Modelling and simulating the dynamics of in-stent restenosis in porcine coronary arteries

Tahir, H.

Citation for published version (APA):
Publications

Journal Papers:


• Tahir H, Bona-Casas C, Narracott A, Gunn J, Lawford PV, Hoekstra AG Endothelial repair process and its relevance to longitudinal neointimal tissue patterns: Comparing histology with in-silico modelling. (Submitted to cardiovascular research, 2013)


• Tahir H, Niculescu I, Bona-Casas, C, Hoekstra AG, Merks R.M.H. Modelling smooth muscle cells migration and proliferation after vascular injury: A Cellular Potts Model of in-stent restenosis. (To be submitted)

• 3D ISR work (To be submitted)

Conference Abstracts:

• Tahir H, Hoekstra AG, Lorenz E, Lawford PV, Hose DR, Gunn J, Evans DJW. Simulating the dynamics of in-stent restenosis: a multiscale modelling study, 6th international symposium on Biomechanics in Vascular Biology and Cardiovascular Disease, Rotterdam, The Netherlands, April 2011.

• Tahir, H, Bona-Casas, C, Hoekstra, AG. Modelling In-Stent Restenosis: morphological differences in the tissue patterns based on the origin of endothelium recovery, 8th international symposium on Biomechanics in Vascular Biology and Cardiovascular Disease, Rotterdam, The Netherlands, April 2013.


• Tahir, H, Bona-Casas, C, Hoekstra, AG. In-stent restenosis patterns based on the origin of endothelium recovery. European Society of Biomechanics (ESB), Patras, Greece, August 2013.

• Bona-Casas C, Borgdorff J, Tahir H, Hoekstra, AG., First results on a 3D model for in-stent restenosis. European Society of Biomechanics (ESB), Patras, Greece, August 2013.