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Using Exploratory Factor Analysis to Determine
the Dimensionality of Discrete Responses

M. T. Barendse,1 F. J. Oort,2 and M. E. Timmerman1

1University of Groningen, The Netherlands
2University of Amsterdam, The Netherlands

Exploratory factor analysis (EFA) is commonly used to determine the dimensionality of con-
tinuous data. In a simulation study we investigate its usefulness with discrete data. We vary
response scales (continuous, dichotomous, polytomous), factor loadings (medium, high), sam-
ple size (small, large), and factor structure (simple, complex). For each condition, we generate
1,000 data sets and apply EFA with 5 estimation methods (maximum likelihood [ML] of
covariances, ML of polychoric correlations, robust ML, weighted least squares [WLS], and
robust WLS) and 3 fit criteria (chi-square test, root mean square error of approximation, and
root mean square residual). The various EFA procedures recover more factors when sample
size is large, factor loadings are high, factor structure is simple, and response scales have more
options. Robust WLS of polychoric correlations is the preferred method, as it is theoretically
justified and shows fewer convergence problems than the other estimation methods.

Keywords: discrete data, exploratory factor analysis, robust maximum likelihood estimation,
weighted least squares estimation

The dimensionality of test data is defined as the minimum
number of latent variables that is needed to describe all statis-
tical dependencies in the data (Lord & Novick, 1968; Zhang
& Stout, 1999). A correct indication of dimensionality helps
to get insight into the structure that underlies the responses
to test items. Determination of the dimensionality and the
associated structure is essential in the development and the
evaluation of tests in behavioral and social sciences. Among
methods to assess dimensionality, factor analytic methods
seem to be the most popular (e.g., Conway & Huffcutt, 2003;
Fabrigar, Wegener, MacCallum, & Strahan, 1999; Preacher
& MacCallum, 2003; Ten Holt, van Duijn, & Boomsma,
2010). In factor analysis, linear relations between observed
variables are explained by unobserved, latent variables or
common factors.

Exploratory factor analysis (EFA) does not constrain the
factor structure in any way, and by applying maximum like-
lihood (ML) estimation, the chi-square measure of overall

Correspondence should be addressed to F. J. Oort, Department of
Education, University of Amsterdam, Nieuwe Prinsengracht 130, 1018 VZ
Amsterdam, The Netherlands. E-mail: f.j.oort@uva.nl

goodness-of-fit can be used as a test of dimensionality.
However, simulation studies have shown that the chi-square
test does not always accurately retrieve the correct number of
factors (Beauducel, 2001; Hayashi, Bentler, & Yuan, 2007).
Possible explanations are small sample size, nonnormality,
zero error variances, and rank deficiency (Hayashi et al.,
2007). Dimensionality can also be determined by using the
chi-square difference test to compare the fit of two nested
models with different numbers of factors, to test whether
additional factors improve the fit significantly. Still, the dif-
ference test is subject to the same problems as the overall
chi-square measures on which it is based, generally resulting
in too many factors (Hayashi et al., 2007).

Overfactoring might also be the result of the existence
of common variance that is due to factors that are triv-
ial to the substantive test content. Researchers who prefer
to disregard “minor factors” might consider the root mean
square error of approximation (RMSEA; Browne & Cudeck,
1992) as the fit index of choice to determine dimensionality.
The RMSEA can be written as a function of the chi-square
measure, as most alternative fit indices. A notable excep-
tion is the standardized root mean square residual (SRMSR)
that summarizes the differences between fitted and observed
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88 BARENDSE, OORT, TIMMERMAN

correlations. As far as we know, the SRMSR has never been
considered in studies of dimensionality assessment.

Factor analysis by maximizing the likelihood of covari-
ances (or correlations) is really only justified when analyzing
continuous responses. However, most tests in the behavioral
and social sciences consist of items with discrete response
scales. ML analysis of covariances or correlations between
discrete responses is often applied but yields biased param-
eters as well as incorrect standard errors and fit statistics
(Dolan, 1994; Johnson & Creech, 1983; Muthén & Kaplan,
1985, 1992; Rhemtulla, Brosseau-Liard, & Savalei, 2012).
Robust maximum likelihood (MLR) methods take violations
of multivariate normality into account by adjusting standard
errors and fit indices (Yuan & Bentler, 2000; Muthén &
Muthén, 2010), but are not suited for discrete data either.
ML analysis of polychoric correlations reproduces the mea-
surement model correctly, and yields accurate and consistent
parameter estimates, but incorrect standard errors and test
statistics (Dolan, 1994; Holgado-Tello, Chacón-Moscoso,
Barbero-García, & Vila-Abad, 2010).

Wirth and Edwards (2007) reviewed methods that take
the discrete nature of test items into account, one of which
is weighted least squares (WLS; Browne, 1982, 1984) fac-
tor analysis of polychoric correlations. WLS analysis with
the full weight matrix of asymptotic variances and covari-
ances requires very large sample sizes to obtain accurate
results (Dolan, 1994; Muthén & Kaplan, 1992; Rigdon &
Ferguson, 1991). Therefore, modified WLS methods have
been suggested, estimating the model parameters by using
the diagonal of the weight matrix only, and subsequently
adjusting the chi-square measure and standard errors (Satorra
& Bentler, 1994; Yuan & Bentler, 1998). One such method is
the robust WLS method suggested by Muthén, du Toit, and
Spisic (1997), which is implemented in the Mplus computer
program (Asparouhov & Muthén, 2010; Muthén & Muthén,
2010) and has been shown to give accurate results in a
simulation study of confirmatory factor analysis (Beauducel
& Herzberg, 2006; Flora & Curran, 2004; Yang-Wallentin,
Jöreskog, & Luo, 2010).

The purpose of this article is to investigate the usefulness
of factor analysis to assess the dimensionality of discrete test
responses. We generate data under various conditions, con-
sidering both major and minor factors, and apply EFA with
various estimation methods and fit criteria.

METHOD

We apply EFA to simulated continuous and discrete data.
We generate item responses with various response scales
(continuous, dichotomous, three-point, and four-point), and
we vary the size of the factor loadings (high, low), the
factor structure (simple, complex), and sample size (small,
large). In each condition, 1,000 data sets are generated and
analyzed with five different estimation methods (based on

ML and WLS), using different criteria to determine the
number of common factors (the chi-square test, the chi-
square difference test, the RMSEA, and the RMSR). The
performance of estimation methods and fit criteria in the dif-
ferent conditions is evaluated by comparing model selection
rates.

Data Generation: Continuous Responses

Continuous responses. Data are generated with a
model that is representative for models regularly used in
empirical studies and, similar to the model used in the simu-
lation study of Olsson, Troye, and Howell (1999), we choose
a common factor model for 12 observed variables, with
3 major common factors and 4 minor common factors, as
depicted in Figure 1.

Continuous responses to 12 items are generated according
to the linear model,

x = τ + � ξ + ε, (1)

where, for an arbitrary subject, x is a 12 × 1 vector of item
responses, ξ is a 7 × 1 vector of common factor scores, ε is
a 12 × 1 vector of residual factor scores, τ is a 12 × 1 vector
of intercepts, and � is a 12 × 7 matrix of common factor
loadings. In all conditions, intercept values are chosen

τ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0
0.2
0.5
0.8
0.0
0.2
0.5
0.8
0.0
0.2
0.5
0.8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

In conditions with high factor loadings on the major factors,
factor loadings are chosen:

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
0.5 0.0 0.0 0.2 0.0 0.0 0.0√
0.5 0.0 0.0 0.0 0.2 0.0 0.0√
0.5 0.0 0.0 0.0 0.0 0.2 0.0√
0.5 0.0 0.0 0.0 0.0 0.0 0.2

0.0
√

0.5 0.0 0.2 0.0 0.0 0.0
0.0

√
0.5 0.0 0.0 0.2 0.0 0.0

0.0
√

0.5 0.0 0.0 0.0 0.2 0.0
0.0

√
0.5 0.0 0.0 0.0 0.0 0.2

0.0 0.0
√

0.5 0.2 0.0 0.0 0.0
0.0 0.0

√
0.5 0.0 0.2 0.0 0.0

0.0 0.0
√

0.5 0.0 0.0 0.2 0.0
0.0 0.0

√
0.5 0.0 0.0 0.0 0.2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)
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FIGURE 1 Data generation model. Note. To improve intelligibility, residual factors are omitted; slashes in 0.0/0.5 and 0.5/
√

0.5 indicate that parameters
take on different values in different conditions.

and in conditions with small factor loadings, the
√

0.5 values
are replaced by 0.5 values. Common factor scores are drawn
from a multivariate normal distribution with zero means and
a 7 × 7 variance–covariance matrix �. In small sample con-
ditions, we draw 200 × 7 ξ values, and in large sample
conditions we draw 1,000 × 7 ξ values. In simple structure
conditions, � is an identity matrix, and in complex structure
conditions we choose

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1.0
0.5 1.0
0.5 0.5 1.0
0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Note that the common factors can be rotated to uncorrelated
factors, provided that the loadings are counterrotated, losing
the simple � structure of Equation 3. Values for the resid-
ual factor scores, 200 × 12 in small sample conditions and
1,000 × 12 in large sample conditions, are drawn from a
multivariate normal distribution with zero means and a 12 ×
12 diagonal variance–covariance matrix � with

� = I–diag(� � �′). (5)

With our choice of parameter values, and with the
variance–covariance matrix of the observed variables given
by

� = � � �′ + �, (6)

the expected variances of the observed variables are one.
For each of the observed variables, the major factors explain

50% of the variance in the conditions with large factor load-
ings (

√
0.5) and 25% in conditions with low factor loadings

(0.5). The minor factors explain only 4% of the variance in
all conditions. The misspecification error of a three-factor
model that disregards the minor factors can be considered
approximation error. The fixed RMSR can be used as an
index of this approximation error. In our case it equals
0.0157, which is somewhat smaller than the approximation
errors of the models considered by Olsson et al. (1999).

People who are not willing to accept any approximation
error should expect a model with six common factors to fit
exactly. Six common factors, not seven, because although we
generate data with a seven common factor model, the dimen-
sionality of � is six, as with our choices of � and �, the
rank of � � �’ equals six, so six common factors suffice to
describe the dependencies between the observed variables.

Discrete responses. Discrete data are generated by
categorizing the continuous item responses into discrete item
responses. We consider two-, three-, and four-point response
scales, as Dolan (1994) showed that ML factor analysis of
five-point responses already gives results that are similar to
the analysis of continuous responses.

Zero is the cut value that is chosen to dichotomize the
continuous item responses, yielding expected proportions of
[0.50, 0.50], [0.42, 0.58], [0.31, 0.69], and [0.21, 0.79] for
items with intercepts of 0.0, 0.2, 0.5, and 0.8. Three-point
responses are generated with cut values of –0.44 and 0.44,
yielding expected proportions of [0.33, 0.34, 0.33], [0.26,
0.33, 0.41], [0.17, 0.30, 0.52], and [0.11, 0.25, 0.64], and
four-point responses are generated with cut values of –0.67,
0, and 0.67, yielding expected proportions of [0.25, 0.25,
0.25, 0.25], [0.19, 0.23, 0.26, 0.32], [0.12, 0.19, 0.26, 0.43],
and [0.07, 0.14, 0.24, 0.55].
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90 BARENDSE, OORT, TIMMERMAN

Data Analysis

Combining all variations in a fully crossed design gives
32 conditions. That is, two sizes of factor loadings (high,
low) × two factor structures (simple, complex) × two sam-
ple sizes (200, 1,000) × four response scales (continuous,
dichotomous, three-point, four-point). With 1,000 replica-
tions in each condition, we have a total of 32,000 data
sets.

Exploratory factor analysis. To each of the
32,000 data sets we fit exploratory factor models with
one through seven common factors. Identification is
achieved by choosing commonly used scaling and rotation
constraints. So, different from the data generation model
given by Equation 6, we substitute an identity matrix for
� and we choose an echelon form for �, fixing its upper
triangle at zero (λij = 0 for all i < j) and leaving all other
factor loadings free to be estimated (λij free for all i ≥ j).

We apply five estimation methods: ML of covariances,
ML of polychoric correlations, MLR, WLS of polychoric
correlations, and robust WLS (WLSMV) of polychoric cor-
relations, as implemented in the computer program Mplus
(Muthén & Muthén, 2010). We consistently used the Mplus
ESEM procedure, except for ML of polychoric correlations,
where it appeared necessary to additionally constrain the
residual variance to be positive.

ML estimation is applied to all data sets in all conditions,
although its use is justified only in conditions with contin-
uous, normally distributed responses. The MLR estimation
method takes nonnormality into account, yielding robust
standard errors and a scaling correction for the chi-square
statistic (Yuan & Bentler, 2000), but its use with discrete
data is not justified either. However, for the purpose of com-
parison, we apply the MLR estimation method in conditions
with three-point and four-point responses (dichotomous data
contain too little information for MLR estimation). We also
apply ML to the polychoric correlations between the dis-
crete responses. The WLS and WLSMV estimation methods
are best suited for the analysis of discrete data, as they are
applied to tetrachoric and polychoric correlations, using the
asymptotic variances and covariances as a weight matrix.
WLS uses a full weight matrix for the estimation of param-
eters, standard errors, and chi-square test, whereas WLSMV
uses a diagonal weight matrix for parameter estimation and
a full weight matrix to obtain standard errors and a mean
and variance-adjusted chi-square test statistic (Asparouhov
& Muthén, 2010; Muthén & Muthén, 2010).

Fit criteria. To evaluate the fit of each model to each
data set we use the chi-square test of overall goodness-of-
fit at a 5% level of significance. For comparison, we will
also use the RMSEA to evaluate fit. RMSEA values below
0.05 are usually considered indications of close fit (Browne
& Cudeck, 1992; MacCallum, Browne, & Sugawara, 1996),

but Hu and Bentler (1999; Yu & Muthén, 2002) suggested
.06 as a cutoff, and we also consider some other RMSEA
cutoff values.

Most other fit indices are highly correlated with the
chi-square statistic and the RMSEA, and are therefore not
considered in this study. An exception might be the SRMSR
that summarizes the differences between observed and fit-
ted correlations. Hu and Bentler (1999) suggested .08 as
an SRMSR cutoff value and Sivo, Fan, Witta, and Willse
(2006) suggested .05. In our study, such cutoff values appear
too lenient and do not discriminate between the fitted mod-
els in different conditions, so instead we choose .04 as the
SRMSR cutoff value above which we reject model fit. With
the WLS estimation method, the SRMSR is replaced by
a weighted root mean square residual (WRMSR; Muthén,
1998–2004). Cutoff values for WRMSR were discussed by
Yu and Muthén (2002), who suggested cutoff values as high
as .9 and 1.0. However, in our study we find that these val-
ues are much too high as cutoffs, and that a WRMSR cutoff
value of .5 better discriminates between the fit of different
models.

Model selection. After evaluating the fit of all models
to all data sets and calculating the rejection rates for the esti-
mation methods and fit criteria described earlier, we follow
two selection procedures to determine the dimensionality of
each data set. The first procedure is to go through the mod-
els, starting with the one-factor model, then the two-factor
model, and so on, through the seven-factor model, and select
the first model that fits the data, according to the previously
mentioned fit criteria.

The second procedure is to go through the models and
find the last model that shows significant improvement of
fit, according to a significant chi-square difference test at
a 5% level of significance. With ML and WLS estimation
the chi-square difference test is just the difference between
the chi-square values of the two nested models. With MLR
estimation, however, the chi-square difference and its scal-
ing correction are a function of the chi-square values and
scaling corrections of the nested models (Satorra & Bentler,
2001). With WLSMV estimation, the chi-square difference
is subject to a mean and variance correction as described
by Asparouhov and Muthén (2006; Asparouhov & Muthén,
2010), similar to the correction of the chi-squares of the
individual models.

Evaluation. The performance of the various estima-
tion methods and fit criteria under different conditions is
evaluated by determining the numbers of data sets for
which the models of increasing dimensionality are selected.
Logistic regression analyses are used to compare the results.
We expect the chi-square test of (exact) fit to select mod-
els with larger numbers of common factors than the RMSEA
index that allows for approximation error and that might not
find minor factors.
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EXPLORATORY FACTOR ANALYSIS OF DISCRETE RESPONSES 91

RESULTS

We first give the full ML results for continuous responses.
These results can serve as a benchmark when we subse-
quently summarize the results of estimation methods for
discrete responses.

Continuous Responses

Table 1 gives rejection and selection rates for factor models
with one through seven dimensions, for each of the eight con-
ditions. The NC column shows the number of data sets with
which the ML method converged to a solution. We note that
convergence is almost always achieved with one-, two-, and
three-factor models, but that convergence becomes very dif-
ficult with models with more factors, especially when sample
sizes are small (as in Conditions 1–4).

Next, Table 1 gives the rejection rates according to sig-
nificant chi-square values (α = .05), RMSEA values larger
than .05, and SRMSR values larger than .04. These rejec-
tion rates are calculated both as proportions of successful
analyses (NR/NC) and as proportions of the total number
of analyses (NR/NT). The two proportions do not differ
much, once more indicating that nonconvergence is caused
by trying to fit models with redundant factors.

As an aside, we note that the rejection rates according
to chi-square and RMSEA values are close to the expected
rejection rates that can be calculated on the basis of the
noncentral chi-square distribution, but only for the three-
factor model, and only after correcting the fit results by
(N – 1)/N (as Mplus uses N as the multiplier of the dis-
crepancy function). Models with fewer factors do not meet
the regularity assumptions for calculating the noncentrality
parameter (Steiger, Shapiro, & Browne, 1985). For mod-
els with more than three factors, the rejection rates are
biased because of frequent convergence problems. It should
be noted that the estimation of the noncentrality parame-
ter could be problematic anyway (Olsson, Foss, & Breivik,
2004).

Finally, Table 1 gives the selection rates for each model,
according to the procedure of selecting the first model that
fits, using the chi-square, RMSEA, and SRMSR fit cri-
teria, and the procedure of selecting the last model that
significantly improves fit, using the chi-square difference
test (α = .05). As expected, the procedures that use the
chi-square test generally select models with larger num-
bers of factors than procedures that use the RMSEA index.
In addition, models with larger numbers of factors are more
frequently selected in conditions with large sample size,
high factor loadings, and simple structure than in conditions
with small sample size, low factor loadings, and complex
structure.

Of course, rejection and selection rates primarily depend
on the arbitrary choices of a level of significance for the chi-
square test and cutoffs for the RMSEA and SRMSR indices.

Discrete Responses

Discrete data have been analyzed with five estimation meth-
ods: ML of covariances, ML of polychoric correlations,
MLR, WLS, and WLSMV. Full results can be downloaded
from the website of the corresponding author.1 Here we sum-
marize the results in two ways. First, we consider rejection
and selection rates across all conditions with discrete data
(in Tables 2 and 3, to be discussed later). Second, we exam-
ine differences in model selection between conditions and
estimation methods, using ordinal logistic regression anal-
yses (Tables 4 and 5). When summarizing the results, we
only consider the results of ML of covariances, WLS, and
WLSMV. We refrain from further presenting the results of
MLR and ML of polychoric correlations, because they show
problematic behavior in this study. With MLR estimation,
the rejection rates are consistently above zero, even for mod-
els with large numbers of factors, due to an inconsistent
estimate of the MLR scaling correction factor. This inconsis-
tency also causes frequent negative chi-square differences.
Furthermore, MLR estimation is associated with the high-
est proportions of nonconvergence of all estimation methods
(Table 6). Moreover, the selection procedure that relies on
the chi-square difference test often fails to select any model
(e.g., in 34% of the small sample cases and in 48% of the
large sample cases) with MLR. With ML of polychoric corre-
lations, the rejection rates are unreasonably high. As a result,
selection procedures that rely on the chi-square test fail to
select any model in the majority of small sample size cases
(see footnote 1).

Rejection rates. Table 2 gives the rejection rates for
ML, WLS, and WLSMV analyses with various fit crite-
ria, for small sample conditions and large sample con-
ditions separately, but across all other conditions, and
across dichotomous, three-point, and four-point response
scales, totaling 12,000 data sets for each estimation method.
Numbers and proportions of data sets with which conver-
gence was successful are given in the NC and NC/NT
columns.

With ML analysis of covariances, the convergence
percentages for the four-factor model are just 41.2% in small
sample conditions and 72.2% in large sample conditions,
and even worse for models with more factors. It appears that
with the common .05 cutoff choice for the RMSEA, Model
3 is rejected in 8.3% of the small sample cases and in only
0.1% of the large sample cases, whereas the chi-square test
is significant at the 5% level in 0.1% and 55.0% of the small
and large sample cases, respectively. In contrast with the
chi-square tests that gain power with larger sample sizes,

1Tables with full results of all estimation methods and fit crite-
ria can be downloaded from the website of the corresponding author
at http://www.uva.nl/over-de-uva/organisatie/medewerkers/content/o/o/f.j.
oort/f.j.oort.html or http://tinyurl.com/d7e7c64 (under Miscellaneous:
Exploratory Factor Analysis of Discrete Data).
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TABLE 1
Model Convergence and Model Rejection and Selection Rates for Maximum Likelihood Analysis of Continuous Responses

Model Rejection Rates Model Selection Rates

Chi-Square RMSEA SRMSR Chi-Square RMSEA SRMSR Difference Test
Convergence (α = .05) (Cut = .05) (Cut = .04) (α = .05) (Cut = .05) (Cut = .04) (α = .05)

df NC NR/NC NR/NT NR/NC NR/NT NR/NC NR/NT NS/NT NS/NT NS/NT NS/NT

Condition 1: Simple structure/high factor loadings/sample size = 200
1-factor model 54 1,000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000
2-factor model 43 1,000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000
3-factor model 33 1,000 0.369 0.369 0.298 0.298 0.000 0.000 0.631 0.702 1.000 0.352
4-factor model 24 626 0.053 0.033 0.054 0.034 0.000 0.000 0.199 0.154 0.000 0.405
5-factor model 16 292 0.000 0.000 0.003 0.001 0.000 0.000 0.026 0.023 0.000 0.078
6-factor model 9 112 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.003 0.000 0.002
7-factor model 3 44 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.000 0.000
No model selected 0.137 0.115 0.000 0.163

Condition 2: Complex structure/high factor loadings/sample size = 200
1-factor model 54 1,000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000
2-factor model 43 1,000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000
3-factor model 33 1,000 0.344 0.344 0.277 0.277 0.000 0.000 0.656 0.723 1.000 0.381
4-factor model 24 617 0.058 0.036 0.068 0.042 0.000 0.000 0.174 0.124 0.000 0.384
5-factor model 16 287 0.007 0.002 0.010 0.003 0.000 0.000 0.030 0.030 0.000 0.072
6-factor model 9 120 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.010 0.000 0.002
7-factor model 3 44 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000
No model selected 0.129 0.112 0.000 0.161

Condition 3: Simple structure/low factor loadings/sample size = 200
1-factor model 54 1,000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000
2-factor model 43 999 0.989 0.988 0.962 0.961 1.000 0.999 0.011 0.038 0.000 0.000
3-factor model 33 994 0.156 0.155 0.113 0.112 0.076 0.076 0.828 0.844 0.918 0.630
4-factor model 24 465 0.004 0.002 0.004 0.002 0.000 0.000 0.067 0.044 0.036 0.244
5-factor model 16 172 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.002 0.001 0.028
6-factor model 9 89 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.004 0.003 0.000
7-factor model 3 39 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
No model selected 0.086 0.068 0.042 0.098

Condition 4: complex structure/low factor loadings/sample size = 200
1-factor model 54 1,000 0.965 0.965 0.882 0.882 1.000 1.000 0.035 0.118 0.000 0.000
2-factor model 43 947 0.543 0.514 0.378 0.358 0.901 0.853 0.402 0.480 0.094 0.110
3-factor model 33 813 0.081 0.066 0.057 0.046 0.025 0.020 0.392 0.278 0.720 0.551
4-factor model 24 388 0.003 0.001 0.005 0.002 0.000 0.000 0.036 0.021 0.028 0.163
5-factor model 16 172 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.001 0.009 0.008
6-factor model 9 64 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.002 0.000
7-factor model 3 28 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000
No model selected 0.129 0.100 0.146 0.168

Condition 5: Simple structure/high factor loadings/sample size = 1,000
1-factor model 54 1,000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000
2-factor model 43 1,000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000
3-factor model 33 1,000 0.997 0.997 0.047 0.047 0.000 0.000 0.003 0.953 1.000 0.002
4-factor model 24 941 0.892 0.839 0.002 0.002 0.000 0.000 0.099 0.044 0.000 0.026
5-factor model 16 785 0.321 0.252 0.000 0.000 0.000 0.000 0.451 0.001 0.000 0.240
6-factor model 9 635 0.005 0.003 0.000 0.000 0.000 0.000 0.253 0.001 0.000 0.454
7-factor model 3 209 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.007
No model selected 0.178 0.001 0.000 0.271

Condition 6: Complex structure/high factor loadings/sample size = 1,000
1-factor model 54 1,000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000
2-factor model 43 999 1.000 0.999 1.000 0.999 1.000 0.999 0.000 0.000 0.000 0.000
3-factor model 33 1, 000 0.995 0.995 0.060 0.060 0.000 0.000 0.005 0.940 1.000 0.000
4-factor model 24 946 0.889 0.841 0.002 0.002 0.000 0.000 0.100 0.057 0.000 0.029
5-factor model 16 819 0.305 0.250 0.000 0.000 0.000 0.000 0.486 0.001 0.000 0.257
6-factor model 9 661 0.005 0.003 0.000 0.000 0.000 0.000 0.242 0.001 0.000 0.484
7-factor model 3 225 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.000 0.003
No model selected 0.156 0.001 0.000 0.227

(Continued)
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TABLE 1
(Continued)

Model Rejection Rates Model Selection Rates

Chi-Square RMSEA SRMSR Chi-Square RMSEA SRMSR Difference Test
Convergence (α = .05) (Cut = .05) (Cut = .04) (α = .05) (Cut = .05) (Cut = .04) (α = .05)

df NC NR/NC NR/NT NR/NT NR/NC NR/NT NS/NT NS/NT NR/NT NS/NT NS/NT

Condition 7: Simple structure/low factor loadings/sample size = 1,000
1-factor model 54 1,000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000
2-factor model 43 1,000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000
3-factor model 33 1,000 0.773 0.773 0.000 0.000 0.000 0.000 0.227 1.000 1.000 0.066
4-factor model 24 827 0.305 0.252 0.000 0.000 0.000 0.000 0.394 0.000 0.000 0.339
5-factor model 16 515 0.027 0.014 0.000 0.000 0.000 0.000 0.172 0.000 0.000 0.295
6-factor model 9 324 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.000 0.000 0.074
7-factor model 3 172 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.000 0.001
No model selected 0.163 0.000 0.000 0.225

Condition 8: Complex structure/low factor loadings/sample size = 1,000
1-factor model 54 1,000 1.000 1.000 0.999 0.999 0.999 0.999 0.000 0.001 0.001 0.000
2-factor model 43 999 1.000 0.999 0.583 0.582 0.049 0.049 0.000 0.416 0.949 0.000
3-factor model 33 1,000 0.747 0.747 0.000 0.000 0.000 0.000 0.253 0.583 0.050 0.078
4-factor model 24 778 0.261 0.203 0.000 0.000 0.000 0.000 0.378 0.000 0.000 0.366
5-factor model 16 468 0.017 0.008 0.000 0.000 0.000 0.000 0.133 0.000 0.000 0.251
6-factor model 9 282 0.000 0.000 0.000 0.000 0.000 0.000 0.045 0.000 0.000 0.047
7- factor model 3 118 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.001
No model selected 0.175 0.000 0.000 0.257

Note. RMSEA = root mean square error of approximation; SRMSR = standardized root mean square residual; NC = number of analyses with convergence;
NR = number of data sets with which the model is rejected; NT = total number of data sets (1,000); NS = number of data sets with which the model is selected.

both RMSEA and SRMSR results show smaller rejection
rates with larger sample sizes. Even with an SRMSR cutoff
as small as .03, Model 3 is never rejected in large sample
cases.

The rejection rates with WLS estimation generally show
the same picture as those with ML estimation, but with WLS
estimation the convergence percentages are lower: 33.0%
and 66.7% for the four-factor model in small and large
sample conditions.

The WLSMV estimation method has better convergence
than the ML and WLS estimation methods: 47.1% and
74.9% percent for the four-factor model in small and large
sample conditions. In small sample conditions, the three-
factor model is rejected in 5.8% of the cases by the chi-
square test at α = .05 and in 3.8% of the cases by RMSEA
cutoff at .05. In large sample conditions, the chi-square test
has more power and rejects the three-factor model in 45.8%
of the cases. Yet the three-factor model is never rejected by
the .05 RMSEA cutoff in large sample conditions. With the
WRMSR index, with a .50 cutoff, Model 3 is rejected in
21.9% of the small sample cases and in 65.0% of the large
sample cases.

Selection rates. Table 3 gives the model selection rates
for ML, WLS, and WLS estimation with various fit criteria.
In the small sample size conditions, both the chi-square test
and the RMSEA index select Model 3 most of the time. In the
large sample conditions, the RMSEA index selects Model
3 even more frequently than in the small sample conditions,

whereas the chi-square test more frequently points to models
with larger numbers of factors. As expected, the chi-square
difference test generally selects models with more factors
than the stand-alone chi-square test, but it also more often
ends up without selecting a model.

Convergence problems hinder model selection, especially
in small sample conditions, and especially with the WLS
estimation procedure, as it fails to select a model in 30.9%
of the cases with the chi-square test (α = .05), in 35.5% of
the cases with the chi-square difference test (α = .05), and
in 26.8% of the cases with the RMSEA (cutoff = .05).

The WLS estimation procedure shows the lowest percent-
ages of selection failures. With WLS, the chi-square test at
α = .05, the .05 RMSEA cutoff, the .50 WRMSR cutoff, and
the chi-square difference test at α = .05, all select Model 3 in
more than 60% of the small sample cases. In the large sample
cases, the .50 WRMSR cutoff and the chi-square tests more
frequently select models with higher numbers of factors.

Condition effects on model selection. To summa-
rize the effects of different conditions and response scales
on model selection, Table 4 gives the results of ordinal
logistic regression analyses for each estimation method (ML
of covariances, WLS, WLSMV) and five fit criteria (chi-
square test with α = .05, RMSEA index with cutoff .05,
SRMSR index with cutoff .04, WRMSR index with cutoff
.50, chi-square difference test with α = .05), with the num-
ber of factors as the dependent variable, and the manipulated
factors as predictors (using dummy coding).
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94 BARENDSE, OORT, TIMMERMAN

The first part of Table 4 shows the effects on model
selection through ML estimation. It appears that with the
chi-square test, the odds to select a model of higher
dimensionality in conditions with high factor loadings are
12.3 times higher than in conditions with small factor load-
ings. Likewise, the odds to select a model with an additional
factor in conditions with simple structure are 1.8 times higher
than in conditions with complex structure, and the odds in
large sample size conditions are 42.3 times higher than in
small sample size conditions. The odds to select a model
with an additional factor in conditions with three-point, four-
point, and continuous responses are 3.2, 4.9, and 16.0 times
higher than in conditions with dichotomous responses.

The other fit criteria show a similar picture, with the
exception of the sample size effect on model selection with
the SRMSR. With the SRMSR, the odds to select models
with more factors are smaller in large sample conditions than

in small sample conditions (i.e., 29.0 times smaller). We fur-
ther note that the simple structure effect on model selection
is much higher with the RMSEA and SRMSR indices than
with the chi-square tests.

With WLS and WLSMV estimation, we generally see the
same pattern in most selection procedures: The odds to select
models with larger numbers of factors are higher with high
factor loadings, simple structure, large sample size, and more
response categories. With WLS, the sample size effect on
model selection with RMSEA is an exception, as the odds
to select models with more factors are 5.6 times smaller
in large sample conditions than in small sample conditions.
This might be due to the convergence problems with small
sample sizes.

In the selection procedure through WLSMV estimation,
the WRMSR index is new and behaves contrary to the
SRMSR index in the ML procedure. For example, with the

TABLE 2
Rejection Rates According Different Estimation Methods, Various Fit Criteria and Cutoff Values, Across All Conditions With Discrete Responses

Chi-Square RMSEA SRMSR

Convergence (α = .05) (α = .10) (Cut = .03) (Cut = .04) (Cut = .05) (Cut = .06) (Cut = .02) (Cut = .03) (Cut = .04) (Cut = .05)

NC NC/NT NR/NT NR/NT NR/NT NR/NT NR/NT NR/NT NR/NT NR/NT NR/NT NR/NT

Series 1: Rejection rates for maximum likelihood
Sample size = 200

Model 1 11,972 0.998 0.910 0.939 0.961 0.915 0.845 0.746 0.998 0.998 0.998 0.980
Model 2 11,385 0.949 0.701 0.750 0.809 0.730 0.640 0.536 0.949 0.949 0.907 0.655
Model 3 10,266 0.856 0.001 0.180 0.314 0.185 0.083 0.026 0.852 0.466 0.028 0.000
Model 4 4,949 0.412 0.000 0.015 0.047 0.024 0.006 0.001 0.275 0.011 0.000 0.000
Model 5 1,985 0.165 0.000 0.000 0.004 0.001 0.000 0.000 0.009 0.000 0.000 0.000
Model 6 814 0.068 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Model 7 391 0.033 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sample size = 1,000
Model 1 11,999 1.000 1.000 1.000 0.993 0.941 0.845 0.736 1.000 0.996 0.875 0.749
Model 2 11,996 1.000 0.990 0.994 0.936 0.818 0.697 0.627 0.999 0.844 0.691 0.498
Model 3 11,952 0.996 0.550 0.647 0.206 0.021 0.001 0.000 0.094 0.000 0.000 0.000
Model 4 8,666 0.722 0.137 0.204 0.036 0.002 0.000 0.000 0.000 0.000 0.000 0.000
Model 5 5,026 0.419 0.010 0.022 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Model 6 2,626 0.219 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Model 7 1,383 0.115 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Series 2: Rejection rates for weighted least squares
Sample size = 200

Model 1 11,791 0.983 0.973 0.977 0.980 0.974 0.959 0.921 – – – –
Model 2 10,758 0.897 0.777 0.815 0.848 0.803 0.716 0.586 – – – –
Model 3 9,268 0.772 0.210 0.293 0.426 0.298 0.168 0.073 – – – –
Model 4 3,960 0.330 0.007 0.017 0.050 0.024 0.008 0.002 – – – –
Model 5 1,394 0.116 0.000 0.000 0.002 0.001 0.000 0.000 – – – –
Model 6 408 0.034 0.000 0.000 0.000 0.000 0.000 0.000 – – – –
Model 7 166 0.014 0.000 0.000 0.000 0.000 0.000 0.000 – – – –

Sample size = 1,000
Model 1 12,000 1.000 1.000 1.000 0.990 0.923 0.802 0.694 – – – –
Model 2 11,983 0.999 0.985 0.991 0.917 0.771 0.611 0.422 – – – –
Model 3 11,914 0.993 0.514 0.621 0.156 0.010 0.000 0.000 – – – –
Model 4 8,004 0.667 0.100 0.160 0.020 0.000 0.000 0.000 – – – –
Model 5 4,460 0.372 0.004 0.013 0.001 0.000 0.000 0.000 – – – –
Model 6 2,187 0.182 0.000 0.001 0.000 0.000 0.000 0.000 – – – –
Model 7 1,285 0.107 0.000 0.000 0.000 0.000 0.000 0.000 – – – –

(Continued)
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TABLE 2
(Continued)

Chi-Square RMSEA WRMSR

Convergence (α = .05) (α = .10) (Cut = .03) (Cut = .04) (Cut = .05) (Cut = .06) (Cut = .40) (Cut = .50) (Cut = .60) (Cut = .70)

NC NC/NT NR/NT NR/NT NR/NT NR/NT NR/NT NR/NT NR/NT NR/NT NR/NT NR/NT

Series 3: Rejection rates for robust weighted least squares
Sample size = 200

Model 1 11,991 0.999 0.903 0.935 0.959 0.910 0.839 0.749 0.999 0.999 0.999 0.991
Model 2 11,721 0.977 0.714 0.765 0.824 0.746 0.656 0.566 0.977 0.971 0.905 0.739
Model 3 10,899 0.908 0.058 0.115 0.246 0.119 0.038 0.007 0.653 0.219 0.021 0.001
Model 4 5,654 0.471 0.002 0.007 0.035 0.012 0.002 0.000 0.042 0.001 0.000 0.000
Model 5 2,149 0.179 0.000 0.000 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000
Model 6 653 0.054 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Model 7 246 0.021 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sample size = 1,000
Model 1 12,000 1.000 1.000 1.000 0.992 0.943 0.862 0.765 1.000 1.000 1.000 1.000
Model 2 11,998 1.000 0.990 0.994 0.938 0.841 0.741 0.677 1.000 1.000 1.000 0.998
Model 3 11,978 0.998 0.458 0.576 0.119 0.006 0.000 0.000 0.969 0.650 0.197 0.020
Model 4 8,989 0.749 0.102 0.164 0.018 0.000 0.000 0.000 0.297 0.031 0.001 0.000
Model 5 5,368 0.447 0.006 0.016 0.002 0.000 0.000 0.000 0.003 0.000 0.000 0.000
Model 6 2,730 0.228 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Model 7 1,946 0.162 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note. RMSEA = root mean square error of approximation; SRMSR = standardized root mean square residual; NC = number of analyses with convergence;
NR = number of data sets with which the model is rejected; NT = total number of data sets; WRMSR = weighted root mean square residual. NT = 12,000 data
sets with the maximum likelihood, weighted least squares, and robust weighted least squares method. Model rejection rates are calculated over 4 conditions x
3 response scale types.

WRMSR cutoff of .50, the odds to select a model of higher
dimensionality in conditions with high factor loadings are
5.1 times smaller than in conditions with small factor load-
ings, and the odds to select a model of higher dimensionality
in conditions with four-point scales are 3.7 times smaller
than in conditions with dichotomous response scales.

Estimation method effects on model selection. We
repeat the ordinal logistic regression analyses but include
estimation method as one of the predictors of model selec-
tion. We restrict the comparison of estimation methods to the
ML and WLSMV methods, as these two methods show the
best convergence rates. To validly compare the two meth-
ods, we exclude all cases in which no model was selected
(see Table 3), and we only consider cases in which both
methods selected a model. As a result, the ordinal logistic
regression analysis of model selection, reported in Table 5,
has been conducted with 41,106, 45,960, and 38,070 cases
for the chi-square test, the RMSEA index, and the chi-square
difference test, respectively.

From Table 5, it appears that the odds to select a
model with one additional factor with the ML method
are 1.3 times higher than the odds with the WLSMV
method, when using the chi-square test. With the chi-
square difference test the ML odds are 1.2 times higher
than the WLSMV odds. Strikingly, with the .05 RMSEA
cut, the ML odds are 1.2 times smaller than the WLSMV
odds.

All other Table 5 results are similar to the Table 4
results, with higher odds for conditions with high load-
ings, simple structure, large sample size, and more response
categories than for the condition of reference with low load-
ings, complex structure, small sample size, and dichotomous
responses.

Nonconvergence. All methods of EFA of discrete data
seem to be plagued with convergence problems, especially
when the numbers of factors increase. To compare conver-
gence problems across the five estimation methods, Table 6
gives proportions of nonconvergence across all conditions
for the three- and four-point responses that are analyzed with
all estimation methods. From Table 6 it is clear that the MLR
method has the highest proportions of nonconvergence and
ML with polychoric correlations has the lowest. A logis-
tic regression of nonconvergence with the four-factor model
(Model 4) shows more convergence problems in condi-
tions with low factor loadings (odds ratio [OR] = 1.2),
small sample size (OR = 1.9), complex structure (OR =
1.1), three response categories (OR = 1.1), ML estimation
(OR = 1.2), WLSMV estimation (OR = 1.3), ML with
polychoric correlation estimation (OR = 3.2), and WLS esti-
mation (OR = 1.1) than in the conditions with high factor
loadings, large sample size, simple structure, four response
categories, and MLR estimation. Analysis without the MLR
methods and all categorical response scales give comparable
results.
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98 BARENDSE, OORT, TIMMERMAN

TABLE 4
Ordinal Logistic Regression Analysis of Model Selection, for Different Estimation Methods According to Various Fit Criteria, Across All

Conditions With Discrete Responses

Chi-Square (α = .05) RMSEA (Cut = .05) SRMSR (Cut = .04) Difference Test (α = .05)

Conditions β OR β OR β OR β OR

Ordinal logistic regression analysis of model selection through maximum likelihood estimation
High loadings 2.513 12.341 5.372 215.202 3.795 44.456 2.199 9.019
Simple structure 0.562 1.755 2.786 16.211 3.465 31.968 0.004 1.004
Large sample size 3.746 42.339 0.102 1.107 −3.366 0.035 2.773 16.009
3 response categories 1.158 3.185 1.584 4.873 1.427 4.167 2.217 9.181
4 response categories 1.590 4.903 2.135 8.459 1.694 5.441 1.067 2.906
Continuous responses 2.775 16.038 3.365 28.934 1.968 7.159 1.473 4.360

Ordinal logistic regression analysis of model selection through weighted least squares estimation
High loadings 1.566 4.787 4.037 56.639 – – 1.175 3.240
Simple structure 0.634 1.886 3.006 20.201 – – 0.546 1.726
Large sample size 2.226 9.261 −1.729 0.177 – – 1.993 7.336
3 response categories 1.249 3.488 1.604 4.973 – – 1.156 3.178
4 response categories 1.816 6.145 2.205 9.073 – – 1.621 5.059

WRMSR (Cut = .50)

β OR

Ordinal logistic regression analysis of model selection through robust weighted least squares estimation
High loadings 2.287 9.845 1.959 7.092 −1.633 0.195 1.401 4.060
Simple structure 1.002 2.724 0.832 2.298 −0.032 0.969 0.570 1.769
Large sample size 3.722 41.341 3.388 29.615 2.304 10.009 2.961 19.313
3 response categories 1.362 3.902 1.252 3.498 −0.694 0.499 1.112 3.042
4 response categories 1.937 6.938 1.814 6.134 −1.318 0.268 1.647 5.191

Note. RMSEA = root mean square error of approximation; SRMSR = standardized root mean square residual; OR = odds ratio; WRMSR = weighted
root mean square residual. The condition of reference has small factor loadinfs, complex structure, small sample size,and dichotmous response scales. With
maximum likerlihood estimation, the regression analysis is based on 32,000 data sets and with weighted least squares and robust weighted least squares on
24,000 data sets.

TABLE 5
Ordinal Logistic Regression of Model Selection With the Maximum Likelihood and Robust Weighted Least Squares Methods, Across All

Conditions With Dichotomous, Three-Point, and Four-Point Response Scales

Chi-Square (α = .05) RMSEA (Cut = .05) Difference Test (α = .05)

Conditions β OR β OR β OR

Maximum likelihood estimation 0.291 1.338 −0.167 0.846 0.182 1.199
High loadings 2.476 11.895 6.178 481.942 1.695 5.447
Simple data structure 0.799 2.224 3.747 42.375 0.343 1.410
Large sample size 3.656 38.725 0.464 1.590 2.816 16.716
3 response categories 1.294 3.649 1.777 5.912 1.086 2.962
4 response categories 1.819 6.167 2.434 11.404 1.559 4.753

Note. RMSEA = root mean square error od approximation; OR = odds ratio. β is the log odds ratio and OR is the ratio of odds of model selection in
the particular condition over the odds in the condition of reference. The condition of reference is small loadings, complex structure, small sample size, and
dichotomous response scales, analyzed with the weighted least squares method. For chi-square tests, odds ratios are calculated for 41,106 data sets: 13,796,
13,682, and 13,628 cases with dichotomous, three-point, and four-point responses, respectively. For RMSEA indices, odds ratios are calculated for 45,960 data
sets: 15,290, 15,342, and 15,328 cases with dichotomous, three-point, and four-point responses, respectively. For chi-square difference tests, odds ratios are
calculated for 38,070 data sets: 12,550, 12,810, and 12,710 cases with dichotomous, three-point, and four-point responses, respectively.

DISCUSSION

We compared different estimation methods, with different
fit criteria, under various conditions, but judgment of pre-
ferred methods and criteria depends on the goals of the

user. We used a model with three major factors and four
minor factors to generate data with six dimensions (six,
not seven, because of our parameterization choices). If the
researcher would like to recover six factors, he or she might
prefer the chi-square test that is a measure of exact fit.
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TABLE 6
Proportions of Nonconvergence, Calculated Across All Conditions

With Three-Point and Four-Point Response Scales

Estimation Methods

ML MLR WLSMV Polychoric ML WLS

Model 1 0.000 0.001 0.000 0.001 0.002
Model 2 0.018 0.048 0.005 0.012 0.027
Model 3 0.057 0.118 0.027 0.033 0.074
Model 4 0.408 0.462 0.331 0.214 0.439
Model 5 0.681 0.731 0.634 0.328 0.711
Model 6 0.840 0.868 0.826 0.379 0.864
Model 7 0.922 0.938 0.890 0.503 0.928

Note. ML = maximum likelihood; MLR = robust maximum likelihood;
WLSMV = robust weighted least squares; WLS = weighted least squares.
The total number of data sets in these conditions is 16,000.

The chi-square test and chi-square difference test proce-
dures generally select models with more common factors
than the RMSEA and the SRMSR or WRMSR procedures,
but hardly ever the six-factor model. This is consistent with
the study of Briggs and MacCallum (2003) with continu-
ous data that showed difficulties recovering patterns with
minor factors that were even larger than ours. In con-
trast, simulation studies of models with only major factors
encountered overextraction problems (e.g., Beauducel, 2001;
Hayashi et al., 2007). The chi-square difference test proce-
dure recovers more factors than the stand-alone chi-square
test procedure, but it also more frequently ends up without
selecting any model, because of nonconvergence problems.

If the researcher is primarily interested in major factors,
he or she might want to rely on the RMSEA index. For
example, with the robust WLS estimation method, and with
the common choice of a .05 cutoff, the RMSEA selects
the three-factor model in 61.0% of the small sample cases
and in 74.1% of the large sample cases. For the chi-square
test procedure, these selection percentages are 64.4% and
53.1%. Interestingly, the WRMSR with .60 and .70 cut-
offs outperformed the RMSEA procedure in selecting the
three-factor model. Obviously, selection rates largely depend
on the (arbitrary) choices of a level of significance for the
chi-square tests and cutoffs for the RMSEA and RMSR
indices. Marsh, Hau, and Wen (2004) and Hooper, Coughlan,
and Mullen (2008) discussed model selection guidelines for
model selection in structural equation modeling of variance
and covariances of continuous data; less is known about
discrete data.

Selection rates also depend on circumstances. Chi-square
tests and RMSEA index procedures recover more factors
when sample size is larger, when factor loadings are higher,
when factor structure is less complex, and when the response
scales have more options. The effects of sample size and
communality (size of factor loadings) have also been found
in studies of factor pattern recovery (MacCallum, Widaman,
Preacher, & Hong, 2001; MacCallum, Widaman, Zhang, &
Hong, 1999). When model selection is based on the SRMSR

index, we find an opposite effect of sample size, as the
SRMSR gets smaller with larger sample size, which can be
explained by the more precise correlation estimates on which
the SRMSR is based. Conspicuously, all effects on model
selection with the WRMSR index are opposite to those of
the SRMSR index.

For the purpose of clarity of presentation, we have only
reported main effects of sample size, factor loading size, fac-
tor structure complexity, and number of response options.
However, for example, as apparent in Table 1, the effect of
the factor loading size varies with sample size and factor
structure complexity. Full results of all estimation methods
and fit criteria can be downloaded from the website of the
corresponding author.

With all estimation methods, EFA is hindered by con-
vergence problems, especially when the numbers of factors
increase and when the sample size is small. To prevent
convergence problems, we examined various rotation con-
straints and we experimented with starting values. With the
Mplus computer program, the echelon form rotation con-
straint appears to work best. Of all estimation methods that
have been used in our study, the WLSMV method is the pre-
ferred method of choice. The ML methods lack theoretical
justification for use with discrete data. The MLR method
has the problem that the chi-square difference test often
yields negative results, although we should note that Satorra
and Bentler recently suggested a new procedure that consis-
tently yields positive results (Asparouhov & Muthén, 2010;
Satorra & Bentler, 2010). In our study, the ML estimation
and WLSMV estimation do not show large differences in
model selection, but Beauducel and Herzberg (2006) showed
that the WLSMV estimates are more precise with only a few
response options.

In conclusion, the WLSMV estimation method is theoret-
ically justified for the factor analysis of discrete data and it
gives the best results. In addition, this limited information
method of analyzing polychoric correlations is more prac-
tical, as full information methods such as maximizing the
likelihood of observed response patterns are too computa-
tionally intensive to be used in practice, even with small
numbers of variables (Jöreskog & Moustaki, 2001; Wirth &
Edwards, 2007).

FUNDING

This publication is supported by an open competition
grant 400–09–084 from the Netherlands Organization for
Scientific Research (NWO).

REFERENCES

Asparouhov, T., & Muthén, B. (2010). Simple second order chi-square
correction. Mplus Technical Appendix. Retrieved from http://statmodel.
com/download/WLSMV_new_chi21.pdf

D
ow

nl
oa

de
d 

by
 [

U
V

A
 U

ni
ve

rs
ite

its
bi

bl
io

th
ee

k 
SZ

] 
at

 0
5:

54
 1

4 
A

pr
il 

20
15

 

http://statmodel.com/download/WLSMV_new_chi21.pdf
http://statmodel.com/download/WLSMV_new_chi21.pdf


100 BARENDSE, OORT, TIMMERMAN

Asparouhov, T., Muthén, M., & Muthén, B. (2006). Robust chi square dif-
ference testing with mean and variance adjusted test statistics. Mplus Web
Notes. Retrieved from http://www.statmodel.com/download/webnotes/
webnote.pdf

Beauducel, A. (2001). On the generalizability of factors: The influence of
changing contexts of variables on different methods of factor extraction.
Methods of Psychological Research Online, 6, 1–28.

Beauducel, A., & Herzberg, P. (2006). On the performance of maximum
likelihood versus means and variance adjusted weighted least square esti-
mation in confirmatory factor analysis. Structural Equation Modeling, 13,
186–203.

Briggs, N. E., & MacCallum, R. C. (2003). Recovery of weak common
factors by maximum likelihood and ordinary least squares estimation.
Multivariate Behavioral Research, 38, 25–56.

Browne, M. W. (1982). Covariance structures. In Topics in applied
multivariate analysis, ed. D. M. Hawkins (pp. 72–141). Cambridge, UK:
Cambridge University Press.

Browne, M. W. (1984). Asymptotically distribution-free methods in the
analysis of covariance structures. British Journal of Mathematical and
Statistical Psychology, 37, 62–83.

Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model
fit. Sociological Methods and Research, 21, 230–258.

Conway, J. M., & Huffcutt, A. I. (2003). A review and evaluation
of exploratory factor analysis practices in organizational research.
Organizational Research Methods, 6, 147–168.

Dolan, C. V. (1994). Factor analysis of variables with 2, 3, 5 and 7 response
categories: A comparison of categorical variable estimators using simu-
lated data. British Journal of Mathematical and Statistical Psychology,
47, 309–326.

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J.
(1999). Evaluating the use of exploratory factor analysis in psychological
research. Psychological Methods, 4, 272–299.

Flora, D. B., & Curran, P.J. (2004). An empirical evaluation of alternative
methods of estimation for confirmatory factor analysis with ordinal data.
Psychological Methods, 9, 466–491.

Hayashi, K., Bentler, P. M., & Yuan, K. H. (2007). On the likelihood ratio
test for the number of factors in exploratory factor analysis. Structural
Equation Modeling, 14, 505–526.

Holgado-Tello, F. P., Chacón-Moscoso, S., Barbero-García, I., & Vila-Abad,
E. (2010). Polychoric versus Pearson correlations in exploratory and
confirmatory factor analysis of ordinal variables. Quality and Quantity,
44, 153–166.

Hooper, D., Coughlan, J., & Mullen, M. R. (2008). Structural equation
modelling: Guidelines for determining model fit. Journal of Business
Research Methods, 6, 53–60.

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covari-
ance structure analysis: Conventional criteria versus new alternatives.
Structural Equation Modeling, 6, 1–55.

Johnson, D. R., & Creech, J. C. (1983). Ordinal measures in multiple
indicator models: A simulation study of categorization error. American
Sociological Review, 48, 398–407.

Jöreskog, K. G., & Moustaki, I. (2001). Factor analysis of ordinal variables:
A comparison of three approaches. Mulitvariate Behavioral Research, 36,
347–387.

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test
scores. Reading, MA: Addison-Wesley.

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power anal-
ysis and determination of sample size for covariance structure modeling.
Psychological Methods, 1, 130–149.

MacCallum, R. C., Widaman, K. F., Preacher, K., & Hong, S. (2001).
Sample size in factor analysis: The role of model error. Multivariate
Behavioral Research, 36, 611–637.

MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample
size in factor analysis. Psychological Methods, 4, 84–99.

Marsh, H. W., Hau, K. T., & Wen, Z. (2004). In search of
golden rules: Comment on hypothesis testing approaches to set-
ting cutoff values for fit indexes and dangers in overgeneralising
Hu & Bentler’s (1999) findings. Structural Equation Modeling, 11,
320–341.

Muthén, B. O. (1998–2004). Mplus technical appendices. Los Angeles,
CA: Muthén & Muthén. Retrieved from http://statmodel.com/download/
techappen.pdf

Muthén, B., du Toit, S. H., & Spisic, D. (1997). Robust inference using
weighted least squares and quadratic estimating equations in latent vari-
able modeling with categorical and continuous outcomes. Psychometrika,
75, 1–45.

Muthén, B., & Kaplan, D. (1985). A comparison of some methodologies
for the factor analysis of non-normal Likert variables. British Journal of
Mathematical and Statistical Psychology, 38, 171–189.

Muthén, B., & Kaplan, D. (1992). A comparison of some methodologies for
the factor analysis of non-normal Likert variables: A note on the size of
the model. British Journal of Mathematical and Statistical Psychology,
45, 19–30.

Muthén, B. O., & Muthén, L. K. (2010). Mplus user’s guide: Statistical
analysis with latent variables. Los Angeles, CA: Muthén & Muthén.

Olsson, U. H., Foss, T., & Breivik, E. (2004). Two equivalent dis-
crepancy functions for maximum likelihood estimation: Do their
test statistics follow a non-central chi-square distribution under
model misspecification? Sociological Methods Research, 32,
453–500.

Olsson, U. H., Troye, S. V., & Howell, R. D. (1999). Theoretic fit and
empirical fit: The performance of maximum likelihood versus generalized
least squares estimation in structural equation modeling. Multivariate
Behavioral Research, 34, 31–58.

Preacher, K. J., & MacCallum, R. C. (2003). Repairing Tom Swift’s electric
factor analysis machine. Understanding Statistics, 2, 13–32.

Rhemtulla, M., Brosseau-Liard, P., & Savalei, V. (2012). When can categori-
cal variables be treated as continuous? A comparison of robust continuous
and categorical SEM estimation methods under suboptimal conditions.
Psychological Methods, 17(3), 354.

Rigdon, E. E., & Ferguson, C. E. (1991). The performance of the polychoric
correlation coefficient and selected fitting functions in confirmatory fac-
tor analysis with discrete data. Journal of Marketing Research, 28,
491–497.

Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and stan-
dard errors in covariance structure analysis. In A. von Eye & C. C.
Clogg (Eds.), Latent variables analysis: Applications for developmental
research (pp. 399–419). Thousand Oaks, CA: Sage.

Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test
statistic for moment structure analysis. Psychometrika, 66, 507–514.

Satorra, A., & Bentler, P. M. (2010). Ensuring positiveness of the scaled
difference chi-square test statistic. Psychometrika, 75, 243–248.

Sivo, S. A., Fan, X., Witta, E. L., & Willse, J. T. (2006). The search for “opti-
mal” cut-off properties: Fit index criteria in structural equation modeling.
Journal of Experimental Education, 74, 267–288.

Steiger, J. H., Shapiro, A., & Browne, M. W. (1985). On the multivariate
asymptotic distribution of sequential chi-square statistics. Psychometrika,
50, 253–264.

Ten Holt, J. C., van Duijn, M. A. J., & Boomsma, A. (2010). Scale con-
struction and evaluation in practice: A review of factor analysis versus
item response theory. Psychological Test and Assessment Modeling, 52,
272–297.

Wirth, R. J., & Edwards, M. C. (2007). Item factor analysis: Current
approaches and future directions. Psychological Methods, 12,
58–79.

Yang-Wallentin, F., Jöreskog, K. G., & Luo, H. (2010). Confirmatory fac-
tor analysis of ordinal variables with misspecified models. Structural
Equation Modeling, 17, 392–423.

D
ow

nl
oa

de
d 

by
 [

U
V

A
 U

ni
ve

rs
ite

its
bi

bl
io

th
ee

k 
SZ

] 
at

 0
5:

54
 1

4 
A

pr
il 

20
15

 

http://www.statmodel.com/download/webnotes/webnote.pdf
http://www.statmodel.com/download/webnotes/webnote.pdf
http://statmodel.com/download/techappen.pdf
http://statmodel.com/download/techappen.pdf


EXPLORATORY FACTOR ANALYSIS OF DISCRETE RESPONSES 101

Yu, C. Y., & Muthén, B. (2002). Evaluation of model fit indices for latent
variable models with categorical and continuous outcomes (Technical
report). Los Angeles, CA: University of California at Los Angeles,
Graduate School of Education & Information Studies.

Yuan, K. H., & Bentler, P. M. (1998). Normal theory based test statistics
in structural equation modelling. British Journal of Mathematical and
Statistical Psychology, 51, 289–309.

Yuan, K. H., & Bentler, P. M. (2000). Three likelihood-based methods for
mean and covariance structure analysis with nonnormal missing data. In
M. E. Sobel & M. P. Becker (Eds.), Sociological methodology 2000 (pp.
165–200). Washington, DC: ASA.

Zhang, J., & Stout, W. F. (1999). Conditional covariance structure of
generalized compensatory multidimensional items. Psychometrika, 64,
129–152.

D
ow

nl
oa

de
d 

by
 [

U
V

A
 U

ni
ve

rs
ite

its
bi

bl
io

th
ee

k 
SZ

] 
at

 0
5:

54
 1

4 
A

pr
il 

20
15

 


	Abstract
	METHOD
	Data Generation: Continuous Responses
	Data Analysis

	RESULTS
	Continuous Responses
	Discrete Responses

	DISCUSSION
	FUNDING
	REFERENCES

