The role of the proteasome in Huntington's disease

Krom, S.

Citation for published version (APA):
Krom, S. (2013). The role of the proteasome in Huntington’s disease.
THE ROLE OF THE PROTEASOME IN HUNTINGTON’S DISEASE

Sabine Schipper-Krom

“A man who dares to waste one hour of time has not discovered the value of life”

Charles R. Darwin (1809-1882)
THE ROLE OF THE PROTEASOME IN HUNTINGTON’S DISEASE

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. D.C. van den Boom
ten overstaan van een door het college voor promoties ingestelde
commissie, in het openbaar te verdedigen in de Agnietenkapel
op woensdag 18 december 2013, te 12:00 uur

door

Sabine Krom
geboren te Beverwijk

The studies described in this thesis were performed at the Department of Cell Biology and Histology of the Academic Medical Center, University of Amsterdam, The Netherlands

The production of this thesis was financially supported by the University of Amsterdam

Design and lay-out: Sixtyseven Communicatie BV - www.sixtyseven.com
Production: Gildeprint Drukkerijen - www.gildeprint.nl
Publisher: S. Schipper-Krom
Cover picture: Living cells expressing mHtt(Q103)-GFP in blue and in white labeling with activity based probe for active proteasome visualization

Copyright © 2013 by S. Schipper-Krom
All rights reserved.
No part of this publication may be reproduced, stored or transmitted in any way without prior permission from the author
PROMOTIECOMMISSIE

Promotor: Prof. dr. C.J.F. van Noorden
Copromotor: Dr. E.A.J. Reits
Overige leden: Prof. dr. J.M.F.G. Aerts
Prof. dr. E.M. Hol
Prof. dr. H.H. Kampinga
Prof. dr. P.M. Kloetzel
Prof. dr. H.S. Overkleeft
Prof. dr. R.J.A. Wanders

Faculteit der Geneeskunde

TABLE OF CONTENTS

1 Short introduction and outline of the thesis 6
2 The ubiquitin-proteasome system in huntington's disease 13
3 Mimicking proteasomal release of polyglutamine peptides initiates aggregation and toxicity 36
4 The DNAJB6 and DNAJB8 chaperones prevent intracellular aggregation of polyglutamine peptides 60
5 Expanded polyglutamine-containing N-terminal huntingtin fragments are entirely degraded by mammalian proteasomes 82
6 Enlightening proteasomes: methods to visualize their intracellular distribution, activity and interactions 114
7 Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies 146
8 Modulating proteasome activity in huntington's disease 162
9 Summary and conclusion 190
& Addendum 196