Search for light top squark pair production in final states with leptons and b-jets with the ATLAS detector in $\sqrt{s} = 7$ TeV proton-proton collisions

Published in:
Physics Letters B

DOI:
10.1016/j.physletb.2013.01.049

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Search for light top squark pair production in final states with leptons and b-jets with the ATLAS detector in $\sqrt{s} = 7$ TeV proton–proton collisions

ATLAS Collaboration*

1. Introduction

Supersymmetry (SUSY) [1–9] is an extension of the Standard Model (SM) which naturally resolves the hierarchy problem by introducing supersymmetric partners to the known fermions and bosons. In the framework of a generic R-parity conserving minimal supersymmetric extension of the SM (MSSM) [10–14], SUSY particles are produced in pairs and the lightest supersymmetric particle (LSP) is stable. In a large variety of models the LSP is the lightest neutralino, $\tilde{\chi}^0_1$, which only interacts weakly. The scalar partners of right-handed and left-handed quarks (squarks) can mix to form two mass eigenstates (\tilde{t}_1, \tilde{t}_2). In particular, the lightest top squark (stop, \tilde{t}_1), could have a mass similar to, or lower than, the top quark mass ($m_{\tilde{t}}$)

In this Letter, a search for direct stop pair production is presented targeting these scenarios. A SUSY particle mass hierarchy is assumed such that $m_{\tilde{t}_2} > m_{\tilde{t}_1} > m_{\tilde{\chi}^0_1}$ and the stop decays exclusively into a b-quark and a chargino ($\tilde{t}_1 \rightarrow \tilde{\chi}^\pm_1 b$). The chargino subsequently decays via a virtual or real W boson ($\tilde{\chi}^\pm_1 \rightarrow W^{\ast(b)} \tilde{\chi}^0_1$). The masses of all other supersymmetric particles, including the mass of \tilde{t}_2, are assumed to be above the TeV scale. In the case where $m_{\tilde{t}_2} \sim m_{\tilde{t}_1}$, direct stop pair production will lead to final states very similar to SM $t\bar{t}$ events, which form the dominant background. In the first stage of the analysis the $t\bar{t}$ system (including stop pairs) is reconstructed from final states which contain exclusively one or two leptons ($\ell = e, \mu$), b-jets, light-flavour jets, and large missing transverse momentum. The use of event-based mass scale variables allows discrimination between stop pairs and the $t\bar{t}$ background. The results are interpreted in three MSSM scenarios where stop and neutralino masses are varied and different assumptions are made about the chargino–neutralino mass difference: gaugino universality ($m_{\tilde{\chi}^\pm_1} \simeq 2 \times m_{\tilde{\chi}^0_1}$); fixed chargino mass of 106 GeV (above the present exclusion limit from LEP [15]); and fixed stop mass of 180 GeV with variations of the chargino–neutralino mass difference. Previous results for direct production of top squark pairs in the same MSSM scenarios have been presented by the CDF [16] and ATLAS Collaborations [17].

2. The ATLAS detector

The ATLAS detector is described in detail elsewhere [18]. It comprises an inner detector (ID) surrounded by a thin superconducting solenoid, a calorimeter system and an extensive muon spectrometer embedded in a toroidal magnetic field. The ID tracking system consists of a silicon pixel detector, a silicon microstrip detector (SCT), and a transition radiation tracker (TRT). It provides tracking information for charged particles in a pseudorapidity (η) range $|\eta| < 2.5$ and allows efficient identification of jets...
originating from b-hadron decays using impact parameter measurements to reconstruct secondary decay vertices. The ID is immersed in a 2 T axial magnetic field and is surrounded by high-granularity liquid-argon (LAr) sampling electromagnetic calorimeters. An iron/scintillator tile calorimeter provides hadronic energy measurements in the central pseudorapidity range (|η| < 1.7). In the forward regions (1.5 < |η| < 4.9), it is complemented by two end-cap calorimeters using LAr as the active material and copper or tungsten as an absorber. The muon spectrometer (MS) surrounds the calorimeters and consists of three large superconducting eight-coil toroids, a system of tracking chambers, and detectors for triggering. The MS is segmented into barrel (|η| < 1.05) and end-cap regions (1.05 < |η| < 2.7).

3. Simulated event samples

Monte Carlo (MC) simulated event samples are used to develop and validate the analysis procedure and to help evaluate the SM backgrounds in the signal regions. Production of top quark pairs is simulated with MC@NLO [19–21], using a top quark mass of 172.5 GeV and the next-to-leading-order (NLO) parton distribution function (PDF) set CT10 [22]. Samples of W and Z/γ* production, with accompanying light- and heavy-flavour jets, and tt̄ with additional b-jets (tbbb) are generated using ALPGEN [23]. Samples of Zt, Wt and WWt are generated with MadGraph [24] interfaced to PYTHIA [25]. Diboson (WW, WZ, ZZ) production is generated with HERWIG [26]. Single top production is generated with MC@NLO for the s- and t + W-channels, and AcerMC [27] for the t-channel. Fragmentation and hadronisation modelling for the ALPGEN and MC@NLO samples are performed by HERWIG, using JIMMY [28] for the underlying event. ALPGEN and POWHEG [29] samples are used to assess the systematic uncertainties associated with the choice of generator for tt̄ production, and AcerMC samples are used to assess the uncertainties associated with initial and final state radiation (ISR/FSR). The choice of PDF depends on the generator: the MRST2007 LO [30] set is used with HERWIG, CTEQ6L1 [31] with ALPGEN. The background predictions are normalised to the theoretical cross sections, in- cluding higher-order QCD corrections when available, as detailed in Ref. [32].

A direct stop pair production samples are generated using PYTHIA6 and Herwig++ [33]. Polarisation effects due to the choice of left- and right-handed scalar top mixing were found to have a negligible impact on the analysis. Signal cross sections are calculated to NLO in the strong coupling constant, adding the re- summation of soft gluon emission at next-to-leading-logarithmic accuracy (NLO+NNLL) [34–36].

All MC samples are produced using a detector simulation [37] based on GEANT4 [38]. MC samples are re-weighted such that the number of additional proton–proton interactions per bunch-crossing (pile-up) agrees with that observed in data.

4. Event reconstruction and preselection

Electron candidates are reconstructed from energy clusters in the electromagnetic calorimeters matched to a track in the ID. They are required to have momentum in the transverse plane (pT) pT > 20 GeV, |η| < 2.47 and to pass the “medium” shower shape and track selection criteria of Ref. [39].

Muons are reconstructed using an algorithm [40] that combines information from the ID and MS. Candidate muons are required to have pT > 10 GeV, |η| < 2.4, and be reconstructed with sufficient numbers of hits in the pixel, SCT and TRT detectors. In order to reject muons originating from cosmic rays, events containing muon candidates with a closest approach distance greater than 1 mm to the primary vertex in the z direction, or a transverse impact parameter greater than 0.2 mm, are rejected. The primary vertex itself is defined as the vertex with the highest summed track pT2.

Jet candidates are reconstructed using the anti-kT jet clustering algorithm [41] with a radius parameter of R = 0.4. The measured jet energy is corrected for inhomogeneities and for the non-compensating nature of the calorimeter using pT and η dependent correction factors based on MC simulation validated with extensive test-beam and collision-data studies. Furthermore, the reconstructed jet is modified such that its direction points to the primary vertex, and events containing jets likely to have arisen from detector noise or cosmic rays are rejected [42]. Only jet candidates with corrected transverse momenta pT > 20 GeV and |η| < 4.5 are retained.

Following their reconstruction, candidate jets and leptons may point to the same energy deposits in the calorimeter. These overlaps are resolved by first discarding any jet candidate within ∆R = 0.2 of an electron. Then, any electron or muon candidate remaining within ∆R = 0.4 of any surviving jet is also discarded.

The two-dimensional missing transverse momentum vector, pmissT, and its magnitude EmissT, are computed from the negative of the vector sum of the pT of the reconstructed electrons, muons and jets, and all energy clusters with |η| < 4.9 not associated with such objects.

Electrons must additionally pass the “tight” electron criteria of Ref. [39], and be isolated such that the scalar pT sum of tracks within a cone of ∆R = 0.2 around the electron candidate (not including the electron track) must be less than 10% of the electron pT. Muons must also be isolated such that the pT sum of tracks (not including the muon track) within ∆R = 0.2 is less than 1.8 GeV. Jets are further required to lie within |η| < 2.5 and must have more than 75% of pT-weighted ID tracks associated to the primary vertex. This reduces the presence of jets arising from uncorrelated soft collisions (pile-up) and discards jets without reconstructed tracks.

A b-tagging algorithm [43] is used to identify jets containing a b-hadron decay. The algorithm uses a multivariate technique based on the properties of the secondary vertex, of tracks within the jet, and of the jet itself. The nominal b-tagging efficiency, determined from tt̄ MC events, is on average 60%, with a misidentification, or mis-tag, rate for c-quark (light-quark/gluon) jets of 10% (1%).

5. Signal region definitions

The data are selected with a three-level trigger system. The events used in this search satisfied single-lepton trigger requirements that varied with the data-taking period. The tightest electron trigger has an efficiency of ~97% for electrons with pT > 25 GeV. The muon trigger reaches an efficiency plateau of ~90% in the end-caps for muons with pT > 20 GeV. The equivalent efficiency in the barrel region is ~75% due to a lower geometrical acceptance for the muon trigger chambers in this region. Collision events are selected by requiring at least one reconstructed vertex with at least five associated tracks with pT > 400 MeV, consistent with the beam spot position. Two signal regions are defined containing either exclusively one or two charged leptons (ℓ = e, μ) in the final state, referred to hereafter as the 1- and 2-lepton channels respectively. A total integrated luminosity of 4.7 ± 0.2 fb−1 is used, following the beam, detector and data-quality requirements as described in Refs. [44,45].

In the 1-lepton channel, events are required to contain the minimum number of objects expected from the ℓ̄ → W+b̄b̄ → q̄b̄b̄ℓ̄b̄b̄ decay. Exactly one lepton is required, which must have pT > 25 GeV (20 GeV) for the electron (muon) channel and fulfill the trigger requirements. Events with an additional electron
(muon) with $p_T > 20$ GeV (10 GeV) are rejected to ensure no events are classified as belonging to both 1- and 2-lepton channels. A minimum of four jets are required in the event, at least two of which must pass the b-tagging requirements and at least two must fail them. Events are required to have a missing transverse momentum of $E_{\text{miss}}^T > 40$ GeV. Background from multi-jet processes, in which jets are misidentified as leptons, is rejected by requiring that the transverse mass of the lepton-E_{miss}^T system, $m_T = \sqrt{2p_T^L E_{\text{miss}}^T - 2p_T^L p_{T\text{miss}}^L}$, is larger than 30 GeV.

The invariant mass of the hadronic top decay products (m_{had}^T) is used as an additional discriminating variable. In scenarios where the stop is lighter than the top, m_{had}^T will tend to be lower than for background $t\bar{t}$ processes, as illustrated in Fig. 1(a). Since there is an ambiguity as to which b-jet arises from the hadronic top decay (and additional ambiguities at higher jet multiplicities), the hadronic decay products are tagged using the following algorithm: for every possible combination of light and b-tagged jets in the event, the invariant masses m_{had}^W (of two light jets, m_{jj}), m_{lep}^W (assuming that the lepton and E_{miss}^T arise from the $W \rightarrow \ell\nu$ decay), m_{lep}^T (the leptonic top mass) and m_{had}^T are calculated. A $t\bar{t}$ estimator of $P_{\text{tot}} = P(m_{\text{had}}^W)P(m_{\text{lep}}^W)P(m_{\text{lep}}^T)P(m_{\text{had}}^T)$ is assigned to this combination, where $P(m)$ is related to the probability for reconstructing a particle of mass m, assuming a Gaussian probability density function with mean values taken from Ref. [46] and widths from MC simulation. The combination which maximises P_{tot} is assigned to one b-jet and two light-flavour jets (one b-jet, the lepton and E_{miss}^T) as arising from the hadronic (leptonic) decay of the top quark.

![Fig. 1](https://example.com/fig1.png)

Fig. 1. The 1-lepton channel m_{had}^T distribution after all requirements except those on m_{had}^T and $\sqrt{s_{\text{min}}}$ (a), and the $\sqrt{s_{\text{min}}}$ distribution after all requirements except that on $\sqrt{s_{\text{min}}}$ (b). For the 2-lepton channel, the $m_{\ell\ell}$ distribution is shown after all requirements except those on $m_{\ell\ell}$ and $\sqrt{s_{\text{min}}}$ (c), and the $\sqrt{s_{\text{min}}}$ distribution, before the requirements on $\sqrt{s_{\text{min}}}$ itself (d). The last bin in each histogram contains the integral of all events with values greater than the upper axis bound. The hatched bands display the total uncertainties on the background expectation and the dashed lines show the expected distributions for two signal models. The bottom panels show the ratio of data to the expected background (points) and the total uncertainty on the background (hatched area).
Events are then required to have $m^{\text{had}} > \hat{\mu} - 0.5 \hat{\sigma}$, where $\hat{\mu}$ and $\hat{\sigma}$ are the mean and width respectively of a Gaussian fit to the m^{had} distribution in a 40 GeV window around the top mass. This approach is taken to reduce some of the systematic uncertainties affecting the shape of this distribution, as detailed in Section 6.

In the 2-lepton channel, the following requirements are imposed to ensure that the event contains the required number of objects consistent with the $t\bar{t} \rightarrow WbW\bar{b} \rightarrow \ell\nu bè\bar{b}$ decay. Exactly two oppositely-charged leptons are required to pass the selection described in Section 4. For same-flavour pairs, the highest p_T lepton is required to have $p_T > 25$ GeV (20 GeV) for electrons (muons). In the case of different-flavour pairs, either the electron must have $p_T > 25$ GeV or the muon $p_T > 20$ GeV. At least two jets are required in the event, of which the two with highest p_T are assumed to originate from the $t\bar{t}$ process. At least one of these two jets is required to be b-tagged. The event is required to fulfill $E_{\text{T}}^{\text{miss}} > 40$ GeV and the invariant mass of the two leptons ($m_{\ell\ell}$) must satisfy $30 < m_{\ell\ell} < 81$ GeV to increase the discrimination against the background, as illustrated in Fig. 1(c).

In order to distinguish between stop and top production the mass scale subsystem variable $\sqrt{s_{\text{min}}^{\text{(sub)}}}$ [47] is employed. Conceptually, the variable is constructed by dividing an event’s topological configuration of one visible subsystem particle and one invisible event against the background, as illustrated in Fig. 1(c).

$$\sqrt{s_{\text{min}}^{\text{(sub)}}} = \sqrt{m_{\text{sub}}^2 + p_T^{\text{(sub)}}^2 + \sqrt{(m^{\text{miss}})^2 + (E_T)^2}} - (p_T^{\text{(sub)}})^2,$$ \hspace{1cm} (1)

where m_{sub} and $p_T^{\text{(sub)}}$ are the invariant mass and the transverse momentum of the visible subsystem particles. The variable m^{miss} is the scalar sum of the invisible particle masses in the event. The final term in Eq. (1) is a two-dimensional vector sum representing the boost correction in the transverse plane caused by upstream processes. In this analysis $\sqrt{s_{\text{min}}^{\text{(sub)}}}$ is calculated making the hypothesis that each event arises from $t\bar{t}$ production, with the invisible subsystem comprising one or two neutrinos, and therefore $m^{\text{miss}} = 0$ in Eq. (1). With this assumption, the reconstructed $\sqrt{s_{\text{min}}^{\text{(sub)}}}$ distribution for $t\bar{t}$ background events is expected to peak at around $m_{\text{sub}} = 2m_t \approx 345$ GeV. On the other hand, stop pair production will peak at lower values if the mass difference between the stop and the neutralino is less than the top mass, as illustrated in Figs. 1(b) and 1(d). Signal events are therefore selected by imposing an upper limit on $\sqrt{s_{\text{min}}^{\text{(sub)}}}$.

In the 1-lepton channel, the visible subsystem comprises the single lepton, two light-flavour jets and two b-jets. In events where combinatorial ambiguities arise, the subsystem objects are chosen which give the highest estimator in the algorithm described above. In the 2-lepton channel, the two leptons and the two leading jets are used. In both channels, the upper limit on $\sqrt{s_{\text{min}}^{\text{(sub)}}}$ has been chosen to maximise the expected signal efficiency with respect to background rejection, across a range of scenarios described in Section 1. In the 1-lepton channel, the optimal requirement is $\sqrt{s_{\text{min}}^{\text{(sub)}}} < 250$ GeV, defining a signal region referred to hereafter as 1LSR. In the 2-lepton channel two signal regions are defined, the first requiring $\sqrt{s_{\text{min}}^{\text{(sub)}}} < 225$ GeV (2LSR1). The invariant mass of the two leptons and two jets ($m_{\ell\ell''}$) was also found be a useful discriminating variable. Imposing $m_{\ell\ell''} < 140$ GeV in combination with $\sqrt{s_{\text{min}}^{\text{(sub)}}} < 235$ GeV was found to give the optimal performance and defines a second signal region (2LSR2).

6. Background estimation

The dominant SM background process in the 1-lepton (2-lepton) channel arises from single-lepton (dilepton) $t\bar{t}$ decays, comprising 60% (80%) of the total background. The second most significant background in the 1-lepton (2-lepton) channel arises from W (Z/γ^*) production in association with jets from heavy-flavour quarks. For both channels, similar methods are used to estimate these backgrounds. For each channel and background process a control region is defined that is rich in the background of interest. The region is kinematically similar to the signal region but distinct from it, such that the signal and control regions have no events in common. For a control region containing $N_{\text{obs}}^{\text{sub}}$ observed events (corrected for the contamination from other backgrounds), the number of events in the signal region is calculated as $N_{\text{SR}} = N_{\text{MC}}^{\text{CR}} \times (N_{\text{SR}}^{\text{MC}} / N_{\text{CR}}^{\text{MC}})$, where $N_{\text{SR}}^{\text{MC}}$ and $N_{\text{CR}}^{\text{MC}}$ are the MC-based estimates in the signal and control regions respectively. The advantage of this method is that many systematic uncertainties partially cancel.

In the 1-lepton channel, the $t\bar{t}$ background (including dileptonic Wt decays) is determined using a control region identical to the signal region except that $\mu - 0.5\sigma < m_{\text{had}} < \mu + 0.5\sigma$ and $\sqrt{s_{\text{min}}^{\text{(sub)}}} < 320$ GeV, corresponding to a $t\bar{t}$ purity of 93%. The definition of a control region using these fitted parameters reduces the systematic uncertainties related to the jet energy scale and resolution. A high-purity $W + b$-jets control region is more difficult to define due to the kinematic similarity with $t\bar{t}$ events, which have a higher fiducial cross section. A control region can, however, be defined with 38% purity for $W + b$-jets events by requiring $m_{\text{had}} > 250$ GeV and that the invariant mass of the two b-jets is less than 50 GeV. As the $t\bar{t}$ contamination in this region is still relatively high (60%), the $W + b$-jets and $t\bar{t}$ contributions are determined by scaling their contributions simultaneously such that the total number of events matches the data in both control regions.

In the 2-lepton channel, the $t\bar{t}$ background (including dileptonic Wt decays) is determined using a control region identical to the signal region except that $m_{\ell\ell} > 101$ GeV and $\sqrt{s_{\text{min}}^{\text{(sub)}}} < 325$ GeV, with 94% purity of $t\bar{t}$ events. The $Z +$ jets background, with Z decaying to any of the three lepton flavours, is determined in a region requiring two same-flavour leptons, $81 < m_{\ell\ell} < 101$ GeV and $\sqrt{s_{\text{min}}^{\text{(sub)}}} < 225$ GeV, with a Z purity of 90%.

The contribution to the background from events where a jet is misidentified as a lepton, or where a lepton from a b- or c-hadron decay is selected (referred to as “fake” lepton background), is estimated using a data-driven technique in both channels [39,48]. The probability of such a misidentification is estimated by relaxing the electron and muon identification criteria to obtain control samples dominated by multi-jet production. In the 1-lepton channel, the main contribution is from multi-jet events. In the 2-lepton channel, the dominant contribution is from processes containing one real and one fake lepton, such as $W +$ jet or single-lepton $t\bar{t}$ decays. The contribution from events containing two fake leptons was found to be negligible.

Other less significant processes in the 1-lepton channel include $Z/\gamma^* +$ jets and single top quark production. Diboson and $t\bar{t} + X \ (X = W, Z, Wb, Zb)$ production give a minor contribution to both channels. The contribution to the total background from these processes (referred to as “Others” in the following and in Fig. 1) is 2.5% (2%) in the 1-lepton (2-lepton) channel, and is taken directly from the MC predictions.
Table 1
Predicted and observed number of events in all signal regions together with their statistical and systematic uncertainties. No values are shown for the W + jets contributions in the 2-lepton signal regions as these are included in the fake contributions. The expected number of events for two signal scenarios, both with a chargino mass of 140 GeV, are also shown. The observed and expected upper limits at 95% confidence-level on $\sigma_{\text{vis}} = \sigma \times A \times \epsilon$ are also given.

<table>
<thead>
<tr>
<th>Process</th>
<th>Number of events</th>
<th>1LSR</th>
<th>2LSR1</th>
<th>2LSR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>$24 \pm 3 \pm 5$</td>
<td>$89 \pm 6 \pm 10$</td>
<td>$36 \pm 2 \pm 5$</td>
<td></td>
</tr>
<tr>
<td>W + jets</td>
<td>$6 \pm 1 \pm 2$</td>
<td>$11 \pm 4 \pm 3$</td>
<td>$3 \pm 1 \pm 1$</td>
<td></td>
</tr>
<tr>
<td>Z + jets</td>
<td>$0.5 \pm 0.3 \pm 0.3$</td>
<td>$12 \pm 5 \pm 11$</td>
<td>$6.4 \pm 4 \pm 4$</td>
<td></td>
</tr>
<tr>
<td>Fake leptons</td>
<td>$7 \pm 1 \pm 2$</td>
<td>$2.7 \pm 0.9 \pm 0.7$</td>
<td>$0.9 \pm 0.2 \pm 0.5$</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>$0.3 \pm 0.1 \pm 0.1$</td>
<td>$115 \pm 8 \pm 15$</td>
<td>$46 \pm 4 \pm 7$</td>
<td></td>
</tr>
<tr>
<td>Total SM</td>
<td>$38 \pm 3 \pm 7$</td>
<td>$37 \pm 6 \pm 3$</td>
<td>$58 \pm 9 \pm 5$</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>50</td>
<td>123</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>$m_{t_\chi} = 170$ GeV, $m_{\tilde{\chi}} = 70$ GeV</td>
<td>$26 \pm 2 \pm 6$</td>
<td>$57 \pm 3 \pm 6$</td>
<td>$36 \pm 2 \pm 4$</td>
<td></td>
</tr>
<tr>
<td>$m_{t_\chi} = 180$ GeV, $m_{\tilde{\chi}} = 20$ GeV</td>
<td>$20 \pm 2 \pm 4$</td>
<td>$41 \pm 3 \pm 5$</td>
<td>$27 \pm 2 \pm 3$</td>
<td></td>
</tr>
</tbody>
</table>

95% CL upper limits

| σ_{vis} (expected) [fb] | 4.2 | 9.3 | 4.6 |
| σ_{vis} (observed) [fb] | 6.1 | 11 | 5.2 |

7. Systematic uncertainties

The effect of the jet energy scale (JES) uncertainty on the final event yield is calculated by shifting the p_T of all jets up and down by p_T and η dependent factors, which are 5–3% for jets with p_T of 20–60 GeV. Repeating the analysis with these p_T shifts applied to the MC simulation leads to variations on the final background estimate of 6–10% depending on the signal region. The uncertainty due to the jet energy resolution (JER) is calculated by smearing the p_T of each jet by factors depending on the jet p_T and η. The smearing on a single jet is typically around 10%, and results in an overall uncertainty of 1–10%. Systematic uncertainties in the lepton identification efficiency amount to 1%. The uncertainty on the E_T^{miss} due to the energy scale of the clusters in the calorimeter not associated with jets and electrons is evaluated using the method described in Ref. [49], extended to include pile-up uncertainties. The effect is up to 9% on the total background estimate depending on the signal region. The uncertainty due to b-tagging is evaluated by varying the b-tagging efficiency and mis-tag rates within the uncertainties of the measured values [50–52], giving an effect of 1% in all signal regions. The uncertainty associated with pile-up re-weighting is evaluated by varying the number of interactions per bunch-crossing by 10%. The overall effect on the predicted background yield is at most 3%.

Uncertainties related to the overall normalisation of the top background are reduced compared to estimates based purely on MC simulation by employing the method described in Section 6. Residual uncertainties related to the shape of the predicted kinematic distributions are described in the following. Theoretical uncertainties on the $t\bar{t}$ background due to the choice of generator are evaluated by comparing event yields from MC@NLO to those from POWHEG with the same parton shower model (HERWIG). The parton shower uncertainties are then calculated by comparing samples generated with the HERWIG and PYTHIA parton shower models, with the same generator (POWHEG). The uncertainty due to ISR/FSR is assessed using AcerMC samples with variations of PYTHIA parameters related to the ISR branching phase-space and the FSR low-p_T cut-off. These variations are chosen to produce jet activity in $t\bar{t}$ events that is consistent with the data [53,54]. The total uncertainty on the $t\bar{t}$ estimate due to these effects amounts to 10–15%. Uncertainties due to the PDF choice and errors are found to be negligible.

In the 1-lepton channel, the theoretical uncertainty in the W estimate due to variations of the factorisation, renormalisation and matching scales is found to be 15%. Similar uncertainties on the Z/γ^* contribution in the 2-lepton channel are 9% (2%) in 2LSR1 (2LSR2).

Uncertainties on the data-driven background from fake leptons arise from the lepton fake rate determination and from the definition of the fake-enriched control regions. The effect is between 45–84% of the fake contribution.

Theoretical uncertainties on the stop pair production cross section are taken from an envelope of predictions which use different PDF sets and factorisation and renormalisation scales, as described in Ref. [55]. Signal uncertainties on JES (10–30%), JER (1–30%) and b-tagging (5–10%) vary depending on the particle masses and the signal channel considered. They are treated as fully correlated with their respective background uncertainties. Finally, the luminosity uncertainty is 3.9%.

8. Results and interpretation

Table 1 shows the observed number of events in data and the SM predictions for the signal regions of the 1- and 2-lepton channels. In all SRs, the data are in good agreement with the SM expectations.

The results are translated into 95% confidence-level (CL) upper limits on contributions from new physics using the CL$_s$ prescription [56] with a profile log-likelihood ratio as a test statistic [57], where the parameter to describe the non-SM signal strength is constrained to be non-negative in the fit. As shown in Table 1, the three signal regions are used to set limits on the visible cross section of the new physics models, $\sigma_{\text{vis}} = \sigma \times A \times \epsilon$, where σ is the total production cross section for any non-SM signal, A is the acceptance defined by the fraction of events passing the geometric and kinematic selections at particle level, and ϵ is the detector reconstruction, identification and trigger efficiency. Results are interpreted in the MSSM scenarios described in Section 1. In order to maximise the sensitivity of the analysis, results from the 1- and 2-lepton channels are combined using the following method: for each signal point, the 2-lepton signal region (2LSR1 or 2LSR2) which yields the lowest expected CL$_s$ value is chosen. This region is then statistically combined with the 1LSR by multiplying the respective likelihood functions. Correlated sys-
tematic uncertainties are treated as common between the two channels, and a common signal strength parameter μ is applied. The effect of signal contamination in the control regions (typically 5–10% depending on the signal point) is also considered. In the gaugino universality scenario, shown in Fig. 2(a), stop masses between 120–167 GeV are excluded for $m_{\tilde{\chi}^0_1} = 55$ GeV. The sensitivity of the search is also evaluated for a stop mass of 180 GeV in the chargino–neutralino mass plane, as shown in Fig. 2(b). In such a scenario, where the stop–top mass difference is small, a region around $m_{\tilde{\chi}^0_1} = 70$ GeV, $m_{\tilde{\chi}^\pm_1} = 140$ GeV is still excluded. The scenario with $m_{\tilde{\chi}^0_1} = 106$ GeV is shown in Fig. 2(c), where stop masses are excluded between 123–167 GeV for $m_{\tilde{\chi}^0_1} = 55$ GeV. Neutralino masses of 70 GeV are excluded for $125 < m_{\tilde{t}_1} < 155$ GeV.

9. Conclusions

A search has been performed for top squarks with masses near to, or less than, the top quark mass. Good agreement is observed between data and the SM predictions in all channels. The results allow limits to be set on the stop mass, assuming that $\tilde{t}_1 \rightarrow \tilde{\chi}^0_1 b$ is the only allowed decay mode, followed by $\tilde{\chi}^\pm_1 \rightarrow W^{(*)} \tilde{\chi}^0_1$. For
scenarios in which $m_{\tilde{\chi}_1^+} \approx 2 \times m_{\tilde{\chi}_1^0}$, stop masses between 120–167 GeV are excluded for $m_{\tilde{\chi}_1^0} = 55$ GeV. For a fixed stop mass of 180 GeV, a region around $m_{\tilde{\chi}_1^0} = 70$ GeV, $m_{\tilde{\chi}_1^+} = 140$ GeV is excluded. In the scenario where $m_{\tilde{\chi}_1^0} = 106$ GeV, neutralino masses of 70 GeV are excluded for $125 < m_t < 155$ GeV, significantly extending previous limits in such scenarios.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SStC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CF, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNF, DSNRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgania; BMBF, DFG, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNI, Sweden; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and SRC, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

ATLAS Collaboration

29

33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Physics Department, Shanghai Jiao Tong University, Shanghai, China

34 Laboratoire de Physique Corpusculaire, Clermont Université et Université Blaise Pascal et CNRS/IN2P3, Clermont-Ferrand, France

35 Nevis Laboratory, Columbia University, Irvington, NY, United States

36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

37 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavacata di Rende, Italy

38 AICH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

40 Physics Department, Southern Methodist University, Dallas, TX, United States

41 Physics Department, University of Texas at Dallas, Richardson, TX, United States

42 DESY, Hamburg and Zeuthen, Germany

43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

44 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany

45 Department of Physics, Duke University, Durham, NC, United States

46 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

47 INFN Laboratori Nazionali di Frascati, Frascati, Italy

48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany

49 Section de Physique, Université de Genève, Geneva, Switzerland

50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy

51 (c) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (d) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

53 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France

56 Department of Physics, Hampton University, Hampton, VA, United States

57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States

58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZEI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

60 Department of Physics, Indiana University, Bloomington, IN, United States

61 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

62 University of Iowa, Iowa City, IA, United States

63 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States

64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

65 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

66 Graduate School of Science, Kobe University, Kobe, Japan

67 Faculty of Science, Kyoto University, Kyoto, Japan

68 Kyoto University of Education, Kyoto, Japan

69 Department of Physics, Kyushu University, Fukuoka, Japan

70 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

71 Physics Department, Lancaster University, Lancaster, United Kingdom

72 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy

73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

74 Department of Physics, Joliot-Curie Institute and University of Ljubljana, Ljubljana, Slovenia

75 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom

76 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom

77 Department of Physics and Astronomy, University College London, London, United Kingdom

78 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

79 Fysiska institutionen, Lunds universitet, Lund, Sweden

80 Dipartimento di Fisica Teorica, 15, Universitat Autònoma de Barcelona, Barcelona, Spain

81 Institut für Physik, Universität Mainz, Mainz, Germany

82 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

83 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

84 Department of Physics, University of Massachusetts, Amherst, MA, United States

85 Department of Physics, McGill University, Montreal, QC, Canada

86 School of Physics, University of Melbourne, Victoria, Australia

87 Department of Physics, The University of Michigan, Ann Arbor, MI, United States

88 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States

89 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy

90 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus

91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus

92 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States

93 Group of Particle Physics, University of Montreal, Montreal, QC, Canada

94 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia

95 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

96 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia

97 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

98 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

99 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

100 Nagasaki Institute of Applied Science, Nagasaki, Japan

101 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan

102 (a) INFN Sezione di Napoli; (b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy

103 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States

104 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

105 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

106 Department of Physics, Northern Illinois University, Dekalb, IL, United States

107 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

108 Department of Physics, New York University, New York, NY, United States

109 Ohio State University, Columbus, OH, United States