Measurement of charged-particle event shape variables in inclusive $\sqrt{s} = 7\text{TeV}$ proton-proton interactions with the ATLAS detector

DOI
10.1103/PhysRevD.88.032004

Publication date
2013

Document Version
Final published version

Published in
Physical Review D. Particles, Fields, Gravitation, and Cosmology

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
The measurement of charged-particle event shape variables is presented in inclusive inelastic pp collisions at a center-of-mass energy of 7 TeV using the ATLAS detector at the LHC. The observables studied are the transverse thrust, thrust minor, and transverse sphericity, each defined using the final-state charged particles’ momentum components perpendicular to the beam direction. Events with at least six charged particles are selected by a minimum-bias trigger. In addition to the differential distributions, the evolution of each event shape variable as a function of the leading charged-particle transverse momentum, charged-particle multiplicity, and summed transverse momentum is presented. Predictions from several Monte Carlo models show significant deviations from data.

I. INTRODUCTION

Event shape variables describe the structure of hadronic events and the properties of their energy flow. In this analysis, three event shape observables [1,2] are measured: the transverse thrust, the thrust minor, and the transverse sphericity, each built from the momenta of charged particles using tracking information from proton-proton collisions at $\sqrt{s} = 7$ TeV collected with the ATLAS detector [3]. Event shape observables are among the simplest experimentally measured quantities and, depending on the events being considered, may have sensitivity to both the perturbative and nonperturbative aspects of quantum chromodynamics (QCD).

Event shapes in hadronic collisions were investigated first at the Intersecting Storage Rings [4] and at the SppS [5,6] at CERN to examine the emergence of jets, and later at Tevatron [7] to study the dependence of the event shape observables on the transverse energy of the leading jet and on contributions from the underlying event. At the Large Hadron Collider (LHC), event shape observables were recently studied in inclusive interactions [8] and multijet events [9,10]. In $e^+e^−$ and ep deep-inelastic scattering experiments, the study of the energy flow in hadronic final states has allowed tests of the predictions of perturbative QCD, and the extraction of a precise value for the strong coupling constant α_s [11–17].

The study of event shape observables in inclusive inelastic collisions plays an important role in understanding soft-QCD processes at LHC center-of-mass energies [18], where “soft” refers to interactions with low momentum transfer between the scattering particles. Soft interactions cannot be reliably calculated from theory and are thus generally described by phenomenological models, usually implemented in Monte Carlo (MC) event generators. These models contain many parameters whose values are *a priori* unknown and thus need to be constrained by measurements. Inclusive and semi-inclusive observables sensitive to soft-QCD processes have been measured at the LHC by the ATLAS [19–21], CMS [22,23], and ALICE [24,25] collaborations. The measurements presented in this paper can further constrain the event generator models, which encapsulate our understanding of these soft processes.

In this analysis, the event shape observables are constructed from six or more primary charged particles in the pseudorapidity range $|\eta| < 2.5$ and with transverse momentum $p_T > 0.5$ GeV [26]. Primary charged particles are defined as those with a mean proper lifetime $\tau > 30$ ps, produced either directly in the pp interaction or from the subsequent decay of particles with a shorter lifetime. The particle level refers to particles as they emerge from the proton–proton interaction. The detector level corresponds to tracks as measured after interaction with the detector material, and includes the detector response. The results are corrected for detector effects, using simulation, to obtain distributions of the event shape variables defined at particle level which can be directly compared to MC models.

This paper is organized as follows: Section II defines the event shape variables; the detector is described in Sec. III; Sec. IV discusses the MC models used in this analysis; Secs. V and VI respectively describe the event selections and background contributions. The correction of the data back to particle level and estimation of the systematic uncertainties are described in Secs. VII and VIII; the results are discussed in Sec. IX and finally the conclusions are presented in Sec. X.
II. EVENT SHAPE OBSERVABLES

In particle collisions, event shape observables describe the geometric properties of the energy flow in the final state. A single event shape variable can distinguish in a continuous way between configurations in which all the particles are flowing (forward and backward) along a single axis and configurations where the energy is distributed uniformly over the 4π solid angle. If defined as a ratio of measured quantities, the corresponding systematic uncertainties may be small.

In hadron collisions, where the center-of-mass frame of the interaction is usually boosted along the beam axis, event shape observables are often defined in terms of the transverse momenta, which are Lorentz invariant under such boosts. Different formulations of event shape observables are possible; the most intuitive is to calculate the event shape from all particles in an event. These are denoted by directly global event shapes [1,2]. In hadron collider experiments, it is not usually possible to detect all particles in an event due to the finite detector acceptance, limited at small scattering angles by the presence of the beam pipe. Event shapes which include only particles from a restricted phase space in pseudorapidity, η, are called central event shapes; in this analysis charged particles within the range $|\eta| < 2.5$ are used. These central event shapes are nevertheless sensitive to nonperturbative effects at low momentum transfer and provide useful information about the event structure for development of models of proton–proton collisions. The thrust is one of the most widely used event shape variables. The transverse thrust for a given event is defined as

$$T_\perp = \max_{\hat{n}} \frac{\sum_i |\vec{p}_{T,i} \cdot \hat{n}|}{\sum_i |\vec{p}_{T,i}|},$$

where the sum is performed over the transverse momenta $\vec{p}_{T,i}$ of all charged particles in the event. The thrust axis \hat{n}_T is the unit vector \hat{n} that maximizes the ratio in Eq. (1). The transverse thrust ranges from $T_\perp = 1$ for a perfectly balanced, pencil-like, dijet topology to $T_\perp = 1 - T_\perp$ for a circularly symmetric distribution of particles in the transverse plane, where ψ is the azimuthal angle between the thrust axis and each respective particle. It is convenient to define the complement of T_\perp, $\tau_\perp = 1 - T_\perp$, to match the behavior of many event shape variables, which vanish in a balanced dijet topology.

The thrust axis \hat{n}_T and the beam axis \hat{z} define the event plane. The transverse thrust minor measures the out-of-event-plane energy flow:

$$T_M = \frac{\sum_i |\vec{p}_{T,i} \cdot \hat{n}_m|}{\sum_i |\vec{p}_{T,i}|},$$

$$\hat{n}_m = \hat{n}_T \times \hat{z}.$$

The transverse thrust minor is 0 for a pencil-like event in azimuth and $2/\pi$ for an isotropic event.

Another widely used event shape variable is the sphericity, S, which describes the event energy flow based on the momentum tensor,

$$S_{\alpha\beta} = \frac{\sum_i p_{\alpha,i} p_{\beta,i}}{\sum_i |\vec{p}_{T,i}|^2},$$

where the Greek indices represent the x, y, and z components of the momentum of the particle i. The sphericity of the event is defined in terms of the two smallest eigenvalues of this tensor, λ_2 and λ_3:

$$S = \frac{3}{2}(\lambda_2 + \lambda_3).$$

The sphericity has values between 0 and 1, where a balanced dijet event corresponds to $S = 0$ and an isotropic event to $S = 1$. Sphericity is essentially a measure of the summed p_T^2 with respect to the event axis [27,28], where the event axis is defined as the line passing through the interaction point and oriented along the eigenvector associated with the largest eigenvalue, λ_1. Similarly to transverse thrust, the transverse sphericity, S_\perp, is defined in terms of the transverse components only:

$$S^{xy} = \frac{1}{\lambda_1^{xy} + \lambda_2^{xy}} \sum_i \frac{p_{x,i}^2}{|\vec{p}_{T,i}|^2} p_{x,i} p_{y,i},$$

and

$$S_\perp = \frac{2\lambda_3^{xy}}{\lambda_1^{xy} + \lambda_2^{xy}},$$

where $\lambda_2^{xy} < \lambda_1^{xy}$ are the two eigenvalues of S^{xy}.

The following distributions are measured:

(i) normalized distributions: $(1/N_{\text{ev}})dN_{\text{ev}}/dS_\perp$,

(ii) average values: $\langle S^{xy}_1 \rangle$, $\langle T_\perp^2 \rangle$ and $\langle S_\perp \rangle$ as functions of N_{ch} and $\sum_p T_\perp$;

where N_{ev} is the number of events with six or more charged particles within the selected kinematic range; N_{ch} is the number of charged particles in an event; $\sum_p T_\perp$ is the scalar sum of the transverse momenta of the charged particles in the event. The event shape observables S^{ch}_\perp, T^{ch}_\perp, and S^{ch}_\perp are defined as above, with the superscript indicating that they are constructed from charged particles. The three normalized differential distributions are studied separately for

(i) $0.5 \text{ GeV} < p_{T,\text{lead}}^{\text{ch}} \leq 2.5 \text{ GeV}$,

(ii) $2.5 \text{ GeV} < p_{T,\text{lead}}^{\text{ch}} \leq 5.0 \text{ GeV}$,

(iii) $5.0 \text{ GeV} < p_{T,\text{lead}}^{\text{ch}} \leq 7.5 \text{ GeV}$,

(iv) $7.5 \text{ GeV} < p_{T,\text{lead}}^{\text{ch}} \leq 10.0 \text{ GeV}$,

(v) $p_{T,\text{lead}}^{\text{ch}} > 10 \text{ GeV}$,

where $p_{T,\text{lead}}^{\text{ch}}$ is the transverse momentum of the highest p_T (leading) charged particle.
TABLE I. Details of the MC models used. It is emphasized that the tunes use data from different experiments to constrain different processes, but for brevity only the data which had the most weight in each specific tune are shown. Here “LHC” indicates data taken at \(\sqrt{s} = 7 \text{ TeV} \), although \(\sqrt{s} = 900 \text{ GeV} \) data were also included in ATLAS tunes, with much smaller weight. Some tunes are focused on describing the minimum-bias (MB) distributions better, while the rest are tuned to describe the underlying event (UE) distributions, as indicated. Authors indicates a tune performed by the MC developers.

<table>
<thead>
<tr>
<th>Generator</th>
<th>Version</th>
<th>Tune</th>
<th>PDF</th>
<th>Focus</th>
<th>Data</th>
<th>From</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYTHIA6</td>
<td>6.425</td>
<td>AMBT1 [34]</td>
<td>MRST LO** [35]</td>
<td>MB</td>
<td>Early LHC</td>
<td>ATLAS</td>
</tr>
<tr>
<td>PYTHIA6</td>
<td>6.421</td>
<td>DW [38]</td>
<td>CTEQ5L [39]</td>
<td>UE</td>
<td>Tevatron</td>
<td>CDF</td>
</tr>
<tr>
<td>PYTHIA6</td>
<td>6.425</td>
<td>ZI [40]</td>
<td>CTEQ5L</td>
<td>UE</td>
<td>LHC</td>
<td>CMS</td>
</tr>
<tr>
<td>HERWIG++</td>
<td>2.5.1</td>
<td>UE7-2 [43]</td>
<td>MRST LO**</td>
<td>UE</td>
<td>LHC</td>
<td>Authors</td>
</tr>
<tr>
<td>HERWIG++</td>
<td>2.5.0</td>
<td>Default</td>
<td>MRST LO**</td>
<td>UE</td>
<td>LHC</td>
<td>Authors</td>
</tr>
</tbody>
</table>

III. THE ATLAS DETECTOR

The ATLAS detector [3] covers almost the full solid angle around the collision point with layers of tracking detectors, calorimeters, and muon chambers. The components that are relevant for this analysis are the tracking detectors. The inner tracking detector has full coverage in azimuthal angle \(\phi \) and covers the pseudorapidity range \(|\eta| < 2.5 \). It consists of a silicon pixel detector (pixel), a semiconductor tracker (SCT), and for \(|\eta| < 2.0 \), a straw-tube transition radiation tracker. These detectors, immersed in a 2 T axial magnetic field, are located at a radial distance from the beam line of 50.5–150 mm, 299–560 mm, and 563–1066 mm, respectively. They provide position resolutions typically of 10 \(\mu \text{m} \), 17 \(\mu \text{m} \), and 130 \(\mu \text{m} \) for the \(r-\phi \) coordinate, and of 115 \(\mu \text{m} \) and 580 \(\mu \text{m} \) for the \(z \) coordinate in the case of the pixel and SCT detectors.

The measurements presented here use events triggered by the minimum-bias trigger scintillator (MBTS) system [29]. The MBTS detectors are mounted at each end of the tracking detector at \(z = \pm 3.56 \text{ m} \) and are segmented into eight sectors in azimuth and two concentric rings in pseudorapidity \((2.09 < |\eta| < 2.82 \text{ and } 2.82 < |\eta| < 3.84) \). The MBTS trigger was configured to require at least one hit above threshold from either side of the detector in coincidence with a fast beam-pickup device ensuring that the event is compatible with a bunch crossing.

IV. MONTE CARLO MODELS

Monte Carlo (MC) event samples are used to compute the detector acceptance and reconstruction efficiency, determine background contributions, correct the measurements for detector effects, and to calculate systematic uncertainties. Finally, different phenomenological models implemented in the MC generators are compared to the data corrected to the particle level.

The PYTHIA6 [30], PYTHIA8 [31], and HERWIG++ [32,33] event generators were used to produce the simulated event samples for the analysis. These generators implement leading-logarithm parton shower models matched to leading-order matrix element calculations with different hadronization models and orderings for the parton shower. The PYTHIA 6 and PYTHIA 8 generators use a hadronization model based upon fragmentation of color strings and a \(p_T \)-ordered or virtuality-ordered shower, whereas the HERWIG++ generator implements a cluster hadronization scheme with parton showering ordered by emission angle. The PYTHIA8 generator uses a multiparton interaction (MPI) model interleaved with both initial-state and final-state radiation, and all three processes compete against each other for emission phase space in the resulting evolution. The HERWIG++ UE7-2 tune employs color reconnection. Different settings of model parameters, tuned to reproduce the existing experimental data, were used for the MC generators. Table I shows the different MC models used in this paper.

The reference model for this analysis is chosen to be PYTHIA6 AMBT1. Samples generated with this tune were passed through the ATLAS detector and trigger simulations [44] based on GEANT4 [45] and then reconstructed and analyzed using the same procedure and software that are used for the data. Reconstructed MC events are then used to correct the data for detector effects. The sample generated with an older version of HERWIG++, 2.5.0 with no additional tuning, was also passed through the full detector simulation and the analysis chain for systematic studies of unfolding corrections.

V. EVENT AND TRACK SELECTION

The data used for the analysis presented here were collected in April 2010 with a minimal prescale factor for the minimum-bias trigger. The only further requirement for selecting the data sample is that the MBTS trigger and all inner detector subsystems were at nominal operating conditions. In each event the reconstructed vertices are ordered by the \(\sum p_T^2 \) over the tracks assigned to each vertex, and the vertex with the highest \(\sum p_T^2 \) is taken as the primary interaction vertex of the event. To reduce the
contribution from beam-related backgrounds and decays of long-lived particles, and to minimize the systematic uncertainties, events are rejected if they contain any other vertex reconstructed with four or more tracks.

If there is only one vertex in the event, or if any additional vertex in the event has three or fewer tracks, all tracks from the event that pass the track selection (described below) are retained. After this selection, the fraction of events with more than one proton–proton interaction in the same bunch crossing (referred to as pileup) is found to be approximately 0.1% and this residual contribution is therefore neglected. The average number of pp interactions per bunch crossing during this data-taking period was less than 0.15, indicating a negligible pileup contribution. The MC samples used have no pileup contribution.

Events are required to contain at least six tracks that fulfill the following criteria:

(i) $p_T > 0.5$ GeV;
(ii) $|\eta| < 2.5$;
(iii) a minimum of one pixel and six SCT hits;
(iv) a hit in the innermost pixel layer, if the corresponding pixel module was active;
(v) transverse and longitudinal impact parameters with respect to the primary vertex, $|d_0| < 1.5$ mm and $|z_0| \sin \theta < 1.5$ mm;
(vi) a track-fit probability $\chi^2 > 0.01$ for tracks with $p_T > 10$ GeV in order to remove mismeasured tracks.

Tracks with $p_T > 0.5$ GeV are less prone than lower-p_T tracks to inefficiencies and systematic uncertainties resulting from interactions with the material inside the tracking volume.

After event selection, the analysis is based on approximately 17×10^6 events containing approximately 300×10^6 tracks. For the PYTHIA6 generator and for the PYTHIA8 generator, which has a harder diffractive model than the former, the contribution to the event shape observables from diffractive events is negligible when requiring six or more tracks in the event.

The p_T distributions of all tracks and of the leading track in the selected event are shown in Fig. 1. The fraction of events in each p_T^{lead} bin is shown in Table II.

VI. BACKGROUND CONTRIBUTIONS

A. Backgrounds

Backgrounds comprise beam-induced events, due to beam-gas and beam-material interactions, as well as non-beam backgrounds from cosmic-ray interactions and detector noise. The contribution of these background events remaining after the event selection is estimated using the number of pixel hits not associated with reconstructed tracks. This multiplicity includes unassigned hits from low-p_T looping tracks, but is dominated at higher multiplicities by hits from charged particles produced in inelastic interactions of protons with the residual gas inside the beam pipe. The vertex requirement removes most of the beam background events and the residual contribution is below 0.1%. As the level of background is very low, no explicit background subtraction is performed.

B. Secondary track fraction

The primary charged-particle multiplicities are measured from selected tracks after correcting for the fractions of secondary and poorly reconstructed tracks in the sample. The potential background from fake tracks is found from MC studies to be less than 0.01% [19].

Nonprimary tracks arise predominantly from hadronic interactions, photon conversions to positron–electron pairs in the detector material, and decays of long-lived particles. For $p_T > 0.5$ GeV the contribution from photon conversions is small. The systematic uncertainty from secondary decays is included in the uncertainties associated with the tracking performance.

VII. CORRECTION TO PARTICLE LEVEL

To facilitate comparison with theoretical predictions and other measurements, the event shape distributions for charged particles are presented at particle level, after

TABLE II. Percentage of events in each p_T^{lead} bin.

<table>
<thead>
<tr>
<th>p_T^{lead} bin [GeV]</th>
<th>Percentage of events</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5–2.5</td>
<td>68.45</td>
</tr>
<tr>
<td>2.5–5.0</td>
<td>28.20</td>
</tr>
<tr>
<td>5.0–7.5</td>
<td>2.65</td>
</tr>
<tr>
<td>7.5–10.0</td>
<td>0.47</td>
</tr>
<tr>
<td>>10.0</td>
<td>0.23</td>
</tr>
</tbody>
</table>

![FIG. 1 (color online). The distribution of the transverse momentum of all tracks and of the leading transverse momentum track in data at detector level. The uncertainties shown are statistical. Where not visible, the statistical error is smaller than the marker size.](image-url)
correction for trigger and event selection efficiencies, as well as detector resolution effects. A two-step correction procedure is used: first, corrections for event selection efficiency are applied, followed by an additional bin-by-bin correction to account for tracking inefficiencies, possible bin migrations, and any remaining detector effects.

A. Event-level correction

Trigger and vertexing efficiencies are taken from a previous analysis using the same data sample [19]. The efficiency of the MBTS trigger is determined from data using a control trigger and found to be fully efficient for the analysis requirement of at least six tracks. The vertex reconstruction efficiency is also measured in data by taking the ratio of the number of triggered events with a reconstructed vertex to the total number of triggered events. This ratio is also found to be very close to unity. The total correction applied to account for events lost due to the trigger and vertex requirements is less than 1% and it varies very weakly with the number of tracks associated with the primary vertex.

B. Bin-by-bin correction

The event shape observables presented here are sensitive to changes in the configuration of the selected tracks. Applying average track efficiencies to individual tracks on a track-by-track basis and reweighting tracks distorts the event shape distribution. A more robust approach is to apply bin-by-bin corrections to find the event shape distribution at particle level. Such a bin-by-bin correction is applied to all distributions after applying the event-level efficiency corrections described above.

The correction factors C_{bin} are evaluated separately in each bin for each event shape observable,

$$C_{\text{bin}} = \frac{V_{\text{Gen}}}{V_{\text{Reco,eff, corr}}}$$

where V_{Gen} and $V_{\text{Reco,eff, corr}}$ represent the generator-level MC value of the bin content and the reconstructed MC value after applying the event-level efficiency corrections for each bin, respectively. The corrected value of the bin content for an observable is found by multiplying the measured bin content by the corresponding correction factor. The bin sizes are chosen to be consistent with the resolution of the correction procedure.

The correction factors are calculated using the two different models implemented in PYTHIA6 AMBT1 and HERWIG++. This correction accounts for bin-by-bin migrations and tracking inefficiencies. For each distribution, the unfolding factor is typically within ±10% of unity for most of the range. It is very close to unity for the average values, except at the highest $\sum p_T$. The difference from unity becomes more pronounced at the statistically limited edges of the distributions. The correction factors for the inclusive

![FIG. 2 (color online). The generated and reconstructed MC distributions of the complement of transverse thrust, the thrust minor, and the transverse sphericity are shown in the top part of each plot for the lowest p_T^{had} range. The correction factors are shown in the lower parts for PYTHIA6 AMBT1 and the HERWIG++ default tune. The data are shown with only the efficiency corrections and statistical uncertainties. Where not visible, the statistical error is smaller than the marker size.](image-url)
distributions of the three event shape observables are shown in the bottom panels of Fig. 2 for the two MC event generators mentioned above. Although the two MC generators have different distributions, the bin-by-bin correction factors are similar.

VIII. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties on the measured distributions are assessed with the following sources of uncertainty included:

Tracking: The largest of the systematic uncertainties for the tracking inefficiency [19] is found to be due to the material description in the inner detector. This is determined to produce a relative uncertainty of 2% in the efficiency in the barrel region, rising to ~7% for 2.3 < |η| < 2.5. The contribution of the propagated uncertainty is found to be less than 1% of the content in each bin of the shape distributions.

Bin-by-bin correction model dependence: The remaining contributions to the overall systematic uncertainty result from the specific correction method used in this analysis. The bin-by-bin corrections in general depend on the number of charged particles and their \(p_T \) distributions, so there is some dependence on the event generators. In order to estimate this uncertainty, it is necessary to compare different plausible event generators, which deviate significantly from each other, but still give predictions close to the data. The corrected results using the two very different PYTHIA6 AMBT1 and HERWIG++ models are compared. As these two generators use very different soft-QCD models the difference is assigned as a systematic uncertainty. The generated and reconstructed distributions are shown in Fig. 2 for the two MC event generators and compared with the detector-level data.

Statistical uncertainty of bin-by-bin correction: In addition to the model-dependent uncertainty in the bin-by-bin correction, there is also a statistical uncertainty due to the finite size of the MC sample. The statistical fluctuations of the PYTHIA6 AMBT1 correction factor are found to be negligible for most of each distribution, increasing to a few percent in the tails of the distributions. This is also added to the overall systematic uncertainty estimate.

The systematic uncertainty due to the small number of residual multiple proton–proton interactions is estimated to be negligible.

All the above mentioned systematic uncertainties are added in quadrature. Table III lists representative values for the various contributions to the systematic uncertainty in the content of each bin for all the event shape observables away from the edges of the distributions.

IX. RESULTS AND DISCUSSION

The distributions of the complement of the transverse thrust, thrust minor, and transverse sphericity are presented in Figs. 3–5, in different \(p_T^{\text{lead}} \) ranges. The behavior of the average values of the shape variables as functions of the charged-particle multiplicity, \(N_{\text{ch}} \), and transverse momentum scalar sum, \(\sum p_T \), is presented in Fig. 6. Predictions from the PYTHIA6 AMBT2B, PYTHIA6 DW, PYTHIA6 Z1, PYTHIA8 A2, and HERWIG++ UE7-2 models are also shown. AMBT2B is chosen instead of AMBT1, which was used to correct the data back to the particle level because it shows a slight improvement in reproducing the distributions of charged-particle transverse momentum and multiplicity [36].

The distributions shown in Figs. 3–5 indicate a prevalence of spherical events in the lower \(p_T^{\text{lead}} \) ranges. A slight shift toward less spherical events and a broadening of the distributions is observed for events starting with \(p_T^{\text{lead}} \geq 7.5 \) GeV in Fig. 3(d) for \(\tau_{\text{ch}}^\perp \) and in Fig. 4(d) for \(T_{\text{ch}}^\perp \). For both variables, a transition to less spherical events is seen for \(p_T^{\text{lead}} \geq 10 \) GeV in Figs. 3(e) and 4(e). The distribution of transverse sphericity is more sensitive to the increase of \(p_T^{\text{lead}} \), and shows a marked shift toward less spherical events starting at \(p_T^{\text{lead}} \geq 5.0 \) GeV in Fig. 5(c). The average value of the distributions, the rms width, and the skewness of the distributions are given in Table IV, which supports this observation. Mean values of the complement of transverse thrust and the transverse thrust minor are observed to initially rise with increasing \(p_T^{\text{lead}} \), with their maximum value in the range \(2.5 < p_T^{\text{lead}} < 5 \) GeV, before decreasing. A similar trend is observed by the ALICE Collaboration, which has measured the transverse sphericity distribution selecting charged particles with \(|\eta| < 0.8\), in inelastic 7 TeV pp collisions [8].

Overall, the PYTHIA6 tune Z1, tuned to the underlying event distributions at the LHC, agrees the best with most of the distributions. The PYTHIA6 DW tune predictions are consistently furthest from the data, as seen in the \(\tau_{\text{ch}}^\perp \) and \(T_{\text{ch}}^\perp \) distributions. This is not unexpected as DW is tuned to reproduce the Tevatron data and does not agree with the charged-particle multiplicity and \(p_T \) distributions in LHC data [19]. However it performs similarly to other models/tunes for the \(S_{\text{ch}}^\perp \) distribution in intermediate to high \(p_T^{\text{lead}} \) values, as is seen in Figs. 5(c)–5(e). The AMBT2B tune, which is based on minimum-bias LHC data, shows better agreement for the lowest \(p_T^{\text{lead}} \) distributions than for the intermediate \(p_T^{\text{lead}} \) distributions, as is seen in Fig. 3(a) and in Fig. 4(a). Compared to the PYTHIA6 AMBT2B tune, the predictions of the PYTHIA8 A2 and HERWIG++ UE7-2 tunes show better agreement with the data in the intermediate to high \(p_T^{\text{lead}} \) ranges. The UE7-2 tune, based like Z1 on LHC

Table III. Summary of systematic uncertainties in %.

<table>
<thead>
<tr>
<th>Source</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger and vertex efficiency</td>
<td><0.1</td>
</tr>
<tr>
<td>Track reconstruction</td>
<td>0.1–0.5</td>
</tr>
<tr>
<td>Correction model difference</td>
<td>1–5</td>
</tr>
<tr>
<td>PYTHIA correction stat. uncertainty</td>
<td>0.1–2</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>1–5</td>
</tr>
</tbody>
</table>
FIG. 3 (color online). Normalized distributions of the complement of transverse thrust using at least six charged particles with $p_T > 0.5$ GeV and $|\eta| < 2.5$ for different requirements on the transverse momentum of the leading charged-particle, p_T^{lead}. The error bars show the statistical uncertainty while the shaded area shows the combined statistical and systematic uncertainty. Where not visible, the statistical error is smaller than the marker size.
FIG. 4 (color online). Normalized distributions of transverse thrust minor using at least six charged particles with $p_T > 0.5$ GeV and $|\eta| < 2.5$ for different requirements on the transverse momentum of the leading charged-particle, p_T^{lead}. The error bars show the statistical uncertainty while the shaded area shows the combined statistical and systematic uncertainty. Where not visible, the statistical error is smaller than the marker size.
FIG. 5 (color online). Normalized distributions of transverse sphericity using at least six charged particles with $p_T > 0.5$ GeV and $|\eta| < 2.5$ for different requirements on the transverse momentum of the leading charged-particle, p_T^{lead}. The error bars show the statistical uncertainty while the shaded area shows the combined statistical and systematic uncertainty. Where not visible, the statistical error is smaller than the marker size.
FIG. 6 (color online). Mean values of the complement of transverse thrust, transverse thrust minor, and transverse sphericity (top to bottom) using at least six charged particles with $p_T > 0.5$ GeV and $|\eta| < 2.5$ versus charged-particle multiplicity of the event (left) and versus charged-particle transverse momentum scalar sum of the event (right). The error bars show the statistical uncertainty while the shaded area shows the combined statistical and systematic uncertainty. Where not visible, the statistical error is smaller than the marker size.
TABLE IV. Mean, rms, and skewness for each event shape distribution is shown, in different intervals of p_T^{lead}. Combined statistical and systematic uncertainty is shown, where the systematic uncertainty is obtained from the difference of unfolded results using PYTHIA6 and HERWIG++ MC predictions.

<table>
<thead>
<tr>
<th>p_T^{lead} range</th>
<th>Mean</th>
<th>$1 - \text{Transverse thrust}$</th>
<th>Skewness</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.5 \text{ GeV} < p_T^{\text{lead}} \leq 2.5 \text{ GeV}$</td>
<td>0.227 ± 0.002</td>
<td>0.064 ± 0.008</td>
<td>-0.54 ± 0.03</td>
</tr>
<tr>
<td>$2.5 \text{ GeV} < p_T^{\text{lead}} \leq 5.0 \text{ GeV}$</td>
<td>0.240 ± 0.006</td>
<td>0.062 ± 0.001</td>
<td>-0.68 ± 0.04</td>
</tr>
<tr>
<td>$5.0 \text{ GeV} < p_T^{\text{lead}} \leq 7.5 \text{ GeV}$</td>
<td>0.227 ± 0.007</td>
<td>0.065 ± 0.003</td>
<td>-0.55 ± 0.04</td>
</tr>
<tr>
<td>$7.5 \text{ GeV} < p_T^{\text{lead}} \leq 10 \text{ GeV}$</td>
<td>0.210 ± 0.010</td>
<td>0.068 ± 0.005</td>
<td>-0.36 ± 0.09</td>
</tr>
<tr>
<td>$p_T^{\text{lead}} > 10 \text{ GeV}$</td>
<td>0.185 ± 0.011</td>
<td>0.070 ± 0.006</td>
<td>-0.11 ± 0.28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p_T^{lead} range</th>
<th>Mean</th>
<th>Thrust minor</th>
<th>Skewness</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.5 \text{ GeV} < p_T^{\text{lead}} \leq 2.5 \text{ GeV}$</td>
<td>0.508 ± 0.002</td>
<td>0.090 ± 0.010</td>
<td>-0.70 ± 0.05</td>
</tr>
<tr>
<td>$2.5 \text{ GeV} < p_T^{\text{lead}} \leq 5.0 \text{ GeV}$</td>
<td>0.514 ± 0.005</td>
<td>0.087 ± 0.012</td>
<td>-0.89 ± 0.05</td>
</tr>
<tr>
<td>$5.0 \text{ GeV} < p_T^{\text{lead}} \leq 7.5 \text{ GeV}$</td>
<td>0.490 ± 0.006</td>
<td>0.099 ± 0.010</td>
<td>-0.76 ± 0.05</td>
</tr>
<tr>
<td>$7.5 \text{ GeV} < p_T^{\text{lead}} \leq 10 \text{ GeV}$</td>
<td>0.459 ± 0.007</td>
<td>0.107 ± 0.009</td>
<td>-0.54 ± 0.08</td>
</tr>
<tr>
<td>$p_T^{\text{lead}} > 10 \text{ GeV}$</td>
<td>0.415 ± 0.010</td>
<td>0.117 ± 0.011</td>
<td>-0.28 ± 0.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p_T^{lead} range</th>
<th>Mean</th>
<th>Transverse sphericity</th>
<th>Skewness</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.5 \text{ GeV} < p_T^{\text{lead}} \leq 2.5 \text{ GeV}$</td>
<td>0.618 ± 0.005</td>
<td>0.190 ± 0.006</td>
<td>-0.35 ± 0.05</td>
</tr>
<tr>
<td>$2.5 \text{ GeV} < p_T^{\text{lead}} \leq 5.0 \text{ GeV}$</td>
<td>0.579 ± 0.013</td>
<td>0.204 ± 0.003</td>
<td>-0.28 ± 0.12</td>
</tr>
<tr>
<td>$5.0 \text{ GeV} < p_T^{\text{lead}} \leq 7.5 \text{ GeV}$</td>
<td>0.449 ± 0.019</td>
<td>0.206 ± 0.002</td>
<td>0.16 ± 0.24</td>
</tr>
<tr>
<td>$7.5 \text{ GeV} < p_T^{\text{lead}} \leq 10 \text{ GeV}$</td>
<td>0.337 ± 0.017</td>
<td>0.183 ± 0.004</td>
<td>0.57 ± 0.09</td>
</tr>
<tr>
<td>$p_T^{\text{lead}} > 10 \text{ GeV}$</td>
<td>0.230 ± 0.024</td>
<td>0.157 ± 0.007</td>
<td>1.06 ± 0.04</td>
</tr>
</tbody>
</table>

underlying event data, is expected to perform better in events characterized by a hard scatter, resulting in higher p_T^{lead} values. However, the minimum-bias A2 tune shows a similar or slightly better level of agreement with data for the high p_T^{lead} distributions, possibly indicating that the improved MPI modeling compared to PYTHIA6 tunes does play a role. All models tend to better reproduce the data selected with the higher p_T^{lead} ranges.

The mean values of event shape observables as functions of N_{ch} and $\sum p_T$ are shown in Fig. 6. They are seen to increase with N_{ch}, but the increase is less marked at values of N_{ch} above about 30. For low values of N_{ch}, the mean values of the event shape variables correspond less to spherical events, while the average values for large multiplicity are largely consistent with the positions of the maxima of the corresponding distributions for the lowest p_T^{lead} range. A similar trend is seen for distributions as a function of $\sum p_T$; however, for $\sum p_T$ over 100 GeV, the mean starts to decrease again, indicative of a dijet topology. In general, the MC models predict fewer high-sphericity events than are seen in the data. With the exception of PYTHIA 6 DW, the MC models seem to predict the behavior with multiplicity reasonably well in Fig. 6. However, the MC predictions are seen to differ in shape at very high $\sum p_T$, where the decrease of mean values happens in the MC predictions before the data. The behavior of mean transverse sphericity as a function of multiplicity measured by the ALICE Collaboration [8] exhibits a similar behavior to that observed here, with the data lying at values higher than predicted by the MC models.

X. CONCLUSIONS

The event shape observables, transverse thrust, transverse thrust minor, and transverse sphericity, have been measured in inelastic proton–proton collisions at $\sqrt{s} = 7$ TeV requiring at least six charged particles per event selected by a minimum-bias trigger. The distributions and mean values have been compared to predictions of different MC models tuned to inclusive particle distributions and underlying event data. The dependence of the event shapes on the number of charged particles, on the sum of charged-particle p_T and on the leading charged-particle p_T has been studied.

The distributions of all three event shape variables show an evolution toward less spherical events as p_T^{lead} increases, but the effect is smaller for transverse thrust and thrust minor compared to transverse sphericity. The dependence of the event shape mean values as functions of N_{ch} and $\sum p_T$ is similar, due the correlation between the two variables [19]. For each variable, the evolution toward a more spherical event shape with increasing multiplicity is rapid.
initially and slows at higher multiplicities. All tested MC generators underestimate the fraction of events of spherical character and none reproduces accurately the event shape distributions. The MC tunes based on the properties of the underlying event show in general better agreement with the observed distributions presented in this analysis, but the level of agreement is still not satisfactory over the whole range of the data. These measurements provide information complementary to inclusive particle distributions and thus they are useful for improving the MC description of inelastic proton–proton collisions at the LHC.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSY (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[26] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, θ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η = −ln tan(θ/2).
MEASUREMENT OF CHARGED-PARTICLE EVENT SHAPE...
MEASUREMENT OF CHARGED-PARTICLE EVENT SHAPE . . .

PHYSICAL REVIEW D 88, 032004 (2013)

032004-21
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

Department of Physics, Carleton University, Ottawa, Ontario, Canada

CERN, Geneva, Switzerland

Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA

Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile

Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

Department of Modern Physics, University of Science and Technology of China, Anhui, China

Department of Physics, Nanjing University, Jiangsu, China

School of Physics, Shandong University, Shandong, China

Laboratoire de Physique Corpusculaire, Clermont Université et Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France

Nevis Laboratory, Columbia University, Irvington, New York, USA

Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

INFN Gruppo Collegato di Cosenza, Italy

Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

Physics Department, Southern Methodist University, Dallas, Texas, USA

Physics Department, University of Texas at Dallas, Richardson, Texas, USA

DESY, Hamburg and Zeuthen, Germany

Technische Universität Dortmund, Dortmund, Germany

Technical University Dresden, Dresden, Germany

Department of Physics, Duke University, Durham, North Carolina, USA

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

INFN Laboratori Nazionali di Frascati, Frascati, Italy

Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany

Section de Physique, Université de Genève, Geneva, Switzerland

INFN Sezione di Genova, Italy

Dipartimento di Fisica, Università di Genova, Genova, Italy

E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi, Georgia

High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

Il Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France

Department of Physics, Hampton University, Hampton, Virginia, USA

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA

Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

Department of Physics, Indiana University, Bloomington, Indiana, USA

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City, Iowa, USA

Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA

Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Department of Physics, Kyushu University, Fukuoka, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Physics Department, Lancaster University, Lancaster, United Kingdom

INFN Sezione di Lecce, Italy

Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy

Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom

Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven, Connecticut, USA
Yerevan Physics Institute, Yerevan, Armenia

Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

a Deceased.
b Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal.
c Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
d Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
e Also at TRIUMF, Vancouver, British Columbia, Canada.
f Also at Department of Physics, California State University, Fresno, CA, USA.
g Also at Novosibirsk State University, Novosibirsk, Russia.
h Also at Fermilab, Batavia, IL, USA.
i Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
j Also at Department of Physics, UASLP, San Luis Potosi, Mexico.
k Also at Università di Napoli Parthenope, Napoli, Italy.
l Also at Institute of Particle Physics (IPP), Canada.
m Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
n Also at Louisiana Tech University, Ruston LA, USA.
o Also at Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
p Also at Department of Physics and Astronomy, University College London, London, United Kingdom.
q Also at Group of Particle Physics, University of Montreal, Montreal, Quebec City, Canada.
r Also at Department of Physics, University of Cape Town, Cape Town, South Africa.
s Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
t Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
u Also at Manhattan College, New York, NY, USA.
v Also at School of Physics, Shandong University, Shandong, China.
w Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
x Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
y Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
z Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy.
aa Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.
bb Also at Section de Physique, Université de Genève, Geneva, Switzerland.
cc Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
zd Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA.
ee Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
ff Also at California Institute of Technology, Pasadena, CA, USA.
ff Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
hi Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.
ii Also at Nevis Laboratory, Columbia University, Irvington, NY, USA.
jj Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
kk Also at Department of Physics, Oxford University, Oxford, United Kingdom.
ll Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
mm Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA.
nn Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.