ [' ] )]� (S4int , (RE))

4: ` [int(int(' ) ^ [' ] )]� $ [int(' ) ^ [' ] ]� (R[int])

5: ` [int(' ) ^ [' ] ]� $ [h' i � ]� ((h!i ), (RE))

6: ` [h' i � ]� $ [' ][� ]� (R[!])

7: ` [int(' ) ^ [' ]int( )]� $ [' ][� ]� (1-6, CPL)

(R[p]):

1: ` [' ][p] $ [h' i p] (R[!])

2: ` [h' i p] $ [int(' ) ^ [' ]p] ((h!i ), (RE))

3: ` [int(' ) ^ [' ]p] $ [int(' ) ^ p] ((Rp), (RE))

4: ` [int(' ) ^ p] $ [int(int(' ) ^ p)] (R[int])

5: ` [int(int(' ) ^ p)] $ [int(' ^ p)] (S4int and (RE))

6: ` [int(' ^ p)] $ [' ^ p] (R[int])

7: ` [' ][p] $ [' ^ p] (1-6, CPL)

2

7.1.3. Corollary. PALint is sound and complete with respect to the class of all
topo-models.

Proof:
Soundness ofPALint is easy to see. The completeness proof follows from Theorem
6.2.4 and Proposition 7.1.2: since Bjorndahl's axiomatizationPAL+

int is complete
and our systemPALint can prove all his additional reduction rules (R̂), (R int )
and (R[comp]), our systemPALint is complete as well. 2
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7.1.2 Soundness and Expressivity

In this section, we introduce a more general class of models for our full language
L !

K int2 , calledpseudo-models. These are a special case of the (even more general)
subset models of Moss and Parikh (1992). Pseudo-models include all topo-models,
as well as other subset models, but they have the nice property that the interior
operator int(' ) can still be interpreted in the standard way. These structures,
though interesting enough in themselves, are for us only an auxiliary notion,
playing an important technical role in our completeness proof ofDTLint . For now
though, we �rst prove the soundness of our full systemDTLint with respect to
pseudo-models (and thus also with respect to topo-models), and then provide
several expressivity results concerning the above de�ned languages with respect
to both topo and pseudo-models.

The de�nition of pseudo-models requires a few auxiliary notions, such as a
more general class of models calledpre-models.

7.1.4. Definition. [Lattice spaces and Pre-models] A subset space (X; O) is
called a lattice spaceif ; ; X 2 O , and O is closed under �nite intersections and
�nite unions. A pre-model(X; O; V) is a triple where (X; O) is a lattice space and
V : Prop ! P (X ) is a valuation map.

Although a lattice space (X; O) is not necessarily a topological space, the
family O constitutes a topological basis overX . Therefore, every pre-modelX =
(X; O; V) has anassociated topo-modelX� = ( X; � O ; V), where� O is the topology
generated byO (i.e., the smallest topology onX such that O � � O ).

Given a pre-modelX = ( X; O; V), we de�ne the semantics forL !
K int2 on pre-

models forall pairs of the form (x; Y ), where Y � X is an arbitrary subset such
that x 2 Y. It is important to notice that, for a given evaluation pair (x; Y ) on
a pre-model, the setY is not necessarilyan element ofO. The reason for this
adjustment will be explained in Remark 7.1.6, after we have de�ned the semantics
for L !

K int2 on pre-models.

7.1.5. Definition. [Pre-model Semantics forL !
K int2 ] Given a pre-model and a

pair of the form (x; Y ) such that x 2 Y � X , truth of formulas inL !
K int2 is de�ned

for the propositional variables and the Booleans as in De�nition 6.1.2, and the
semantics for the modalities is given recursively as follows:

(x; Y ) j= K' i� ( 8y 2 Y)(( y; Y) j= ' )
(x; Y ) j= int(' ) i� x 2 Int ([[' ]]Y )
(x; Y ) j= [ ' ] i� ( x; Y ) j= int(' ) implies (x; Int ([[' ]]Y )) j=  
(x; Y ) j= 2 ' i� ( 8O 2 O )(x 2 O � Y implies (x; O) j= ' )

whereInt is the interior operator of � O .
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7.1.6. Remark. Notice that the consequent of the semantic clause for [' ] re-
quires (x; Int ([[' ]]Y )) to be a \well-de�ned" evaluation pair. If we were to restrict
the evaluation pairs in a pre-model to the so-called epistemic scenarios of the
form (x; U) with x 2 U 2 O (as in the case for topo-models), we could not have
guaranteed that a pair of the form (x; Int ([[' ]]U )) would be well-de�ned: since pre-
models arenot necessarily based on topological spaces, the open setInt ([[' ]]U )
might not be an element ofO. Therefore, in order to render the above de�ned
semantics well-de�ned for the public announcement modalities [' ] , and thus, for
the languageL !

K int2 , we have generalized the satisfaction relation on pre-models
to any pair (x; Y ) with x 2 Y � X .

Validity on pre-models on the other hand is de�ned byrestricting to epistemic
scenarios(x; U) such that x 2 U 2 O , as in the case for the topo-models. More
precisely, we say that a formula' is valid in a pre-modelX , and write X j= ' , if
X ; (x; U) j= ' for all epistemic scenarios(x; U) 2 ES(X ). A formula ' is valid,
denoted byj= ' , if X j= ' for all X . We are now ready to de�ne pseudo-models
for the languageL !

K int2 .

7.1.7. Definition. [Pseudo-models forL !
K int2 ] A pseudo-modelX = ( X; O; V)

is a pre-model such that [[int(' )]]U 2 O , for all ' 2 L !
K int2 and U 2 O .

It is obvious that the class of pseudo-models includes all topo-models, and
that all formulas of L !

K int2 that are valid on pseudo-models are also valid on
topo-models: this is because thesatisfaction relation for epistemic scenariosin
any pseudo-model that happens to be a topo-model agrees with the topo-model
satisfaction relation.

Soundness of DTLint

We now continue with the soundness proofs forDTLint with respect to topo and
pseudo-models. Once we prove the soundness ofDTLint for pseudo-models, its
soundness for topo-models follows from the facts that every topo-model is a
pseudo-model and that validity on both structures is de�ned with respect to
epistemic scenarios. It is not hard to see that all the axiom schemas in group (I)
and (II) in Table 7.1 are valid, and the inference rules (Nec!) and ([!]RE) pre-
serve validity on pseudo-models. In the following, we focus on the axiom schema
([!]2 -elim) and the inference rule ([!]2 -intro).

7.1.8. Lemma. Let X = ( X; O; V) and X 0 = ( X; O; V 0) be two pseudo-models
and ' 2 L !

K int2 such thatX and X 0 di�er only in the valuation of some p 62P' .
Then, for all U 2 O , we have[[' ]]UX = [[ ' ]]UX 0.

Proof:
The proof follows by subformula induction on' . The base case' := q follows
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from the fact that V(q) = V 0(q) for all q 2 P' . The cases for Booleans are
straightforward, we here only prove the cases for the modalities.

Case' := K : Note that PK = P  . Then, by induction hypothesis (IH),
we have that [[ ]]UX = [[  ]]UX 0. Due to the semantics ofK , we have two cases (1) if
U = [[  ]]UX = [[  ]]UX 0, then [[K ]]UX = [[ K ]]UX 0 = U, and (2) if [[ ]]UX = [[  ]]UX 0 6= U,
then we have [[K ]]UX = [[ K ]]UX 0 = ; .

Case' := int( ): Note that P int ( ) = P  . By the semantics ofint, we have
[[int( )]]U

X = Int ([[ ]]UX ). SinceX and X 0 generate the same topology� O (they are
based on the same lattice space), by IH, we obtainInt ([[ ]]UX ) = Int ([[ ]]UX 0), i.e.,
[[int( )]]U

X = [[ int( )]]U
X 0.

Case ' := [ � ] : Note that P[� ] = P � [ P . Supposex 2 [[[� ] ]]UX and
x 2 Int ([[� ]]UX 0). By IH, we have [[� ]]UX 0 = [[ � ]]UX . Therefore, sinceX and X 0 generate
the same topology� O , we obtainInt ([[� ]]UX 0) = Int ([[� ]]UX ). Hence, sincex 2 [[[� ] ]]UX
and x 2 Int ([[� ]]UX ) � U, we haveX ; (x; Int ([[� ]]UX )) j=  , i.e., x 2 [[ ]]Int ([[ � ]]UX )

X .

Similarly, by IH, we then obtain x 2 [[ ]]
Int ([[ � ]]U

X 0)
X 0 and therefore,x 2 [[[� ] ]]UX 0. The

other direction follows similarly.

Case' := 2  : Supposex 2 [[2  ]]UX . This means, by the semantics of2 , that
for all O 2 O with x 2 O � U we have that X ; (x; O) j=  , i.e., that x 2 [[ ]]OX .
Therefore, by IH and the fact that P2  = P  , we obtain x 2 [[ ]]OX 0. SinceX
and X 0 carry the same collectionO, we conclude thatx 2 [[2  ]]UX 0. The opposite
direction follows similarly. 2

7.1.9. Theorem. DTLint is sound with respect to the class of all pseudo-models
(and hence also with respect to the class of all topo-models).

Proof:
The soundness proof follows by a simple validity check. We here only prove that
([!]2 -elim) is valid and ([!]2 -intro) preserves validity on pseudo-models.

([!]2 -elim): Let X = ( X; O; V) be a pseudo-model and (x; U) 2 ES(X ) such
that ( x; U) j= [ � ]2 ' . This means that if x 2 Int ([[� ]]U ) then for all O 2 O with
x 2 O � Int ([[� ]]U ), we have (x; O) j= ' . Now let � 2 L !

K int2 and suppose
x 2 Int ([[� ^ � ]]U ). Since Int ([[� ^ � ]]U ) = Int ([[� ]]U ) \ Int ([[� ]]U ) � Int ([[� ]]U ), we
obtain x 2 Int ([[� ]]U ). Thus, by the �rst assumption that ( x; O) j= ' for all O 2 O
such that x 2 O � Int ([[� ]]U ), we in particular obtain (x; Int ([[� ^ � ]]U )) j= ' .
Hence, (x; U) j= [( � ^ � )]' .

([!]2 -intro): Suppose, toward a contradiction, that j=  ! [� ^ p]' and
6j=  ! [� ]2 ' where p 62 P [ P� [ P' . The latter means that there is a
pseudo-modelX = ( X; O; V) and an epistemic scenario (x; U) 2 ES(X ) such
that X ; (x; U) j=  but X ; (x; U) 6j= [ � ]2 ' , i.e., X ; (x; U) j= h� i 3 : ' . There-
fore, applying the semantics, we obtainx 2 Int ([[� ]]UX ) and there existsU0 �
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Int ([[� ]]UX ) such that x 2 U0 and X ; (x; U0) j= : ' . Now, consider the model
X 0 = ( X; O; V 0) such that V 0(p) = U0 and V 0(q) = V(q) for all q 2 prop
with p 6= q. Then, by Lemma 7.1.8, we have that [[ ]]UX = [[  ]]UX 0, [[� ]]UX = [[ � ]]UX 0,
and [[: ' ]]U0

X = [[ : ' ]]U0
X 0. Therefore, X 0; (x; U) j=  and X 0; (x; U0) j= : ' . It is

easy to see thatInt ([[� ^ p]]UX 0) = Int ([[� ]]UX 0) \ Int ([[p]]UX 0) = V 0(p) = U0 (since
Int ([[p]]UX 0) = U0 � Int ([[� ]]UX ) = Int ([[� ]]UX 0)). We therefore obtain (1) x 2 Int ([[� ^
p]]UX 0) and (2) X 0; (x; Int ([[� ^ p]]UX 0)) j= : ' . Hence, by the semantics of [!], we have
X 0; (x; U) j= h� ^ pi: ' . Then, sinceX ; (x; U) j=  and [[ ]]UX = [[  ]]UX 0, we obtain
X 0; (x; U) j=  ^ h� ^ pi: ' . Therefore,X 0; (x; U) 6j=  ! [� ^ p]' , contradicting
the validity of  ! [� ^ p]' . 2

Expressivity on pseudo and topo-models

In this part, we establish several expressivity results with respect to both pseudo
and topo-models, concerning our full languageL !

K int2 and its important fragments
L !

K int ; L K int and L K 2 studied in Chapter 6. The reason to consider the more
general case of pseudo-models (not only topo-models) is that the co-expressivity of
the languagesL K int and L !

K int2 for pseudo-models will be used in the completeness
proof of DTLint (Corollary 7.1.37).

We �rst show the co-expressivity ofL !
K int and L K int with respect to pseudo-

models (Proposition 7.1.11). Its proof is standard, using the reduction laws to
push dynamic modalities inside the formulas and then eliminating them. This
requires an inductive proof on a non-standard complexity measure on formulas
in L !

K int which induces a well-founded strict partial order onL !
K int satisfying the

properties given in Lemma 7.1.10. Such a complexity measure is de�ned by Bjorn-
dahl (2016) to prove the co-expressivity ofL !

K int and L K int for topo-models (see
Bjorndahl, 2016, Proposition 5), as well as for the completeness result ofPAL+

int
(see Bjorndahl, 2016, Corollary 1). Bjorndahl's simple complexity measure on
L !

K int would in fact su�ce for our expressivity result on pseudo-models for the
languagesL K int and L !

K int . However, in order to prove the completeness ofDTLint

(in Section 7.1.3), we need a complexity measure on the formulas of the extended
languageL !

K int2 taking into account the e�ort modality 2 as well. A similar com-
plexity measure will also be needed in Lemma 8.3.16 in Chapter 8. To this end, we
de�ne a more elaborate complexity measure onL !

K int2 that we can use throughout
this and the next chapter. The de�nition of this complexity measure is given in
Appendix A.1.

7.1.10. Lemma. There exists a well-founded strict partial order< S on formulas
of L !

K int such that

1. ' 2 Sub( ) implies ' < S  ,

2. int(' ) ! p <S [' ]p,

3. int(' ) ! : [' ] < S [' ]:  ,

4. [' ] ^ [' ]� < S [' ]( ^ � ),
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5. int(' ) ! int([' ] ) < S [' ]int( ),

6. int(' ) ! K [' ] < S [' ]K ,

7. [h' i  ]� < S [' ][ ]� .

Proof:
See Lemmas A.1.4 and A.1.5. 2

7.1.11. Proposition. L !
K int and L K int are co-expressive with respect to pseudo-

models. In other words, for every formula' 2 L !
K int there exists a formula 2

L K int such that ' $  is valid in all pseudo-models.

Proof:
The proof follows by < S-induction on ' . The base case' := p follows from
the fact that the languagesL !

K int and L K int are de�ned based on the same set of
propositional variablesprop . The cases for the Booleans' := :  , ' :=  ^ � ,
and the cases for the modalities' := K and ' := int( ) follow standardly using
Lemma 7.1.10-(1). We here only prove the cases for' := K , and ' := [  ]� :

Case' := K : Since < S K (Lemma 7.1.10-(1)), by induction hypothesis,
there exists a 0 2 L K int such that  $  0 is valid in all pseudo-models. Then, by
the soundness of (RE) (which follows from Proposition 7.1.2 and Theorem 7.1.9),
we obtain j= K $ K 0, whereK 0 2 L K int .

Case' := [  ]� : Theorem 7.1.9 implies that the reduction laws given in Table
7.1 and Proposition 7.1.2 for the languageL !

K int are valid in all pseudo-models.
Therefore, applying the appropriate reduction (e.g., if� := p apply (Rp), if
� := : � apply (R: ) etc.) we obtain a formula 
 2 L !

K int such that [ ]� $ 

is valid in all pseudo-models. By Lemma 7.1.10.(2-7), we know that
 < S [ ]� .
Hence, by induction hypothesis, there exists
 0 2 L K int such that j= 
 $ 
 0.
As 
 is semantically equivalent to [ ]� , we conclude thatj= [  ]� $ 
 0, where

 0 2 L K int . 2

Next, we prove that L !
K int2 and L K int are equally expressive with respect to

pseudo-models. This result will also be useful in the completeness proof ofDTLint

for topo-models (Corollary 7.1.38). In proving the co-expressivity ofL !
K int2 and

L K int , we follow a similar strategy as in (Balbiani et al., 2008; van Ditmarsch
et al., 2014). Our proof follows the same steps as in the proof of co-expressivity
betweenL K int and L !

K int � for topo-models (see van Ditmarsch et al., 2014, Theo-
rem 19), whereL !

K int � denotes the extension ofL !
K int with the so-called arbitrary

announcement modality� . We will study the arbitrary announcement modality
� ' and its connection to the e�ort modality 2 ' in Section 7.2.

The proof of the co-expressivity result betweenL !
K int2 and L K int (as well as

the co-expressivity ofL K int and L !
K int � ) relies on the fact that for every formula

' in L K int , there exists a 2 L K int in \normal form" such that ' and  are



132 Chapter 7. TopoLogicas Dynamic Epistemic Logic

semantically equivalent in pseudo(topo)-models. Normal forms for formulas in
the languageL K int are de�ned similarly to the normal forms of the basic modal
language in such a way that the modalityint can occur in the scope ofK (see
Meyer and van der Hoek, 1995, for normal forms for the basic epistemic language).

7.1.12. Definition. [Normal form for the languageL K int ] We say a formula
 2 L K int is in normal form if it is a disjunction of conjunctions of the form

� := � ^ K� ^ K̂
 1 ^ � � � ^ K̂
 n

where�; �; 
 i 2 L int for all 1 � i � n.

Our normal forms for the languageL K int are similar to the so-calleddisjunctive
normal forms introduced in (Georgatos, 1993, De�nition 34) for the language
L K 2 . More precisely, given a formula inL K int in normal form, we obtain a formula
in L K 2 in disjunctive normal form in the sense of Georgatos (1993) by replacing
every occurrence of the modalityint by 3 K .

7.1.13. Lemma (Normal From Lemma). For every formula ' 2 L K int there
is a formula  2 L K int in normal form such that ' $  is valid in all pseudo-
models, therefore, also valid in all topo-models.

Proof:
The proof is given in Appendix A.2. 2

Having proven the Normal Form Lemma|the �rst crucial step toward the
desired expressivity results|we now proceed with the proof of Theorem 7.1.17.
For this, we need a few more validities in whichbi-persistent formulas on pseudo-
modelsin the languageL !

K int2 play an important role. Bi-persistent formulas in
L !

K int2 for pseudo-models are de�ned similarly as in De�nition 6.2.8 with respect
to epistemic scenarios. Informally speaking, these are the formulas ofL !

K int2 whose
truth value on pseudo-models dependsonly on the actual state,not on the epis-
temic range.

7.1.14. Lemma. Every formula of L int is bi-persistent on pseudo-models.

Proof:
The proof is similar to the proof of Proposition 6.2.9, by subformula induction on
' : cases for the propositional variables and the Boolean connectives are elemen-
tary. So assume inductively that the result holds for ; we must show that it holds
also for' := int( ). Let (X; O; V) be a pseudo-model and (x; O); (x; U) 2 ES(X ).
We then have

(x; U) j= int( ) i� x 2 Int ([[ ]]U )

i� ( 9U0 2 O )(x 2 U0 � [[ ]]U ) (since O is a basis for� O )
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Now, consider the open setU0 \ O. It is easy to see thatx 2 U0 \ O. So,
we only need to show thatU0 \ O � [[ ]]O. Let y 2 U0 \ O. Sincey 2 U0, we
have that (y; U) j=  (by U0 � [[ ]]U ). Then, by induction hypothesis, we obtain
(y; O) j=  , i.e., y 2 [[ ]]O. We therefore have thatx 2 U0 \ O � [[ ]]O, i.e., that
x 2 Int ([[ ]]O) (since U0 \ O 2 O � � O ). Therefore, (x; O) j= int( ). The other
direction follows similarly. 2

7.1.15. Proposition. For any '; ' i 2 L int , the following is valid in all pseudo-
models:

3 (' ^ K' 0 ^
^

1� i � n

K̂' i ) $ (' ^ int(' 0) ^
^

1� i � n

K̂ (int(' 0) ^ ' i )) (EL 2
n )

Proof:
The proof follows similarly to the proof of (van Ditmarsch et al., 2014, Proposition
18). Let X = ( X; O; V) be a pseudo-model and (x; U) 2 ES(X ). It is important
to notice that every '; ' i 2 L int is bi-persistent, we will use this fact several times.

We prove the statement only forn = 1.
() ) Suppose (x; U) j= 3 (' ^ K' 0 ^ K̂' 1). By the semantics, we have

(x; U) j= 3 (' ^ K' 0^ K̂' 1) i� ( 9V 2 O )(x 2 V � U and (x; V ) j= ' ^ K' 0^ K̂' 1)

We therefore have (1) (x; V ) j= ' , (2) (x; V ) j= K' 0, and (3) (x; V ) j= K̂' 1.
We want to show that (x; U) j= ' ^ int(' 0) ^ K̂ (int(' 0) ^ ' 1). Now (1) and Lemma
7.1.14 imply (x; U) j= ' ; and (2) implies that (x; V ) j= int(' 0). Then, by Lemma
7.1.14, we have (x; U) j= int(' 0) (since int(' 0) is bi-persistent).

In order to show (x; U) j= K̂ (int(' 0) ^ ' 1), we need to prove that there is a
y 2 U such that (y; U) j= int(' 0) ^ ' 1. Item (3) implies that there is az 2 V such
that ( z; V) j= ' 1. Then, by Lemma 7.1.14, we have (z; U) j= ' 1. Moreover, (2)
implies (z; V) j= K' 0, and thus (z; V) j= int(' 0). Then again by Lemma 7.1.14,
(z; U) j= int(' 0). So, (z; U) j= int(' 0) ^ ' 1, and thus (x; U) j= K̂ (int(' 0) ^ ' 1).

(( ) Suppose (x; U) j= ' ^ int(' 0) ^ K̂ (int(' 0) ^ ' 1). We have:

(x; U) j= ' ^ int(' 0) ^ K̂ (int(' 0) ^ ' 1)

i� ( x; U) j= ' and (x; U) j= int(' 0) and 9y 2 U with ( y; U) j= int(' 0) ^ ' 1

i� ( x; U) j= ' and (x; U) j= int(' 0) and 9y 2 Int ([[' 0]]U ) with ( y; U) j= ' 1

We want to show (x; U) j= 3 (' ^ K' 0 ^ K̂' 1), i.e., we want to prove that there
is a V 2 O with x 2 V � U such that (x; V ) j= ' ^ K' 0 ^ K̂' 1.

We now claim that for V := Int ([[' 0]]U ), we obtain the desired result. It is
easy to see thatx 2 Int ([[' 0]]U ) � U (since (x; U) j= int(' 0)). And, since X is
a pseudo-model, it is guaranteed thatInt ([[' 0]]U ) 2 O . We want to show that
(x; Int ([[' 0]]U )) j= ' ^ K' 0 ^ K̂' 1: Since (x; U) j= ' , by Lemma 7.1.14, we obtain
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(x; Int ([[' 0]]U )) j= ' . Since Int ([[' 0]]U )) � [[' 0]]U , we have that (z; U) j= ' 0 for
all z 2 Int ([[' 0]]U ). Therefore, as' 0 is bi-persistent (Lemma 7.1.14), we obtain
(z; Int ([[' 0]]U ) j= ' 0 for all z 2 Int ([[' 0]]U ), thus, (x; Int ([[' 0]]U )) j= K' 0. By
the assumption, we have9y 2 Int ([[' 0]]U ) such that (y; U) j= ' 1, and thus, by
Lemma 7.1.14, we obtain (y; Int ([[' 0]]U )) j= ' 1. Therefore, by the semantics, we
have (x; Int ([[' 0]]U )) j= K̂' 1. 2

The proof of the following lemma is straightforward, and follows directly from
the semantics for3 and _.

7.1.16. Lemma. For all ';  2 L !
K int2 , the formula 3 (' _  ) $ (3 ' _ 3  ) is

valid in all pseudo-models.

We now have su�cient machinery to show that L !
K int2 and L K int are equally

expressive with respect to pseudo-models.

7.1.17. Theorem. L !
K int2 and L K int are co-expressive with respect to pseudo-

models.

Proof:
We need to prove that for all' 2 L !

K int2 there exists� 2 L K int such that ' $ � is
valid in all pseudo-models. The proof follows by subformula induction on' . The
base case' := p follows from the fact the languagesL K int and L !

K int2 are de�ned
based on the same set of propositional variablesprop . The cases for the Booleans
' := :  , ' :=  ^ � , and the cases for the modalities' := K and ' := int( )
follow standardly. We here only show the cases' := [  ]� and ' := 3  .

Case' := [  ]� : Since and � are subformulas of' , by induction hypothesis,
there exists 0; � 0 2 L K int such that (a) j=  $  0and (b) j= � $ � 0. Then, by (a)
and the soundness of ([!]RE), we obtainj= [  ]� $ [ 0]� . Moreover, by (b) and the
soundness of (RE), we havej= [  0]� $ [ 0]� 0. Therefore,j= [  ]� $ [ 0]� 0. Notice
that [  0]� 0 2 L !

K int nLK int . Then, by Proposition 7.1.11, there exists
 2 L K int such
that j= [  0]� 0 $ 
 . We then conclude thatj= [  ]� $ 
 , i.e., [ ]� is semantically
equivalent to 
 2 L K int with respect to pseudo-models.

Case' := 3  : By induction hypothesis, there exists 0 2 L K int such that
j=  $  0. Then, by Lemma 7.1.13, there exists a
 2 L K int in normal form with
j=  0 $ 
 , hence, we also havej=  $ 
 . Therefore, by the soundness of (RE), we
obtain j= 3  $ 3 
 . By Lemma 7.1.16, we can distribute3 over the disjunction

 . Since
 is in normal form, each disjunct of the resulting formula is of the form
3 (' ^ K' 0 ^ K̂' 1 ^ K̂' 2 ^ � � � ^ K̂' n ) where '; ' i 2 L int for all 0 � i � n. Then,
by Proposition 7.1.15, we can reduce these formulas to semantically equivalent
formulas of the form' ^ int(' 0) ^ K̂ (int(' 0) ^ ' 1) ^ � � � ^ K̂ (int(' 0) ^ ' n ), hence,
obtain a formula in L K int that is semantically equivalent to3  with respect to
pseudo-models. 2
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Theorem 7.1.17 will be used in the completeness proof ofDTLint for topo-
models (Corollary 7.1.38). Concerning expressivity ofL !

K int2 , we also obtain the
following result with respect to topo-models.

7.1.18. Corollary. L !
K int2 and L K int are co-expressive with respect to topo-

models.

Proof:
This proof proceeds similarly to the proof of Theorem 7.1.17. Since every topo-
model is a pseudo-model, Proposition 7.1.15 holds for topo-models as well. More-
over, recall thatL K int andL !

K int are equally expressive with respect to topo-models
(see Theorem 6.2.5). Therefore, we can argue along the same lines as in Theo-
rem 7.1.17 and prove that for every formula' 2 L !

K int2 there exists a formula
 2 L K int such that ' and  are semantically equivalent with respect to topo-
models. 2

SinceL K 2 � L !
K int2 , Corollary 7.1.18 also establishes thatL K int is at least as

expressive asL K 2 on topo-models. As shown in the next theorem,L K int and L K 2

are in fact equally expressive for topo-models.

7.1.19. Theorem. L K 2 and L K int are also co-expressive with respect to topo-
models.

Proof:
Corollary 7.1.18 shows that for every' 2 L K 2 there is 2 L K int such that ' $  
is valid in all topo-models. We only need to show that for every� 2 L K int there is
� 2 L K 2 such that j= � $ � . Thus, suppose� 2 L K int . By Lemma 7.1.13, there is
� 0 2 L K int in normal form such that j= � $ � 0. As � 0 is in normal forms, we have
� 0 := � 1 _ � � � _ � m where each� i := � ^ K� ^ K̂
 1 ^ � � � ^ K̂
 n with �; �; 
 i 2 L int

for all 1 � i � n. Now take an arbitrary � i = � ^ K� ^ K̂
 1 ^ � � � ^ K̂
 n . By
Proposition 6.2.10 and the soundness of (RE), we havej= � i $ � � ^ K (� � ) ^
K̂ (
 �

1) ^ � � � ^ K̂ (
 �
n ) where � : L int ! L K 2 is as given in De�nition 6.2.7. Notice

that � � ^ K (� � ) ^ K̂ (
 �
1) ^ � � � ^ K̂ (
 �

n ) 2 L K 2 . Therefore, each canonical con-
junction � i of � 0 is semantically equivalent to a formula inL K 2 with respect to
topo-models. Let � �

i denote the formula inL K 2 that is semantically equivalent
to � i (this is abuse of notation since� is not de�ned for K ). Hence, we obtain
(again by the soundness of (RE)) thatj= � 0 $ � �

1 _ � � � _ � �
n . As j= � $ � 0, we

concludej= � $ � �
1 _ � � � _ � �

n , where� �
1 _ � � � _ � �

n 2 L K 2 . 2

7.1.20. Corollary. L !
K int2 ; L !

K int , L K int and L K 2 are all co-expressive with re-
spect to topo-models.
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Proof:
The proof follows easily from Corollary 7.1.18 and Theorem 7.1.19, sinceL K int �
L !

K int � L !
K int2 . 2

Moreover, recall thatint can be de�ned by the public announcement modalities
as int(' ) := h' i> , hence, we also obtain thatL !

K and L !
K 2 are equally expressive

as their extensions with the modalityint. These results are summarized in Figure
7.1 below.

L K

L K 2

L K int

L int

L !
K int L !

K

L !
K int2 L !

K 2

Thm. 6.2.6

Thm. 7.1.19

Thm. 6.2.5 Thm. 6.2.5
Prop. 6.2.11

Thm. 6.2.6

Cor. 7.1.20

Cor. 7.1.20

int(' ) := h' i>

Figure 7.1: Expressivity diagram-updated with2 (Arrows point to the more
expressive languages, and re
exive and transitive arrows are omitted. Arrows
without tags can be obtained as easy consequences from the others.)

As a direct corollary of the above expressivity results, we obtain decidabil-
ity and the �nite model property for the dynamic logic of topo-models for the
languageL !

K int2 as well as for its fragments.

7.1.21. Corollary. The logic of topo-models for the languageL !
K int2 is decid-

able and has the �nite model property (and thus all its fragments, including in
particular TopoLogic, have these properties).

Proof:
This follows from Corollary 7.1.20, together with the fact that L K int is eas-
ily shown to have these properties by a standard �ltration argument (see e.g.,
Goranko and Passy, 1992, and Shehtman, 1999). 2
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7.1.3 Completeness of DTLint

In this section we prove the completeness of the proof systemDTLint with re-
spect to (both pseudo and) topo-models. The plan of our proof is as follows.
We �rst prove completeness ofDTLint with respect to a canonical pseudo-model,
consisting ofmaximally consistent witnessed theories. Roughly speaking, a max-
imally consistent theory is witnessed if every3 ' occurring in every \existential
context" in the theory is \witnessed" by some atomic formulap meaning that
hpi ' occurs in the same existential context in the theory. Next, we use the co-
expressivity ofL !

K int2 and L K int , as well as the fact thatL K int cannot distinguish
between a pseudo-model and its associated topo-model, to show thatDTLint is
complete with respect to thecanonical topo-model(associated with the canonical
pseudo-model).

The appropriate notion of \existential context" is represented bypossibility
forms (dual of necessity forms), in the following sense.

7.1.22. Definition. [Necessity and possibility forms forL !
K int2 ] For any �nite

string s 2 (f ' ! j ' 2 L !
K int2 g [ f K g [ f  j  2 L !

K int2 g)� = NF , we de�ne
pseudo-modalities [s] andhsi . These pseudo-modalities are functions mapping any
formula ' 2 L !

K int2 to another formula [s]' 2 L !
K int2 (necessity form), respectively

hsi ' 2 L !
K int2 (possibility form). The necessity forms are de�ned recursively as

[� ]' = ' , [' ! ; s]' = ' ! [s]' , [K; s ]' = K [s]' , [ ; s ]' = [  ][s]' , where� is the
empty string. For possibility forms, we sethsi ' := : [s]: ' .

7.1.23. Lemma. For every necessity form[s], there exist formulas�;  2 L !
K int2

such that for all ' 2 L !
K int2 , we have

` [s]' i� `  ! [� ]':

Proof:
The proof is as in (Balbiani et al., 2008, Lemma 4.8). Fors := � , take  := >
and � := > . It then follows by the axiom (R[> ]). Otherwise, by the de�nition of
a necessity form, [s]' is a formula of L !

K int2 such that ' is entirely on the right
(or at the bottom), and is successively bounded by �nitely many implications
� ! , knowledge modalitiesK , and announcements [� 0], in arbitrary order. By
rearranging the order of these symbols in a provably equivalent way, we can ob-
tain the required form `  ! [� ]' . We start with the public announcement
modalities. By using the reduction laws ofDTLint , we can push all the public
announcement modalities binding the components� ! and K of the necessity
form to the top of ' . To push them passK , we use (RK ), and for � ! we use
(R: ) and (R^ ). We then obtain a formula that is provably equivalent to [s]' ,
but in which all public announcement modalities occurring ins are stacked on
top of ' . By using the axiom (R[!]), we can write all these public announcement
modalities as one announcement. We therefore obtain a formula that is provably
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equivalent to [s]' of the following shape: a formula of the form [� ]' is entirely
on the right, and is successively bounded by �nitely many implications� ! , and
knowledge modalitiesK , in arbitrary order. This is still not in the required form
since we might have [� ]' at the bottom preceded by a knowledge modality, i.e.,
the resulting formula might have the shape (� � � ! K [� ]' ). However, sinceK is
of S5-type, we know that ` � ! K� i� ` K̂� ! � . Therefore, we can push every
occurrence of the modalityK bounding the consequent of an implication to the
antecedent as the epistemic possibility modalitŷK . This way, we obtain a theo-
rem of the form � 1 ! (� 2 ! : : : (� n ! [� ]' )). Then, by classical propositional
logic, we know` � 1 ! (� 2 ! : : : (� n ! [� ]' )) $ (

V
1� i � n � i ! [� ]' ), thus, we

have `  ! [� ]' (where  :=
V

1� i � n � i ). Since every axiom used in the above
argument is an equivalence, we also have`  ! [� ]' implies ` [s]' . 2

7.1.24. Lemma. The following rule is admissible inDTLint :

if ` [s][p]' then ` [s]2 '; wherep 62Ps [ P' :

Proof:
Suppose` [s][p]' . Then, by Lemma 7.1.23, there exist�;  2 L !

K int2 such that
`  ! [� ][p]' . By the auxiliary reduction law (R[p]) in Proposition 7.1.2, we get
`  ! [� ^ p]' . By the construction of the formulas and � , we know that
P [ P� � Ps, and so p 62P [ P� [ P' . Therefore, by ([!]2 -intro)), we have
`  ! [� ]2 ' . Applying again Lemma 7.1.23, we obtaiǹ [s]2 ' . 2

7.1.25. Definition. For every countable set of propositional variables P, let
L !

K int2 (P) be the language ofDTLint based only on the propositional variables in
P. Similarly, let NF P denote the corresponding set of strings de�ned based on
L !

K int2 (P).

� A P-theory is a consistentset of formulas inL !
K int2 (P), where \consistent"

means consistent with respect to the axiomatization ofDTLint formulated
for L !

K int2 (P).

� A maximal P-theory is a P-theory � that is maximal with respect to �
among all P-theories; in other words, � cannot be extended to another
P-theory.

� A P-witnessed theoryis a P-theory � such that, for every s 2 NF P and
' 2 L !

K int2 (P), if hsi 3 ' is consistent with � then there is p 2 P such
that hsihpi ' is consistent with � (i.e., if � ` [s][p]: ' for all p 2 P, then
� ` [s]2 : ' ).

� A maximal P-witnessed theory� is a P-witnessed theory that is not a proper
subset of any P-witnessed theory.
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7.1.26. Lemma. For every maximal P-witnessed theory� , and every formula
';  2 L !

K int2 (P),

1. either ' 2 � or : ' 2 � ,

2. ' ^  2 � i� ' 2 � and  2 � ,

3. ' 2 � and ' !  2 � implies  2 � .

7.1.27. Lemma. For every � � L !
K int2 (P), if � is a P-theory and � 6` : ' for

some' 2 L !
K int2 (P), then � [ f ' g is a P-theory. Moreover, if � is P-witnessed,

then � [ f ' g is also P-witnessed.

Proof:
Let � � L !

K int2 (P) be a P-theory and ' 2 L !
K int2 (P) such that � 6` : ' . It is

then easy to see that �[ f ' g is consistent, and thus, is a P-theory. Now suppose
that � is P-witnessed but � [ f ' g is not P-witnessed. By the previous state-
ment, we know that � [ f ' g consistent. Therefore, the latter means that there
is s 2 NF P and  2 L !

K int2 (P) such that � [ f ' g is consistent with hsi 3  but
� [ f ' g ` :h sihpi  for all p 2 P. This implies that � [ f ' g ` [s][p]:  for all
p 2 P. Therefore, � ` ' ! [s][p]:  for all p 2 P. This means � ` [' ! ; s][p]:  
for all p 2 P (since ' ! [s][p]:  := [ ' ! ; s][p]:  ). Hence, as � is P-witnessed
and [' ! ; s] is a necessity form, we obtain �` [' ! ; s]2 :  . By unraveling the
necessity form [' ! ; s], we get � ` ' ! [s]2 :  , thus, � [ f ' g ` [s]2 :  , i.e.,
� [ f ' g ` :h si 3  , contradicting the assumption that � [ f ' g is consistent with
hsi 3  . 2

7.1.28. Lemma. If f � i gi 2 N is an increasing chain ofP-theories such that� i �
� i +1 , then

S
n2 N � n is a P-theory.

Proof:
The proof is standard. 2

7.1.29. Lemma (Lindenbaum's Lemma). Every P-witnessed theory� can be
extended to a maximalP-witnessed theoryT� .

Proof:
The proof proceeds by constructing an increasing chain �0 � � 1 � : : : � � n �
: : : of P-witnessed theories, where �0 := �, and each � i is recursively de�ned.
Since we have to guarantee that each �i is P-witnessed, we follow a two-fold
construction, where �0 = � +

0 := �. Let 
 0; 
 1; : : : ; 
 n ; : : : be an enumeration of
all pairs of the form 
 i = ( si ; ' i ) consisting of any necessity formsi 2 NF P and
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any formula ' i 2 L !
K int2 (P). Let ( sn ; ' n ) be the nth pair in the enumeration. We

then set

� +
n =

�
� n [ fh sn i ' ng if � n 0 : h sn i ' n

� n otherwise

Note that the empty string � is in NF P, and for every  2 L !
K int2 (P) we have

h� i  :=  by the de�nition of possibility forms. Therefore, the above enumeration
of pairs includes every formula of L !

K int2 (P) in the form of its corresponding
pair (�;  ). By Lemma 7.1.27, each �+n is P-witnessed. Then, if' n is of the form
' n := 3 � for some� 2 L !

K int2 (P), there exists ap 2 P such that � +
n is consistent

with hsn ihpi � (since � +
n is P-witnessed). We then de�ne

� n+1 =

8
<

:

� +
n if � n 0 :h sn i ' n and ' n is not of the form 3 �

� +
n [ fh sn ihpi � g if � n 0 :h sn i ' n and ' n := 3 � for some� 2L !

K int2 (P)
� n otherwise

wherep 2 P such that � +
n is consistent withhsn ihpi � . Again by Lemma 7.1.27, it

is guaranteed that each �n is P-witnessed. Now consider the unionT� =
S

n2 N � n .
By Lemma 7.1.28, we know thatT� is a P-theory. To show thatT� is P-witnessed,
let s 2 NF P and  2 L !

K int2 (P) and supposehsi 3  is consistent withT� . The pair
(s;3  ) appears in the above enumeration of all pairs, thus (s;3  ) := ( sm ; ' m )
for somem 2 N. Hence,hsi 3  := hsm i ' m . Then, sincehsi 3  is consistent with
T� and � m � T� , we know that hsi 3  is in particular consistent with � m . There-
fore, by the above construction,hsihpi  2 � m+1 for somep 2 P such that � +

m is
consistent with hsihpi  . Thus, asT� is consistent and �m+1 � T� , we have that
hsihpi  is also consistent withT� . Hence, we conclude thatT� is P-witnessed. Fi-
nally, T� is also maximal by construction: otherwise there would be a P-witness
theory T such that T� ( T. This implies that there exists ' 2 L !

K int2 (P) with
' 2 T but ' 62T� . Then, by the construction ofT� , we obtain � i ` : ' for all
i 2 N. Therefore, sinceT� � T, we haveT ` : ' . Hence, since' 2 T, we conclude
T ` ? (contradicting T being consistent). 2

7.1.30. Lemma (Extension Lemma). Let P be a countable set of propositional
variables andP0 be a countable set offreshpropositional variables, i.e.,P\ P0 = ; .

Let
�
P = P [ P0. Then, everyP-theory � can be extended to a

�
P-witnessed theory

�
� � � , and hence to a maximal

�
P-witnessed theoryT� � � .

Proof:
Let 
 0; 
 1; : : : ; 
 n ; : : : an enumeration of all formulas of the form
 i := hsi i 3 ' i

consisting of anysi 2 NF
�
P, and every formula' i 2 L !

K int2 (
�
P) in the language. We

will recursively construct a chain of
�
P-theories � 0 � : : : � � n � : : : such that

1. � 0 = �,
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2. P0
n := f p 2 P0 : p occurs in � ng is �nite for every n 2 N, and

3. for every 
 n := hsn i 3 ' n with sn 2 NF
�
P and ' n 2 L !

K int2 (
�
P), if � n 0

:h sn i 3 ' n then there ispm \fresh" such that hsn ihpm i ' n 2 � n+1 . Otherwise
we will de�ne � n+1 = � n .

For every 
 n , let P0(n) := f p 2 P0 j p occurs either insn or ' ng: Clearly every

P0(n) is always �nite. We now construct an increasing chain of
�
P-theories recur-

sively. We set �0 := �, and let

� n+1 =
�

� n [ fh sn ihpm i ' ng if � n 0 :h sn i 3 ' n

� n otherwise,

wherem is the least natural number greater than the indices in P0n [ P0(n), i.e.,

pm is fresh. We now show that
�
� :=

S
n2 N � n is a

�
P-witnessed theory. First show

that
�
� is a

�
P-theory. By Lemma 7.1.28, it su�ces to show by induction that every

� n is a
�
P-theory. Clearly � 0 is a

�
P-theory. For the inductive step suppose �n is

consistent but � n+1 is not. Hence, �n 6= � n+1 and moreover �n+1 ` ? . Then,
since �n+1 = � n [ fh sn ihpm i ' ng, we have �n ` [sn ][pm ]: ' n . Therefore there ex-
ists f � 1; : : : ; � kg � � n such that f � 1; : : : ; � kg ` [sn ][pm ]: ' n . Let � =

V
1� i � k � i .

Then ` � ! [sn ][pm ]: ' n , so ` [� ! ; sn ][pm ]: ' n with pm =2 P� [ Psn [ P' n .
Thus, by the admissible rule in Lemma 7.1.24, we obtaiǹ [� ! ; sn ]2 : ' n , i.e.,
` � ! [sn ]2 : ' n . Therefore,� ` :h sn i 3 ' n . Sincef � 1; : : : ; � kg � � n , we therefore
have � n ` :h sn i 3 ' n . But, this would mean � n = � n+1 , contradicting our assump-

tion. Therefore � n+1 is consistent and thus a
�
P-theory. Hence, by Lemma 7.1.28,

�
� is a

�
P-theory. Condition (3) above implies that

�
� is also

�
P-witnessed. Then, by

Lindenbaum's Lemma (Lemma 7.1.29), there is a maximal
�
P-witnessed theory

T� such that T� �
�
� � �. 2

We are now ready to build the canonical pseudo-model. For a �xed countable
set of propositional variables P, we let for any maximal P-witnessed theoriesT
and S,

T � S i� ( 8' 2 L !
K int2 (P))( K' 2 T ) ' 2 S):

7.1.31. Definition. [Canonical Pseudo-Model forT0] Let T0 be a maximal P-
witnessed theory. Thecanonical pseudo-model forT0 is a tuple X c = ( X c; Oc; V c)
such that

� X c = f T � L !
K int2 (P) j T is a maximal P-witnessed theory withT � T0g,

� O c = f \int(' ) j ' 2 L !
K int2 (P)g, where b� = f T 2 X c j � 2 Tg for any

� 2 L !
K int2 (P),
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� V c(p) = f T 2 X c j p 2 Tg.

We let � c denote the topology generated byOc. The associated topo-modelX c
� =

(X c; � c; V c) is called thecanonical topo-model forT0.

In order to show that X c = ( X c; Oc; V c) is indeed a pseudo-model, we need
a Truth Lemma for the languageL !

K int2 . We therefore postpone the proof ofX c

being a pseudo-model until after the proof of the Truth Lemma (Lemma 7.1.35)
for the completeness ofDTLint . For now, we show thatX c = ( X c; Oc; V c) is at
least a pre-model, hence, it is well-de�ned for the languageL !

K int2 (P).

7.1.32. Lemma. X c = ( X c; Oc; V c) is a pre-model.

Proof:
It is easy to see thatX c; ; 2 O c, since \int(> ) = X c and \int(? ) = ; . We need
to show that Oc is closed under (1) �nite intersections and (2) �nite unions.
(1) closure under �nite intersection follows from the normality of int, namely
from the fact that ` int(' ) ^ int( ) $ int(' ^  ). (2) closure under �nite union
follows from the fact that ` (int(' ) _ int( )) $ int(int(' ) _ int( )), and that
int(int(' ) _ int( )) 2 L !

K int2 (P). 2

7.1.33. Lemma. For every maximalP-witnessed theoryT, the setf � j K� 2 Tg
is a P-witnessed theory.

Proof:
Observe that, by axiom (TK ), f � j K� 2 Tg � T. Therefore, asT is consistent,
the set f � j K� 2 Tg is consistent. Lets 2 NF P and  2 L !

K int2 (P) such that
f � j K� 2 Tg ` [s][p]: ' for all p 2 P. Then, by normality of K , T ` K [s][p]: '
for all p 2 P. Since K [s][p]: ' := [ K; s ][p]: ' is a necessity form andT is P-
witnessed, we obtainT ` [K; s ]2 : ' , i.e., T ` K [s]2 : ' . As T is maximal, we
have K [s]2 : ' 2 T, thus [s]2 : ' 2 f � j K� 2 Tg. 2

7.1.34. Lemma (Existence Lemma). Let T 2 X c and '; � 2 L !
K int2 (P) such

that int(� ) 2 T and K [� ]' 62T. Then, there is S 2 X c with int(� ) 2 S and
[� ]' 62S.

Proof:
Let '; � 2 L !

K int2 (P) such that int(� ) 2 T and K [� ]' 62T. The latter im-
plies that f  j K 2 Tg 6` [� ]' , hence, f  j K 2 Tg 6` :: [� ]' . Then, by
Lemma 7.1.33 and Lemma 7.1.27, we obtain thatf  j K 2 Tg [ f: [� ]' g is
a P-witnessed theory. Note that` : [� ]' $ (int(� ) ^ [� ]: ' ) (see Proposition
7.1.2-(h!i )). We therefore obtain that f  j K 2 Tg [ f: [� ]' g ` int(� ), thus,



7.1. Dynamic TopoLogic 143

f  j K 2 Tg [ f: [� ]' g 6` :int(� ) (since f  j K 2 Tg [ f: [� ]' g is con-
sistent). Therefore, by Lemma 7.1.27,f  j K 2 Tg [ f: [� ]' g [ f int(� )g is
also a P-witnessed theory. We can then apply Lindenbaum's Lemma (Lemma
7.1.29) and extend it to a maximal P-witnessed theoryS such that int(� ) 2 S
and [� ]' 62S. 2

7.1.35. Lemma (Truth Lemma). Let X c = ( X c; Oc; V c) be the canonical pseu-
do-model for a maximalP-witnessed theoryT0 and ' 2 L !

K int2 (P). Then, for all
� 2 L !

K int2 (P) we have

[[' ]]
\int (� ) = [h� i ':

Proof:
The proof follows by < S

d -induction on ' (the well-founded partial order < S
d on

L !
K int2 is de�ned in Appendix A.1).

Base case' := p

[[p]]
\int (� ) = \int(� ) \ [[p]]X

c
(sincep is bi-persistent)

= \int(� ) \ V c(p) (by the semantics of p)

= \int(� ) \ bp (by the de�nition of V c)

= int(� ) ^ p
V

= int(� ) ^ (int(� ) ! p)
V

(by propositional tautologies)

= int(� ) ^ [� ]p
V

(by (Rp))

= h� i p
V

(Proposition 7.1.2-(h!i ))

Induction Hyposthesis: For < S
d ' , we have [[ ]] \int (� ) = [h� i  for all � 2 L !

K int (P).

Case' := :  

[[:  ]]
\int (� ) = \int(� )n[[ ]]

\int (� ) (by the semantics of: )

= \int(� )n[h� i  (by IH)

= \int(� ) \ (X cn[h� i  )

= \int(� ) \ :h � i  
V

(sinceX cn[h� i  = :h � i  
V

)

= int(� ) ^ :h � i  
V

= int(� ) ^ [� ]:  
V

= h� i:  
V

(Proposition 7.1.2-(h!i ))
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Case' :=  ^ �

[[ ^ � ]]
\int (� ) = [[  ]]

\int (� ) \ [[� ]]
\int (� ) (by the semantics of̂ )

= h� i  
V

\ h � i �
V

(by IH)

= h� i  ^ h� i �
V

(by propositional tautologies)

= h� i ( ^ � )
V

(` (h� i  ^ h� i � ) $ h � i ( ^ � ))

Case' := K 
() ) SupposeT 2 [[K ]] \int (� ) . This implies, by the semantic clause ofK , that

T 2 \int(� ) and [[ ]] \int (� ) = \int(� ). We want to show that T 2 h� i K 
V

. By Propo-
sition 7.1.2-(h!i ) and the reduction axiom (RK ), we obtain ` h � i K $ int(� ) ^

K [� ] . We therefore only need to show thatT 2 \int(� ) and T 2 K [� ] 
V

. We have
the former by the assumption. Suppose toward contradiction thatT 62K [� ] 

V

,
i.e., K [� ] 62T. Then, by Lemma 7.1.34, there existsS 2 X c such that int(� ) 2 S
and [� ] 62S. Since` h� i  ! [� ] , we obtain h� i  62S. Therefore, by IH, we

haveS 62[[ ]] \int (� ) . SinceS 2 \int(� ), we then conclude [[ ]] \int (� ) 6= \int(� ). By the se-
mantics ofK , this means that [[K ]] \int (� ) = ; , contradicting our �rst assumption.
Hence,T 2 int(� ) ^ K [� ] 
V

= h� i K 
V

.
(( ) SupposeT 2 h� i K 

V

. Then, by the equality h� i K $ int(� ) ^ K [� ] ,

we haveT 2 \int(� ) and T 2 K [� ] 
V

. Let S 2 \int(� ). SinceS � T and T 2 K [� ] 
V

,
we also have [� ] 2 S. Therefore, by Proposition 7.1.2-(h!i ), we obtain h� i  2 S.

This implies, by IH, that S 2 [[ ]] \int (� ) . As this holds for all S 2 \int(� ), we have

[[ ]] \int (� ) = \int(� ). Hence, [[K ]] \int (� ) = \int(� ) 3 T.

Case' := int( )

() ) SupposeT 2 [[int( )]] \int (� ) . Then, by the semantics ofint, there exists
U 2 O c such that T 2 U � [[ ]] \int (� ) (sinceOc constitutes a basis for� c). Then,

by IH, we haveU � [h� i  . By the construction of Oc, we know that U = \int(
 )
for some
 2 L !

K int2 (P). We therefore obtain that

T 2 \int(
 ) � [h� i  :

This means that, for all S 2 \int(
 ), we haveS 2 [h� i  . Therefore, the setf � 2
L !

K int2 (P) j K� 2 Tg [ f: (int(
 ) ! h � i  )g is inconsistent. Otherwise, by Lemma
7.1.29, it could be extended to a maximally consistent P-witnessed theoryT0 such
that T � T0, int(
 ) 2 T0 and h� i  62T0, a contradiction. Then, there exists a
formula � 2 f � 2 L !

K int2 (P) j K� 2 Tg such that ` � ! (int(
 ) ! h � i  ). Thus,
by the normality of K , we have` K� ! K (int(
 ) ! h � i  ). As K� 2 T, we
obtain K (int(
 ) ! h � i  ) 2 T. Then by axiom (K -int), we have int(int(
 ) !
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h� i  ) 2 T. Since int is an S4 modality, we get int(
 ) ! int(h� i  ) 2 T. Since

T 2 \int(
 ), this implies int(h� i  ) 2 T. Moreover, we have

1: ` int(h� i  ) $ int(int(� ) ^ [� ] ) (Proposition 7.1.2-(h!i ), (RE))

2: ` int(int(� ) ^ [� ] ) $ (int(� ) ^ int([� ] )) ( S4int )

3: ` (int(� ) ^ int([� ] )) $ (int(� ) ^ (int(� ) ! [� ]int( )))
(Proposition 7.1.2-(Rint ))

4: ` (int(� ) ^ (int(� ) ! [� ]int( ))) $ (int(� ) ^ [� ]int( )))

5: ` (int(� ) ^ [� ]int( ))) $ h � i int( ) (Proposition 7.1.2-(h!i ))

6: ` int(h� i  ) $ h � i int( ) (1-5, CPL)

Therefore, asT is maximal, we obtainh� i int( ) 2 T, i.e., T 2 h� i int( )
V

.
(( ) SupposeT 2 h� i int( )

V

. This implies, by the above derivation, thatT 2
int(h� i  )
V

. By the constraction of Oc, we haveint(h� i  )
V

2 O c. Moreover, by
the axiom (Tint ), we obtain int(h� i  )

V

� h � i  
V

. By IH, we also have thath� i  
V

=
[[ ]] \int (� ) . Therefore T 2 int(h� i  )

V

� h � i  
V

= [[  ]] \int (� ) , i.e., T 2 Int ([[ ]] \int (� )) =
[[int( )]] \int (� ) .

Case' := h� i  

[[h� i  ]]
\int (� ) = f T 2 \int(� ) j (T; Int ([[� ]]

\int (� ))) j=  g

= f T 2 \int(� ) j (T; [[int(� )]]
\int (� )) j=  g (by the semantics ofint)

= f T 2 \int(� ) j (T;h� i int(� )
V

j=  g (by IH, since int(� ) < S
d h� i  )

= [[  ]]h� i int(� )
V

(sinceh� i int(� )
V

� \int(� ))

= hh� i int(� )i  
V

(by IH, since  < S
d h� i  )

= h� ih� i  
V

(` h� ih� i  $ hh� i int(� )i  )

Note that ` h � ih� i  $ hh� i int(� )i  follows from (R[!]) and (R[int])).

Case' := 2  
() ) SupposeT 2 [[2  ]] \int (� ) , i.e., (T; \int(� )) j= 2  . This means that for all

U 2 O with T 2 U � \int(� ), we have (T; U) j=  . This in particular implies that

(T; \int(� )) j= [ p] for all p 2 P. To show, let p 2 P and suppose (T; \int(� )) j=
int(p), i.e., T 2 Int ([[p]] \int (� )) = [[ int(p)]] \int (� ) . Since int(p) < S

d 2  (see Lemma

A.1.5-(2,4)), we know by IH that [[int(p)]] \int (� ) = h� i int(p)
V

. But, as shown in the
case for the modalityint above, ` h � i int(p) $ int(h� i p), hence, [[int(p)]] \int (� ) =
int(h� i p)
V

, thus, [[int(p)]] \int (� ) 2 O c. Hence, by the �rst assumption, we obtain

(T; Int ([[p]] \int (� ))) j=  , thus, (T; \int(� )) j= [ p] . Therefore, T 2 [[[p] ]] \int (� ) for
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all p 2 P. Then, by IH (since [p] < S
d 2  ), we have [[[p] ]] \int (� ) = h� i [p] 

V

,
thus, h� i [p] 2 T. Hence, by Proposition 7.1.2-(h!i ), int(� ) ^ [� ][p] 2 T for all
p 2 P. SinceT is P-witnessed and maximal, we then obtainint(� ) ^ [� ]2  2 T.
Then, by Proposition 7.1.2-(h!i ), we concludeh� i 2  2 T.

(( ) SupposeT 2 h� i 2  
V

. This means (by Proposition 7.1.2-(h!i )) that
T 2 int(� ) ^ [� ]2  
V

, i.e., that int(� ) 2 T and [� ]2  2 T. Then, by axiom ([!]2 -
elim), we have that [� ^ � ] 2 T for all � 2 L !

K int2 (P). We want to show that

T 2 [[2  ]] \int (� ) . Let U 2 O c such that T 2 U � \int(� ) and showT 2 [[ ]]U . By the

construction of Oc, we know that U = \int(
 ) for some
 2 L !
K int2 (P). We there-

fore have that T 2 U = \int(
 ) = \int(
 ) \ \int(� ) = int(
 ) ^ int(� )
V

= int(
 ^ � )
V

.
Hence,int(� ^ 
 ) ^ [� ^ 
 ] 2 T. Therefore, by Proposition 7.1.2-(h!i ) and the
fact that T is maximal, we obtainh� ^ 
 i  2 T. Thus, by IH (since  < S

d 2  ),

T 2 [[ ]]int(� ^ 
 )
V

, i.e., T 2 [[ ]]U . 2

7.1.36. Lemma. X c = ( X c; Oc; V c) is a pseudo-model.

Proof:
Theorem 7.1.32 shows thatX c = ( X c; Oc; V c) is a pre-model. In order to show
that it is indeed a pseudo-model, let' 2 L !

K int2 (P) and U 2 O c. We should show

that [[ int(' )]]U 2 O c, i.e., that [[int(' )]]U = \int( ) for some 2 L !
K int2 (P). By the

construction ofOc, we know thatU = \int(
 ) for some
 2 L !
K int2 (P). By the Truth

Lemma (Lemma 7.1.35), we have [[int(' )]] \int (
 ) = h
 i int(' )
V

. As argued in the case
for the modality int in the Truth Lemma, h
 i int(' )

V

= int(h
 i ' )
V

. Therefore, we
conclude that [[int(' )]]U = [[ int(' )]] \int (
 ) = int(h
 i ' )

V

for int(h
 i ' ) 2 L !
K int2 (P).

Hence,X c = ( X c; Oc; V c) is a pseudo-model. 2

The next lemma shows that the languageL K int cannot distinguish a pseudo-
model from its associated topo-model.

7.1.37. Lemma. Let X = ( X; O; V) be a pseudo-model andX� = ( X; � O ; V) be
the associated topo-model. Then, for all' 2 L K int and (x; U) 2 ES(X ), we have

X ; (x; U) j= ' i� X� ; (x; U) j= ':

Proof:
The proof goes by subformula induction on' and it is straightforward. We only
show the case for' := int( ). Note that if U 2 O then U 2 � O (but not the other
way around).

X ; (x; U) j= int( ) i� x 2 Int ([[' ]]UX ) (where Int is the interior operator of X� )

i� x 2 Int ([[' ]]UX �
) (by IH: [[ ' ]]UX �

= [[ ' ]]UX )

i� X� ; (x; U) j= int( )
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2

7.1.38. Corollary. DTLint is complete for the canonical pseudo-models and
canonical topo-models(and so also complete with respect to the class of all pseudo-
models, as well as the class of all topo-models).

Proof:
Let ' be an DTLint -consistent formula, i.e., it is a P' -theory. Then, by Lemma
7.1.30, it can be extended to a maximalprop -witnessed theoryT. Let X c =
(X c; Oc; V c) denote the canonical pseudo-model forT. Since ' 2 T, by ax-

iom (R[> ]), we obtain h>i ' 2 T, i.e., T 2 [h>i ' . Thus, by Truth Lemma

(Lemma 7.1.35), we have thatT 2 [[' ]]
\int (> )
X c , i.e., that X c; (T; X c) j= ' (since

\int(> ) = X c). This proves the �rst completeness claim. As for the second, by the
co-expressivity ofL K int and L !

K int2 on pseudo-models (Corollary 7.1.18), there
exists a 2 L K int such that ' $  is valid in all pseudo-models. We therefore
have X c; (T; X c) j=  . By Lemma 7.1.37, we obtainX c

� ; (T; X c) j=  where X c
�

is the canonical topo-model. Using again the semantic equivalence of' and  
(applied to the modelX c

� ), we conclude thatX c
� ; (T; X c) j= ' . 2

This result concludes the present section. In the next section, we present a
topological semantics for the so-called arbitrary announcement modality intro-
duced by Balbiani et al. (2008), and investigate its link to the e�ort modality of
Moss and Parikh (1992).

7.2 Topological Arbitrary Announcement Logic

Balbiani et al. (2008) proposed an extension of public announcement logic with a
dynamic operator that quanti�es over public announcements and expresseswhat
becomes true after any announcement. More precisely, they consider the language
L !

K � (in its single-agent version here)

' ::= p j : ' j ' ^ ' j K' j [' ]' j � ';

where the construct [' ] stands for the standard public announcement modal-
ity stating `after public announcement of' ,  (is true)', and � ' represents the
arbitrary (public) announcement modality which is read as \after any announce-
ment, ' is true". Balbiani et al. (2008) studied this modality on Kripke models
with equivalence relations by using the standard semantics for public announce-
ments in terms of model restrictions. More precisely, given a re
exive, transitive
and symmetric Kripke modelM = ( X; R; V ) and x 2 X , Balbiani et al. (2008)
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propose to interpret the modality � ' as

M ; x j= � ' i� ( 8 2 L !
K )(M ; x j= [  ]' )

i� ( 8 2 L !
K )(M ; x j=  implies M  ; x j= ' )

where M  = ( k k; R ; V  ) is the restriction of M to the truth set of  in
M .2 Unlike the e�ort modality 2 ' which is read as \' stays true no matter
what further evidence-gathering e�orts are made", the arbitrary announcement
modality � ' means \' stays true afterany epistemic announcement". The latter
therefore quanti�es only overepistemically de�nablesubsets (� -free formulas of
the language) of a given model.3

In this case, for example, � K' means that the agent comes to know' , but
in the interpretation that there is a � -free formula  such that after announc-
ing it the agent knows ' . What becomes true or known by an agent after an
announcement can be expressed in this language without explicit reference to
the announced formula. Clearly, the meaning of the e�ort modality2 ' and of
the arbitrary announcement modality � ' are related in motivation, and their
readings suggest that while� ' generalizes [ ]' , the e�ort modality 2 ' seems
more general than� ' . However, we cannot yet see the precise connection be-
tween these modalities at the formal level as they have been studied on di�er-
ent semantic structures. In this section, we aim to explore the link between the
Bjorndahl-style topological updates, the e�ort modality, and a topological version
of the arbitrary announcement modality. To this end, based on (van Ditmarsch
et al., 2014), we extend the languageL !

K int by the arbitrary announcement oper-
ator � ' and propose a topological semantics for this modality by interpreting it
as a quanti�cation over Bjorndahl-style updates on topological spaces. We then
show not only that L !

K int � and L !
K int2 are co-expressive for topo-models, but also

that|quite surprisingly| the e�ort modality 2 and the topological arbitrary an-
nouncement modality� are equivalentin the single-agent setting.

2To recall, k k = k kM , R = R \ k  k � k  k, and V  (p) = V (p) \ k  k for all p 2 prop .
3To be more precise, by an\epistemically de�nable subset" of a modelM = ( X; R; V ), we

mean a subset ofX that corresponds to a truth set of a formula  2 L !
K in M . Since the

languagesL K and L !
K are equally expressive with respect to Kripke models with equivalence

relations (Plaza, 1989), quantifying over the formulas of L !
K or the formulas of L K in the

semantic clause for� ' amounts to the same interpretation. Moreover, the reason as to why
the arbitrary announcement modality quanti�es only over the formulas without � is to avoid a
possible circularity. Otherwise, if � ' were an announcement that plays a role in the evaluation
of � ' , checking the truth of � ' would require checking its truth (see Balbiani et al., 2008,
Section 2.3.1 for a more detailed discussion on the semantics of� ' ). Van Ditmarsch et al.
(2016) present an arbitrary announcement logic, calledfully arbitrary public announcement
logic, that allows � ' to quantify over formulas having arbitrary announcement operators, yet
does not encounter the above mentioned circularity. This logic is de�ned based on a language
with a proper class of auxiliary arbitrary announcement operators indexed by ordinals.
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Syntax and Semantics. We consider the languageL !
K int � obtained by extend-

ing L !
K int with the arbitrary announcement modality � . In other words, L !

K int � is
de�ned by the grammar

' ::= p j : ' j ' ^ ' j K' j int(' ) j [' ]' j � '

wherep 2 prop . We sometimes call the formulas inL !
K int � -free formulas.

Given a topo-modelX = ( X; �; V ) and an epistemic scenario (x; U) 2 ES(X ),
truth of a formula in L !

K int � is de�ned for Boolean cases, and the modalitiesK ,
int and [!] as forL !

K int in De�nition 6.2.1. For the modality � , we propose the
following semantic clause.

7.2.1. Definition. [Semantics of arbitrary announcement] Given a topo-model
X = ( X; �; V ) and an epistemic scenario (x; U) 2 ES(X ), the semantic clause for
the arbitrary announcement modality � reads

X ; (x; U) j= � ' i� ( 8 2 L !
K int )(X ; (x; U) j= [  ]' ):

In other words, unravelling the above semantic clause, we model� ' as

(x; U) j= � ' i� ( 8 2 L !
K int )(( x; U) j= int( ) implies (x; Int ([[ ]]U )) j= ' )

We therefore work with a topological version of the arbitrary announcement
modality in the sense that it quanti�es over Bjorndahl's public announcements
whose pre-condition is captured by the interior modality, and whose e�ect is
modelled in terms of neighbourhood shrinking.

Expressivity of L !
K int � on topo-models

We will now prove that L !
K int � and L K int are equally expressive with respect to

topo-models in the single-agent case (this will not be the case for the multi-
agent version we present in Chapter 8). The proof of this result follows similar to
the proof of Theorems 7.1.17 and 7.1.18. Thus, we �rst provide similar auxiliary
lemmas for the languageL !

K int � .

7.2.2. Proposition. The rule of Replacement of Provable Equivalents(RE) is
sound for L !

K int � with respect to topo-models. More precisely, for all';  ; � 2
L !

K int � , if  $ � is valid in all topo-models then so is' $ ' f  =� g.

Proof:
Let ';  ; � 2 L !

K int � and supposej=  $ � . We want to show that j= ' $
' f  =' g, and the proof follows by subformula induction on' , where the base
case is' :=  . Let X = ( X; �; V ) be a topo-model and (x; U) 2 ES(X ). For
the base case' :=  , we then have' f  =� g = � . Therefore, ' $ ' f  =� g boils
down to j=  $ � , hence follows from the assumption. Now assume inductively
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that the statement holds for � and � . The cases for the BooleansK , int and [!]
are standard. We here only show the case of the new modality� :

Case' := � � : Note that ( � � )f  =� g = � (� f  =� g). We then have

(x; U) j= ( � � )f  =� g

i� ( x; U) j= � (� f  =� g)

i� ( 8� 2 L !
K int )(( x; U) j= [ � ](� f  =� g)) (by the semantics of� )

i� ( 8� 2 L !
K int )(( x; U) j= int(� ) implies (x; Int ([[� ]]U )) j= � f  =� g)

(by the semantics of [!])

i� ( 8� 2 L !
K int )(( x; U) j= int(� ) implies (x; Int ([[� ]]U )) j= � )

(by the induction hypothesis on� )

i� ( 8� 2 L !
K int )(( x; U) j= [ � ]� ) (by the semantics of [!])

i� ( x; U) j= � � (by the semantics of� )

2

7.2.3. Proposition. For any '; ' i 2 L int , the following is valid in all topo-
models:

j= � (' ^ K' 0 ^
^

1� i � n

K̂' i ) $ (' ^ int(' 0) ^
^

1� i � n

K̂ (int(' 0) ^ ' i )) (EL �
n )

Proof:
The proof is similar to the proof of Proposition 7.1.15. For the direction from
right-to-left, we take ' 0 as the witness for � . 2

7.2.4. Lemma. For all ';  2 L !
K int � , the formula � (' _  ) $ ( � ' _ �  ) is

valid in all topo-models.

7.2.5. Theorem. L !
K int � and L K int are equally expressive with respect to topo-

models.

Proof:
Analogous to the proof of Theorem 7.1.17. 2

We have therefore obtained the extended Figure 7.2 summarizing all the ex-
pressivity results we have provided on topo-models concerning the languages
L !

K int2 , L !
K int � , and their subfragments.
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L K

L K 2

L K int

L int

L !
K int L !

K

L !
K int2 L !

K 2

L !
K int � L !

K �

Thm. 6.2.6

Thm. 7.1.19

Thm. 6.2.5 Thm. 6.2.5
Prop. 6.2.11

Thm. 6.2.6

Cor. 7.1.20

Cor. 7.1.20

int(' ) := h' i>

int(' ) := h' i>

Thm. 7.2.5

Figure 7.2: Expressivity diagram-updated with� (Arrows point to the more
expressive languages, and re
exive and transitive arrows are omitted. Arrows
without tags can be obtained as easy consequences from the others.)

We moreover prove that not only areL !
K int � and L !

K int2 co-expressive for
topo-models, but also that the e�ort modality 2 and the topological arbitrary
announcement modality� are equivalent, in the following sense (Baltag et al.,
2017):

7.2.6. Theorem. Let t : L !
K int � ! L !

K int2 be the map that replaces each instance
of � with 2 . Then for every ' 2 L !

K int � , we have that' $ t(' ) is valid in all
topo-models.

Proof:
The proof is by subformula induction on' . We skip the proof details, which could
be easily reconstructed, and provide only a sketch. The cases for the propositional
variables, the Booleans, and the modalitiesK and int are straightforward, since
t(p) = p; t(:  ) = : t( ); t( ^ � ) = t( ) ^ t(� ); t(K ) = Kt ( ); t(int( )) =
int(t( )) and t([ ]� ) = [ t( )]t(� ). The relatively complicated case is' := �  ,
wheret( �  ) = 3 t( ). The crucial part of the proof is that the elimination pro-
cedure for 3 and � are the same: they both go via normal forms and the
corresponding equivalences EL2

n and EL�
n (see Corollary 7.1.18 and Theorem
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7.2.5). Hence, two formulas only di�ering in the occurrences of3 and � are
semantically equivalent to the same formula inL K int on topo-models. 2

Therefore, given the sound and complete axiomatization ofDTLint (Table 7.1)
and the above link between the e�ort modality2 ' and the arbitrary announce-
ment modality � ' , we immediately obtain a sound and complete axiomatization
for the single-agent logicAPALint of knowledgeK' , knowability int(' ), public an-
nouncements [' ] , and arbitrary announcenements� ' with respect to the class
of all topo-models. The axiomatization ofAPALint is again given by the axiom
schemas in Table 7.1 de�ned over the languageL !

K int � (instead ofL !
K int2 ). In par-

ticular, the axiom ([!]2 -elim) and the inference rule ([!]2 -intro) are replaced by
([!]� -elim) and ([!]� -intro) given in Table 7.2, respectively

([!]� -elim) [' ]� � ! [' ^ � ]� (� 2 L !
K int � arbitrary formula)

([!]� -intro) from  ! [' ^ p]� , infer  ! [' ] � � (p 62P [ P� [ P' )

Table 7.2: The axiom for� -elimination and the rule for � -introduction

We therefore obtain the following which, together with Theorem 7.2.6, gives
us the soundness and completeness ofAPALint .

7.2.7. Lemma. For all ' 2 L !
K int � , we have` APAL int ' i� ` DTL int t(' ):

7.2.8. Corollary. APALint is sound and complete with respect to the class of
all topo-models.

Proof:
For soundness, we focus only on the new axiom schema and the inference rule, and
show that ([!]� -elim) is valid and ([!]� -intro) preserves validity on topo-models.

([!]� -elim): Let X = ( X; �; V ) and (x; U) 2 ES(X ) such that (x; U) j= [ ' ]� � .
Then, by Theorem 7.2.6, we obtain (x; U) j= [ t(' )]2 t(� ). Thus, by the soundness
of ([!]2 -elim) for topo-models (Theorem 7.1.9), we have (x; U) j= [ t(' ) ^ � ]t(� )
for all � 2 L !

K int2 . Let � 0 2 L !
K int � . Hence, t(� 0) 2 L !

K int2 , therefore we have
(x; U) j= [ t(' ) ^ t(� 0)]t(� ). Observe that [t(' ) ^ t(� 0)]t(� ) = t([' ^ � 0]� ). Therefore,
by Theorem 7.2.6 again, we obtain (x; U) j= [ ' ^ � 0]� . As � 0 has been chosen
arbitrarily from L !

K int � , we have the desired result.

([!]� -intro): Suppose j=  ! [' ^ p]� for somep 62P [ P� [ P' . Then,
by Theorem 7.2.6,j= t( ! [' ^ p]� ), that is, j= t( ) ! [t(' ) ^ p]t(� ), by the
de�nition of t. Then, by the soundness of ([!]2 -intro) (Theorem 7.1.9), we obtain
that j= t( ) ! [t(' )]2 t(� ). Observe that t( ) ! [t(' )]2 t(� ) = t([ ] ! [' ]� � ),
therefore, j= t([ ] ! [' ]� � ). Thus, again by Theorem 7.2.6, we havej= [  ] !
[' ]� � .
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For completeness, let' 2 L !
K int � such that ' 62APALint . Hence, by Lemma

7.2.7, we obtain that t(' ) 62DTLint . Then, by Corollary 7.1.38, there exists a
topo-model X = ( X; �; V ) and an epistemic scenario (x; U) 2 ES(X ) such that
X ; (x; U) 6j= t(' ). Therefore, by Theorem 7.2.6, we concludeX; (x; U) 6j= ' . 2

7.3 Conclusions and Continuation

Our work presented in this chapter uses both the interior semantics of McKin-
sey and Tarski (1944) (together with the global modality as knowledge), and the
topological formalism introduced by Moss and Parikh (1992). Building on Bjorn-
dahl's logic of knowledgeK' , knowability int(' ), and learning of new evidence
[ ]' (formalized as a \topological" public announcement modality, whose pre-
condition is captured by int(' )), we developed the so-called DynamicTopoLogic
that is obtained by adding the e�ort modality to Bjorndahl's system. This way,
we believe that, at the very least, the meaning of the e�ort modality has become
more transparent as it is linked to the public announcement modalities [ ]' which
can be seen as a particular case of e�ort. This connection has been made precise
in the corresponding proof system by the axiom ([!]2 -elim) and the inference rule
([!]2 -intro). In Dynamic TopoLogicthe behaviour of the e�ort modality is de-
scribed by using only the aforementioned axiom and inference rule, avoiding the
complicated Union Axiom ofTopoLogic. While our completeness proof ofDTLint

goes by a standard canonical model construction based on maximally consistent
witnessed theories, our expressivity results (Corollary 7.1.20) imply decidability
and the �nite model property of the logics of topological spaces over the language
L !

K int2 and its fragments (Corollary 7.1.21), by relying on the known decidability
and �nite model property of L K int .

We moreover study a topological semantics for the arbitrary announcement
modality, and investigate its interplay with the e�ort modality. To the best of
our knowledge, the known completeness proofs for arbitrary announcement logics
(topological or relational) rely on in�nitary axiomatizations formalized by using
necessity forms (see, e.g., Balbiani et al., 2008, 2013; Balbiani, 2015; Balbiani and
van Ditmarsch, 2015; also see Sections 8.2 and 8.3 for the multi-agent case). Al-
though Balbiani et al. (2008) propose a �nitary axiomatization similar to ours
(Table 7.2), its completeness proof goes via the completeness of an in�nitary sys-
tem4. On the other hand, our completeness proof of the �nitary systemAPALint

does not involve a detour through an in�nitary logic. Therefore, the e�ort modal-
ity helps to simplify and streamline the axiomatization ofAPALint .

4The �nitary axiomatization proposed in (Balbiani et al., 2008) was later proven to be
unsound for the multi-agent case(see http://personal.us.es/hvd/APAL_counterexample.
pdf ), and the error in the complexity measure in (Balbiani et al., 2008, Truth Lemma 4.13,
p. 327) is corrected in (Balbiani, 2015).
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Higher-order knowledge and dynamics of information change become more
interesting when more than one agent is involved. However, extending the sub-
set space style semantics to a setting involving multiple agents comes with some
challenges concerning the evaluation of higher-order knowledge. In particular, the
multi-agent case requires solving the complication of \jumping out of the epis-
temic range". In the next chapter, we explain this problem and propose a solution
for it. We then study the multi-agent versionsELm

int and PALm
int of ELint and PALint ,

respectively, as well as a multi-agent logic of arbitrary public announcements,
denoted byAPALm

int , interpreted on topological spaces in the style of subset space
semantics. The e�ort modality in multi-agent setting creates many challenges,
both technically and conceptually. We leave investigations for the e�ort modality
in a multi-agent setting for future.



Chapter 8

Multi-Agent Topo-Arbitrary
Announcement Logic

In this chapter, we propose amulti-agent logic of knowledge, knowability, public
and arbitrary announcements, interpreted on topological spaces in the style of
subset space semantics. More precisely, we generalize the single-agent setting
presented in Section 7.2 to a multi-agent setting wherein the multi-agent version
of L !

K int � is de�ned similarly but with �nitely many knowledge modalities K i '
indexed for each agent, meaning thatagent i knows' .

As also recognized in (Baskent, 2007, Chapter 6) and (W�ang and�Agotnes,
2013a), a �rst step toward developing a multi-agent epistemic logic using topolog-
ical subset space semantics requires solving the problem of \jumping out of the
epistemic range" of an agent while evaluating higher-order knowledge formulas.
This issue occurs independently from the dynamic extensions. The general setup
is for any �nite number of agents, but to demonstrate the challenges, consider
the case of two agents. If we extend the setup from the single agent case in the
straightforward way, then for each of two agentsi and j there is an open set and
the semantic primitive becomes a triple (x; Ui ; Uj ) instead of a pair (x; U). Now
consider a formula likeK i K̂ j K i p, for \agent i knows that agent j considers pos-
sible that agent i knows proposition p". If this is true for a triple ( x; Ui ; Uj ),
then K̂ j K i p must be true for any y 2 Ui ; but y may not be in Uj , in which
case (y; Ui ; Uj ) is not well-de�ned: we cannot interpret K̂ j K i p. Our solution to
this dilemma is to consider neighbourhoods that are not only relative to each
agent, but that are alsorelative to each state. This means that, when shifting the
viewpoint from x to y 2 Ui , in (x; Ui ; Uj ), we simultaneously have to shift the
neighbourhood(and not merely the point in the actual neighbourhood) for the
other agent. Thus, we go from (x; Ui ; Uj ) to (y; Ui ; Vj ), whereVj may be di�erent
from Uj : while the open setUj representsj 's current evidence atx, the openVj

representsj 's evidence (i.e., epistemic range) aty. Therefore, the neighbourhood
shift from Uj to Vj does not mean a change of agentj 's evidence setat the actual
state. While the tuple (x; Ui ; Uj ) represents the actual state and the view points
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of both agents, the component (y; Vj ) of the latter tuple merely represents agent
j 's epistemic state from agenti 's perspective aty, a possibly di�erent state from
the actual state x.

In order to de�ne the epistemic range of each agent with respect to the state
in question, we employ a technique inspired by the standard neighbourhood se-
mantics (see, e.g., Chellas, 1980). We use a set ofneighbourhood functions, deter-
mining the epistemic range relative to both the given state and the corresponding
agent. These functions need to be partial in order to render the semantics well-
de�ned for the dynamic modalities in the system, namely for the public and
arbitrary announcement modalities.

Moreover, using topological spaces enriched with a set of (partial) neighbour-
hood functions as models allows us to work with di�erent notions of knowledge. In
the standard (single-agent) subset space setting (as in Chapters 6 and 7), as the
knowledge modality quanti�es over the elements of a �xed neighbourhood, theS5
type knowledge is inherent to the way the semantics de�ned. With the approach
developed in this chapter, however, the epistemic range of an agent changes
according to the neighbourhood functions when the evaluation state changes.
Therefore, the valid properties of knowledge are determined by the constraints
imposed on the neighbourhood functions. To this end, we work with bothS5and
S4 types of knowledge in this chapter: while the former is the standard notion
of knowledge in the subset space setting, the latter reveals a novel aspect of our
approach, namely, the ability to capture di�erent notions of knowledge.

Outline

Section 8.1 de�nes the syntax, structures, and semantics of our multi-agent logic
of arbitrary public announcements,APALm

int , interpreted on topological spaces
equipped with a set of neighbourhood functions. Without arbitrary announce-
ments we get the logicPALm

int , and with neither arbitrary nor public announce-
ments, the logicELm

int . In this section we also give two detailed examples illus-
trating the proposed semantics. In Section 8.2 we provide axiomatizations for
the logics: PALm

int extendsELm
int and APALm

int extendsPALm
int . We moreover prove

their soundness and compare the expressive power of the associated multi-agent
languagesL !

K int � ; L !
K int andL K int with respect to multi-agent topo-models. In Sec-

tion 8.3 we demonstrate completeness for these logics. The completeness proof for
the epistemic fragment,ELm

int , is rather di�erent from the completeness proof for
the full logic APALm

int . Section 8.4 adapts the logics to the case ofS4knowledge. In
Section 8.5 we compare our work to that of others, and Section 8.6 provides a
brief summary of the chapter while also discussing a possible interpretation of
the e�ort modality in the current multi-agent setting.

This chapter is based on (van Ditmarsch et al., 2015b,c).
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8.1 The Multi-Agent Arbitrary Announcement
Logic APALm

int

We de�ne the syntax, structures, and semantics of our multi-agent logic of knowl-
edge, knowability, public and arbitrary announcements. From now on,A denotes
a �nite and nonempty set of agents.

8.1.1 Syntax and Semantics

The (multi-agent) languageL !
K int � is de�ned by

' ::= p j : ' j ' ^ ' j K i ' j int(' ) j [' ]' j � '

where p 2 prop , and i 2 A . Abbreviations for the connectives and the dual
modalities are de�ned as in the previous chapters; to recall, we in particular em-
ploy K̂ i ' := : K i : ' , and � ' := : � : ' . Notice that we use the same denotation
L !

K int � for both the single and multi-agent version of the above de�ned syntax.
Since we study the multi-agent version in this chapter, and the single-agent lan-
guage constitutes just a special case of the multi-agent extension, this should not
lead to any confusions. Similarly, we letL K int and L !

K int denote the corresponding
multi-agent languages.

We interpret the languageL !
K int � on topological spaces endowed with (partial)

neighbourhood functions thatfor each agenti 2 A assign an open neighbourhood
at a given statex. More precisely, given a topological space (X; � ), such a neigh-
bourhood function � is de�ned from X to A ! � (i.e., the set of functions� A

from A to � ) as a partial function, denoted by � : X * A ! � . We let D(� )
denote thedomain of � , that is, the set of states inX for which � is de�ned.

8.1.1. Definition. [(Partial) Neighbourhood Function]
Given a topological space (X; � ), a neighbourhood function set� on ( X; � ) is a set
of (partial) neighbourhood functions� : X * A ! � such that for all x 2 D (� ),
for all i 2 A , and for all U 2 � :

1. x 2 � (x)( i ),

2. � (x)( i ) � D (� ),

3. for all y 2 X , if y 2 � (x)( i ) then y 2 D (� ) and � (x)( i ) = � (y)( i ),

4. � U 2 �,

where D(� ) is the domain of � , and � U is the restricted/updated neighbourhood
function with D(� U ) = D(� ) \ U and � U (x)( i ) = � (x)( i ) \ U.
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The main role of the neighbourhood functions� is to assign to each agent an
epistemic range at a given state. It simply de�nes the current evidence set of each
agent at the state in question. Each condition given in De�nition 8.1.1 guarantees
certain requirements that render the semantics well-de�ned and meaningful for
the languageL !

K int � . In particular, with the help of the neighbourhood functions
we solve the problem of \jumping out of the epistemic range" explained in the
introduction. We will provide a more detailed explanation regarding the de�nition
of the neighbourhood functions together with our proposed semantics given in
De�nition 8.1.4.

8.1.2. Definition. [Multi-agent Topo-model] A multi-agent topo-model is a
tuple X = ( X; �; � ; V), where (X; � ) is a topological space, � a neighbourhood
function set, andV : prop ! P (X ) a valuation function. The tuple (X; �; �) is
called amulti-agent topo-frame.

Throughout this chapter, we call a multi-agent topo-model(-frame) simply a
topo-model(-frame). It will be clear from the context when we consider a single-
agent topo-model (X; �; V ). Similar to the case of the single-agent framework,
given a topo-modelX = ( X; �; � ; V), the open sets in� are meant to represent
the evidence pieces that arepotentially available for all the agents. In our multi-
agent setup, all agents have the same observational power, represented by each
topo-model carrying only one topology.

Formulas of L !
K int � are interpreted on topo-models with respect to pairs of

the form (x; � ), where � 2 � and x 2 D (� ). Such a pair is called aneighbourhood
situation, and � (x)( i ) corresponds to theepistemic range of agenti at x (with
respect to� ). The epistemic range� (x)( i ) represents theactual, current evidence
of the agenti at x and it is her only source of knowledge at statex with respect
to the neighbourhood situation (x; � ). This is stipulated in the semantic clause
for K i in De�nition 8.1.4 below. If (x; � ) is a neighbourhood situation inX we
write (x; � ) 2 X .

The following lemma shows that the domain of every neighbourhood function
is open.

8.1.3. Lemma. For any topo-frame(X; �; �) and � 2 � , we haveD(� ) 2 � .

Proof:
Let (X; �; �) be a topo-frame, � 2 � and x 2 D (� ). By De�nition 8.1.1-(1) and
-(2), we havex 2 � (x)( i ) 2 � and � (x)( i ) � D (� ). Therefore, x 2 Int (D(� )).
Hence,D(� ) = Int (D(� )), i.e., D(� ) 2 � . 2

8.1.4. Definition. [Topo-semantics for (multi-agent)L !
K int � ]

Given a topo-modelX = ( X; �; � ; V) and a neighbourhood situation (x; � ) 2 X ,
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the truth of a formula in the languageL !
K int � is de�ned recursively as follows:

X ; (x; � ) j= p i� x 2 V(p)
X ; (x; � ) j= : ' i� not X ; (x; � ) j= '
X ; (x; � ) j= ' ^  i� X ; (x; � ) j= ' and X ; (x; � ) j=  
X ; (x; � ) j= K i ' i� ( 8y 2 � (x)( i ))( X ; (y; � ) j= ' )
X ; (x; � ) j= int(' ) i� x 2 Int ([[' ]]� )
X ; (x; � ) j= [ ' ] i� X ; (x; � ) j= int(' ) implies X ; (x; � ' ) j=  
X ; (x; � ) j= � ' i� ( 8 2 L !

K int )(X ; (x; � ) j= [  ]' )

wherep 2 prop , [[' ]]� = f y 2 D (� ) j X ; (y; � ) j= ' g and anupdated neighbourhood
function � ' : X * A ! � is de�ned such that � ' = � Int ([[ ' ]]� ) . More precisely,
D(� ' ) = Int ([[' ]]� ) and � ' (x)( i ) = � (x)( i ) \ Int ([[' ]]� ) for all x 2 D (� ' ).

When the model is not �xed, we use subscripts and write, e.g., [[' ]]�X , to denote the
model we work with. A formula ' 2 L !

K int � is valid in a topo-modelX , denoted
X j= ' , i� X ; (x; � ) j= ' for all (x; � ) 2 X ; ' is valid, denoted j= ' , i� for all
topo-modelsX we haveX j= ' . Soundness and completeness with respect to
topo-models are de�ned as usual.

Let us now elaborate on the structure of topo-models and the above semantics
we have proposed forL !

K int � . For any topo-modelX = ( X; �; � ; V), the agents'
current evidence, i.e., the epistemic range of each agent at a given statex, is
de�ned by (partial) functions � 2 �, where � : X * A ! � . We allow for par-
tial functions in �, and close � under restricted functions � U where U 2 � (see
De�nition 8.1.1, condition 4), so that updated neighbourhood functions are guar-
anteed to be well-de�ned elements of �. As brie
y mentioned in Section 6.1.1,
one important feature of the subset space semantics is the local interpretation of
propositions: in the single-agent case, once the epistemic scenario (x; U) has been
picked, the rest of the model does not have any e�ect on the truth of the proposi-
tion in question. Similarly in our multi-agent setup, by choosing a neighbourhood
situation (x; � ), we localize the interpretation to an open subdomain of the whole
space, namely toD(� ), that includes the actual statex, and embeds an epistemic
range for each agenti 2 A at every state inD(� ). For every � 2 � and x 2 D (� ),
the function � (x) : A ! � is de�ned to be a total function. It is therefore guar-
anteed that, given a neighbourhood situation (x; � ), the neighbourhood function
� assigns toevery agent inA an open neighbourhood ofx. Moreover, the con-
ditions of neighbourhood functions given in De�nition 8.1.1 make the semantics
work for the multi-agent setting. To be more precise, condition 1 guarantees that
� always returns a factive evidence set for each agent at the actual state. Since the
neighbourhoods given by the neighbourhood functions depend not only on the
agent but also on the current state of the agent, and sincex 2 � (x)( i ) � D (� ) for
every x 2 D (� ) and every i 2 A (due to conditions 1 and 2), our semantics does
not face the problem of \jumping out of the epistemic range", and thus does not
end up with ill-de�ned evaluation pairs in the interpretation of iterated epistemic
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formulas such asK̂ j K i p. Moreover, conditions (1) and (3) of De�nition 8.1.1
ensure that theS5axioms for eachK i are sound with respect to all topo-models:
each neighbourhood function� 2 � induces a partition on D(� ) for each agent
i 2 A . We will see in Section 8.4 that our setting can be adapted to account for
the weakerS4, S4:2 and S4:3 notions of knowledge by relaxing the conditions on
the neighbourhood functions in �.

The semantics proposed for the propositional variables and the Booleans is
rather standard, similar to both the relational semantics and the classical sub-
set space semantics (see, e.g., De�nition 6.1.2). Moreover, the semantics for the
modality int is similar to the semantics in the single-agent case. In particular, as
in the single-agent case, the truth value of the formulas inL int on multi-agent
topo-models dependsonly on the actual state,not on the chosen neighbourhood
function. In this sense, the formulas ofL int are bi-persistenton multi-agent topo-
models.

8.1.5. Proposition. Given a topo-modelX = ( X; �; � ; V), neighbourhood situ-
ations (x; � 1); (x; � 2) 2 X , and a formula ' 2 L int ,

(x; � 1) j= ' i� (x; � 2) j= ':

Proof:
The proof follows along the same lines as the proof of Proposition 7.1.14 by
subformula induction on' : cases for the propositional variables and the Booleans
are elementary. So assume inductively that the result holds for ; we must show
that it holds also for ' := int( ).

(x; � 1) j= int( ) i� x 2 Int ([[ ]]� 1 )

i� ( 9U 2 � )(x 2 U � [[ ]]� 1 ) (by the de�nition of Int )

Now, consider the open setU \ D (� 2). Since (x; � 2) is a well-de�ned neighbour-
hood situation,x 2 D (� 2). Moreover, by Lemma 8.1.3, we haveD(� 2) 2 � . Hence,
we obtain x 2 U \ D (� 2) 2 � . Thus, it su�ces to show that U \ D (� 2) � [[' ]]� 2 .
Let y 2 U \ D (� 2). Since U \ D (� 2) � U, we have by the assumption that
(y; � 1) j=  . Then, by IH, (y; � 2) j=  . As y has been chosen arbitrarily from
U \ D (� 2), we conclude that U \ D (� 2) � [[ ]]� 2 , hence, x 2 Int ([[ ]]� 2 ), i.e.,
(x; � 2) j= int( ). 2

We now take a closer look at the semantic clauses for the modalities in
L !

K int � . Recall that the open sets in� are meant to represent the evidence pieces
that can in principle be discovered by any agent inA . In other words, open sets of
a topology can be considered as the propositions that the agents can in principle
observe (but might not have observed yet). This interpretation was elaborated
in Section 6.1.1, p. 106. On the other hand,� (x)( i ) serves as agenti 's current
(factive) evidence at the actual statex (with respect to � ). Stating the semantic
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clause for knowledge given in De�nition 8.1.4 in a slightly di�erent way gives us
that

(x; � ) j= K i ' i� � (x)( i ) � [[' ]]� ;

i.e, according to our proposed semantics,agent i knows' at x (with respect to� )
i� his current evidence entails ' , similar to the case in the single-agent version.

As in the single agent case, the modalityint serves as the precondition of an
announcement that represents knowability as an existential claim over the set�
of pieces of evidence:

(x; � ) j= int(' ) i� ( 9U 2 � )(x 2 U � [[' ]]� ):

Therefore, whether the precondition of an announcement is ful�lled does not
depend on the agents' epistemic states but depends only on the model in ques-
tion. Moreover, given the semantic clause for the public announcements

(x; � ) j= [ ' ] i� ( x; � ) j= int(' ) implies (x; � ' ) j=  ;

and the de�nition of the updated neighbourhood function� ' , the e�ect of an an-
nouncement is again modelled as open-set-shrinkage without leading to a global
change in the initial model. More precisely, a successful announcement' trans-
forms the initial neighbourhood function � to � ' which assigns a more re�ned
epistemic range� (x)( i ) \ Int ([[' ]]� ) � � (x)( i ) to each agenti at the actual statex,
representing the e�ect of learning' . We continue with some examples illustrating
the above de�ned semantics.

8.1.2 Examples

In this section we present two examples demonstrating how our multi-agent topo-
logical semantics works. The �rst example is a multi-agent version of an example
presented by Bjorndahl (2016) for the single-agent setting, and the second is con-
cerned with two agents learning bit by bit (�nite) pre�xes of a pair of in�nite
binary sequences.

The Jewel in the Tomb

We illustrate our semantics by means of a multi-agent version of Bjorndahl's
example in (Bjorndahl, 2016) about the jewel in the tomb. Indiana Jones (i ) and
Emile Belloq (e) are both scouring for a priceless jewel placed in a tomb. The
tomb could either contain a jewel or not, the tomb could have been rediscovered
in modern times or not, and (beyond Bjorndahl (2016)), the tomb could be in
the Valley of Tombs in Egypt or not. The propositional variables corresponding
to these propositions are, respectively,j , d, and t. We represent a valuation of
these variables by a triplexyz, wherex; y; z 2 f 0; 1g. Given the carrier setX =
f xyz j x; y; z 2 f 0; 1gg, the topology � that we consider is generated by the basis
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consisting of the subsetsf 000; 100; 001; 101g, f 010g, f 110g, f 011g, f 111g (see
Figure 8.1). The idea is that one can only conceivably know (or learn) about the
jewel or the location on condition that the tomb has been discovered. Therefore,
f 000; 100; 001; 101g has no strict subsets besides the empty set: if the tomb has
not yet been discovered, no one can have any information about the jewel or the
location. However, provided that the tomb has been discovered, the agents might
know whether or not it contains a jewel, and/or whether it is the Valley of Tombs
in Egypt. In this example, we stipulate that the actual state is 111.

100 101 011 111

000 001 010 110

Figure 8.1: Dashed squares represent the elements of the basis generating the
topology � .

A topo-model X = ( X; �; � ; V) for this topology (X; � ) has � as the set
of all neighbourhood functions that are partitions ofX for both agents, and
restrictions of these functions to open sets. A typical� 2 � describes complete
ignorance of both agents and is de�ned as� (w)( i ) = � (w)(e) = X for all w 2
X . A more interesting neighbourhood situation in this model is one wherein
Indiana and Emile have di�erent knowledge. Let us assume that Emile has the
advantage over Indiana so far, as he knows the location of the tomb but Indiana
does not. This is the� 0 such that for all w 2 X , � 0(w)( i ) = X , whereas the
partition for Emile consists of setsf 000; 100; 001; 101g, f 110; 010g, f 111; 011g,
i.e., � 0(111)(e) = f 111; 011g, etc (see Figure 8.2).

100 101 011 111

000 001 010 110

Figure 8.2: Patterned sets represent Emile's neighbourhoods de�ned by� 0:
� 0(111)(e) = � 0(011)(e) = f 111; 011g, � 0(010)(e) = � 0(110)(e) = f 010; 110g,
� 0(000)(e) = � 0(100)(e) = � 0(001)(e) = � 0(101)(e) = f 000; 100; 001; 101g.

We now can evaluate what Emile knows about Indiana at 111. Firstly, Emile
knows that the tomb is in the Valley of Tombs in Egypt

X ; (111; � 0) j= K et (8.1)
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and he also knows that Indiana does not know that:

X ; (111; � 0) j= K e: (K i : t _ K i t) (8.2)

The statement (8.2) involves verifyingX ; (w; � 0) j= K̂ i t and X ; (w; � 0) j= K̂ i : t for
all w 2 � 0(111)(e) = f 111; 011g, which is Emile's current epistemic range. And
this is true for both elements 111 and 110 of� 0(111)(e), because� 0(110)(i ) =
� 0(111)(i ) = X , and 000; 001 2 X , and while X ; (001; � 0) j= t, we also have
X ; (000; � 0) j= : t. We can also check that Emile knows that Indiana considers it
possible that Emile doesn't know the tomb's location:

X ; (111; � 0) j= K eK̂ i : (K et _ K e: t) (8.3)

Evaluating this goes beyond Emile's initial epistemic rangef 111; 011g because,
e.g., for 1112 � 0(111)(e), we haveX ; (111; � 0) j= K̂ i : (K et _ K e: t) i� there exists
y0 2 � 0(111)(i ) such that (y0; � 0) j= : K et ^ : K̂ e: t. Therefore, such an elementy0

cannot be in Emile's initial epistemic rangef 111; 011g, since (111; � 0) j= K et and
(011; � ) j= K et. In fact, it has to be the case thaty0 2 f 000; 001; 100; 101g. This
situation however does not create any problems in our setting since (y0; � 0) is a
well-de�ned neighbourhood situation, and Emile's epistemic range aty0 is de�ned
by � 0 as � 0(y0)(e) = f 000; 001; 100; 101g.

Given their prior knowledge, announcements will change Emile and Indiana's
knowledge in di�erent ways. Consider the announcement ofj . An important
point to notice is that the announcement ofj does not only convey the infor-
mation [[j ]]�

0
= f 100; 101; 110; 111g but that it also leads to learning Int ([[j ]]�

0
) =

f 110; 111g. This corresponds exactly to the fact that one can know about the
jewel on the condition that the tomb has already been rediscovered. Therefore,
the announcement ofj evidences the fact that the tomb has already been discov-
ered, hence, it conveys more information than onlyj being true. This results in
Emile knowing everything but Indiana still being uncertain about the location:

X ; (111; � 0) j= [ j ](K e(j ^ d ^ t) ^ K i (j ^ d) ^ : (K i t _ K i : t)) (8.4)

Model checking this involves computing the epistemic ranges of both agents given
by the updated neighbourhood function (� 0) j at 111 (see Figure 8.3). Note that
Int ([[j ]]�

0
) = f 111; 110g. Therefore, (� 0) j (111)(e) = Int ([[j ]]�

0
)\ � 0(111)(e) = f 111g,

and for Indiana (� 0) j (111)(i ) = Int ([[j ]]�
0
) \ � 0(111)(i ) = f 111; 110g.

There is an announcement after which Emile and Indiana know everything
(for example the announcement ofj ^ t):

X ; (111; � ) j= � (K e(j ^ d ^ t) ^ K i (j ^ d ^ t)) :

Observe that Int ([[j ^ t]]�
0
) = f 111g, thus, (� 0) j (111)(e) = ( � 0) j (111)(j ) = f 111g:

Again, the announcement ofj ^ t carries the implication that the tomb has been
rediscovered. On the other hand, as long as the tomb has not been discovered,
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100 101 011 111

000 001 010 110

Figure 8.3: As D((� 0) j ) = Int ([[j ]]�
0
) = f 111; 110g, the updated neighbour-

hood function (� 0) j is de�ned only for these points. Patterned sets again
represent Emile's neighbourhoods de�ned by (� 0) j : (� 0) j (111)(e) = f 111g and
(� 0) j (110)(e) = f 110g. For Indiana, we have (� 0) j (111)(j ) = ( � 0) j (110)(i ) =
f 111; 110g.

nothing will make Emile (or Indiana) learn that it contains a jewel or where the
tomb is located:

X j= : d ! � (: (K ej _ K e: j ) ^ : (K et _ K e: t)) :

Binary Strings

We begin the example by de�ning a topology over the set of ordered pairs of
binary strings, i.e., the domain of our topology isX = f 0; 1g1 � f 0; 1g1 .

Note that we can considerX to be points in the unit square [0; 1] � [0; 1], by
looking at each element off 0; 1g1 as the binary representation of a real number
in [0; 1]. So, for example, (01000:::; 11000:::) represents (:25; :75). This correspon-
dence is not one-to-one, because many points in [0; 1] have more than one possible
representation as binary strings. For example, 1000::: and 0111::: both represent
0:5. In fact, every fraction of the form i

2k for somei; k 2 N with 0 < i < 2k

has two possible representations, while every other element of [0; 1] has a unique
representation. Therefore, every element of [0; 1] � [0; 1] has either one, two, or
four possible representations inf 0; 1g1 � f 0; 1g1 . Hence, we can consider each
element off 0; 1g1 � f 0; 1g1 to represent one element of [0; 1] � [0; 1], but every
element of [0; 1]� [0; 1] does not represent a unique element off 0; 1g1 � f 0; 1g1 .

Let us now introduce some notation. Ifs 2 f 0; 1g1 , for n 2 N+ , we let sjn be
the �rst n bits of s, and we lets[n] be thenth bit of s. As usual, we letf 0; 1g� be
the set of �nite strings over f 0; 1g and for d 2 f 0; 1g� , jdj is the length of d. For
d 2 f 0; 1g� we de�ne Sd = f x 2 f 0; 1g1 j xj jdj = dg, in other words, Sd is the set
of all in�nite binary strings that have d as a pre�x. Note that S� is in f 0; 1g1 ,
since � is the empty string. Note also that when we consider the elements of
f 0; 1g1 as points on the unit interval, we can think ofSd as a certain subinterval
of the unit interval. More precisely, eachSd is the interval bounded by d

2j dj and
d+1
2j dj whend is viewed as the binary representation of a natural number. As above,
we cannot, however, go in the opposite direction and consider all such intervals to



8.1. The Multi-Agent Arbitrary Announcement Logic APALm
int 165

be sets of the formSd, since there are multiple possible representations of some
of the points in [0; 1] as binary strings.

Now consider the topology� generated by the set

B = f Sd j d 2 f 0; 1g� g:

It is not hard to see that B indeed constitutes a basis over the domainf 0; 1g1 :

1. SinceS� 2 B, we have
S

B = f 0; 1g1 .

2. For anyU1; U2 2 B, we have eitherU1\ U2 = ; , U1\ U2 = U1 or U1\ U2 = U2.
Therefore,B is closed under �nite intersections.

For our example, we use the product space (f 0; 1g1 � f 0; 1g1 ; � � � ) and we have
two agentsa and b. Intuitively speaking, agenta is concerned with the bits of the
�rst coordinate and agent b is concerned with the bits of the second coordinate
encoded as in�nite binary strings. Let� � ((x; y))( a) = � � ((x; y))( b) = f 0; 1g1 �
f 0; 1g1 , and for i 2 N+ , let � i ((x; y))( a) = Sxj i � f 0; 1g1 , and let � i ((x; y))( b) =
f 0; 1g1 � Syj i , whereD(� i ) = f 0; 1g1 � f 0; 1g1 . In other words, for agenta, the
neighbourhood function� i gives the set of pairs where the �rst component of the
pair agrees withx in the �rst i bits, and any possible second component of the
pair is allowed. Similarly for agentb. We note that � i +1 is always more informative
than � i . Finally, in order to obtain our neighbourhood function set �, we must
close the set of functions described above under open domain restrictions, so we
let � = f � : X * f a; bg ! � j 9i 2 N+ [ f � g; U 2 � such that � = � U

i g. It is
easy to see that � satis�es the properties of a neighbourhood function set given
in De�nition 8.1.1.

In order to evaluate formulas on this topo-frame, we de�ne atomic propositions

Prop = f x i j i 2 N+ g [ f y i j i 2 N+ g

where
V(x i ) = f (x; y) 2 f 0; 1g1 � f 0; 1g1 j x[i ] = 1g;
V(y i ) = f (x; y) 2 f 0; 1g1 � f 0; 1g1 j y[i ] = 1g:

Intuitively speaking, the propositional variables refer to thex- and y-coordinates
of the pairs of in�nite binary strings. We readx i as \the i th bit of thex-coordinate
is 1" and y i as \the i th bit of the y-coordinate is 1".

We can now evaluate some formulas on the topo-model

X = ( f 0; 1g1 � f 0; 1g1 ; � � �; � ; V)

at the state (x; y) = (010000:::::; 110110:::::) with respect to the neighbourhood
function � 1. In other words, we have thata knows that the �rst bit of x is 0,
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b knows that the �rst bit of y is 1, and both are ignorant about the other's
bits. More formally, we have

X ; ((x; y); � 1) j= K a: x1 a knows that x[1] = 0
X ; ((x; y); � 1) j= K by1 b knows that y[1] = 1
X ; ((x; y); � 1) j= K a: (K bx1 _ K b: x1) a knows that b

does not know the value ofx[1]
X ; ((x; y); � 1) j= K b: (K ay1 _ K a: y1) b knows that a

does not know the value ofy[1].

Now consider announcements of the following form: given ((x; y); � n ) (wherein a
and b know up to the nth bit of x and y, respectively), the announcement' n+1

x is
of the form `if the nth bit of x is 1, then the (n +1)st bit is j , and if the nth bit of
x is 0, then (n + 1)st bit of x is 1� j ' with the restriction that the announcement
is indeed truthful and wherej 2 f 0; 1g. So it can only be announced forj = 0
or j = 1 but not for both. In other words, ' n+1

x is either of the form `thenth
bit of x is equal to its (n + 1)st bit' or of the form `the nth bit of x is di�erent
from its (n + 1)st bit' but they cannot be announced at the same time as only
one of them can be truthful. Then, this announcement informsa but not b of
the value of the (n + 1)st digit of x. For b it is merely an extension of the initial
sequences (that he is unable to distinguish anyway, as we will see) with either 1
or 0. But he does not know which is the real one. Then, the next announcement
' n+1

y informs b of the (n + 1)st bit of y in the same way. We can go on in the
same way, and successively announce the �rstn bits of both sequences by public
announcements in such a way thata learns every pre�x of x and b learns every
pre�x of y up to length n, as desired; buta remains uncertain about every bit in
the y-pre�x that b learnt, and b remains uncertain about every bit in thex-pre�x
that a learnt. For example, given that the agentsa and b only learned their �rst
bits and that x = 010000: : : and y = 110110: : : , the next two announcements
are now:

' 2
x = ( : x1 ! x2) ^ (x1 ! : x2)

' 2
y = ( y1 ! y2) ^ (: y1 ! : y2)

where ' 2
x truthfully states that \the �rst bit of the sequence x is di�erent from

its second bit", and ' 2
y truthfully states that \the �rst and the second bit of y

are the same". We then have that

Int ([[' 2
x ]]� 1 ) = S01 � f 0; 1g1 [ S10 � f 0; 1g1

Int ([[' 2
y]]� 1 ) = f 0; 1g1 � S11 [ f 0; 1g1 � S00:
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� (x; y)(b)

S0

S1

S0 S1

� (x; y)(a)

(x; y)
Figure 8.4: Initial situation where
a knows the 1st bit of x is 0 and
b knows the �rst bit of y is 1,
and both are ignorant about the
other's bit. We have� ((x; y))( a) =
S0 � f 0; 1g1 and � ((x; y))( b) =
f 0; 1g1 � S1.

+ h' 2
x i

� ' 2
x (x; y)(b)

� ' 2
x (x; y)(a)

(x; y)

S0

S1

S00 S01 S10 S11

Figure 8.5: After the announce-
ment of ' 2

x , we obtain the follow-
ing smaller neighbourhoods given
by the updated function � ' 2

x :
� ' 2

x ((x; y))( a) = S01 � f 0; 1g1 , and
� ' 2

x ((x; y))( b) = ( S01 [ S10) � S1.

+ h' 2
y i

(� ' 2
x ) ' 2

y (x; y)(b)

(� ' 2
x ) ' 2

y (x; y)(a)

(x; y)

S00

S01

S10

S11

S00 S01 S10 S11

Figure 8.6: After further announc-
ing ' 2

y, the updated function
(� ' 2

x ) ' 2
y gives the neighbourhoods:

(� ' 2
x ) ' 2

y (x; y)(a) = S01� (S00[ S11),
and
(� ' 2

x ) ' 2
y (x; y)(b) = ( S01 [ S10) � S11

Figures 8.4-8.6 depict the neighbourhood transformations that result from the
announcement' 2

x and, after that, the announcement of' 2
y, consecutively. One
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can show (details omitted) that

X ; ((x; y); � 1) j= � K ax2

X ; ((x; y); � 1) j= h' 2
x i (K ax2 ^ : (K bx2 _ K b: x2))

X ; ((x; y); � 1) j= h' 2
x ih' 2

y i (K by2 ^ : (K ay2 _ K a: y2))
X ; ((x; y); � 2) j= K ax2:

After every �nite sequence of such announcements,a knows a pre�x of x and b
knows a pre�x of y, and a is uncertain between two dual pre�xes ofy and b is
uncertain between two pre�xes ofx. So, for example, after 10 announcements,a
is uncertain whethery starts with 110110 or 001001, etc.

8.2 Axiomatizations, Soundness and Expressiv-
ity

We now provide the axiomatizations for multi-agentELm
int , PALm

int , and APALm
int (in

Table 8.1), and prove their soundness with respect to the proposed semantics. The
axiomatization of APALm

int involves an in�nitary rule, denoted by (� ! -intro), that
is formalized using necessity forms. To this end, we �rst de�ne necessity forms for
the languageL !

K int � . These necessity forms are de�ned similarly as in De�nition
7.1.22, but involve a recursive clause forint and eachK i .

8.2.1. Definition. [Necessity and possibility forms forL !
K int � ] For any �nite

string s 2 (f ' ! j ' 2 L !
K int � g [ f K i ; int j i 2 Ag [ f  j  2 L !

K int � g)� = NF � ,
we de�ne pseudo-modalities [s] and hsi . These pseudo-modalities are functions
mapping any formula ' 2 L !

K int � to another formula [s]' 2 L !
K int � (neces-

sity form), respectively hsi ' 2 L !
K int � (possibility form). The necessity forms

are de�ned recursively as [� ]' = ' , [' ! ; s]' = ' ! [s]' , [K i ; s]' = K i [s]' ,
[int; s]' = int([s]' ), [ ; s ]' = [  ][s]' , where� is the empty string. For possibility
forms, we sethsi ' := : [s]: ' .

The systemAPALm
int is the smallest subset of the languageL !

K int � that contains the
axioms, and is closed under the inference rules given in Table 8.1. The systemELm

int
is de�ned in a similar way over the languageL K int by the axioms and inference
rules in group (I) of Table 8.1, andPALm

int is de�ned over the languageL !
K int by

the axioms and inference rules in groups (I) and (II).
Let us now elaborate on these axiomatizations. The axiomatizations of multi-

agent ELm
int and PALm

int are straightforward generalizations of their single-agent
versions presented in Table 7.1.1 The axiom scheme (� -elim) is similar to (2 -
elim) of DTLint , directly re
ecting the semantics of the arbitrary announcement

1The axiom scheme R[> ] given in Table 7.1 is derivable inPALm
int for the multi-agent language

L !
K int . This can be proven easily by� S -induction on ' using the reduction axioms. R[> ] is also

derivable in APALm
int for the language L !

K int � : its proof follows by < S
d -induction on ' using

(� -elim) and (� ! -intro) (see Appendix A.1 for the de�nition of < S
d ).
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(I) Axioms and rules of system ELm
int :

(CPL) all classical propositional tautologies and Modus Ponens
(S5K ) all S5axioms and rules for the knowledge modalityK i

(S4int ) all S4axioms and rules for the interior modalityint
(K -int) Knowledge implies knowability: K i ' ! int(' )

(II) Additional axioms and rules for PALm
int :

(K !) [' ]( ! � ) ! ([' ] ! [' ]� )
(Nec!) from � , infer [' ]�
([!]RE) from ' $  , infer [' ]� $ [ ]�

Reduction axioms:
(Rp) [' ]p $ (int(' ) ! p)
(R: ) [' ]:  $ (int(' ) ! : [' ] )
(RK ) [' ]K i  $ (int(' ) ! K i [' ] )
(R[!]) [' ][ ]� $ [h' i  ]�

(III) Axioms and rules of � for APALm
int :

(� -elim) � ' ! [� ]' (� 2 L !
K int arbitrary formula)

(� ! -intro) from [ s][ ]� for all  2 L !
K int , infer [s]� �

Table 8.1: The axiomatizations for multi-agentELm
int , PALm

int and APALm
int .

modality � . On the other hand, the inference rule (� ! -intro) is in�nitary, thus
making the multi-agent logicAPALm

int quite di�erent from the other logics studied
in this dissertation. In an in�nitary proof system the notion of a derivation is non-
standard since a derivation of a formula can involve in�nitely many premises, in
particular within the axiomatic system ofAPALm

int , an application of the rule (� ! -
intro) requires in�nitely many premises. We can think of aderivation involving
an in�nitary inference rule as a �nite-depth tree with possibly in�nite branching ,
where the leaves are axioms or premises, the root is the derived formula, and a
step in the tree from child nodes to parent node corresponds to the application
of a derivation rule. Note that, due to the in�nitary derivation rule ( � ! -intro)
of APALm

int , the set of formulas � deriving ' within this system can be in�nite,
hence, the set of all theorems ofAPALm

int cannot be de�ned by using the usual
notion of a derivation as a�nite sequence of formulas where each element of
the sequence is either an axiom or obtained from the previous formulas in the
sequence by a rule of inference. The set of all theorems ofAPALm

int is then de�ned
as the smallest subset ofL !

K int � that contains all the axioms, and is closed under
the inference rules given in Table 8.1. In this case, we write' 2 APALm

int . We refer
to (Goldblatt, 1982, Chapter 2.4) for a more detailed discussion of in�nitary proof
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systems, and to (Balbiani and van Ditmarsch, 2015, p. 70) for a discussion on
the axiomatizations of arbitrary announcement logics (see also Rybakov, 1997,
Chapter 5.4 for a precise treatment of in�nitary calculi).2 On the other hand,
derivations in ELm

int and PALm
int are of the form of �nite-depth trees with �nite

branching, since their axiomatizations contain only �nitary derivation rules.

8.2.2. Proposition. The following reduction schemas and the rule(RE) are
provable both inPALm

int and APALm
int (for languagesL !

K int and L !
K int � , respectively).

1. (R? ) [' ]? $ : int(' )
2. (R^ ) [' ]( ^ � ) $ ([' ] ^ [' ]� )
3. (Rint ) [' ]int( ) $ (int(' ) ! int([' ] ))
4. (RE) from  $ � , infer ' $ ' f  =� g

Proof:
See Proposition 7.1.2: for (RE), we use (� -elim) and (� ! -intro) to prove the
K-axiom and the Necessitation rule for� . 2

We next provide some semantic results that will be helpful in the validity
proof of (R[!]).

8.2.3. Lemma. For any topo-modelX = ( X; �; � ; V), � 2 � and ';  2 L !
K int � ,

we have

1. [[ ]]�
'

= [[ h' i  ]]� ,

2. (� ' ) = � h' i  , and

3. [[h' i int(� )]]� = [[ int(h' i � )]]� .

Proof:
Let X = ( X; �; � ; V) be a topo-model,� 2 � and ';  2 L !

K int � . For (1) we have:

[[ ]]�
'

= f y 2 D (� ' ) j (y; � ' ) j=  g

= f y 2 Int ([[' ]]� ) j (y; � ' ) j=  g (D(� ' ) = Int ([[' ]]� ))

= f y 2 D (� ) j y 2 Int ([[' ]]� ) and (y; � ' ) j=  g (Int ([[' ]]� ) � D (� ))

= f y 2 D (� ) j (y; � ) j= h' i  g (by the semantics of [!])

= [[ h' i  ]]�

2Finitary alternatives for the axiomatizations of the multi-agent arbitrary announcement
logic (without the interior modality) based on Kripke models with equivalence relations were
considered in (Balbiani et al., 2008, Section 4). They, for example, proposed an axiomatiza-
tion with a ([!] 2 -intro)-like rule from Table 7.1. However, it was later proven that their infer-
ence rule was not sound in the multi-agent setting (seehttp://personal.us.es/hvd/APAL_
counterexample.pdf for the resounding counterexample). This counterexample also applies
in our setting as a special case. We are therefore not aware of a sound and complete�nitary
axiomatization of a multi-agent logic of arbitrary announcements, neither for Kripke models
nor for topo-models.
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For (2): By De�nition 8.1.4, we have that D(� h' i  ) = Int ([[h' i  ]]� ) and
D((� ' ) ) = Int ([[ ]]�

'
). We then obtain

D((� ' ) ) = Int ([[ ]]�
'
) = Int ([[h' i  ]]� ) = D(� h' i  );

where the second equality follows by part (1). Therefore, (� ' ) and � h' i  are
de�ned for the same states. Moreover, for anyx 2 D ((� ' ) ) and i 2 A , we have

(� ' ) (x)( i )

= � ' (x)( i ) \ Int ([[ ]]�
'
)

= � (x)( i ) \ Int ([[' ]]� ) \ Int ([[ ]]�
'
) (since Int ([[ ]]�

'
) � Int ([[' ]]� ))

= � (x)( i ) \ Int (Int ([[' ]]� )) \ Int ([[ ]]�
'
) (by the properties of Int )

= � (x)( i ) \ Int ([[int(' )]]� ) \ Int ([[ ]]�
'
) (by the semantics ofint)

= � (x)( i ) \ Int ([[int(' )]]� \ [[ ]]�
'
) (by the properties of Int )

= � (x)( i ) \ Int ([[int(' )]]� \ [[h' i  ]]� ) (by Proposition 8.2.3-(1))

= � (x)( i ) \ Int ([[int(' ) ^ h' i  ]]� ) (by the semantics of^ )

= � (x)( i ) \ Int ([[h' i  ]]� ) (by the semantics ofint)

= � h' i  (x)( i ) (by the de�nition of � h' i  )

For (3):

[[h' i int(� )]]� = Int ([[' ]]� ) \ [[int(� )]]� '

= Int (Int ([[' ]]� )) \ [[int(� )]]� '
(by the properties of Int )

= Int ([[int(' )� )]]) \ Int ([[� ]]�
'
) (by the semantics ofint)

= Int ([[int(' )� )]]) \ Int ([[h' i � ]]� ) (by Proposition 8.2.3-(1))

= Int ([[int(' )]]� \ [[h' i � ]]� ) (by the properties of Int )

= Int ([[h' i � ]]� ) (by the semantics of [!])

= [[ int(h' i � )]]� (by the semantics ofint)

2

8.2.4. Proposition. APALm
int is sound with respect to the class of all topo-models.

Proof:
The soundness ofAPALm

int is, as usual, shown by proving that all axioms are
validities and that all derivation rules preserve validities. Having proved that,
soundness follows by induction on the depth of the derivation tree.

We prove the following cases: the �rst two cases shows the validity of the
reduction axioms (RK ) and (R[!]), the next two illustrate the need for the con-
straint in De�nition 8.1.1-(3), the �fth shows the validity of the axiom ( K -int)
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which connects the modalitiesK i and int, and the last two prove validity of the
axiom (� -elim) and validity preservation of the inference rule (� ! -intro). Let
X = ( X; �; � ; V) be a topo-model, (x; � ) 2 X and ';  ; � 2 L !

K int � .

(RK ): Suppose (x; � ) j= [ ' ]K i  . This means that if (x; � ) j= int(' ) then
(x; � ' ) j= K i  . We want to show that (x; � ) j= int(' ) ! K i [' ] . Hence, suppose
also that (x; � ) j= int(' ) and let z 2 � (x)( i ) such that (z; � ) j= int(' ), i.e., that
z 2 Int ([[' ]]� ). Then, by assumption, (x; � ) j= int(' ) implies that (x; � ' ) j= K i  .
In other words, (y; � ' ) j=  for all y 2 � ' (x)( i ). Recall, by De�nition 8.1.4, that
� ' (x)( i ) = � (x)( i ) \ Int ([[' ]]� ). Thus, since z 2 � (x)( i ) \ Int ([[' ]]� ) = � ' (x)( i ),
we obtain (z; � ' ) j=  , implying together with the assumption z 2 Int ([[' ]]� )
that ( z; � ) j= [ ' ] . Sincez has been chosen arbitrarily from� (x)( i ), the results
holds for every element of� (x)( i ). Therefore, (x; � ) j= K i [' ] . Since we also have
(x; � ) j= int(' ), we conclude (x; � ) j= int(' ) ! K i [' ] . The converse direction
follows similarly.

(R[!]):

(x; � ) j= [ ' ][ ]�

i� (( x; � ) j= int(' ) and (x; � ' ) j= int( )) implies (x; (� ' ) ) j= �

i� ( x; � ) j= h' i int( ) implies (x; (� ' ) ) j= �

i� ( x; � ) j= int(h' i  ) implies (x; � h' i  ) j= � (Proposition 8.2.3-(2-3))

i� ( x; � ) j= [ h' i  ]� (by the semantics of [!])

(4K ): Suppose (x; � ) j= K i ' . This means, (y; � ) j= ' for all y 2 � (x)( i ). Let
y 2 � (x)( i ) and z 2 � (y)( i ). By De�nition 8.1.1-(3), � (y)( i ) = � (x)( i ) and De�ni-
tion 8.1.1-(1) guarantees that� (y)( i ) 6= ; . Therefore, by assumption, (z; � ) j= ' .
As z has been chosen from� (y)( i ) arbitrarily, we obtain ( y; � ) j= K i ' . For the
similar reason, we also obtain (x; � ) j= K i K i ' .

(5K ): Suppose (x; � ) j= : K i ' . This means, (y0; � ) 6j= ' for somey0 2 � (x)( i ).
Let y 2 � (x)( i ). By De�nition 8.1.1-(3), � (x)( i ) = � (y)( i ). Therefore, asy0 2
� (y)( i ), by assumption, we have that there is az 2 � (y)( i ), namely z = y0,
such that (z; � ) 6j= ' . Thus, (y; � ) j= : K i ' . As y has been chosen from� (x)( i )
arbitrarily, we conclude (x; � ) j= K i : K i ' .

(K -int): Suppose (x; � ) j= K i ' . This means, (y; � ) j= ' for all y 2 � (x)( i ).
Hence,� (x)( i ) � [[' ]]� . By De�nition 8.1.1, � (x)( i ) is an open neighbourhood of
x, therefore, we obtain thatx 2 Int ([[' ]]� ), i.e., (x; � ) j= int(' ).

(� -elim): Suppose (x; � ) j= � ' and let � 2 L !
K int . By the semantics, we have

(x; � ) j= � ' i� ( 8 2 L !
K int )(( x; � ) j= [  ]' ): Therefore, in particular, (x; � ) j=

[� ]' .

(� ! -intro): The proof follows by induction on the structure of the necessity
form s. We here show the base case [s] := [ � ] and the inductive case [s] := [ int; s].
All other inductive cases follow similarly.
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Base cases := � : In this case, we have [s][ ]� = [ � ][ ]� = [  ]� , and [s]� � =
[� ]� � = � � . Suppose [ ]� is valid for all  2 L !

K int . This meansX ; (x; � ) j= [  ]�
for all  2 L !

K int , all topo-modelsX , and (x; � ) 2 X . Therefore, by the semantics,
X ; (x; � ) j= � � for all topo-modelsX , and (x; � ) 2 X . Hence, we concludej= � � .

Induction Hyposthesis: j= [ s0][ ]� for all  2 L !
K int , implies j= [ s0]� �

Case [s] := [ int; s0]: In this case, we have [s][ ]� = [ int; s0][ ]� = int([s0][ ]� ).
Suppose that int([s0][ ]� ) is valid for all  2 L !

K int . This implies that [s0][ ]�
is valid for all  2 L !

K int . Otherwise, there is a topo-modelX = ( X; �; � ; V)
and (x; � ) 2 X such that X ; (x; � ) 6j= [ s0][ ]� for some 2 L !

K int . This means
x 62 [[[s0][ ]� ]]� . Since Int ([[[s0][ ]� ]]� ) � [[[s0][ ]� ]]� , we also obtain that x 62
Int ([[[s0][ ]� ]]� ), i.e., X ; (x; � ) 6j= int([s0][ ]� ) contradicting validity of int([s0][ ]� ).
Then, by IH, we have [s0]� � valid. This means that [[[s0]� � ]]� = D(� ) for every
topo-modelX = ( X; �; � ; V) and all � 2 �. Since D(� ) 2 � (by Lemma 8.1.3), we
have D(� ) = Int (D(� )) = Int ([[[s0]� � ]]� ) = [[ int([s0]� � )]]� . We can then conclude
that int([s0]� � ) is valid. 2

8.2.5. Corollary. ELm
int and PALm

int are sound with respect to the class of all
topo-models.

8.2.6. Corollary. L K int andL !
K int are co-expressive with respect to topo-models.

Proof:
The proof follows similarly to the proof of Proposition 7.1.11. 2

On the other hand, unlike the case in the single-agent setting (see Theorem
7.2.5), multi-agentL !

K int � is strictly more expressive thanL K int . This is analogous
to the case in the setting of Balbiani et al. (2008) based on Kripke semantics.
The counterexample given in (Balbiani et al., 2008, Proposition 3.13) can be
adapted for our framework based on a discrete topology, as shown below. To make
the expressivity argument clearer, we �rst de�ne a notion ofpartial bisimulation
that induces a modal invariance result for the languageL K . This is the natural
analogue of the usual notion of bisimulation de�ned on multi-relational Kripke
models (see, e.g., Blackburn et al., 2001, Chapter 2.2).

8.2.7. Definition. [Partial Bisimulation (for L K )] Let two topo-models X =
(X; �; � ; V) and X 0 = ( X 0; � 0; � 0; V) be given. A relation 
 between the set of
neighbourhood situations ofX and X 0 is apartial bisimulation betweenX and X 0

i� for all ( x; � ) 2 X and (x0; � 0) 2 X 0with ( x; � ) 
 (x0; � 0) the following conditions
are satis�ed:

� Base: for all p 2 prop , x 2 V(p) i� x0 2 V 0(p).
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� Forth : for all i 2 A and all y 2 � (x)( i ), there existsy0 2 � 0(x0)( i ) such that
(y; � ) 
 (y0; � 0)

� Back : for all i 2 A and all y0 2 � 0(x0)( i ), there existsy 2 � (x)( i ) such that
(y; � ) 
 (y0; � 0).

8.2.8. Proposition. Let 
 be a partial bisimulation between topo-modelsX and
X 0 with (x; � ) 
 (x0; � 0), where(x; � ) 2 X and (x0; � 0) 2 X 0. Then for all ' 2 L K ,

X ; (x; � ) j= ' i� X 0; (x0; � 0) j= ':

Proof:
The proof follows standardly by subformula induction on' . 2

8.2.9. Proposition. (Multi-agent) L !
K int � is strictly more expressive thanL K int

with respect to topo-models.

Proof:
The proof follows the same argument as (Balbiani et al., 2008, Proposition 3.13). It
is not hard to see that the modalityint becomes redundant on topo-models based
on discrete spaces. More precisely, given a topo-modelX = ( X; P(X ); � ; V) where
P(X ) is a the set of all subsets ofX , i.e., (X; P(X )) is the discrete space, for
all ' 2 L !

K int � , we haveX j= ' $ int(' ). This fact and the modal invariance
result for the languageL K given in Proposition 8.2.8 help us to adapt the coun-
terexample in (Balbiani et al., 2008, Proposition 3.13) to our setting based on
a discrete space in a straightforward way. The proof follows by contradiction:
suppose that' 2 L !

K int � and L K int are equally expressive for (multi-agent) topo-
models, i.e., for all ' 2 L !

K int � there exists  2 L K int such that j= ' $  .
Now consider the formula � (K ap ^ : K bK ap). By the assumption, there must
be  2 L K int such that j= ' $  . To reach the desired contradiction, we
now construct two models which agree on at the actual neighbourhood sit-
uations but disagree on � (K ap ^ : K bK ap). For this argument, it is crucial to
observe that any such contains only �nitely many propositional variables. As
we have countably many propositional variables, there is a propositional variable
q that does not occur in (that is also di�erent from p). Without loss of gen-
erality, suppose is built using only one variablep. Consider the topo-models
X 0 = ( f 1; 0g; 2f 1;0g; � 0; V 0) and X = ( f 10; 00; 11; 01g; 2f 10;00;11;01g; � ; V) such that
V 0(p) = f 1g, and V(p) = f 10; 11g and V(q) = f 01; 11g. We compareX 0; (1; � 0)
with X ; (10; � ), where � 0 and � partition the corresponding models in such a way
that a cannot distinguish p-states from : p-states, while agentb can. More pre-
cisely, we set� 0(1)(a) = � 0(0)(a) = f 1; 0g and � 0(1)(b) = f 1g; � 0(0)(b) = f 0g (see
Figure 8.7a). ForX , we have� partitioning the space in the way shown in Fig-
ure 8.7b: � (00)(a) = � (10)(a) = f 10; 00g and � (01)(a) = � (11)(a) = f 11; 01g,
whereas� (10)(b) = � (11)(b) = f 10; 11g and � (00)(b) = � (01)(b) = f 00; 01g.
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� 0(1)(a) = � 0(0)(a)

10

(a) X 0

01

00

11 a

a10

(b) X

Figure 8.7: The straight round circles show the neighbourhoods of agenta, and
the dashed ones are for agentb.

It is then easy to see that, for the languageL K build from the only proposi-
tional variable p, we have (1; � 0) 
 (10; � ), hence,X 0; (1; � 0) j=  i� X ; (10; � ) j=
 . However, whileX 0; (1; � 0) 6j= � (K ap ^ : K bK ap), we haveX ; (10; � ) j= hp _
qi (K ap ^ : K bK ap), hence,X ; (10; � ) j= � (K ap ^ : K bK ap). 2

8.3 Completeness

We now show completeness forELm
int , PALm

int , and APALm
int with respect to the

class of all topo-models. Completeness ofELm
int is shown in a standard way via a

canonical model construction and a Truth Lemma that is proved by subformula
induction. Completeness forPALm

int is shown by reducing each formula inL !
K int

to a provably and semantically equivalent formula ofL K int . The proof of the
completeness forAPALm

int becomes more involved. Reduction axioms for public
announcements no longer su�ce in theAPALm

int case, and the inductive proof needs
a subinduction where announcements are considered. Moreover, the proof system
of APALm

int has an in�nitary derivation rule, namely the rule (� ! -into), and given
the requirement of closure under this rule, the maximally consistent sets for that
case are de�ned to be maximally consistenttheories (see Section 8.3.2). Lastly,
the Truth Lemma requires the more complicated complexity measure on formulas
de�ned in Appendix A.1. There, we need to adapt the completeness proof in
(Balbiani and van Ditmarsch, 2015) to our setting.

8.3.1 Completeness of ELm
int and PALm

int

Recall that the logic ELm
int is the familiar multi-modal normal system whose ax-

iomatization consists of theS4-type modality int, the S5-type modalities K i and
the connecting axioms (K -int). Therefore, proofs of Lemma 8.3.1 and Lemma
8.3.2 below are standard (see, e.g., Blackburn et al., 2001, Proposition 4.16 and
Lemma 4.17, respectively).
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8.3.1. Lemma. For every maximally consistent setx of formulas in ELm
int and

every formula';  2 L K int

1. ELm
int � x,

2. ' 2 x and ' !  2 x implies  2 x,

3. ' 2 x or : ' 2 x,

4. ' ^  2 x i� ' 2 x and  2 x.

8.3.2. Lemma (Lindenbaum's Lemma). Each consistent set ofELm
int can be ex-

tended to a maximally consistent set.

Let X c be the set of all maximally consistent sets ofELm
int . We de�ne relations

� i on X c as
x � i y i� 8' 2 L K int (K i ' 2 x implies ' 2 y):

Notice that the latter is equivalent to saying 8' 2 L K int (K i ' 2 x i� K i ' 2 y)
sinceK i is anS5modality. As eachK i is of S5type, every� i is an equivalence re-
lation, hence, it induces equivalence classes onX c. Let [x]i denote the equivalence
class ofx induced by the relation� i . Moreover, we again setb' = f y 2 X c j ' 2 yg.

Our canonical model construction is similar to the one for the single-agent
case in (Bjorndahl, 2016). We give a comparison in Section 8.5.

8.3.3. Definition. [Canonical Model forELm
int ] We de�ne the canonical model

X c = ( X c; � c; � c; V c) as follows:

� X c is the set of all maximally consistent sets ofELm
int ;

� � c is the topological space generated by the subbasis

� = f [x]i \ \int(' ) j x 2 X c; ' 2 L K int and i 2 Ag ;

� x 2 V c(p) i� p 2 x; for all p 2 prop ;

� � c = f (� c)U j U 2 � cg, where we de�ne� c : X c ! A ! � c as� c(x)( i ) = [ x]i ,
for x 2 X c and i 2 A .

We �rst need to show that (X c; � c; � c) is indeed a topo-frame.

8.3.4. Lemma. (X c; � c; � c) is a topo-frame.
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Proof:
In order to show the above statement, we need to show that (X c; � c) is a topo-
logical space, and �c satis�es the conditions in De�nition 8.1.1. For the former,
we only need to show that � coversX c, i.e., that

S
� = X c, since� c is gener-

ated by a subbasis, namely by � (in the way described in Chapter 2.2). Since
every element of � is a subset ofX c, we obviously have

S
� � X c. Observe

moreover that, since \int(> ) = X c, we have [x]i \ \int(> ) = [ x]i 2 � for each
x 2 X c and i 2 A . Now let x 2 X c. Since every� i is an equivalence rela-
tion, in particular, each � i is re
exive, we havex 2 [x]i . Therefore, we obtainS

x2 X c [x]i = X c �
S

� for any i 2 A . Hence, we conclude
S

� = X c implying
that ( X c; � c) is a topological space. We now show that �c satis�es the conditions
in De�nition 8.1.1. Let � 2 � c. Thus, by de�nition of � c, we have� = ( � c)U

for someU 2 � c (in particular, note that � c = ( � c)X c
). Therefore, we have that

D(� ) = D(� c) \ U = X c \ U = U � X c and � (x)( i ) = � c(x)( i ) \ U = [ x]i \ U
for any x 2 D (� ) and i 2 A . As argued above, [x]i 2 � for all x 2 X c and each
i 2 A . We therefore obtain that function � is de�ned as a partial function such
that � : X c * A ! � c. For condition (1), let x 2 D (� ). Since D(� ) = U and
� (x)( i ) = [ x]i \ U, we also havex 2 [x]i \ U = � (x)( i ) for all i 2 A . Moreover, since
� (x)( i ) = [ x]i \ U � U = D(� ), we also satisfy condition (2). For condition (3), let
y 2 � (x)( i ). As � (x)( i ) = [ x]i \ U, we havey 2 [x]i and y 2 D (� ). While the latter
proves the �rst consequent of condition (3), the former implies [y]i = [ x]i since [x]i
is an equivalence class. We therefore obtain� (y)( i ) = [ y]i \ U = [ x]i \ U = � (x)( i ).
Condition (4) is satis�ed by de�nition of � c. 2

8.3.5. Lemma (Truth Lemma). For every ' 2 L K int and for eachx 2 X c,

' 2 x i� X c; (x; � c) j= ':

Proof:
The proof follows by subformula induction on' . The case for the propositional
variables follows from the de�nition of V c and the cases for the Booleans are
straightforward. We only show the cases' := K i  and ' := int( ).

Case' = K i  
() ) SupposeK i  2 x and let y 2 � c(x)( i ). Since y 2 � c(x)( i ) = [ x]i , by

de�nition of � i , we haveK i  2 y. Then, by axiom (TK ), we obtain  2 y. Thus,
by IH, X c; (y; � c) j=  . ThereforeX c; (x; � c) j= K i  .

(( ) SupposeK i  62x. Then, f K i 
 j K i 
 2 xg [ f:  g is a consistent set.
By Lemma 8.3.2, we can then extend it to a maximally consistent sety. As
f K i 
 j K i 
 2 xg � y, we havey 2 [x]i meaning that y 2 � c(x)( i ). Moreover,
since :  2 y, we obtain  62y. Therefore, we have a maximally consistent set
y 2 � c(x)( i ) such that  62y. By IH, X c; (y; � c) 6j=  . Hence,X c; (x; � c) 6j= K i  .

Case' = int( )
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() ) Supposeint( ) 2 x. Consider the set [x]i \ \int( ) for some i 2 A .

Obviously, x 2 [x]i \ \int( ) 2 � c (in fact, [x]i \ \int( ) 2 �). Now let y 2 [x]i \ \int( ).

Sincey 2 \int( ), we haveint( ) 2 y. Then, by (T int ) and sincey is maximally
consistent, we have 2 y. Thus, by IH, we obtain (y; � c) j=  . Therefore,

y 2 [[ ]]�
c
. This implies [x]i \ \int( ) � [[ ]]�

c
. And, sincex 2 [x]i \ \int( ) 2 � c, we

have x 2 Int ([[ ]]�
c
), i.e., (x; � c) j= int( ).

(( ) Suppose (x; � c) j= int( ), i.e., x 2 Int ([[ ]]�
c
). Recall that the set of �nite

intersections of the elements of � forms a basis, which we denote byB� , for � c.
The assumptionx 2 Int ([[ ]]�

c
) implies that there exists an openU 2 B � such

that x 2 U � [[ ]]�
c
. Given the construction ofB� , U is of the form

U =
\

i 2 I 1

[x1]i \ � � �
\

i 2 I n

[xk ]i \
\

� 2 Form �n

\int(� )

where I 1; : : : ; I n are �nite subsets of A , x1 : : : xk 2 X c and Form�n is a �nite
subset ofL K int . Sinceint is a normal modality, we can simply write

U =
\

i 2 I 1

[x1]i \ � � �
\

i 2 I n

[xk ]i \ \int(
 );

where
V

� 2 Form �n
� := 
 . Sincex is in each [x j ]i with 1 � j � k, we have [x j ]i = [ x]i

for all such j . Therefore, we have

x 2 U = (
\

i 2 I

[x]i ) \ \int(
 ) � [[ ]]�
c
;

where I = I 1 [ � � � [ I n . This implies, for all y 2 (
T

i 2 I [x]i ), if y 2 \int(
 ) then
 2 y. From this, we can say

S
i 2 I f K i � j K i � 2 xg ` int(
 ) !  . Then, there is

a �nite subset � �
S

i 2 I f K i � j K i � 2 xg such that `
V

� 2 � � ! (int(
 ) !  ). It
then follows by the normality of int that

` (
^

� 2 �

int(� )) ! int(int(
 ) !  )) :

Observe that each� 2 � is of the form K j � for someK j � 2
S

i 2 I f K i � j K i � 2
xg and we have` K i ' $ int(K i ' ). Therefore, ` (

V
� 2 � � ) ! int(int(
 ) !  )).

Thus, since
V

� 2 � � 2 x (by � � x and x being maximal), we haveint(int(
 ) !
 )) 2 x. Then, by (K int ) and Lemma 8.3.1-(2), we obtainint(int(
 )) ! int( ) 2 x.

Moreover, sincè int(int(
 )) $ int(
 ) and x 2 \int(
 ) (i.e., int(
 ) 2 x), we con-
clude int( ) 2 x. 2

8.3.6. Theorem. ELm
int is complete with respect to the class of all topo-models.
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Proof:
Let ' be a ELm

int -consistent formula. Then, by Lemma 8.3.2, the singletonf ' g
can be extended to a maximally consistent setx of ELm

int with ' 2 x. Therefore,
by Lemma 8.3.5, we obtainX c; (x; � c) j= ' , where X c = ( X c; � c; � c; V c) is the
canonical model. 2

8.3.7. Theorem. PALm
int is complete with respect to the class of all topo-models.

Proof:
This follows from Theorem 8.3.6 by reduction in a standard way: using the size
measureS(' ) given in De�nition A.1.1 for the languageL !

K int provides the desired
result via Lemma A.1.5 (note that the strict orders< S and < S

d given in De�nition
A.1.3 are equivalent on the languageL !

K int as given in Lemma A.1.4-(2)). We re-
fer to (van Ditmarsch et al., 2007, Chapter 7.4) for a detailed presentation of the
completeness method via reduction, and in particular to (Wang and Cao, 2013,
Theorem 10, p. 111) for an analogous proof. A similar proof for single-agentELm

int
is also presented in (Bjorndahl, 2016, Section 4). 2

8.3.2 Completeness of APALm
int

We now reuse the technique of Balbiani and van Ditmarsch (2015) in the setting
of topological semantics. Given the closure requirement under the derivation rule
(� ! -intro), it seems more proper to call maximally consistent sets ofAPALm

int
maximally consistent theories, as further explained below.

8.3.8. Definition. [Theory of APALm
int ]

� A set x of formulas is called atheory of APALm
int (or simply, a theory) i�

APALm
int � x and x is closed under Modus Ponens and (� ! -intro).

� A theory x is said to beconsistenti� ? 62x.

� A theory x is maximally consistenti� x is consistent and any set of formulas
properly containing x is inconsistent.

The logic APALm
int constitutes the smallest theory. Moreover, maximally con-

sistent theories ofAPALm
int possess the usual properties of maximally consistent

sets:

8.3.9. Lemma. For any maximally consistent theoryx of APALm
int , and ';  2

L !
K int �

1. ' 62x i� : ' 2 x, and
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2. ' ^  2 x i� ' 2 x and  2 x.

In the setting of our axiomatization based on the in�nitary rule (� ! -intro), we
will say that a set x of formulas is consistent i� there exists a consistenttheory y
such that x � y. Obviously, maximal consistent theories are maximal consistent
sets of formulas. Under the given de�nition of consistency for sets of formulas,
maximal consistent sets of formulas are also maximal consistent theories.

8.3.10. Definition. Let ' 2 L !
K int � and i 2 A . Then x+ ' := f  j ' !  2 xg,

K i x := f ' j K i ' 2 xg, and int(x) := f ' j int(' ) 2 xg.

8.3.11. Lemma. For every theoryx of APALm
int , ' 2 L !

K int � and agenti 2 A ,

1. x + ' is a theory that containsx and ' ,

2. K i x is a theory,

3. int(x) is a theory, and

4. int(x) � x.

Proof:
The proof is similar to the proof of Balbiani et al. (2008, Lemma 4.11) and here
we only prove items 3 and 4. Supposex is a theory ofAPALm

int and ' 2 L !
K int � .

(3): Suppose' 2 APALm
int . Since ' is a theorem, by (Necint ), int(' ) is a

theorem ofAPALm
int as well. Therefore,int(' ) 2 x meaning that ' 2 int(x). Hence,

APALm
int � int(x). Let us now show that int(x) is closed under (MP). Suppose

'; ' !  2 int(x). This means, by the de�nition of int(x), that int(' ); int(' !
 ) 2 x. By axiom (K int ), we haveint(' ) ! (int(' !  ) ! int( )) 2 APALm

int .
Thus, since APALm

int � x and x is closed under (MP), we obtainint( ) 2 x,
i.e.,  2 int(x). Finally we show that int(x) is closed under (� ! -intro). Let s 2
NF � and � 2 L !

K int � such that [s][ ]� 2 int(x) for all  2 L !
K int . This means

int([s][ ]� ) 2 x for all  2 L !
K int . As int([s][ ]� ) is also a necessity form andx is

closed under (� ! -intro), we obtain int([s]� � ) 2 x meaning that [s]� � 2 int(x).
We therefore conclude thatint(x) is a theory.

(4): Suppose' 2 int(x). This meansint(' ) 2 x. By (T int ) and the fact that
APALm

int � x, we haveint(' ) ! ' 2 x. Therefore, sincex is closed under (MP),
we obtain ' 2 x. As ' has been taken arbitrarily fromint(x), we conclude that
int(x) � x. 2

8.3.12. Lemma. Let ' 2 L !
K int � . For all theoriesx, x+ ' is consistent i� : ' 62x.

Proof:
Let x be a theory ofAPALm

int . Then : ' 2 x i� ' ! ? 2 x (as : ' $ ' ! ?
is a theorem, andx is closed under (MP)) i� ? 2 x + ' . Therefore, x + ' is
inconsistent i� : ' 2 x, i.e., x + ' is consistent i� : ' 62x. 2
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8.3.13. Lemma (Lindenbaum's Lemma). Each consistent theoryx can be ex-
tended to a maximal consistent theoryy such thatx � y.

Proof:
The proof is the same as the proof of (Balbiani et al., 2008, Lemma 4.12). We
here recapitulate it in our notation to render the chapter self-contained. The proof
proceeds by constructing an increasing chain

y0 � y1 � : : : � yn � : : : ;

of consistent theories wherey0 := x, and eachyi will be recursively de�ned. At
each step, we have to guarantee thatyi is consistent,APALm

int is included in yi

and it is closed under (MP) and (� ! -intro). Let  0;  1; : : : be the enumeration
of all formulas in L !

K int � , and set y0 = x. Now suppose we are at the (n+1)st
step of the construction, that is,yn has already been de�ned as a consistent the-
ory containing x. We �rst observe that either yn +  n is consistent, oryn + :  n

is consistent (but not both). Suppose otherwise, i.e., suppose bothyn +  n and
yn + :  n are inconsistent. Then, by Lemma 8.3.12, we have both:  2 yn and
::  2 yn . However, since:  n ! (::  n ! ? ) 2 APALm

int � yn and yn is closed
under (MP), we obtain ? 2 yn , contradicting consistency ofyn . If yn +  n is
consistent, we de�neyn+1 = yn +  n . By Lemma 8.3.11-(1), it is guaranteed that
yn +  n is a theory. If yn +  n is inconsistent, we have:  n 2 yn (by Lemma
8.3.12). We then have two cases: (a) n is not a consequence of (� ! -intro) (b)  n

is a consequence of (� ! -intro). If (a) is the case, we letyn+1 = yn . For (b), let
[s1]� � 1; [s2]� � 2; : : : ; [sk ]� � k be the enumeration of all possible representations
of  n as a consequence of (� ! -intro). We now de�ne another sequencey0

n ; : : : ; yk
n

of consistent theories such thaty0
n = yn and eachyi

n with i � k is recursively
de�ned and includesyn . Now suppose we are at the (i+1)st step of the construc-
tion, that is, yi

n has already been de�ned as a consistent theory containingyn .
This means,: [si ]� � i 2 yi

n (as : [si ]� � i := :  n 2 yn � yi
n ). Since yi

n is closed
under (� ! -intro), there exists ' i 2 L !

K int such that [si ][' i ]� i 62yi
n . Then we de�ne

yi +1
n = yi

n + : [si ][' i ]� i (by Lemmas 8.3.11-(1) and 8.3.12,yi +1
n is guaranteed to be

a consistent theory). Then, we setyn+1 = yk
n . Now de�ne y =

S
i 2 N yi . We then

show that y is in fact a maximally consistent theory. SinceAPALm
int � x = y0 � y,

we haveAPALm
int � y. It is also easy to see thaty is consistent (since every ele-

ment of the chain is consistent). Second, we provey is closed under (MP). Let
'; ' !  2 y. Then, by the construction ofy, there is yn and ym in the above
chain such that ' 2 yn and ' !  2 ym . W.l.o.g, we can assumen � m, thus,
yn � ym . Hence,' 2 ym . Sinceym is closed under (MP), we obtain 2 ym , thus,
' 2 y (sinceym � y). Third, we show y is closed under (� ! -intro). Let s 2 NF �

such that [s][' ]� 2 y for all ' 2 L !
K int , and suppose toward contradiction that

[s]� � 62y. This implies [s]� � 62yi for all yi in the above chain, sinceyi � y
for all i 2 N. Moreover, observe that [s]� � appears in the enumeration of all
formulas. Let [s]� � :=  m . Since m 62ym+1 , we know that ym+1 6= ym +  m . This
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means, by the de�nition of ym+1 , that ym +  m is inconsistent, thus,:  m 2 ym

(by Lemma 8.3.12). Then, by the construction ofym+1 , it is guaranteed that there
is a � 2 L !

K int such that : [s][� ]� 2 ym+1 . As ym+1 � y, we obtain : [s][� ]� 2 y,
contradicting consistency ofy (since we assumed [s][' ]� 2 y for all ' 2 L !

K int ). It
remains to show thaty is maximal. Suppose otherwise, i.e., suppose that there
is a consistent theoryy0 such that y ( y0. This implies that there is ' 2 y0 but
' 62y. Hence, ' 62yi for all i 2 N. W.l.o.g, assume' =  m . Therefore, in
particular, ym + ' is inconsistent, hence,: ' 2 ym . This implies : ' 2 y0 (since
ym � y0), hence, both' and : ' are in y0. Then, by Lemma 8.3.9-(2) andy0 being
closed under (MP), we obtain? 2 y0, contradicting consistency ofy0. Therefore,
y is a maximally consistent theory. 2

8.3.14. Lemma (Existence Lemma for K i ). Let ' 2 L !
K int � and i 2 A . For

every theoryx, if K i ' 62x, then there is a maximally consistent theoryy such
that K i x � y and ' 62y.

Proof:
Let x be a theory ofAPALm

int such that K i ' 62x. Thus, ' 62K i x. This implies that
:: ' 62K i x: otherwise, sinceK i x is a theory (Lemma 8.3.11-(2)), thus, closed un-
der (MP), and :: ' $ ' 2 APALm

int , we would obtain ' 2 K i x, contradicting the
assumption. Hence, by Lemma 8.3.12,K i x + : ' is consistent. Then, by Lemma
8.3.13, there exists a maximally consistent theoryy such that K i x + : ' � y. By
Lemma 8.3.11-(1), we know thatK i x � K i x + : ' and : ' 2 K i x. Hence, we
concludeK i x � y and ' 62y. 2

8.3.15. Lemma. Let ' 2 L !
K int � and x be a theory. Then,� ' 2 x i� for all

 2 L !
K int ; [ ]' 2 x.

Proof:
For the direction left-to-right, suppose� ' 2 x. Then, by (� -elim) and (MP), we
have [ ]' 2 x for all  2 L !

K int . For the other direction, suppose [ ]' 2 x for all
 2 L !

K int . Consider the necessity form [s] := � . We know that [� ][ ]' := [  ]' .
Thus, by assumption, [� ][ ]' for all  2 L !

K int . Then, sincex is closed under
(� ! -intro), [ � ]� ' 2 x, i.e., � ' 2 x as well. 2

The de�nition of the canonical model forAPALm
int is the same as forELm

int ,
except that the maximally consistent sets are maximally consistent theories of
APALm

int . We now come to the Truth Lemma for the logicAPALm
int . Here we use

the complexity measure < S
d ' (see Appendix A.1), and we recall that� c : X c !

A ! � c is de�ned as� c(x)( i ) = [ x]i , for x 2 X c and i 2 A .
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8.3.16. Lemma (Truth Lemma). For every ' 2 L !
K int � and for eachx 2 X c,

' 2 x i� X c; (x; � c) j= ':

Proof:
Let ' 2 L !

K int � and x 2 X c. The proof is by < S
d -induction on ' , where the case

' = [  ]� is proved by a subinduction on� . We therefore consider 13 cases, where
the base case' := p as usual follows from the de�nition ofV c.

Induction Hypothesis: for all  2 L !
K int � and x 2 X c, if  < S

d ' , then  2
x i� X c; (x; � c) j=  :

The Boolean cases follow standardly, where we observe that the subformula
order is subsumed under the< S

d order (see Lemma A.1.5-(1)). We proceed with
the cases' = K i  and ' = int( ) respectively, and then with the subinduction
on � for case announcement' = [  ]� , and �nally with the case ' = �  .

Case' := K i  
For the direction from left-to-right, see (Truth) Lemma 8.3.5. For the opposite

direction, supposeK i  62x. Then, by Lemma 8.3.14, there exists a maximally
consistent theory y such that K i x � y and  62y. Then, by  < S

d K i  and
induction hypothesis (IH), we obtain (y; � c) 6j=  . SinceK i x � y, we havey 2 [x]i
meaning that y 2 � c(x)( i ). Therefore, by the semantics,X c; (x; � c) 6j= K i  .

Case' := int( )
For the direction from left-to-right, see (Truth) Lemma 8.3.5. For the opposite

direction, supposeint( ) 62x. We want to show that x 62Int ([[ ]]�
c
), i.e., show

that for all U 2 B � with x 2 U, we obtain U 6� [[ ]]�
c
, whereB� is the basis of

X c constructed by closing � under �nite intersections (as in the proof of Lemma
8.3.5). Let U 2 B � such that x 2 U. Given the construction ofB� , U is of the
form

U = (
\

i 2 I

[x]i ) \ \int(
 );

where I and int(
 ) are as in the proof of Lemma 8.3.5, case for the modality
int. In order to complete the proof, we need to construct a maximally consistent
theory y 2 U such that y 62[[ ]]�

c
. Therefore, this maximally consistent theoryy

should satisfy the following properties:

1.
S

i 2 I f K i � j K i � 2 xg � y, i.e., y 2
T

i 2 I [x]i ,

2. int(
 ) 2 y, i.e., y 2 \int(
 ),

3. :  2 y, or equivalently,  62y.

Toward the goal of �nding this maximal consistent theoryy, we �rst construct a
consistent theoryz (that we later expand to the maximal consistent theoryy).
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Consider the set of formulas

z0 :=
[

i 2 I

f K i � j K i � 2 xg [ f int(
 )g [ APALm
int ;

and closez0 under (MP) and (� ! -intro) to obtain z. It is guaranteed that z is
a theory since it includesAPALm

int and it is closed under (MP) and (� ! -intro).
Moreover, z0 � x, since (1)

S
i 2 I f K i � j K i � 2 xg � x and (2) int(
 ) 2 x

becausex 2 U = (
T

i 2 I [x]i ) \ \int(
 ), and thus, x 2 \int(
 ). Therefore, z0 � x
and sincez is the smallest theory containingz0 (by construction), we obtain
z � x. It follows that z is consistent sincex is consistent. We now consider the
set int(z). Similarly, int(z) is a consistent theory such thatint(z) � z � x (by
Lemma 8.3.11-(3,4) andx being a maximally consistent theory). Furthermore,S

i 2 I f K i � j K i � 2 xg [ f int(
 )g � int(z), since K i � $ int(K i � ) 2 APALm
int and

K i � 2 z for each i 2 I , and similarly sinceint(
 ) $ int(int(
 )) 2 APALm
int and

int(
 ) 2 z. In fact, given that z is the smallest theory constructed fromz0 by
closingz0 under (MP) and (� ! -intro), and int(z) is also a consistent theory such
that z0 � int(z) � z, we obtain int(z) = z. Observe that, sinceint( ) 62x and
z � x, we haveint( ) 62z. Therefore, the fact thatint( ) 62int(z) = z implies that
 62z. Finally, we extend the consistent theoryz to the set of formulasz + :  .
By Lemma 8.3.11-(1), we know thatz + :  is a theory such that z � z + :  
and :  2 z + :  . Moreover, since 62z, Lemma 8.3.12 implies thatz + :  is
a consistent theory. Thus, by Lemma 8.3.13, there exists a maximally consistent
theory y such that z + :  � y. Hence, we have the maximally consistent theory
y with:

1.
S

i 2 I f K i � j K i � 2 xg � y, since
S

i 2 I f K i � j K i � 2 xg � z � y,

2. int(
 ) 2 y, sinceint(
 ) 2 z � y, and

3. :  2 y, since:  2 z + :  � y.

Therefore,y 2 (
T

i 2 I [x]i ) \ \int(
 ) = U (by (1) and (2) above) such thaty 62[[ ]]�
c

(by (3) and IH). Thus, U 6� [[ ]]�
c
. Since the basic open neighbourhoodU of x

has been chosen fromB� arbitrarily, we obtain x 62Int ([[ ]]�
c
).

Case' := [  ]� : This case follows from a subinduction on� .

Subcase' := [  ]p

[ ]p 2 x i� int( ) ! p 2 x (Rp)

i� ( x; � c) j= int( ) ! p (Lemma A.1.5-(5) and (IH))

i� ( x; � c) j= [  ]p (Rp)

Subcase' := [  ]: �
Use (R: ), (IH), and Lemma A.1.5-(6) stating int( ) ! : [ ]� < S

d [ ]: � .
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Subcase' := [  ](� ^ � )
Use (R̂ ), (IH), and Lemma A.1.5-(7) stating [ ]� ^ [ ]� < S

d [ ](� ^ � ).
Subcase' := [  ]int(� )
Use (Rint ), (IH), and Lemma A.1.5-(8) stating int( ) ! int([ ]� ) < S

d [ ]int(� ).
Subcase' := [  ]K i �
Use (RK ), (IH), and Lemma A.1.5-(9) stating int( ) ! K i [ ]� < S

d [ ]K i � .
Subcase' := [  ][� ]�
Use (R[!]), (IH), and Lemma A.1.5-(10) stating [h i � ]� < S

d [ ][� ]� .
Subcase' := [  ]� �
For all � 2 L !

K int , we have [ ][� ]� < S
d [ ]� � since [ ]� � has one more�

than [ ][� ]� (see Lemma A.1.5-(3-4)). Therefore, it su�ces to show [ ]� � 2
x i� 8� 2 L !

K int ([ ][� ]� 2 x): For the direction from right-to-left, assume that
for all � 2 L !

K int , [ ][� ]� 2 x. Notice that each [ ][� ]� is a necessity form of
the shape [s][� ]� wheres =  . Therefore, sincex is closed under (� ! -intro), we
obtain [ ]� � 2 x. For the opposite direction, suppose [ ]� � 2 x. Observe that
[ ]� � ! [ ][� ]� 2 APALm

int for all � 2 L !
K int (this can easily be proven by (� -elim,

Nec!, K ! and MP). Therefore, for all � 2 L !
K int ; [ ][� ]� 2 x, sincex is closed under

(MP). We can then obtain

[ ]� � 2 x i� 8� 2 L !
K int ([ ][� ]� 2 x) (by the above argument)

i� ( 8� 2 L !
K int )(( x; � c) j= [  ][� ]� ) (IH, [  ][� ]� < S

d [ ]� � )

i� ( 8� 2 L !
K int )(( x; � c) j= int( ) implies (x; (� c) ) j= [ � ]� )

i� ( x; � c) j= int( ) implies (8� 2 L !
K int )(( x; (� c) ) j= [ � ]� )

i� ( x; � c) j= int( ) implies (x; (� c) ) j= � �

i� ( x; � c) j= [  ]� �

This completes the case' := [  ]� .

Case' := �  
Again note that for all � 2 L !

K int , [� ] < S
d �  , since�  has one more� than

[� ] (see Lemma A.1.5-(3-4)). Therefore, we obtain

�  2 x i� ( 8� 2 L !
K int � )([ � ] 2 x) (Lemma 8.3.15)

i� ( 8� 2 L !
K int � )(( x; � c) j= [ � ] ) (IH)

i� ( x; � c) j= �  (by the semantics of� )

2

8.3.17. Theorem. APALm
int is complete with respect to the class of all topo-

models, i.e., for all ' 2 L !
K int � , if ' is valid, then ' 2 APALm

int .
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Proof:
Let ' 2 L !

K int � such that ' 62APALm
int (recall that APALm

int is the smallest theory).
Then, by Lemma 8.3.12,APALm

int + : ' is a consistent theory, and, by Lemma
8.3.11-(1), we have: ' 2 APALm

int + : ' . By Lemma 8.3.13, the consistent the-
ory APALm

int + : ' can be extended to a maximally consistent theoryy such that
APALm

int + : ' � y. Sincey is maximally consistent and: ' 2 y, we obtain ' 62y
(by Proposition 8.3.9). Then, by Lemma 8.3.16 (Truth Lemma), we conclude
X c; (y; � c) 6j= ' . 2

8.4 S4 knowledge on multi-agent topo-models

As mentioned earlier, some of our results generalize to weaker versions ofELm
int ,

PALm
int , and APALm

int that have knowledge modalities of di�erent strength, such as
S4, S4:2 and S4:3. More precisely, we can weaken the conditions on the neighbour-
hood functions given in De�nition 8.1.1 in a way that the corresponding logics
on such weaker models embed onlyS4K , S4:2K or S4:3K types of knowledge. In
this section, we focus on the caseS4K , and brie
y state the required adjustments
for S4:2K and S4:3K .

Since theS4 type of knowledge does not satisfy the axiom (5K ): : K i ' !
K i : K i ' and the key property that makes the axiom (5K ) sound on topo-models
is De�nition 8.1.1-(3), we weaken exactly this clause to obtain topo-models for
logics for knowledge of di�erent strength.

8.4.1. Definition. [Weak Topo-Model] A weak multi-agent topological model
(weak topo-model) is a topo-modelX = ( X; �; � ; V) as in De�nition 8.1.1 with
clause 3 replaced by

3. for all y 2 X , if y 2 � (x)( i ) then y 2 D (� ) and � (y)( i ) � � (x)( i ).

A weak topo-frame is de�ned analogously to De�nition 8.1.2.

8.4.2. Definition. The axiomatization of wELm
int is that of ELm

int minus the ax-
iom (5K ). The axiomatizations for wPALm

int and wAPALm
int are the obvious further

extensions as in Table 8.1.

Soundness ofwELm
int ; wPALm

int , and wAPALm
int with respect to weak topo-models

follow as in Proposition 8.2.4 and Corollary 8.2.5. As for completeness, we again
use a canonical model construction similar to the one for the stronger logics,
however, adapted for theS4-type knowledge. Let us �rst introduce some notation
and basic concepts.

Let X c be the set of all maximally consistent sets ofwELm
int . We de�ne relations

Rc
i on X c as

xRc
i y i� 8' 2 L K int (K i ' 2 x implies ' 2 y):
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Let Rc
i (x) denote the upward-closed set generated byx with respect to the relation

Rc
i , i.e., Rc

i (x) = f y 2 X c j xRc
i yg. Note that, sinceK i is of S4-type, the canonical

relations Rc
i are re
exive and transitive. As usual, we setb' = f y 2 X c j ' 2 yg.

8.4.3. Definition. [Canonical Model forwELm
int ] We de�ne the (weak) canonical

model X c = ( X c; � c; � c; V c) as follows:

� X c is the set of all maximally consistent sets ofwELm
int ;

� � c is the topological space generated by the subbasis

� = f Rc
i (x) \ \int(' ) j x 2 X c; ' 2 L K int and i 2 Ag ;

� x 2 V c(p) i� p 2 x; for all p 2 prop ;

� � c = f (� c)U j U 2 � cg, where we de�ne� c : X c ! A ! � c as � c(x)( i ) =
Rc

i (x), for x 2 X c and i 2 A .

Observe that (X c; � c; � c) is a weak topo-frame. This can be shown as in the

proof of Lemma 8.3.4. As in the previous case we have\int(> ) = X c, thus, each
Rc

i (x) is an open set in� c. Moreover, � c satis�es the required properties of the
elements of � given in De�nition 8.4.1. Observe that D(� c) = X c and D((� c)U ) =
U for all U 2 � c. Moreover, (� c)U (x)( i ) = Rc

i (x) \ U when x 2 U.

8.4.4. Lemma (Truth Lemma). For every ' 2 L K int and for eachx 2 X c

' 2 x i� X c; (x; � c) j= ':

Proof:
Proof is similar to the proof of Lemma 8.3.5 except that we replace each [x]i by
Rc

i (x). 2

8.4.5. Theorem. wELm
int , wPALm

int , and wAPALm
int are complete with respect to

the class of all weak topo-models.

Proof:
For completeness ofwELm

int , let ' 2 L K int such that wELm
int 6`' . This implies that

f: ' g is a consistent set. Then, by Lindenbaum's Lemma, it can be extended to
a maximally consistent setx such that : ' 2 x. Therefore, by (Truth) Lemma
8.4.4, X c; (x; � c) 6j= ' . For completeness ofwPALm

int , see proof of Theorem 8.3.7.
The completeness proof ofAPALm

int follows similarly as in Theorem 8.3.17, how-
ever, the canonical model is the same as forwELm

int , except that the maximally
consistent sets are maximally consistent theories ofwAPALm

int . 2

Moreover, by adding the following condition to De�nition 8.4.1, we obtain
topo-models forS4:3K :
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� for all y; z 2 X , if y; z 2 � (x)( i ) then y; z 2 D (� ) and either � (y)( i ) � � (z)( i )
or � (z)( i ) � � (y)( i ).

The logics based onS4:2K on the other hand demand a more careful treatment
if dynamics are involved (as in Section 4.2.2). In particular, the condition on
neighbourhood functions that makes the axiom (.2K ): K̂ i K i ' ! K i K̂ i ' valid on
topo-models is

� for all y; z 2 X , if y; z 2 � (x)( i ) then y; z 2 D (� ) and � (y)( i ) \ � (z)( i ) 6= ; .

However, the (.2K )-axiom may no longer hold after an update, as the intersection
of updated open neighbourhoods� ' (y)( i ) \ � ' (z)( i ) may have become empty
after the re�nement. This is analogous to the problem presented in Section 4.2.2.
Therefore, in order to work with S4:2K in the present setting, we should drop
condition (4) of De�nition 8.1.1, and con�ne ourselves to the epistemic fragment
wELm

int + K̂ i K i ' ! K i K̂ i ' .

8.5 Comparison to other work

In this section we compare our work in greater detail to some of the prior literature
that we already referred to. In this comparison, a prominent position is taken by
an embedding from single-agent topological semantics to multi-agent topological
semantics and vice versa, wherein the (single-agent) work of Bjorndahl (2016)
and van Ditmarsch et al. (2014) play a large role. Bjorndahl's use of the interior
operator and topological semantics motivated our own approach: our semantics
for L K int and L !

K int are essentially multi-agent extensions of Bjorndahl's semantics
for the single-agent versions of these languages. This is the topic of the �rst half
of this section. The second contains a review of other related works.

From multi-agent to single-agent. Throughout this section, we denote single-
agent topo-models (X; �; V ) by M in order to distinguish them from multi-agent
topo-modelsX = ( X; �; � ; V) with neighbourhood functions. We moreover focus
on the single agent case, i.e., assume thatA = f ig.

In the single-agent case, it is clear that a neighbourhood situation (x; � ) of
a given topo-modelX = ( X; �; � ; V) reverts to an epistemic scenario (x; U) of
X � = ( X; �; V ), where U = � (x)( i ) and X � denotesX = ( X; �; � ; V) without
the � component. For the other direction, given a single-agent model (with-
out a neighbourhood function set)M = ( X; �; V ), for each epistemic scenario
(x; U) 2 ES(M ), we de�ne a neighbourhood function� U : X * f ig ! � such
that D(� U ) = U and � U (x)( i ) = U for all x 2 U. We therefore de�ne the neigh-
bourhood function set forM as

� M := f � U j (x; U) 2 ES(M )g:
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It is not hard to see that � M satis�es the properties given in De�nition 8.1.2, and
thus is indeed a neighbourhood function set on the underlying topological space
of M . Therefore,M + = ( X; �; � M ; V) constitutes a topo-model as described in
De�nition 8.1.2, and it is constructed from M = ( X; �; V ).

In the following theorem, j= s refers to the satisfaction relation de�ned for
(single-agent)L !

K int � on topo-modelsM = ( X; �; V ) with respect to epistemic
scenarios (x; U), as given in De�nitions 6.2.1 and 7.2.1. The usual notationj=
is reserved for the satisfaction relation de�ned on (X; �; � ; V) with respect to
neighbourhood situations as given in De�nition 8.1.4.

8.5.1. Theorem.

1. For every M = ( X; �; V ), epistemic scenario(x; U) 2 ES(M ) and ' 2
L !

K int � ,
M ; (x; U) j= s ' i� M + ; (x; � U ) j= ':

2. For every X = ( X; �; � ; V), neighbourhood situation(x; � ) 2 X , and ' 2
L !

K int � ,
X ; (x; � ) j= ' i� X � ; (x; � (x)( i )) j= s ':

Proof:
The proofs for both items follow similarly by < S

d -induction on the formulas in
single-agentL !

K int � . The cases for the propositional variables, Booleans and the
modalities K and int are standard. The case' := [  ]� for the public announce-
ment modality follows by subinduction on� , by using the soundness of the re-
duction axioms with respect to both single and multi-agent topo-models. Here
we present only the subcase for� = p and � := � � of item (1). The other cases
are similar.

Subcase' := [  ]p

M ; (x; U) j= s [ ]p i� M ; (x; U) j= s int( ) ! p (the validity (R p) for j= s)

i� M + ; (x; � U ) j= int( ) ! p (Lemma A.1.5-(5) and (IH))

i� M + ; (x; � U ) j= [  ]p (the validity (R p) for j=)

Subcase' := [  ]� �

M + ; (x; � U ) j= [  ]� �

i� ( 8� 2 L !
K int )(M + ; (x; � U ) j= [  ][� ]� ) (*)

i� ( 8� 2 L !
K int )(M ; (x; U) j= s [ ][� ]� ) (Lemma A.1.5-(4) and (IH))

i� M ; (x; U) j= s [ ]� � (similar to (*))

*: see Lemma 8.3.16, subcase' := [  ]� � . 2
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Theorem 8.5.1-(1) therefore states thatM ; (x; U) and M + ; (x; � U ) are modally
equivalent with respect toL !

K int � . Moreover, for all' 2 L !
K int � , M j = s ' i� M + j=

' , i.e., M and M + are (globally) modally equivalent with respect to the same lan-
guage. Furthermore, Theorem 8.5.1-(2) shows thatX ; (x; � ) and X � ; (x; � (x)( i ))
are modally equivalent with respect toL !

K int � . However, X is not necessarily
(globally) modally equivalent to X � , as the following example demonstrates.

8.5.2. Example. The reason whyX and X � are not necessarily modally equiva-
lent is that while X � reverts to using the full topology� , the view on that in X is
restricted by �. For a counterexample, consider the topo-modelX = ( X; �; � ; V)
where X = f 1; 2g and � is the discrete topology onX . We set � = f � g where
D(� ) = f 2g and � (2) = f 2g. Hence, the only neighbourhood situation ofX is
(2; � ). Finally we let V(p) = f 1g. Therefore,X ; (2; � ) j= : Kp and as (2; � ) is the
only neighbourhood situation of the model, we obtainX j= : Kp. On the other
hand, (1; f 1g) is an epistemic scenario inX � , and X � ; (1; f 1g) j= Kp, therefore,
X � 6j= : Kp.

In the remainder of this section, we compare mainly three aspects of our work
to that of others in the relevant literature.

Multi-agent epistemic systems. Multi-agent epistemic systems with sub-
set space-like semantics have been proposed in (Heinemann, 2008, 2010; Baskent,
2007; W�ang and�Agotnes, 2013a), however, none of these are concerned with pub-
lic or arbitrary public announcements. An unorthodox approach to multi-agent
knowledge is proposed in (Heinemann, 2008, 2010). Roughly speaking, instead
of having a knowledge modalityK i for each agent as a primitive operator in his
syntax, Heinemann uses additional operators to de�neK i and his semantics only
validates theS4-axioms forK i . The necessitation rule forK i does not preserve va-
lidity under the proposed semantics (Heinemann, 2008, 2010). On the other hand,
we follow the methods of dynamic epistemic logic in our multi-agent generaliza-
tion by extending the single-agent case with a knowledge modalityK i for each
agent and propose a multi-agent topological semantics for this language general
enough to model bothS4and S5types of knowledge, and 
exible enough for fur-
ther generalizations as shown in Section 8.4. Another multi-agent logic of subset
spaces is developed in (W�ang and�Agotnes, 2013a). This setting uses multi-agent
versions of both knowledgeK i and e�ort 2 i , where, for example,3 1K 2p is read
as \agent 1 comes up with evidence so that agent 2 gets to knowp" (W�ang
and �Agotnes, 2013a, p. 1160). They have left the question of how to model an
agent-independent e�ort operator open, while pointing out its connection to the
arbitrary announcement modality of Balbiani et al. (2008). Besides, no announce-
ments or further generalizations (unlike in their other, single-agent, work W�ang
and �Agotnes, 2013b) are considered in (W�ang and�Agotnes, 2013a), and a purely
topological case is left for future research. To this end, we believe our work in
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this chapter at least partially answers some of their open questions. Their use
of partitions for each agent instead of a single neighbourhood is compatible with
our requirement that all neighbourhoods for a given agent be disjoint. A further
di�erence from the existing literature is that we restrict our attention to topo-
logical spaces and prove our results by means of topological tools. For example,
our completeness proofs employ direct topological canonical model constructions
without a detour referring to di�erent types of semantics and completeness results
therein.

Completeness proof. We applied the new completeness proof for arbitrary
public announcement logic of Balbiani and van Ditmarsch (2015) to a topological
setting. The modality int in our system demands a di�erent complexity measure in
the Truth Lemma of the completeness proof ofAPALm

int than in (Balbiani and van
Ditmarsch, 2015). Moreoever, we modi�ed the complexity measure given in (van
Ditmarsch et al., 2015b) to make it work for both the completeness ofAPALm

int and
of PALm

int . The canonical modal construction is as in (Bjorndahl, 2016) with some
multi-agent modi�cations: we de�ned the set � from which the topology of the
canonical model is generated in a similar way as in (Bjorndahl, 2016), however,
having multiple agents renders this set weaker in the sense that while it constitutes
a basis in the single-agent case, it becomes a subbasis in the multi-agent setting.

Single agent case. In standard (single-agent) subset space semantics (Moss
and Parikh, 1992; Dabrowski et al., 1996) and in the later extensions (W�ang
and �Agotnes, 2013a; Bjorndahl, 2016; Balbiani et al., 2013; van Ditmarsch et al.,
2014), the modalityK quanti�es over the elements of a given open neighbourhood
U that is �xed from the beginning of the evaluation. This makesK behave like
a universal modality within U, therefore,S5K as an underlying epistemic system
becomes intrinsic to the semantics. However, in our proposal, the soundness of
the epistemic axioms (i.e., axioms involving only the modalityK ) depends on the
constraints posed on the neighbourhood functions and relaxing these constraints
enables us to work with weaker notions of knowledge as shown in Section 8.4. In
this sense, our approach generalizes the epistemic aspect of the aforementioned
literature. Moreover, Balbiani et al. (2013) proposed subset space semantics for
arbitrary announcements. However, their approach does not go beyond the single-
agent case and the semantics provided is in terms of model restriction.

8.6 Conclusions and Future Work

In this chapter, we proposed a multi-agent topological semantics for knowledge,
knowability, public and arbitrary announcements in the style of subset space
semantics. We in particular provided a multi-agent semantic framework, based
on topological spaces, that eliminates the so-called problem of \jumping out of the
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epistemic range" in the evaluation of higher-order knowledge formulas involving
di�erent agents. In our setup all agents have the same observational power in the
sense that they have access to exactly the same collection of potential evidence,
represented by each topo-model carrying only one topology. In order to model the
informational attitudes of a group of agents with di�erent observational powers,
one could associate a possibly di�erent topology with each agent together with
a \common" topology representing all potential evidence. Moreover, the studied
notions of dynamics of \learning new evidence" brought about by announcements
were of public nature, and the information source was assumed to be external.
Van Ditmarsch et al. (2017) generalizes the topological public announcement
semantics of this chapter for semi-private announcement, again assuming the
information source to be external.

Unsurprisingly, working with S5-type of knowledge required a partitioning
of the (sub)domain of a topological space. This might seem like a restrictive re-
quirement since it rules out working with more familiar spaces such as the natural
topology of open intervals on the real line or the Euclidean space. However, as
long as multiple S5-type agents are concerned, we believe it is hard to avoid
such a restriction, if possible at all. We then axiomatized the multi-agent logic of
knowledge and knowabilityELm

int , its extension with public announcementsPALm
int ,

and also with arbitrary public announcementsAPALm
int . The arbitrary announce-

ment modality � ' capturing \stability of the truth of ' after any announcement"
comes closer to the intuition behind the e�ort modality 2 ' as \stability of the
truth of ' after any evidence-acquisition". These two modalities are proven to be
equivalent in the single-agent setting (see Theorem 7.2.6). However, the appro-
priate interpretation of e�ort in the multi-agent setting and its connection to the
arbitrary announcement modality still remain elusive and deserve a closer look.

The connection between the e�ort modality and the arbitrary announcement
modality has also been observed in (W�ang and�Agotnes, 2013a), however, pro-
viding a formal analysis regarding the link between these two modalities in a
multi-agent setting is not straightforward: there is not yet agreement on how to
interpret the e�ort modality in a multi-agent framework. The existing proposals
neither agree on the general framework, nor are they entirely compatible with each
other or with our multi-agent topological setting (see Section 8.5 for a comparison
with other work on multi-agent subset space semantics). This wasnot the case
in the single-agent version, since the e�ort modality originated in a single-agent
framework, and once we have a semantics for the public announcement modalities,
it is obvious how to generalize it for arbitrary announcements, namely by follow-
ing the intuitive reading of the arbitrary announcement modality as in (Balbiani
et al., 2008). In the following, we propose a semantics for the e�ort modality on
multi-agent topo-models that, we believe, �ts well with the underlying dynamic
epistemic setting developed in this chapter. More precisely, we consider the below



8.6. Conclusions and Future Work 193

semantic clause for the e�ort modality on multi-agent topo-models

X ; (x; � ) j= 2 ' i� ( 8U 2 � )(x 2 U � D (� ) implies X ; (x; � U ) j= ' ) (2 -sem)

This interpretation �ts well with and generalizes the arbitrary announcement
modality � ' , to recall, interpreted as

X ; (x; � ) j= � ' i� ( 8 2 L !
K int )(x 2 Int ([[ ]]� ) implies X ; (x; �  ) j= ' );

To elaborate, � ' quanti�es over all announceable formulas inL !
K int , and in

turn, quanti�es over all epistemically de�nable open subsets ofD(� ), and checks
whether ' is true with respect to the corresponding updated functions�  that
is obtained by restricting � with the open setInt ([[ ]]� ). On the other hand, the
e�ort modality 2 ' simply quanti�es over all open subsets ofD(� ), and checks
whether ' remains true with respect to the restricted neighbourhood functions
� U . These two modalities are proven to be equivalent in the single-agent case
(see Theorem 7.2.6), however, this result does not carry over to the multi-agent
setting. In fact, the above semantic clause for2 ' is analogous to what is called
\structural semantics for � ' ", which is stated as a possible alternative for the
interpretation of the arbitrary announcement modality in (Balbiani et al., 2008,
Section 2.3.1). We can then use the example presented in (Balbiani et al., 2008,
p. 310), which was based on a multi-agent Kripke model, to show that2 ' and
� ' do not coincide in our multi-agent setting either.

8.6.1. Example. (Balbiani et al., 2008, p. 310) We consider the following two-
agent example with agenta and b based on a discrete space. The topo-model we
use in this example is the same asX in Proposition 8.2.9 except for its valuation.
Let X = ( X; P(X ); � ; V) our topo-model whereX = f x0; y0; x1; y1g, the topology
P(X ) is the set of all subsets ofX and V(p) = f x1; y1g. We stipulate that
the actual state is x1 and the neighbourhood function� de�ning the epistemic
ranges of the agents induces a partition for each agent exactly as in Proposition
8.2.9, also see Figure 8.8a. Now consider the sentences3 (K ap ^ : K bK ap) and
� (K ap ^ : K bK ap). We have (x1; � ) j= 3 (K ap ^ : K bK ap) since (x1; � U ) j=

K ap ^ : K bK ap for U = f y0; y1; x1g. Moreover, observe thatU is the only open
in (X; P(X )) such that (x1; � U ) j= K ap ^ : K bK ap.

On the other hand, we have (x1; � ) 
 (y1; � ) and (x0; � ) 
 (y0; � ). Therefore,
sinceX is based on a discrete topology, we obtain by Proposition 8.2.8 that (1)
x1 2 [[ ]]� i� y1 2 [[ ]]� , and (2) x0 2 [[ ]]� i� y0 2 [[ ]]� , for all  2 L K int . Hence,
U 6= [[  ]]� for all  2 L K int (since the underlying space is discrete, we have [[ ]]� =
Int ([[ ]]� )). Thus, there is no  2 L K int such that (x1; � ) j= h i (K ap ^ : K bK ap),
thus, (x1; � ) 6j= � (K ap ^ : K bK ap).

Therefore, unlike in the case of the single-agent setting, the e�ort and the
arbitrary announcement modalities behave very di�erently in the multi-agent
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Figure 8.8: The straight round circles show the neighbourhoods of agenta, and
the dashed ones are for agentb.

case. This should not be surprising. In essence, the arbitrary announcement
modality is quite \syntactical" as it quanti�es over a set of formulas in a given
language, whereas the e�ort modality is comparatively very \semantical" as it
quanti�es over subsets of a given domain regardless of whether the subsets are
epistemically de�nable or not. This di�erence disappears in the single-agent case
since both languagesL !

K int2 and L !
K int � were co-expressive with the epistemic lan-

guageL K int . It falls outside of the scope of this dissertation, and so we leave for
a future work, to systematically investigate possible interpretations of the e�ort
modality and its behaviour in a multi-agent setting.



Appendix A

Technical Speci�cations

A.1 Complexity Measure for L !
K int2 and L !

K int�

In several proofs in Chapters 7 and 8 (such as Proposition 7.1.11, Lemmas 7.1.35
and 8.3.16), we need a complexity measure of the formulas ofL !

K int2 (as well
as of L !

K int � and its multi-agent extension studied in Chapter 8) that induces
a well-founded strict partial order on the formulas of these languages satisfying
certain properties (that are given in Lemma A.1.5). For example, in Lemma
7.1.35, we need a complexity measure for which [p]' is less complex than2 ' for
an arbitrary propositional variable p; while Lemma 8.3.16 requires [ ]' to be less
complex than� ' for arbitrary  2 L !

K int . For this reason, subformula complexity
does not su�ce. In this appendix, we de�ne a complexity measure that has these
properties. Since the languagesL !

K int2 and L !
K int � are de�ned in the same way, the

proposed complexity measure and the subsequent lemmas also hold forL !
K int � ,

as well as for the multi-agentL !
K int � .

The appropriate complexity measure is composed of a measureS(' ) that is
a weighted count of the number of symbols and a measured(' ) that counts the
number of the2 -modalities occurring in a formula. Although somewhat simpler
complexity measures would work for some of the lemmas mentioned above, we
here de�ne one complexity measure, based onS andd, that induces a well-founded
partial order < S

d on L !
K int2 (and on L !

K int � ) which works in every relevant proof.
The relation < S

d introduced below was �rst de�ned in (van Ditmarsch et al.,
2015c) for the languageL !

K int � (by adapting similar notions introduced before in,
e.g., Balbiani and van Ditmarsch, 2015; van Ditmarsch et al., 2015b).

195
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A.1.1. Definition. [Size of formulas inL !
K int2 ] The size S(' ) of formula ' 2

L !
K int2 is de�ned as:

S(p) = 1 ;

S(: ' ) = S(' ) + 1 ;

S(' ^  ) = S(' ) + S( ) + 1 ;

S(K' ) = S(' ) + 1 ;

S(int(' )) = S(' ) + 1 ;

S([' ] ) = 4( S(' ) + 4) S( );

S(2 ' ) = S(' ) + 1 :

A.1.2. Definition. [Depth of formulas inL !
K int2 ] The 2 -depth d(' ) of formula

' 2 L !
K int2 is de�ned as:

d(p) = 0 ;

d(: ' ) = d(' );

d(' ^  ) = maxf d(' ); d( )g;

d(K' ) = d(' );

d(int(' )) = d(' );

d([' ] ) = maxf d(' ); d( )g;

d(2 ' ) = d(' ) + 1

Finally, we de�ne our intended complexity relation< S
d as lexicographic merge

of 2 -depth and size, exactly as in (van Ditmarsch et al., 2015c) (adapted from
Balbiani and van Ditmarsch, 2015; van Ditmarsch et al., 2015b):

A.1.3. Definition. For any ';  2 L !
K int2 , we put

� ' < S  i� S(' ) < S ( )

� ' < d  i� d(' ) < d ( )

� ' < S
d  i� (either d(' ) < d ( ), or d(' ) = d( ) and S(' ) < S ( ))

A.1.4. Lemma.

1. < S; < d; < S
d are well-founded strict partial orders between formulas inL !

K int2 ,

2. if ';  2 L !
K int , then ' < S

d  i� ' < S  .

A.1.5. Lemma. For all ';  2 L !
K int2 ,
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1. ' 2 Sub( ) implies ' < S
d  ,

2. int(' ) < S
d [' ] ,

3. ' 2 L !
K int i� d(' ) = 0 ,

4. ' 2 L !
K int implies [' ] < S

d 2  .

5. int(' ) ! p <S
d [' ]p,

6. int(' ) ! : [' ] < S
d [' ]:  ,

7. [' ] ^ [' ]� < S
d [' ]( ^ � ),

8. int(' ) ! int([' ] ) < S
d [' ]int( ),

9. int(' ) ! K [' ] < S
d [' ]K ,

10. [h' i  ]� < S
d [' ][ ]� .

Proof:
The proof of this lemma follows from simple arithmetic calculations and many
items are obvious. We here prove the items (7), (8) and (10). Recall that we
de�ne ' !  as : (' ^ :  ), so that S(' !  ) = S(' ) + S( ) + 3.

(7) On the left-hand-side, we haveS([' ] ^ [' ]� ) = 1+4( S(' )+4)( S( )+ S(� )).
However,S([' ]( ^ � )) = 4( S(' ) + 4)(1 + S( ) + S(� )) = 4( S(' ) + 4) +
4(S(' )+4)( S( )+ S(� )). Thus, S([' ] ^ [' ]� ) < S ([' ]( ^ � )). Moreover,
d([' ] ^ [' ]� ) = maxf d(' ); d( ); d(� )g = d([' ]( ^ � )) (This is similar in
the other items). Therefore, by De�nition A.1.3, we obtain [' ] ^ [' ]� < S

d
[' ]( ^ � ).

(8) On the left-hand-side, we obtainS(int(' ) ! int([' ] )) = S(int(' )) +
S(int([' ] ))+3 = 1+ S(' )+1+ S([' ] )+3 = 5+ S(' )+4 S(' )S( )+16S( ):
However,S([' ]int( )) = 4( S(' ) + 4) S(int( )) = 4( S(' ) + 4)( S( ) + 1) =
16 + 4S(' ) + 4 S(' )S( ) + 16S( ): Therefore, S(int(' ) ! int([' ] )) <
S([' ]int( )). As in item (7) the 2 -depth of both formulas is the same.
Therefore, int(' ) ! int([' ] ) < S

d [' ]int( ).

(10) We have thatS([h' i  ]� ) = S([: [' ]:  ]� ) = 4( S(: [' ]:  )+4) S(� ) = 4(5+
4(S(' ) + 4)(1 + S( ))) S(� ) = 4 S(� )(21 + 4S(' ) + 16S( ) + 4 S(' )S( )) :
On the other hand,S([' ][ ]� ) = 4( S(' )+4)4( S( )+4) S(� ) = 4 S(� )(64+
16S(' )+16S( )+4 S(' )S( )) : Thus, S([h' i  ]� ) < S ([' ][ ]� ). Further, we
observe thatd([h' i  ]� ) = max f d(' ); d( ); d(� )g = d([' ][ ]� ). Therefore,
[h' i  ]� < S

d [' ][ ]� .

2

A.2 Proof of Lemma 7.1.13

Recall that a formula  2 L K int is said to be in normal form if it is a disjunction
of conjunctions of the form

� := � ^ K� ^ K̂
 1 ^ � � � ^ K̂
 n
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where�; �; 
 i 2 L int for all 1 � i � n. Following the naming convention in (Meyer
and van der Hoek, 1995), we call the formula� canonical conjunction and the
subformulasK� and hK i 
 i prenex formulas.

In the following, we present the steps used in the proof of Lemma 7.1.13. This
proof was �rst presented in (van Ditmarsch et al., 2014) in a slightly di�erent
way.

A.2.1. Lemma. If  2 L K int is in normal form and contains a prenex formula
� , then  can be written as� _ (� ^ � ), where�; � and � are all in normal form.

Proof:
See (Meyer and van der Hoek, 1995, Lemma 1.7.6.2). 2

A.2.2. Lemma. The following equivalence is a propositional tautology:

(' 1 _ � � � _ ' n ) ^ ( 1 _ � � � _  m )$ (( ' 1 ^  1) _ : : : (' 1 ^  m )) _ (( ' 2 ^  1) _ : : :

_ (' 2 ^  m )) _ � � � _ (( ' n ^  1) _ � � � _ (' n ^  m )) :

We will show the following results for pseudo-models, however, it is not hard
to see that they all follow also for topo-models.

A.2.3. Lemma. For all '; �; � 2 L K int , we have the following equivalences valid
in all pseudo-models:

1. int(' _ K� ) $ int(' ) _ K�

2. int(' _ hK i � ) $ int(' ) _ hK i �

3. int(' _ (� ^ K� )) $ (int(' _ � ) ^ (int(' ) _ K� ))

4. int(' _ (� ^ hK i � )) $ (int(' _ � ) ^ (int(' ) _ K̂� ))

5. K (' _ (� ^ K� )) $ ((K (' _ � ) ^ K� ) _ (K' ^ : K� ))

6. K (' _ (� ^ K̂� )) $ ((K (' _ � ) ^ K̂� ) _ (K' ^ : K̂� ))

Proof:
Let X = ( X; O; V) be a pseudo-model, (x; U) 2 ES(X ) and '; �; � 2 L K int . The
key step in each item consists in the fact thatK acts as the global modality
within the given epistemic range, i.e., that for any' 2 L K int , [[K' ]]U = U or
[[K' ]]U = ; , and [[K̂' ]]U = U or [[K̂' ]]U = ; .

1. () ) Suppose (x; U) j= int(' _ K� ), i.e., x 2 Int ([[' _ K� ]]U ). This means,
x 2 Int ([[' ]]U [ [[K� ]]U ). We then have two cases:

(a) If [[K� ]]U = U, then (x; U) j= K� , hence, (x; U) j= int(' ) _ K� .
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(b) If [[ K� ]]U = ; , then Int ([[' ]]U [ [[K� ]]U ) = Int ([[' ]]U ), therefore, (x; U) j=
int(' ) implying that, ( x; U) j= int(' ) _ K� .

(( ) Suppose (x; U) j= int(' ) _ K� , i.e., (x; U) j= int(' ) or (x; U) j= K� .
We again have two cases:

(a) If ( x; U) j= int(' ), i.e., x 2 Int ([[' ]]U ), we obtain x 2 Int ([[' _ K� ]]U )
(since [[' ]]U � [[' _ K� ]]U , and thus Int ([[' ]]U ) � Int ([[' _ K� ]]U )). Thus,
(x; U) j= int(' _ K� ).

(b) If ( x; U) j= K� , then [[K� ]]U = U. Thus, Int ([[' _ K� ]]U ) = U. Hence,
x 2 Int ([[' _ K� ]]U ), i.e., (x; U) j= int(' _ K� ).

2. Follows similar to item (1), using the fact that for any ' 2 L K int , either
[[K̂' ]]U = U or [[K̂' ]]U = ; .

3.

(x; U) j= int(' _ (� ^ K� ))

i� x 2 Int ([[' _ (� ^ K� )]]U ) (by the semantics ofint)

i� ( 9O 2 � O )(x 2 O � [[' _ (� ^ K� )]]U ) (by the de�nition of Int )

i� ( 9O 2 � O )(x 2 O � [[' ]]U [ ([[� ]]U \ [[K� ]]U ))

i� ( 9O 2 � O )(x 2 O � ([[' ]]U [ [[� ]]U ) \ ([[' ]]U [ [[K� ]]U ))

i� ( 9O 2 � O )(x 2 O � [[' ]]U [ [[� ]]U and x 2 O � [[' ]]U [ [[K� ]]U )

i� x 2 Int ([[' ]]U [ [[� ]]U ) and x 2 Int ([[' ]]U [ [[K� ]]U )

i� ( x; U) j= int(' _ � ) and (x; U) j= int(' _ K� )
(by the semantics ofint)

i� ( x; U) j= int(' _ � ) and (x; U) j= int(' ) _ K� (by item (1))

i� ( x; U) j= int(' _ � ) ^ (int(' ) _ K� )

4. Follows similarly to item (3), by using item (2).

5. () ) Suppose (x; U) j= K (' _ (� ^ K� )). This means, by the semantics of
K , that [[ ' _ (� ^ K� )]]U = U. Therefore, we have

[[' _ (� ^ K� )]]U = [[( ' _ � ) ^ (' _ K� )]]U = [[ ' _ � ]]U \ [[' _ K� ]]U = U:

We then have two cases:

(a) If [[K� ]]U = U, then [[' _ (� ^ K� )]]U = [[ ' _ � ]]U = U. Therefore,
(x; U) j= K (' _ � ) ^ K� .

(b) If [[ K� ]]U = ; , then [[' _ (� ^ K� )]]U = [[ ' ]]U = U. Moreover, [[: K� ]]U =
U. Therefore, (x; U) j= K' ^ : K� . Therefore, by (a) and (b), we conclude
that ( x; U) j= ( K (' _ � ) ^ K� ) _ (K' ^ : K� ).
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(( ) Suppose (x; U) j= ( K (' _ � ) ^ K� ) _ (K' ^ : K� ). We then have two
cases:

(a) If ( x; U) j= K (' _ � ) ^ K� , then [[' _ � ]]U = U and [[K� ]]U = U. The
latter implies that [[ � ^ K� ]]U = [[ � ]]U \ [[K� ]]U = [[ � ]]U . We therefore obtain
[[' _ (� ^ K� )]]U = [[ ' _ � ]]U = U. Hence, (x; U) j= K (' _ (� ^ K� )).

(b) ( x; U) j= K' ^ : K� , then [[' ]]U = U and [[K� ]]U = ; . Therefore,
[[' _ (� ^ K� )]]U = [[ ' ]]U = U. Hence, (x; U) j= K (' _ (� ^ K� )).

6. Follows similarly to item (5), using the fact that for any ' 2 L K int , either
[[K̂' ]]U = U or [[K̂' ]]U = ; .

2

Proof of Lemma 7.1.13 (Normal Form Lemma): The proof follows by
subformula induction on' , using Proposition 7.2.2 several times. The base case
' := p follows easily sincep 2 L int , thus, it is already in normal form. Now
assume inductively that the statement holds for and � , and show the cases for
the Booleans,K and int:

Case' := :  : By induction hypothesis, we can assume w.l.o.g. that is in
normal form. Thus, in particular,  := � 1 _ � � � _ � m where each� i is a canonical
conjunction. Hence,j= ' $ (: � 1 ^ � � � ^ : � m ): We can then distribute : of each
� i over the conjuncts. In other words, for each� i := � ^ K� ^ K̂
 1 ^ � � � ^ K̂
 n ,
we have

j= : � i $ (: � _ K̂ : � _ K : 
 1 _ � � � _ K : 
 n )

where �; �; 
 i 2 L int for all 1 � i � n. Let us call : � i canonical disjunction.
Notice that each disjunct of : � i is still in the required form, i.e., each disjunct
is either a prenex formula or inL int . By using Lemma A.2.2 repeatedly, we can
write ' in normal form, i.e., as disjunctions of canonical conjuncts.

Case' :=  ^ � : By induction hypothesis, w.l.o.g, we assume that and �
are in normal form. Therefore := � 1_� � �_ � m and � := � 0

1_� � �_ � 0
k where each� i

and � 0
j is a canonical conjunct. Therefore,j= ' $ (( � 1 _ � � � _ � m ) ^ (� 0

1 _ � � � _ � 0
k)).

Then, by Lemma A.2.2, we easily obtain a formula� in normal form such that
j= ' $ � .

Case' := int( ): By induction hypothesis, w.l.o.g, assume is in normal.
We also assume that includes some prenex formula, otherwise we are done. By
Lemma A.2.1, we can consider to be of the form := � _ (� ^ � ) where � is a
prenex formula occurring in , and � and � are in normal form. Then, we have
j= int( ) $ int(� _ (� ^ � )), and by Lemma A.2.3-(3) or (4) (depending on the form
of the prenex formula� ), we havej= int(� _ (� ^ � )) $ (int(� _ � ) ^ (int(� ) _ � )).
By repeating this procedure, we can push every prenex formula in the scope ofint
to the top level, hence, obtain a semantically equivalent formula in normal form.
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Case' := K : Proof of this case is quite similar to the case forint, and follows
by using Lemma A.2.3-(5) and (6) instead. A similar argument is presented also
in (Meyer and van der Hoek, 1995, Theorem 1.7.6.4, p.37).
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Samenvatting

Dit proefschrift gaat over logica's van kennis, geloof en informatieverandering in
topologische ruimtes. Wij onderzoeken de formele representatie van bewijsmateri-
aal/aanwijzingen in relatie tot rechtvaardiging, gerechtvaardigd geloof, kennis, en
gemotiveerde informatieverandering. Topologische ruimtes zijn geschikt om deze
epistemische noties te formaliseren vanwege de wiskundige elegantie en episte-
misch rijke gegevensstructuren. We vervolgen nu met een overzicht van de inhoud
van het proefschrift.

Deel I onderzoekt de rol van bewijsmateriaal bij het vormen van gefundeerd
geloof en kennis door een rationeel handelende persoon. Bewijsmateriaal wordt
semantisch gerepresenteerd als een verzameling van mogelijke werelden en syn-
tactisch door middel van zogenaamde bewijsmodaliteiten in de logische taal.

Hoofdstuk 3 geeft een overzicht van de achtergrondliteratuur en motiveert Deel
I. Het de�ni •eert voor de taal van de modale logica een topologische semantiek die
derhalve is gebaseerd op open deelverzamelingen, met het oog op epistemische in-
terpretaties. In dit hoofdstuk wordt het gebruik van topologische ruimtes voor de
modellering van kennis toegelicht, en bovendien geeft het een gedetailleerd over-
zicht van bekende resultaten uit de literatuur over het gebruik van topologische
ruimtes voor het modelleren van geloof.

Hoofdstuk 4 gaat voornamelijk over een topologische interpretatie van de notie
`geloof': wat kunnen topologische modellen doen voor de semantiek van reeds
bestaande epistemische en doxastische logica's? Met name onderzoeken we de
notie van geloof alsmogelijke kennis, waarvan de sematiek is afgeleid van de
op open deelverzamelingen gebaseerde semantiek voor kennis uit hoofdstuk 3.
We tonen correctheid en volledigheid aan voor de logicaKD45B ge•�nterpreteerd
op zekere topologische modelklassen, namelijk de zogenaamde onvergelijkbare
ruimtes en de erfelijk-onvergelijkbare gescheiden ruimtes. Een uitbreiding van de
logica met openbare aankondigingen voor de laatste van deze twee modelklassen
wordt ook onderzocht. Het begrip bewijsvoering wordt beschreven op een puur
semantisch niveau, omdat de logische taal hier geen operatoren voor bevat.
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Hoofdstuk 5 is de belangrijkste bijdrage van Deel I van het proefschrift. Het
geeft een topologische semantiek voor de begrippenbewijsvoering, gemotiveerde
verantwoording, geloof, en kennis, inclusief verbanden tussen al deze epistemische
begrippen. De bijbehorende logische taal heeft nu wel modaliteiten voor bewijs-
voering, zodat alle verschillende aan bewijsvoering geli•eerde begrippen expliciet
deel uitmaken van de logica. De resultaten in dit hoofdstuk blijven niet beperkt
tot een statische situatie en we presenteren eveneens dynamische noties, namelijk
acties zoalshet toevoegen van bewijsvoering, het veranderen van de plausibiliteit
van bewijsvoering, het combineren van bewijsvoering uit verschillende bronnen,
en het verwerken van (onfeilbaar geachte) informatie uit openbare aankondigin-
gen. De belangrijkste technische resultaten zijn de volledigheid, beslisbaarheid en
eindige-modeleigenschap van de hiermee verbonden logica's. Deze resultaten zijn
relevant voor de wijsbegeerte, omdat hiermee noties van kennis en geloof zijn te
formalizeren die zijn gebaseerd op de literatuur naar aanleiding van het werk van
Gettier.

Deel II gaat vooral over kennis en kennisverandering. Het onderzoekt de noties
absoluut zekere kennisen leerbaarheid als mogelijke kennis, evenals de wisselwer-
king tussen de epistemische notie vaninspanning (moeite) voor bewijsvergaring.
Tevens komt het verband aan bod met uit de logische dynamiek welbekende be-
grippen alsopenbare aankondigingenand kwanti�catie over dergelijke openbare
aankondigingen.

Hoofdstuk 6 geeft het achtergrondmateriaal voor Deel II. Het de�ni•eert de
zogenaamdedeelverzamelingsruimte-semantieken eentopologischeversie van de
eerder genoemdeopenbare aankondigingen.

Hoofdstuk 7 presenteert een formeel raamwerk om de relatie te onderzoeken
tussen de belangrijke dynamische noties inspanning, openbare aankondiging, en
gekwanti�ceerde openbare aankondiging. De resultaten over het verband tussen
inspanning en openbare aankondiging verduidelijken wat `inspanning' bij kennis-
vergaring eigenlijk betekent. De technische resultaten voor expressiviteit en vol-
ledigheid in dit hoofdstuk zijn eenvoudiger dan in eerder werk over deze materie
en geven daar, in zekere zin, beter inzicht in.

In hoofdstuk 8 wordt de logica van hoofdstuk 7 die was geformuleerd voor een
handelende persoon gegeneraliseerd naar een logica voor meerdere handelende
personen. We presenteren nu een logica waarin de kennis en de leerbaarheid van
meerdere personen wordt gemodelleerd, inclusief uitbreidigen hiervan met open-
bare aankondingen en kwanti�catie daarover; steeds ge•�nterpreerd op topologische
ruimtes. We tonen correctheid en volledigheid aan van deze logica's.

Wij concluderen dat dit proefschrift aan de ene kant verschillende bekende
epistemische en doxastische logica's, inclusief dynamische uitbreidingen daarvan,
herinterpreteert vanuit topologisch perspectief en voorziet van een interpretatie
van verschillende noties van bewijsvoering, terwijl aan de andere kant dit proef-
schrift topologische technieken gebruikt de verdere ontwikkeling en uitbreiding
van bestaande logische analyses, resulterend in nieuwe logica's voor bewijsvoe-
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ring en voor informatieverandering.





Abstract

This dissertation studies logics of knowledge, belief and information dynamics
using topological spaces as models. It is concerned with the formal representation
of evidence and its link to justi�cation, justi�ed belief, knowledge, and evidence-
based information dynamics. Topological spaces emerge naturally as mathemat-
ically elegant and epistemically rich information structures to formalize these
epistemic notions. In the following, we give an overview of the content of this
thesis.

Part I investigates the role of evidence in forming justi�ed belief and knowledge
of a rational idealized agent, where evidence is represented semantically as sets
of possible worlds, as well as syntactically via evidence modalities.

Chapter 3 provides background material and motivation for Part I. It in-
troduces the interior-based topological semantics for the basic modal language,
focusing on its epistemic interpretation. In this chapter, we motivate the use of
topological spaces as models for knowledge, and discuss thestatus quoof the use
of topological spaces as belief models.

Chapter 4 focuses primarily on a topological interpretation of belief: how
topological models can contribute to the semantics of existing epistemic/doxastic
logics. In particular, we study a notion of belief de�ned asepistemic possibility
of knowledge, whose topological semantics is derived from the interior semantics
for knowledge presented in Chapter 3. We provide soundness and completeness
results for the belief logicKD45B with respect to the class of extremally and
hereditarily extremally disconnected spaces, and study public announcements
based on topological models in the latter class. The notion of evidence in this
setting is described at a purely semantic level as the corresponding syntax does
not have any components representing evidence.

Chapter 5 presents the main contribution of Part I. We propose a topological
semantics for various notions ofevidence, evidence-based justi�cation, belief, and
knowledge, and explore the connections between these epistemic notions. The cor-
responding syntax bears evidence modalities, making various notions of evidence
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an explicit part of the logic. Our investigations in this chapter are not limited
to a static setting. We discuss evidence-based actions such asevidence addition,
upgrade,and feasible evidence combinationas well as receiving information from
infallible truthful sources via public announcements. Our main technical results
are concerned with completeness, decidability and the �nite model property for
the associated logics. These investigations have philosophical consequences, as
they allow us to formalize some post-Gettier debates surrounding justi�ed belief
and knowledge.

Part II focuses on knowledge and knowledge change. More precisely, it studies
the notions ofabsolutely certain knowledgeandknowability as potential knowledge,
as well as the interplay between the notion of epistemice�ort encompassing any
method of evidence acquisition and the well-studied dynamic attitudes such as
public and arbitrary public announcements.

Chapter 6 provides the background material of Part II, introducingsubset
space semanticsand a topologicalversion ofpublic announcements.

Chapter 7 designs a formal framework elucidating the relationship between
three dynamic notions of interest: e�ort, public announcements, and arbitrary
announcements. While the established link between e�ort and public announce-
ments makes the meaning of the intended notion of e�ort more transparent, our
technical results concerning expressivity and completeness simplify, and in a sense,
improve on some of the earlier approaches.

Finally, in Chapter 8, we generalize the single-agent setting presented in Chap-
ter 7 to a multi-agent setting. We present a multi-agent logic of knowledge and
knowability, as well as its extensions with public and arbitrary announcements,
interpreted on topological spaces. We provide soundness and completeness results
for the corresponding systems.

To sum up, this dissertation on one hand re-interprets some existing epistemic
and doxastic logics and their dynamic extensions from a topological perspective,
providing an evidence-based interpretation. On the other hand, it uses topological
tools to re�ne and extend earlier analysis, leading to novel logics of evidence and
information dynamics.



R�esum�e

Cette dissertation r�eunit logique �epist�emique et topologie. Elle �etudie les repr�esen-
tations formelles de la notion d'�evidence1 et ses liens avec la justi�cation, les
croyances justi��ees, la connaissance, et la dynamique de l'information bas�ee sur
�evidence, en utilisant des outils venant de la topologie et de la logique �epist�emique
(dynamique).

La logique �epist�emique est un terme englobant une grande vari�et�e de logiques
modales dont les principaux objets d'�etude sont la connaissance et la croyance. En
tant que champ d'investigation, la logique �epist�emique utilise la logique modale
et les math�ematiques pour formaliser, clari�er et r�esoudre les questions qui mo-
tivent l'�epist�emologie (formelle), et ses applications s'�etendent non seulement �a
la philosophie, mais aussi �a l'informatique fondamentale, l'intelligence arti�cielle
et l'�economie (voir van Ditmarsch et al., 2015a pour un aper�cu). Hintikka (1962)
est consid�er�e comme le p�ere fondateur de la logique �epist�emique moderne. Dans
son livre Knowledge and Belief: An Introduction to the Logic of the Two Notions
(1962)|inspir�e par des id�ees de (von Wright, 1951)|Hintikka formalise connais-
sance et croyance comme des op�erateurs modaux basiques, d�enot�es respective-
ment par K et B , et les interpr�ete en utilisant la s�emantique des mondes possi-
bles standard, bas�ee sur les structures de Kripke (relationnelles). Depuis lors|la
s�emantique de Kripke fournissant une fa�con naturelle et relativement ais�ee de
mod�eliser la logique �epist�emique|cela a �et�e une des structures s�emantiques les
plus pro�eminentes et fr�equemment utilis�ees en logique �epist�emique, et la recherche
dans ce domaine a en grande partie avanc�e sur les bases formelles de la s�emantique
de Kripke.

Cependant, la s�emantique de Kripke standard poss�ede certaines caract�eris-
tiques qui rendent trop fortes les notions de connaissance et de croyance qu'elle

1Faute d'une meilleure traduction pour le mot anglais \evidence", nous utilisons le terme
\�evidence" pour d�esigner les �el�ements, indices, informations sur la base de quoi les croyances
sont construites; on pourrait dire aussi que l'�evidence est la substance de ce qui constitue une
preuve.
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impl�emente|menant des probl�emes d'omniscience logique|et il lui manque les
ingr�edients qui permettent de parler de la nature et des bases de la connais-
sance et croyance acquises. C'est ce dernier probl�eme qui est l'origine du travail
pr�esent�e dans cette dissertation : non seulement nous cherchons une fa�con simple
de mod�eliser la connaissance et la croyance, mais nous �etudions aussi l'�emergence,
l'usage, et la transformation d'�evidence comme une composante ins�eparable des
croyances justi��ees et de la connaissance d'un agentrationnel et id�eal .

Dans ce but, nous montrons que les espaces topologiques sont des objets
math�ematiques naturels pour formaliser les notions �epist�emiques mentionn�ees
ci-dessus, ainsi que la dynamique de l'information bas�ee sur �evidence : tout en
fournissant une compr�ehension plus profonde de l'interpr�etation �a base d'�evidence
de la connaissance et de la croyance, la s�emantique topologique g�en�eralise aussi
la s�emantique relationnelle standard de la logique �epist�emique. Sch�ematiquement
parlant, les notions topologiques telles que ouverts, ferm�es, espaces denses et
denses nulle part encodent qualitativement et naturellement des notions telles que
pa mesure/observation, la proximit�e , la petitesse, la grandeuret la consistance, qui
toutes reviendront r�eguli�erement dans cette dissertation avec une interpr�etation
�epist�emique. De plus, les espaces topologiques sont �equip�es d'op�erateurs basiques
bien connus tels que les op�erateurs d'int�erieur et de clôture qui|seuls ou com-
bin�es|interpr�etent de mani�ere succincte di��erentes modalit�es �epist�emiques, ap-
portant une meilleur compr�ehension de leurs propri�et�es axiomatiques. Dans ce
but, nous voyons les espaces topologiques comme des structures d'information
�equip�ees d'une th�eorie math�ematique forte et �el�egante qui aide �a �eclairer les
d�ebats philosophiques entourant la connaissance et la croyance justi��ee, et �a
mieux comprendre le ph�enom�ene d'apprentissage par acquisition d'�evidence.

L'usage �epist�emique des espaces topologiques comme structures d'information
remonte aux ann�ees 1930 et 1940, quand les espaces topologiques servaient de
mod�eles aux langages intuitionnistes, et les ensembles ouverts sont consid�er�es
comme des `�el�ements d'�evidence', des `propri�et�es observables' concernant l'�etat
actuel (voir, e.g., Troelstra and van Dalen, 1988). Cette interpr�etation assign�ee
aux ensembles ouverts constitue la motivation �epist�emique basique derri�ere notre
usage des mod�eles topologiques, et elle reviendra souvent �a divers endroits (sous
des formes modi��ees) dans le corps principal de cette dissertation. Des variantes
de cette id�ee peuvent aussi être trouv�ees dans la th�eorie des domaines en informa-
tique (Abramsky, 1987, 1991; Vickers, 1989), guidant le programme de recherche
de la th�eorie formelle \topologique" de l'apprentissage initi�ee entre autres par
Kelly (Kelly, 1996; Schulte and Juhl, 1996; Kelly et al., 1995; Kelly and Lin,
2011; Baltag et al., 2015c) en �epist�emologie formelle.

La litt�erature reliant la logique �epist�emique (modale) et la topologie est or-
ganis�ee autour de deux cadres topologiques distincts, quoique fortement li�es.
Notre travail dans cette dissertation pro�te des deux approches. La premi�ere
direction vient de la s�emantique topologique bas�ee sur l'int�erieur, de McKinsey
(1941) et McKinsey and Tarski (1944), pour le langage de la logique modale
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basique (certaines id�ees peuvent d�ej�a être trouv�ees dans Tarski, 1938 et Tsao-
Chen, 1938). Dans cette s�emantique l'op�erateur modal2 est interpr�et�e sur
les espaces topologiques comme l'op�erateur d'int�erieur. Ces recherches eurent
lieu dans un contexte math�ematique abstrait, ind�ependant de consid�erations
�epist�emiques/doxastiques. McKinsey and Tarski (1944) non seulement prouv�erent
que le syst�eme modalS4 est la logique de tous les espaces topologiques (sous
l'interpr�etation mentionn�ee ci-dessus), mais ils montr�erent aussi que c'est la lo-
gique de tout espace m�etrique s�eparable dense dans lui-même, tel que la ligne
rationnelle Q, la ligne r�eelle R et l'espace de Cantor, parmi d'autres. Cette ap-
proche initia un tout nouveau domaine de logiques spatiales, �etablissant une con-
nection persistante entre logique modale et topologie (voir, e.g., Aiello et al.,
2007 pour une vue d'ensemble sur le sujet, en particulier, voir van Benthem and
Bezhanishvili, 2007). De plus, les r�esultats de compl�etude concernant le syst�eme
�epist�emique S4ont naturellement attir�e les logiciens �epist�emiques, menant �a une
r�e�evaluation �epist�emique de la s�emantique de l'int�erieur, voyant les topologies
comme des mod�eles pour l'information. Une branche de la connexion logique
�epist�emique-topologie a donc �et�e bâtie sur la s�emantique topologique bas�ee sur
l'int�erieur, o�u la notion �epist�emique centrale est la connaissance (voir, e.g., van
Benthem and Sarenac, 2004). Ce que nous ajoutons �a cet ensemble de travaux,
dans la Partie I de cette dissertation, ce sont les composants �epist�emiques man-
quants d'�evidence et de croyance, ainsi que ladynamique d'apprentissage de nou-
velle �evidence, renfor�cant ainsi la connection entre logique �epist�emique et topolo-
gie. Pour ce faire nous r�eanalysons les mod�eles d'�evidence �a base de voisinages
de van Benthem and Pacuit (2011) d'un point de vue topologique. La fa�con dont
nous repr�esentons l'�evidence et comment elle se connecte avec la croyance justi��ee
sont inspir�es pas l'approche de (van Benthem and Pacuit, 2011), et les actions
de transformation d'�evidence consid�er�ees sont adapt�ees de ce travail de grande
importance.

La seconde approche topologique pour la logique �epist�emique fut initi�ee par
Moss and Parikh (1992). Ils introduisirent latopologique, un cadre bimodal pour
formaliser le raisonnement �a propos d'ensembles et de points dans un unique
syst�eme modal. Leurs recherches topologiques sont fortement motiv�ees par la
logique �epist�emique, sugg�erant que \des aspects simples du raisonnement topolo-
gique sont aussi connect�es avec des logiques sp�ecialis�ees de laconnaissance"
(Moss and Parikh, 1992, p. 95). L'�el�ement clef que Moss and Parikh (1992)
introduisent dans le paradigme de la logique �epist�emique est la notion abstraite
d'e�ort �epist�emique. L'e�ort peut, pour parler simplement, être d�ecrit comme
n'importe quel type de collecte d'�evidence|via, e.g., mesure, calcul, approxima-
tion, exp�erimentation ou annonce|qui peut mener �a une connaissance accrue.
Le formalisme de la topologique combine donc la notion statique de connais-
sance avec la notion dynamique d'e�ort, et est par cons�equent fortement li�e �a la
logique �epist�emique dynamique(Baltag et al., 1998; van Ditmarsch et al., 2007;
van Benthem, 2011; Baltag and Renne, 2016). Dans la Partie II de cette th�ese,
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nous �etablissons une connection entre les deux formalismes, et nous en tirons des
b�en�e�ces �a la fois conceptuels et techniques. Alors que la logique �epist�emique dy-
namique �etend le domaine des attitudes dynamiques qu'elle �etudie, le cadre de la
topologique obtient des axiomatisations �epist�emiquement plus intuitives, clari�-
ant ainsi la signi�cation de l'e�ort en le connectant �a des exemples bien compris
tels que lesannonces arbitraireset publiques.

***

Les contributions de cette th�ese sont pr�esent�ees en deux parties. Nous donnons
ci-dessous un aper�cu approfondi de chaque chapitre.

Le chapitre 2 fournit les pr�eliminaires techniques essentiels aux deux parties
de cette dissertation. Cela inclue, dans la premi�ere moiti�e, une tr�es br�eve in-
troduction �a la s�emantique de Kripke standard pour la logique modale basique.
Nous rappelons les syst�emes statiques habituellement �etudi�es pour les logiques
�epist�emiques/doxastiques et les propri�et�es relationnelles correspondantes qui ren-
dent ces logiques correctes et compl�etes. Le cadre relationnel sert seulement d'outil
technique utilis�e dans les parties I et II dans le but d'atteindre des r�esultats tech-
niques dans le cadre topologique. Dans la seconde partie, nous introduisons les
notions topologiques �el�ementaires que nous utiliserons �a travers cette dissertation.

Plan. La section 2.1 discute bri�evement la s�emantique relationnelle standard
pour le langage de la logique modale basique, et les syst�emes �epist�emiques et
doxastiques unimodaux qui seront �etudi�es dans les chapitres ult�erieurs. La sec-
tion 2.2 introduit les pr�eliminaires purement topologiques qui seront utilis�es dans
toute la th�ese. De plus, ce chapitre sert aussi �a �xer les notations pour le corps
principal de cette dissertation. Les lecteurs familiers avec les sujets mentionn�es
ci-dessus devraient pouvoir passer ce chapitre sans probl�eme.

PARTIE I : De la S�emantique de l'Int�erieur aux Mod�eles
de Faits

La partie I concerne les interpr�etations �a base d'�evidence de la croyance justi��ee
et de la connaissance. En commen�cant par une interpr�etation topologique main-
tenant standard de l'op�erateur d'int�erieur, nous d�eveloppons graduellement un
cadre topologique qui (1) peut parler d'�evidence non seulement s�emantiquement,
mais aussi au niveau syntactique, rendant ainsi la notion d'�evidence plus explicite;
(2) prend l'�evidence comme notion la plus primitive, sur laquelle croyance et con-
naissance sont d�e�nies, reliant ainsi ces deux notions �epist�emologiques cruciales
de mani�ere plus profonde et plus basique. Ces investigations ont des cons�equences
philosophiques consid�erables puisqu'elles nous permettent de discerner, d'isoler,



R�esum�e 223

et d'�etudier divers aspects de la notion d'�evidence, et ses relations avec la justi�-
cation, la connaissance et la croyance.

Le chapitre 3 fournit les bases formelles de la s�emantique topologique bas�ee sur
l'int�erieur pour la logique modale basique, qui remonte aux travaux de McKinsey
(1941) et McKinsey and Tarski (1944). Dans cette s�emantique l'op�erateur modal
2 est interpr�et�e sur des espaces topologiques comme l'op�erateur d'int�erieur. L'une
des raisons en est que le syst�eme �epist�emiqueS4est la logique de tous les espaces
topologiques. Une autre est que l'interpr�etation des ensembles ouverts comme
`propri�et�es observables' ou `�el�ements d'�evidence' met la s�emantique topologique
�a base d'int�erieurs sur le radar des logiciens �epist�emiques. Dans ce chapitre,
nous introduisons bri�evement las�emantique topologique d'int�erieurs, nous con-
centrant particuli�erement sur ses id�ees �epist�emiques, et nous expliquons comment
et pourquoi elle constitue une interpr�etation satisfaisante pour la connaissance
(bas�ee sur �evidence), et, par cons�equent, pourquoi|dans certains contextes|elle
forme une s�emantique plus riche que la s�emantique relationnelle. Nous discutons
ensuite une s�emantique topologique de la croyance de la litt�erature, bas�ee sur
l'op�erateur d'ensemble d�eriv�e, et nous argumentons qu'elle ne constitue pas une
s�emantique satisfaisante pour la croyance, en particulier quand on la consid�ere
conjointement avec la connaissance comme int�erieur. Notre contribution dans la
partie I est inspir�ee de, et d�evelopp�ee sur, les bases de ce cadre. Dans les chapitres
suivants, nous �etendons et enrichissons la s�emantique d'int�erieur a�n de formaliser
di��erentes notions de connaissance (bas�ee sur �evidence) et de croyance justi��ee,
ainsi que di��erentes notions de possession d'�evidence.

Plan. La section 3.1 est une section technique qui introduit la s�emantique
d'int�erieur ainsi que ses connections avec la s�emantique relationnelle (section
3.1.2). Dans la section 3.1.3, nous listons les r�esultats topologiques g�en�eraux de
correction et compl�etude pour les syst�emesS4, S4:2 et S4:3 qui seront utilis�es dans
les chapitres suivants. La section 3.2 explique ensuite les motivations derri�ere
l'utilisation de l'op�erateur d'int�erieur comme modalit�e de connaissance, en met-
tant l'accent sur l'interpr�etation �a base d'�evidence sous-jacente.

Dans le chapitre 4 notre attention passe de l'interpr�etation topologique de la
connaissance �a l'interpr�etation topologique de la croyance, et nous pr�esentons
le premier pas vers le d�eveloppement d'une th�eorie topologique de la croyance
qui fonctionne bien combin�ee avec la connaissance comme op�erateur d'int�erieur.
Plus pr�ecis�ement, la premi�ere partie de ce chapitre pr�esente un examen de la
s�emantique de croyance topologique de (•Ozg•un, 2013; Baltag et al., 2013), traitant
les questions suivantes :

� �Etant donn�ee la s�emantique topologique d'int�erieur pour la connaissance,
comment peut-on construire une s�emantique topologique pour la croyance
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qui r�eponde aussi au probl�eme de comprendre la relation entre connaissance
et croyance ?

� Dans quelle mesure les notions topologiques capturent-elles la signi�cation
intuitive de la notion de croyance en question ?

Comprendre la relation entre connaissance et croyance est un probl�eme central
en �epist�emologie. Tout sp�ecialement apr�es que Gettier (1963) a fait voler en �eclat
la vision traditionnelle de la connaissance commecroyance vraie et justi��ee, de
nombreux �epist�emologues ont tent�e de renforcer cette derni�ere notion pour obtenir
une notion satisfaisante de la premi�ere. Dans cette approche, on commence avec
une notion faible de croyance (qui est au moins justi��ee et vraie) et on essaye
d'atteindre la connaissance en renfor�cant la notion de croyance choisie de mani�ere
�a obtenir une notion de connaissance qui ne soit plus sujette aux contre-exemples
de type Gettier (Gettier, 1963). Plus r�ecemment l'approche inverse|d�eriver la
croyance �a partir de la connaissance|ou, du moins, mettre la \connaissance en
premier" (Williamson, 2000) a aussi �et�e consid�er�ee. Dans cet esprit, Stalnaker
(2006) a propos�e un cadre formel dans lequel la croyance est r�ealis�ee comme
une forme a�aiblie de connaissance. Plus pr�ecis�ement, en commen�cant avec le
syst�eme logique donn�e en Table A.1, dans lequel la croyance et la connaissance

(K) K (' !  ) ! (K' ! K ) Normalit�e de la connaissance
(T) K' ! ' Factualit�e de la connaissance
(PI) K' ! KK' Introspection positive
(DB ) B' ! : B : ' Consistance de la croyance
(sPI) B' ! KB' Introspection positive forte
(sNI) : B' ! K : B' Introspection n�egative forte
(KB) K' ! B' Connaissance implique croyance
(FB) B' ! BK' Croyance compl�ete

Table A.1: Sch�ema axiomatique de Stalnaker

sont toutes deux repr�esent�ees comme primitives, Stalnaker formalise quelques re-
lations d'apparence naturelle entre les deux, et prouve sur la base de ces relations
que la croyance peut êtred�e�nie �a partir de la connaissance comme lapossibilit�e
�epist�emique de connaissance:

B' := : K : K':

Dans ce but, la formalisation syntactique de Stalnaker semble être analogue au
status quode la s�emantique de l'int�erieur pour la connaissance et de l'interpr�eta-
tion topologique de la croyance �elabor�ee dans le chapitre 3, o�u nous donnons
l'interpr�etation de la connaissance et d�evoilons une bonne s�emantique pour la
croyance.
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Baltag et al. (2013) et •Ozg•un (2013), en partant du formalisme de Stalnaker,
propos�erent d'interpr�eter la croyance, en particulier la croyance de Stalnaker,
comme certitude subjective, en termes dela clôture de l'op�erateur d'int�erieur
sur des espaces extrêmement discontinus. Tandis que ce cadre statique fournit
une r�eponse satisfaisante aux questions ci-dessus, l'extension dynamique par des
modalit�es d'annonces publiques rencontre des probl�emes dûs aux propri�et�es struc-
turelles des espaces extrêmement discontinus. Cela m�ene �a la quête d'une logique
de la connaissance et de la croyance adapt�ee aux annonces publiques. La seconde
partie de ce chapitre est d�evolue �a la r�esolution de ce probl�eme, et la solution
que nous proposons consiste en une interpr�etation de la connaissance et de la
croyance sur desespaces h�er�editairement extrêmement discontinus.

Alors que cette s�emantique pour la croyance fonctionne bien pour la notion
de croyance forte de Stalnaker commecertitude subjective, d'un point de vue plus
g�en�eral elle peut être vue comme quelque peu restrictive pour deux raisons. Elle
est bas�ee sur des classes d'espaces topologiques assez exotiques, et les logiques
correspondantes n'incluent pas r�eellement l'�evidence car elles n'en ont pas de
repr�esentation syntaxique. Cela constitue une partie de la motivation pour le
travail pr�esent�e dans le chapitre 5, menant aux questions plus g�en�erales et fon-
damentales que nous y traitons.

Plan. La section 4.1 pr�esente le syst�eme combin�e de Stalnaker pour la connais-
sance et la croyance, et liste les aspects importants de son travail qui inspir�erent
( •Ozg•un, 2013; Baltag et al., 2013). Dans la section 4.2, nous passons en revue la
s�emantique topologique de croyance de (•Ozg•un, 2013; Baltag et al., 2013), et la
section 4.2.2 rappelle pourquoi les mises �a jour ne fonctionnent pas sur les espaces
extrêmement discontinus. Dans la section 4.3, nous introduisons ce qui va au-del�a
de (•Ozg•un, 2013; Baltag et al., 2013), nous mod�elisons croyance, croyance con-
ditionnelle et annonces publiques sur les espaces h�er�editairement extrêmement
d�econnect�es, et nous pr�esentons plusieurs r�esultats de compl�etude concernant
KD45B et ses extensions avec croyances conditionnelles et annonces publiques.

Le chapitre 5 contient la contribution principale de la partie I. En s'appuyant
sur l'hypoth�ese que la croyance rationnelle d'un agent est bas�ee sur l'�evidence
disponible, nous essayons de r�ev�eler la relation concr�ete entre l'�evidence �a dispo-
sition d'un agent, ses croyances et sa connaissance, et nous �etudions la dynamique
de l'�evidence support�ee par la repr�esentation statique mise au point. Ce projet
est motiv�e par des questions �a la fois philosophiques et techniques, ainsi que
par les inconv�enients susmentionn�es de notre propre travail du chapitre 4. Plus
pr�ecis�ement, nous consid�erons entre autres les questions suivantes :

� Comment un agent en possession d'�el�ements d'�evidence possiblement faux,
possiblement mutuellement contradictoires, r�eunit de mani�ere consistante
son �evidence et forme des croyances consistantes ?
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� Quelles sont les conditions n�ecessaires et su�santes pour qu'un �el�ement
d'�evidence constitue une justi�cation pour une croyance ?

� Quelles propri�et�es devrait poss�eder un �el�ement d'�evidence pour entrâ�ner
une connaissance(d�efaisable) ?

� Comment notre formalisation des notions susmentionn�ees aide-t-elle �a com-
prendre les discussions en �epist�emologie formelle quant aux liens entre croy-
ance justi��ee et connaissance ?

� Quelles sont les axiomatisations compl�etes des logiques associ�ees de croy-
ance justi��ee, connaissance et �evidence ? Ont-elles la propri�et�e du mod�ele
�ni ? Sont-elles d�ecidables ?

Ces questions guident aussi l'approche de van Benthem and Pacuit (2011);
van Benthem et al. (2012, 2014), qui inspira consid�erablement notre travail.
Les travaux in
uents de (van Benthem and Pacuit, 2011; van Benthem et al.,
2012, 2014) repr�esentent l'�evidence s�emantiquement|pour faire simple, comme
des ensembles de mondes possibles|en se basant sur des structures de voisi-
nage, ainsi que syntaxiquement en introduisant des modalit�es d'�evidence. Leur
cadre va au-del�a et g�en�eralise le traitement formel des notions s�emantiques cit�ees
pr�ec�edemment en termes de structures relationnelles, telles que mod�eles de Kripke
ou de plausibilit�e, et mod�eles non-relationnels, tels que les mod�eles de sph�ere de
Grove. Dans ce chapitre nous franchissons une �etape de plus dans l'am�elioration
du traitement th�eorique formel modal de l'�evidence, de la croyance justi��ee et de
la connaissance en r�ev�elant la structure topologique cach�ee des mod�eles d'�evidence
de van Benthem and Pacuit (2011). La perspective topologique permet des repr�e-
sentations math�ematiques plus pr�ecises et ra�n�ees de diverses notions d'�evidence
telles que l'�evidence basique, l' �evidence combin�ee, l' �evidence vraie et l' �evidence
non-trompeuse, ainsi que de notions �epist�emiques pertinentes telles que l'argument
et la justi�cation (bas�ee sur �evidence) et, en�n, la croyance justi��ee et la con-
naissance ind�efectible. En cons�equence, nous obtenons un cadre s�emantiquement
et syntaxiquement riche qui fournit une analyse logique plus profonde quant au
rôle de l'�evidence dans l'atteinte d'un �etat �epist�emique/doxastique par un agent.
Nous examinons aussi plusieurs types de dynamiques d'�evidence introduits dans
(van Benthem and Pacuit, 2011) et nous appliquons ce cadre pour analyser et
aborder des probl�emes clefs en �epist�emologie tels que les exemples de Gettier de
type \pas de lemme faux", les contradicteurs trompeurs, et la justi�cation non
contredite face �a la croyance non contredite. Nos r�esultats techniques principaux
traitent de compl�etude, de d�ecidabilit�e et de propri�et�e du mod�ele �ni pour les
logiques associ�ees. Dans ce qui suit, nous fournissons un aper�cu d�etaill�e des no-
tions �epist�emiques �etudi�ees dans ce chapitre, nous introduisons les modalit�es que
nous consid�erons, et nous expliquons o�u notre travail se situe par rapport �a la
litt�erature concern�ee.
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Une raison cruciale pour laquelle notre approche pr�esent�ee dans le chapitre 5
fait mieux que celles des chapitres 3 et 4 est qu'ici nous introduisons des modalit�es
d'�evidence a�n de fournir aussi des repr�esentations syntactiques des notions d'�evi-
dence, et �nalement pour construire deslogiques d'�evidence. En particulier, nous
�etudions l'op�erateur \avoir un �el�ement d'�evidence pour une proposition P" pro-
pos�e pas van Benthem and Pacuit (2011), mais nous �etudions aussi des variantes
int�eressantes de ce concept : \avoir une �evidence (combin�ee) pourP", \avoir un
�el�ement d'�evidence vrai pour P" et \avoir une �evidence (combin�ee) vraie pour
P". La table A.2 ci-dessous liste les modalit�es d'�evidence correspondantes ainsi
que leur lecture intuitive.

E0' l'agent a un �el�ement d'�evidence pour '
E' l'agent a une �evidence combin�ee pour'
2 0' l'agent a un �el�ement d'�evidence vrai pour '
2 ' l'agent a une �evidence combin�ee vraie pour'

Table A.2: Modalit�es d'�evidence et leur lecture intuitive

Les�el�ements basiques d'�evidenceposs�ed�es par un agent sont mod�elis�es comme
des ensembles non vides de mondes possibles. Une�evidence combin�ee (ou sim-
plement \�evidence") est une intersection non vide d'un nombre �ni d'�el�ements
d'�evidence. Cette notion d'�evidence n'est pas n�ecessairement vraie, puisque les
�el�ements d'�evidence sont potentiellement faux et possiblement inconsistants en-
tre eux. Par �evidence vraienous entendons �evidence qui est vraie dans le monde
actuel. En �epist�emologie il est commun de r�eserver le terme \�evidence" pour
l'�evidence vraie. Cependant nous suivons ici l'usage plus lib�eral fait de ce terme
dans (van Benthem and Pacuit, 2011), qui est en accord avec l'acception com-
mune de la vie de tous les jours, e.g. quand on parle d' \�evidence incertaine",
de \fausse �evidence", d'\�evidence trompeuse" etc.2 La famille des ensembles
d'�evidence (combin�ee) forme une base topologique qui engendre ce que nous ap-
pelons latopologie �evidentielle. Il s'agit de la plus petite topologie dans laquelle
tous les �el�ements basiques d'�evidence sont ouverts, et elle jouera un rôle im-
portant dans notre formalisme. En fait, la modalit�e 2 ' qui capture le concept
de \avoir une �evidence vraie pour' " co•�ncide avec l'op�erateur d'int�erieur dans
la topologie �evidentielle (voir section 5.2.2). Nous utilisons donc la s�emantique
d'int�erieur de McKinsey and Tarski (1944) pour interpr�eter une notion d'�evidence
vraie (�a la di��erence de ce qui est fait dans le chapitre 4, o�u l'op�erateur d'int�erieur
�etait trait�e comme connaissance). Nous montrons aussi que deux variantes vraies
d'op�erateurs de possession d'�evidence (2 0 et 2 ) sont plus expressives que celles
non vraies (E0 et E) : lorsqu'elles interagissent avec la modalit�e globale, les

2Bien sûr cela ne passe pas bien la traduction. En fran�cais on pourrait penser �a \indice
incertain", \faux indice", \indice trompeur" etc.
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deux modalit�es d'�evidence vraie 2 0' et 2 ' peuvent d�e�nir les variantes non
vraies E0' et E' , respectivement, ainsi que de nombreux autre op�erateurs dox-
astiques/�epist�emiques.

La notion decroyance justi��ee que nous �etudions dans ce chapitre sera d�e�nie
purement �a travers les notions d'�evidence mentionn�ees ci-dessus. Nous proposons
une s�emantique \coh�erentiste" de la justi�cation et de la croyance justi��ee , que
nous obtenons en �etendant, en g�en�eralisant et (dans une certaine mesure) en
pro�lant le cadre formel des mod�eles d'�evidence pour les croyances introduit par
van Benthem and Pacuit (2011). L'id�ee principale derri�ere la d�e�nition de la
croyance de van Benthem and Pacuit (2011) semble être que l'agent rationnel
essaye de former des croyances consistantes en regardant toutes lesplus fortes
collections d'�evidence �niment consistantes, et elle crô�t tout ce qui est impliqu�e
par l'ensemble de ces derni�eres.3

Leur d�e�nition de la croyance d�epend donc crucialement de la notion de \plus
forte" �evidence, et elle fonctionne bien dans le cas �ni (quand l'agent a un nombre
�ni d'�el�ements d'�evidence de base) ainsi que danscertains cas in�nitaires. Mais,
comme d�ej�a remarqu�e dans (van Benthem et al., 2014), ce cadre formel pr�esente
l'inconv�enient qu'il peut produire des croyances inconsistantesdans le cas in�ni-
taire g�en�eral. Un d�efaut plus technique de ce cadre est que la logique doxastique
correspondante ne poss�ede pas la propri�et�e du mod�ele �ni (voir van Benthem
et al., 2012, Corollary 2.7 ou van Benthem et al., 2014, Corollary 1). Dans ce
chapitre, nous proposons une s�emantique \am�elior�ee" pour la croyance bas�ee sur
�evidence obtenue en a�aiblissant, en un sens, la d�e�nition de (van Benthem and
Pacuit, 2011). Selon nous, une propositionP est crue siP est impliqu�ee par des
collections d'�evidence �niment consistantes su�samment fortes. Cette d�e�nition
co•�ncide avec celle de van Benthem and Pacuit (2011) pour les mod�eles portant
des collections d'�evidence �nies, mais elle fait appel �a une g�en�eralisation di��erente
de leur notion dans le cas in�nitaire. En fait, notre s�emantiqueassure toujours
la consistance des croyances, même lorsque les �el�ements d'�evidence disponibles
sont mutuellement inconsistants. Nous fournissons aussi une formalisation de
l' argument et une vue \coh�erentiste" des justi�cations. Un argument est essen-
tiellement constitu�e d'un ou plusieurs ensembles d'�evidence supportant la même
proposition (fournissant donc de multiples chemins potentiels vers une conclusion
commune); unejusti�cation est un argument qui n'est contredit par aucune autre
�evidence disponible. Notre d�e�nition de la croyance �equivaut �a demander queP
soit vraie ssi il y a quelque justi�cation(bas�ee sur �evidence) pour P. Elle capture
donc correctement le concept de \croyance justi��ee". Notre proposition est aussi
tr�es naturelle d'un point de vue topologique : elle est �equivalente �a dire queP

3Ceci est encore vague puisque nous n'avons pas encore sp�eci��e ce que signi�e \plus fortes
collections d'�evidence �niment consistante" (nous formalisons ces notions dans la section 5.2.1.
Cependant ce niveau de pr�ecision devrait être su�sant pour expliquer l'id�ee derri�ere la d�e�nition
de croyance de van Benthem and Pacuit (2011), et notre notion de croyance justi��ee �etudi�ee
dans ce chapitre).
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est crue ssi elle est vraie dans \presque tous" les �etats �epist�emiquement possibles,
o�u \presque tous" est interpr�et�e topologiquement comme \tous sauf pour un en-
semble dense nulle part". De plus, nous g�en�eralisons cette croyance s�emantique
pour les croyances conditionnelles. La table A.3 ci-dessous liste les modalit�es de
croyance que nous �etudions dans ce chapitre.

B' l'agent a une croyance justi��ee de'
B '  l'agent croit  �a condition que '

Table A.3: Modalit�es de croyance et leurs lectures intuitives

Quant �a la connaissance, il y a un certain nombre de di��erentes notions qui
peuvent être consid�er�ees. Premi�erement, il y a la connaissance \absolument cer-
taine" ou \infaillible", proche du concept de connaissance partitionnelle d'Aumann
(Aumann, 1999) ou du concept d'information dure de van Benthem (van Benthem,
2007). Dans notre cadre mono-agent, cela peut être d�e�ni simplement comme la
modalit�e globale (qui quanti�e universellement sur les �etats �epist�emiquement pos-
sibles). Il y a tr�es peu de propositions qui peuvent être connues de cette mani�ere
infaillible (e.g., celles connues par introspection ou par preuve logique). La plupart
des faits en science ou dans la vraie vie sont inconnus dans ce sens. Il est donc
plus int�eressant de consid�erer des notions de connaissance moins qu'absolument
certaine, telle que laconnaissance d�efaisable. Dans notre cadre, nous consid�erons
�a la fois la connaissance absolument certaine et la connaissance d�efaisable, mais
nous nous int�eressons plus particuli�erement �a cette derni�ere. Voir la table A.4 ci-
dessous pour les modalit�es de connaissance correspondantes et leur signi�cation.

[8]' l'agent a la connaissance infaillible de'
K' l'agent sait ' de mani�ere faillible (ou d�efaisable)

Table A.4: Modalit�es de connaissance et leurs signi�cations intuitives

Les c�el�ebres contre-exemples de Gettier (Gettier, 1963) montrent que simple-
ment ajouter la \v�eracit�e" la croyance ne nous donnera pas de \bonne" notion
de connaissance d�efaisable : la croyance vraie (justi��ee) est extrêmement fragile
(i.e., elle peut être perdue trop facilement), et elle est consistante avec le fait
de n'avoir que des justi�cations erron�ees pour une conclusion accidentellement
vraie. Nous formalisons ici une notion de connaissance d�efaisable disant que \P
est connue (de mani�ere faillible) s'il y a une justi�cation vraie pour P ". Nous
�etudions par cons�equent une notion de connaissance d�e�nie comme unecroyance
correctement justi��ee . Comme nous le d�eveloppons en section 5.5.1, cette notion



230 R�esum�e

de connaissance moins qu'absolument certaine trouve sa place dans la litt�erature
post-Gettier en �etant plus forte que celle caract�eris�ee par le \pas de lemme faux"
de Clark (1963) et plus faible que la conception de la connaissance d�ecrite par
la th�eorie de la d�efaisabilit�e de la connaissance d�efendue par Lehrer and Paxson
(1969); Lehrer (1990); Klein (1971, 1981).

Encore un autre chemin menant �a notre cadre formel dans ce chapitre passe
par notre travail pr�ec�edent (Baltag et al., 2013, 2015a), pr�esent�e dans le chapitre 4,
sur une topologie s�emantique pour les axiomes doxastiques/�epist�emiques de Stal-
naker (2006). Rappelons que le syst�eme de Stalnaker pr�esent�e dans la table A.1
est fait pour capturer une notion de connaissance faillible, en forte interaction avec
une notion de \croyance forte" d�e�nie comme unecertitude subjective. La princi-
pale id�ee sp�eci�que �a ce syst�eme �etait que \croire implique croire que l'on sait",
id�ee captur�ee par l'axiome de Croyance compl�ete (B' ! BK' ). La s�emantique
topologique que nous avons propos�ee pour ces concepts dans (•Ozg•un, 2013; Bal-
tag et al., 2013, 2015a) �etait trop restrictive (car limit�ee �a la classe peu famili�ere
des topologies extrêmement discontinues et h�er�editairement extrêmement dis-
continues). Dans le chapitre 5 nous montrons que ces notions peuvent être in-
terpr�et�ees sur des espaces topologiques arbitraires, sans changer leur logique. En
e�et, nos d�e�nitions de croyance et de connaissance peuvent être vues comme les
g�en�eralisations naturelles aux topologies arbitraires des notions de (•Ozg•un, 2013;
Baltag et al., 2013, 2015a).

Nous axiomatisons compl�etement les di��erentes logiques d'�evidence, de con-
naissance et de croyance que nous obtenons, et nous �etablissions des r�esultats
de d�ecidabilit�e et de propri�et�e du mod�ele �ni. De plus, nous �etudions quelques
extensions dynamiques, en encodant di��erents types de dynamique d'�evidence.
Techniquement, notre r�esultat le plus di�cile est la compl�etude de la logique de
l'�evidence vraie la plus richeLog822 0

, qui contient les deux modalit�es d'�evidence
vraie 2 0' et 2 ' , ainsi que la modalit�e globale [8]' . L'axiomatisation de Log822 0

est donn�ee par les sch�emas d'axiomes et les r�egles d'inf�erence de la table A.5.

(CPL) toutes les tautologies propositionnelles classiques et
Modus Ponens (MP)

(S5[8]) tous les axiomes deS5et les r�egles pour la modalit�e [8]
(S42 ) tous les axiomes deS4et les r�egles pour la modalit�e 2
(42 0 ) 2 0' ! 2 02 0'
Universalit�e (U) [ 8]' ! 2 0'
�Evidence Vraie (FE) 2 0' ! 2 '
Retrait ( 2 0' ^ [8] ) ! 2 0(' ^ [8] )
Monotonicit�e de 2 0 de ' !  , on inf�ere 2 0' ! 2 0 

Table A.5: Axiomatisation de Log822 0
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Cette logique peut d�e�nir tous les op�erateurs modaux que nous �etudions dans
ce chapitre. Tandis que les autres preuves sont plus ou moins de l'ordre de
la routine, les r�esultats techniques mentionn�es pourLog822 0

font intervenir une
combinaison non triviale de m�ethodes connues.

Plan. La section 5.1 sert d'introduction semi-formelle et de r�esum�e du chapitre
comme ce qui pr�ec�ede, mettant l'accent sur les caract�eristiques importantes de
son contenu. Dans la section 5.2 nous introduisons les mod�eles d'�evidence de van
Benthem and Pacuit (2011) ainsi que nos mod�eles d'�evidencetopologiques, et
nous donnons la s�emantique pour les notions d'�el�ement d'�evidence, d'�evidence
combin�ee et d'�evidence vraie. De plus, nous donnons des d�e�nitions topologiques
pour l'argument et la justi�cation. Dans la section 5.3, nous proposons une
s�emantique topologique pour une notion de croyance justi��ee tout en comparant
notre syst�eme �a celui de van Benthem and Pacuit (2011). Nous g�en�eralisons en-
suite notre s�emantique de croyance (simple) �a la croyance conditionnelle. La
section 5.4 d�e�nit les mod�eles de transformations induits par les dynamiques
d'information bas�ees sur �evidence telles que les annonces publiques, l'addition
d'�evidence, l'am�elioration d'�evidence et la combinaison faisable d'�evidence. Dans
la section 5.5 nous proposons une interpr�etation topologique pour une notion
de connaissance faillible et nous relions notre formalisme �a certaines discussions
importantes qui ont �emerg�e dans la litt�erature de l'�epist�emologie post-Gettier,
telles que les th�eories de stabilit�e/d�efaisabilit�e de la connaissance, contradicteurs
trompeurs contre contradicteurs sinc�eres, etc. Finalement, la section 5.6 pr�esente
tous nos r�esultats techniques. Le lecteur int�eress�e uniquement par les aspects
techniques peut sauter directement �a la section 5.6.

PARTIE II : Des Annonces Publiques aux E�orts

Dans la Partie II de cette dissertation nous ne parlons plus de croyances, mais nous
nous concentrons sur certaines notions de connaissance ainsi que di��erents types
de dynamique d'information qui incluent l'apprentissage de nouvelle �evidence.
Cette partie prend comme point de d�epart le cadre de l'espace des sous-ensembles
de Moss and Parikh (1992), et elle tourne autour des notions deconnaissance
absolument certaineet connaissabilit�e comme \connaissance potentielle", ainsi
que des connections entre la notion abstraite d'e�ort �epist�emique, qui recouvre
toute m�ethode d'acquisition d'�evidence, et certaines attitudes dynamiques bien
connues telles que lesannonces publiqueset lesannonces publiques arbitraires.

Le chapitre 6 fournit les bases pour la Partie II et motive le changement de
paradigme entre les deux parties de cette th�ese. En particulier, il introduit
la s�emantique d'espace des sous-ensembles de Moss and Parikh (1992) et la
logique topologique d'annonces publiques de Bjorndahl (2016). Dans ce chapitre,
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nous mettons aussi en relief les connections et di��erences entre les utilisations
�epist�emiques des espaces topologiques dans les parties I et II de cette th�ese, en
particulier en ce qui concerne les types d'�evidence repr�esent�es et les notions de
connaissance �etudi�ees.

Plan. La section 6.1 pr�esente le cadre de l'espace des sous-ensembles, four-
nissant sa syntaxe et s�emantique ainsi que les axiomatisations compl�etes des
logiques associ�ees pour les espaces de sous-ensembles et les espaces topologiques.
La section 6.2 introduit la logique topologique d'annonces publiques de Bjorndahl
(2016) et pr�esente plusieurs r�esultats d'expressivit�e pour les langages �etudi�es dans
les cadres formels mentionn�es ci-dessus.

Le chapitre 7 �etudie les extensions de la logique topologique d'annonces pu-
bliques de Bjorndahl (2016) avec la modalit�e d'e�ort de Moss and Parikh (1992),
ainsi qu'avec une version topologique de la modalit�e d'annonce arbitraire de Bal-
biani et al. (2008). Ce travail pr�esente un int�erêt tant conceptuel que technique,
en visant �a clari�er la connection, intuitivement �evidente mais di�cile �a saisir
formellement, entre les notions dynamiques d'e�ort et ce qui semble en être des
instanciations : les annonces publiques et arbitraires. Ces modalit�es sont donn�ees
en Table A.6 avec leurs lectures intuitives.

2 ' ' reste vraie apr�es tout e�ort
[ ]' apr�es l'annonce publique de , ' devient vraie
� ' ' reste vraie apr�es toute annonce �epist�emique

Table A.6: Modalit�es dynamiques �etudi�ees dans le chapitre 7 et leurs lectures
intuitives

En particulier, nous nous int�eressons aux questions suivantes, et y r�epondons par
l'a�rmative :

� Peut-on clari�er la signi�cation de l'e�ort modal en le reliant aux modalit�es
dynamiques cit�ees ci-dessus ?

� Traiter ensemble dans un même cadre topologique la modalit�e d'e�ort et les
annonces publiques fournit-il quelque avantage technique quant �a l'axiomati-
sation compl�ete, la d�ecidabilit�e et la propri�et�e du mod�ele �ni de ses logiques
associ�ees ?

Nous donnons l'axiomatisation compl�ete de lalogique topologique dynamique
de l'e�ort et des annonces publiques(appel�ee TopoLogiqueDynamique) donn�ee
dans la table A.7 ci-dessous, et nous d�efendons l'id�ee qu'elle est plus intuitive et,
dans un sens, plus simple que les axiomes standards de la logique topologique
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(CPL) toutes les tautologies propositionnelles classiques et le (MP)
(S5K ) tous les axiomes deS5et les r�egles pour la modalit�e K
(S4int ) tous les axiomesS4et les r�egles pour la modalit�e int
(K -int) Connaissance implique connaissabilit�e: K' ! int(' )

(K !) [' ]( ! � ) ! ([' ] ! [' ]� )
(Nec!) de � , on inf�ere [' ]�
([!]RE) Remplacement d'�Equivalents pour[!]:

de ' $  , on inf�ere [' ]� $ [ ]�

Axiomes de r�eduction:
(R[> ]) [> ]' $ '
(Rp) [' ]p $ (int(' ) ! p)
(R: ) [' ]:  $ (int(' ) ! : [' ] )
(RK ) [' ]K $ (int(' ) ! K [' ] )
(R[!]) [' ][ ]� $ [h' i  ]�

([!]2 -elim) [' ]2 � ! [' ^ � ]� (� 2 L !
K int2 une formula arbitraire)

([!]2 -intro) de  ! [' ^ p]� , on inf�ere  ! [' ]2 � (p 62P [ P� [ P' )

Table A.7: Les axiomatisations desTopoLogiquesDynamiques. Noter que P'
d�enote l'ensemble de toutes les variables propositionnelles qui apparaissent dans
' .

(Georgatos, 1993, 1994; Dabrowski et al., 1996). Notre preuve de compl�etude
est aussi plus directe, utilisant une construction de mod�ele canonique standard.
De plus, nous �etudions les relations entre cette extension et d'autres formalismes
logiques connus, montrant en particulier qu'elle est co-expressive avec la logique
d'int�erieur et de modalit�e globale (Goranko and Passy, 1992; Bennett, 1996; She-
htman, 1999; Aiello, 2002), plus simple et plus ancienne.

Nous consid�erons aussi une s�emantique topologique pour la modalit�e d'annonce
arbitraire, et nous �etudions ses interactions avec la modalit�e d'e�ort. A notre
connaissance, les preuves de compl�etude connues pour les logiques d'annonces
arbitraires (topologiques ou relationnelles) reposent sur des axiomatisations in-
�nitaires formalis�ees en ayant recours �a des formes de n�ecessit�e (voir, e.g., Balbiani
et al., 2008, 2013; Balbiani, 2015; Balbiani and van Ditmarsch, 2015; voir aussi
les sections 8.2 et 8.3 pour le cas multi-agent). Bien que Balbiani et al. (2008)
propose une axiomatisation �nitaire similaire �a la nôtre, sa preuve de compl�etude
passe par la compl�etude d'un syst�eme in�nitaire.4 A l'inverse, notre preuve de

4L'axiomatisation �nitaire propos�ee dans (Balbiani et al., 2008) a par la suite �et�e prouv�ee
incorrecte pour le casmulti-agent (voir http://personal.us.es/hvd/APAL_counterexample.
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compl�etude pour le syst�eme �nitaire de la logique topologique d'annonces arbi-
traires ne fait pas de d�etour par une logique in�nitaire. La modalit�e d'e�ort aide
donc �a simpli�er et pro�ler l'axiomatisation de la logique d'annonces arbitraires.

Plan. La section 7.1 pr�esente laTopoLogiqueDynamique qui combine le for-
malisme topologique avec les annonces publiques de Bjorndahl pr�esent�ees dans le
chapitre 6. Alors que la section 7.1.2 pr�esente plusieurs r�esultats d'expressivit�e, la
section 7.1.3 se concentre sur la preuve de compl�etude de l'axiomatisation pour la
TopoLogiqueDynamique que nous proposons. Dans la section 7.2, nous �etudions
les annonces arbitraires sur des topo-mod�eles et nous d�emontrons que, en fait,
l'annonce arbitraire et la modalit�e d'e�ort sont �equivalentes dans notre cadre
mono-agent.

Le chapitre 8 �etudie la g�en�eralisation au cas multi-agent du cadre formel pr�esent�e
dans le chapitre pr�ec�edent. Nous rappelons bri�evement que Moss and Parikh
(1992), dans le cadremono-agentoriginal des espaces de sous-ensembles, �evalue
les formules du langage bimodal avec connaissance et modalit�es d'e�ort, d�enot�ees
respectivement parK et 2 , sur desespaces de sous-ensembles(X; O), o�u X est
un domaine non vide etO est un ensemble non vide de sous-ensembles deX .
Les formules sont interpr�et�ees non seulement par rapport �a l'�etat courant, mais
aussi par rapport �a un �el�ement d'�evidence vraie. L'unit�e d'�evaluation est donc
une paire (x; U) telle quex 2 U 2 O , o�u le point x repr�esente le v�eritable �etat des
choses, et l'ensembleU repr�esente tous les points que l'agent consid�ere possible,
i.e., sa port�ee �epist�emique.

Mod�eliser des syst�emes multi-�epist�emiques multi-agents dans le style de la
s�emantique des sous-espaces n'est pas chose facile. Comme (Baskent, 2007,
Chapitre 6) et (W�ang and �Agotnes, 2013a) le reconnaissent, d�evelopper une
logique �epist�emique multi-agents utilisant une s�emantique topologique bas�ee sur
les espaces de sous-ensembles requi�ere d'abord de r�esoudre le probl�eme du \saut
hors de la port�ee �epist�emique" d'un agent lors de l'�evaluation de formules de con-
naissance d'ordre sup�erieur. Ce probl�eme est ind�ependant d'�eventuelles extensions
dynamiques. Le cadre g�en�eral que nous consid�erons traite n'importe quel nom-
bre �ni d'agents, mais a�n d'illustrer le probl�eme consid�erons ici le cas de deux
agents. Si nous �etendons le cadre mono-agent de mani�ere na•�ve, alors nous avons
un ensemble ouvert pour chacun des agentsi et j , et la s�emantique primitive de-
vient un triplet ( x; Ui ; Uj ) au lieu d'une paire (x; U). Consid�erons maintenant une
formule telle queK i K̂ j K i p, pour \l'agent i sait que l'agent j consid�ere possible
que l'agent i sache la propositionp". Si cela est vrai pour un triplet (x; Ui ; Uj ),
alors K̂ j K i p doit être vraie pour tout y 2 Ui ; mais y pourrait ne pas être dans
Uj , auquel cas (y; Ui ; Uj ) n'est pas bien d�e�ni : nous ne pouvons y interpr�eter

pdf ), et l'erreur dans l'analyse de complexit�e dans (Balbiani et al., 2008, Truth Lemma 4.13,
p. 327) est corrig�ee dans (Balbiani, 2015).
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K̂ j K i p. Notre solution �a ce dilemme est de consid�erer des voisinages qui ne sont
pas seulement relatifs �a chaque agent, mais sont aussirelatifs �a chaque �etat. Cela
signi�e que, lorsque dans (x; Ui ; Uj ) on change de point de vue dex �a y 2 Ui ,
simultan�ement nous changeons aussi devoisinage(et non uniquement de point
dans le voisinage courant) pour l'autre agent. Par cons�equent, nous passons de
(x; Ui ; Uj ) �a ( y; Ui ; Vj ), o�u Vj peut être di��erent de Uj : tandis que l'ouvert Uj

repr�esente l'�evidence courante (i.e., sa port�ee �epist�emique) dej en x, l'ouvert
Vj repr�esente l'�evidence dej en y. Ainsi, le changement de voisinage deUj �a Vj

ne signi�e pas un changement d'ensemble d'�evidence pour l'agentj dans l'�etat
courant. Tandis que le tuple (x; Ui ; Uj ) repr�esente l'�etat courant et les points de
vue des deux agents, la composante (y; Vj ) du second tuple (y; Ui ; Vj )ne repr�esente
que l'�etat �epist�emique de l'agent j du point de vue de l'agenti dans l'�etat y, qui
est un �etat possiblement di��erent de l'�etat actuel x.

A�n de d�e�nir la port�ee �epist�emique de chaque agent par rapport �a l'�etat en
question, nous employons une technique inspir�ee de la s�emantique des voisinages
standard (voir, e.g., Chellas, 1980). Nous utilisons un ensemble defonctions de
voisinage, d�eterminant la port�ee �epist�emique relative �a la fois �a l'�etat donn�e et
l'agent correspondant. Ces fonctions doivent être partielles a�n d'obtenir une
s�emantique bien fond�ee pour les modalit�es dynamiques du syst�eme, �a savoir les
modalit�es d'annonce publique et d'annonce arbitraire.

De plus, utiliser des espaces topologiques enrichis par un ensemble de fonc-
tions (partielles) de voisinage comme mod�eles nous permet de travailler avec
di��erentes notions de connaissance. Dans le cadre standard (mono-agent) des es-
paces de sous-ensembles (comme dans les chapitres 6 et 7), puisque la modalit�e
de connaissance quanti�e sur les �el�ements d'un voisinage �x�e, la connaissance de
type S5 est inh�erente �a la fa�con dont la s�emantique est d�e�nie. En revanche,
avec l'approche d�evelopp�ee dans ce chapitre, la port�ee �epist�emique d'un agent
change selon les fonctions de voisinage quand l'�etat d'�evaluation change. Par
cons�equence, les validit�es de la connaissance sont d�etermin�ees par les contraintes
impos�ees sur les fonctions de voisinage. Dans ce but, nous travaillons dans ce
chapitre �a la fois avec la connaissance de typeS5 et celle de typeS4 : alors que
la premi�ere est la notion de connaissance standard dans le cadre des espaces de
sous-ensembles, la seconde r�ev�ele un nouvel aspect de notre approche, �a savoir,
la possibilit�e de capturer di��erentes notions de connaissance. Cela contraste avec
et enrichit les approches existantes pour les s�emantiques de connaissance bas�ees
sur les espaces de sous-ensembles, car �a notre connaissance, les autres approches
ne peuvent fonctionner qu'avec la connaissanceS5.

Sans surprise, travailler avec la connaissance de typeS5 dans notre cadre
multi-agents requi�ere un partitionnement du (sous-)domaine d'un espace topolo-
gique. Cela pourrait sembler être une restriction puisque cela exclue de travailler
avec des espaces plus familiers tels que la topologie naturelle des intervalles ou-
verts sur la ligne r�eelle ou l'espace Euclidien. Cependant, lorsqu'on consid�ere
de multiples agents de typeS5, nous croyons qu'il est di�cile voire impossible
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d'�eviter une telle restriction. Nous axiomatisons la logique multi-agents de con-
naissance et connaissabilit�eELm

int , ses extensions avec annonces publiquesPALm
int ,

ainsi qu'avec annonces publiques arbitrairesAPALm
int (voir la table A.8 ci-dessous).

La modalit�e d'annonce arbitraire � ' , qui capture la \stabilit�e de la v�eracit�e de
' apr�es toute annonce" se rapproche de l'intuition derri�ere la modalit�e d'e�ort
2 ' signi�ant \stabilit�e de la v�eracit�e de ' apr�es toute acquisition d'�evidence".
Nous prouvons que ces deux modalit�es sont �equivalentes dans le cas mono-agent
(Th�eor�eme 7.2.6). Cependant, l'interpr�etation appropri�ee de l'e�ort dans le cas
multi-agents et ses liens avec la modalit�e d'annonce arbitraire demeurent dures
�a saisir. Cela sort du cadre de cette dissertation, et nous laissons donc pour
de futurs travaux la tâche d'�etudier de mani�ere syst�ematique les interpr�etations
possibles de la modalit�e d'e�ort et son comportement dans un cadre multi-agents.

(I) Axiomes et r�egles du syst�eme ELm
int :

(CPL) toutes les tautologies propositionnelles classiques et le (MP)
(S5K ) tous les axiomes et r�eglesS5pour la modalit�e K i

(S4int ) tous les axiomes et r�eglesS4pour la modalit�e int
(K -int) Connaissance implique connaissabilit�e: K i ' ! int(' )

(II) Axiomes et r�egles suppl�ementaires pour PALm
int :

(K !) [' ]( ! � ) ! ([' ] ! [' ]� )
(Nec!) de � , on inf�ere [' ]�
([!]RE) de ' $  , on inf�ere [' ]� $ [ ]�

Axiomes de r�eduction:
(Rp) [' ]p $ (int(' ) ! p)
(R: ) [' ]:  $ (int(' ) ! : [' ] )
(RK ) [' ]K i  $ (int(' ) ! K i [' ] )
(R[!]) [' ][ ]� $ [h' i  ]�

(III) Axiomes et r�egles de � pour APALm
int :

(� -elim) � ' ! [� ]' (� 2 L !
K int une formule arbitraire)

(� ! -intro) de [s][ ]� pour tout  2 L !
K int , on inf�ere [s]� �

Table A.8: Axiomatisations pour les logiques multi-agentsELm
int , PALm

int et APALm
int .

Plan. La section 8.1 d�e�nit la syntaxe, les structures et la s�emantique de notre
logique multi-agents d'annonces publiques arbitraires,APALm

int , interpr�et�ee sur
des espaces topologiques �equip�es d'un ensemble de fonctions de voisinages. Sans
annonces arbitraires nous obtenons la logiquePALm

int , et sans annonces arbitraires
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ni publiques, la logiqueELm
int . Dans cette section nous donnons aussi deux ex-

emples d�etaill�es illustrant les s�emantiques propos�ees. Dans la section 8.2 nous
fournissons des axiomatisations pour nos logiques:PALm

int �etend ELm
int et APALm

int
�etend PALm

int . De plus, nous prouvons leur correction et comparons les pouvoirs
expressifs des langages multi-agent associ�es,L !

K int � ; L !
K int et L K int , par rapport

aux topo-mod�eles multi-agents. En section 8.3 nous d�emontrons la compl�etude
pour ces logiques. La preuve de compl�etude pour le fragment �epist�emique,ELm

int ,
est assez di��erente de la preuve de compl�etude pour la logique compl�eteAPALm

int .
La section 8.4 adapte les logiques au cas de la connaissanceS4. Dans la sec-
tion 8.5 nous comparons notre travail avec la litt�erature, et la section 8.6 contient
un bref r�esum�e du chapitre et une discussion sur une interpr�etation possible de
la modalit�e d'e�ort dans le syst�eme multi-agents actuel.

Origine de la mati�ere de cette dissertation

� Le chapitre 4 est bas�e sur :

Baltag, A., Bezhanishvili, N., •Ozg•un, A., and Smets, S. (2015a). The topo-
logical theory of belief.En cours d'�evaluation. Disponible en ligne �a
http://www.illc.uva.nl/Research/Publications/Reports/PP-2015-18.text.pdf.

La partie I du chapitre 4 (sections 4.1-4.2.1) pr�esente un aper�cu de (•Ozg•un,
2013; Baltag et al., 2013), tandis que le reste du chapitre est bas�e sur des
id�ees absentes de (•Ozg•un, 2013; Baltag et al., 2013) mais pr�esent�ees dans
(Baltag et al., 2015a).

� Le chapitre 5 se base sur deux articles, dont le second est une version �etendue
du premier :

Baltag, A., Bezhanishvili, N., •Ozg•un, A., and Smets, S. (2016a). Justi�ed
belief and the topology of evidence. InProceedings of 23rd Workshop on
Logic, Language, Information and Computation(WoLLIC 2016), pp. 83-
103.

Baltag, A., Bezhanishvili, N., •Ozg•un, A., and Smets, S. (2016b). Justi�ed
belief and the topology of evidence{Version �etendue. Disponible en ligne �a
http://www.illc.uva.nl/Research/Publications/Reports/PP-2016-21.text.pdf.

� Le chapitre 7 est bas�e sur :

van Ditmarsch, H., Knight, S., and •Ozg•un, A. (2014). Arbitrary announce-
ments on topological subset spaces. InProceedings of the 12th European
Conference on Multi-Agent Systems(EUMAS 2014), pp. 252-266.

Baltag, A., •Ozg•un, A., and Vargas-Sandoval, A. L. (2017). Topo-Logic as
dynamic epistemic logic. InProceedings of the 6th International Workshop
on Logic, Rationality and Interaction (LORI 2017). A parâ�tre.
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� Le chapitre 8 est bas�e sur :

van Ditmarsch, H., Knight, S., and •Ozg•un, A. (2015b). Announcements
as e�ort on topological spaces. InProceedings of the 15th Conference on
Theoretical Aspects of Rationality and Knowledge(TARK 2015), pp. 283-
297.

van Ditmarsch, H., Knight, S., and •Ozg•un, A. (2015c). Announcements as
e�ort on topological spaces{Version �etendue. Accept pour publication dans
Synthese.

De plus, bien que les r�esultats principaux des articles suivants ne soient pas
inclus dans cette dissertation, la discussion concernant leur contenu conceptuel
contribue dans une large mesure au pr�esent travail.

van Ditmarsch, H., Knight, S., and •Ozg•un, A. (2017). Private announce-
ments on topological spaces.Studia Logica. A parâ�tre.

Bjorndahl, A., and •Ozg•un, A. (2017). Logic and Topology for Knowledge,
Knowability, and Belief. In Proceedings of the 16th Conference on Theoret-
ical Aspects of Rationality and Knowledge(TARK 2017), pp. 88-101.
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