Modelling and simulating the dynamics of in-stent restenosis in porcine coronary arteries

Tahir, H.

Citation for published version (APA):
References

References


predictors, treatment and prevention. European Heart
predict in-stent restenosis? Journal of Nuclear Medicine 45:
300-301.
strut design. Annals of biomedical engineering 37: 1483-
1494.
63. Kastrati A, Dirschinger J, Boekstegers P, Elezi S, Schühlen H,
et al. (2000) Influence of stent design on 1-year outcome
after coronary stent placement: A randomized comparison
of five stent types in 1,147 unselected patients. Catheterization
and Cardiovascular Interventions 50: 290-297.
64. Duraiswamy N, Schoephoerster RT, Moreno MR, Moore Jr JE
(2007) Stented artery flow patterns and their effects on
influence of stent strut thickness using the finite element
method: implications for vascular injury and in-stent
restenosis. Medical & biological engineering & computing
47: 385-393.
aspects of coronary artery stents: A state-of-the-art
review. Journal of Biomedical Materials Research Part B:
Applied Biomaterials 86: 569-590.
68. Schwartz RS, Holmes DR (1994) Pigs, dogs, baboons, and
man: lessons for stenting from animal studies. Journal of
Interventional Cardiology 7: 355-368.
(2002) Coronary artery stretch versus deep injury in the
al. (1996) A proliferation analysis of arterial neointimal
hyperplasia: lessons for antiproliferative restenosis
al. (2003) Intracoronary stenting and angiographic results:
strut thickness effect on restenosis outcome (ISAR-
STEREO-2) trial. Journal of the American College of
Cardiology 41: 1283-1288.
(2002) In-stent restenosis in small coronary arteries
Impact of strut thickness. Journal of the American College
of Cardiology 40: 403-409.


145. Tsuzuki M (2009) Bone marrow-derived cells are not involved in reendothelialized endothelium as endothelial cells after simple endothelial denudation in mice. Basic research in cardiology 104: 601-611.


