Gamma-band synchronization in the neocortex: novel analysis methods and their application to sensory and motivational systems

Vinck, M.A.

Citation for published version (APA):
Vinck, M. A. (2013). Gamma-band synchronization in the neocortex: novel analysis methods and their application to sensory and motivational systems Boxpress

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 **General introduction**
 1.0 Introduction ... 4
 1.1 Mechanisms and functions of gamma-band synchronization 6
 1.2 Anatomy and function of the orbitofrontal cortex (OFC) 25
 1.3 Anatomy and function of the barrel cortex 33
 1.4 Aims of thesis .. 35
 1.5 Questions addressed in the experimental chapters 36

2 **Improved measures of phase-coupling between spikes and the Local Field Potential**
 2.0 Introduction ... 41
 2.1 Definitions of conventional indices 43
 2.2 The problem of statistical dependence between spike-LFP phases 49
 2.3 Effect of dependence between spike count and phase 54
 2.4 Relationship between the point-field PPC \hat{P}_1 and the spike train to field PPC 58
 2.5 Discussion ... 64

3 **An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias**
 3.0 Introduction ... 71
 3.1 The linear mixture model 72
 3.2 Existing indices of phase-synchronization 73
 3.3 The weighted phase-lag index 75
 3.4 Volume-conducting correlated sources of interest 75
 3.5 Addition of uncorrelated, volume-conducted noise sources 77
 3.6 Detecting changes in the coherency between sources’ activities 82
3.7 The problem of sample-size bias .. 86
3.8 Comparison between the statistical power of the squared PLI and WPLI esti-
mators ... 93
3.9 Application to experimental LFP data: Methods 94
3.10 Application to experimental LFP data: Results 95
3.11 Discussion ... 99

4 The impact of noise and instantaneous mixing on measures of Granger causal flux direction ... 107
4.0 Introduction .. 109
4.1 Theoretical considerations .. 109
4.2 Simulations ... 113
4.3 Discussion .. 116
4.4 Appendix A: Computational details for figures 117

5 Estimation of the entropy based on its polynomial representation .. 119
5.0 Introduction .. 121
5.1 Problem of entropy estimation .. 122
5.2 Polynomial representation of the entropy function 122
5.3 An unbiased estimator of the polynomial approximation function ... 123
5.4 A combined estimator with Bayesian estimation of the remainder function ... 124
5.5 Comparison of bias and error of entropy estimators 128
5.6 Discussion .. 132
5.7 Acknowledgements ... 135

6 Gamma oscillations in barrel cortex: cell-class specific synchronization and relation with visual cortex and medial temporal lobe system 137
6.0 Introduction .. 139
6.1 Results .. 140
6.2 Discussion .. 156
6.3 Material and Methods ... 160

7 Learning-associated gamma-band phase-locking of action-outcome selective neurons in orbitofrontal cortex ... 165
7.0 Introduction .. 167
7.1 Material and Methods ... 168
7.2 Results .. 175
7.3 Discussion .. 189
7.4 Supplemental Material ... 192

8 NMDA receptors control cue-outcome selectivity and plasticity of orbitofrontal firing patterns during associative stimulus-reward learning ... 197
8.0 Introduction .. 199
8.1 Experimental Procedures .. 200
8.2 Results ... 210
8.3 Discussion .. 220

9 General discussion .. 227
 9.0 Summary of results .. 228
 9.1 Discussion on statistical methods 230
 9.2 Discussion on experimental chapters 235

10 Nederlandse samenvatting 245

11 References .. 251

12 List of publications .. 289