The biocalcification of mollusk shells and coral skeletons: Integrating molecular, proteomics and bioinformatics methods

Sequeira dos Ramos Silva, P.

Citation for published version (APA):
TABLE OF CONTENTS

Chapter 1 Introduction .. 1
 1.1 General Concepts of Biomineralization .. 2
 1.2 Biocalcification in Scleractinian Corals and Mollusks ... 5
 1.3 Why to Study Biomineralization Proteins of Aquatic Calcifiers 12
 1.4 Outline of the Thesis ... 15

Chapter 2 Novel Molluskan Biomineralization Proteins Retrieved from Proteomics: a Case Study with Upsalin .. 19
 2.1 Introduction ... 21
 2.2 Background ... 22
 2.3 Materials and Methods ... 25
 2.3.1 Sample collection and characterization ... 25
 2.3.2 General strategy for the identification of Upsalin .. 26
 2.3.3 Identification of a cDNA fragment .. 27
 2.3.4 Rapid amplification of cDNA ends (5’- and 3’-RACE) 28
 2.3.5 Purification, amplification and sequencing .. 29
 2.3.6 Amplification of the full nucleotide sequence and quantitative real-time PCR .. 30
 2.3.7 In silico analysis of the deduced amino acid sequence 31
 2.3.8 Extraction of the shell organic matrix .. 31
 2.3.9 Protein purification and characterization on mono-dimensional gel and on Western blots .. 32
 2.3.10 Proteomic analysis of the purified fraction ... 33
 2.3.11 Antibody production and ELISA testing ... 34
 2.3.12 Glycosylation studies ... 34
 2.3.13 In vitro interaction of the purified protein with calcium carbonate 35
 2.3.14 Immunogold localization of the purified protein on shell fragments 36
 2.4 Results .. 36
 2.4.1 Characterization of Unio pictorum shell ... 36
 2.4.2 Identification of a nucleotide sequence coding for a 12 kDa protein 37
 2.4.3 Primary structure and molecular features of Upsalin 39
 2.4.4 Tissue specific gene expression of Upsalin .. 41
 2.4.5 Homology search ... 42
Chapter 3 The Skeletal Proteome of the Coral *Acropora millepora*: the Evolution of Calcification by Co-option and Domain Shuffling

3.1 Introduction
3.2 Background
3.3 Materials and Methods
3.3.1 Skeletal collection and SEM observations
3.3.2 Organic matrix extraction
3.3.3 ASM/AIM analysis on 1D and 2D gel electrophoresis
3.3.4 Proteomic analysis
3.3.5 *In silico* analysis of the SOMPs
3.3.6 Homology analysis and protein comparisons at the domain level
3.4 Results and Discussion
3.4.1 Analysis of the matrix on gel
3.4.2 Identification and characterization of SOMPs
3.4.3 Proteins with transmembrane domains
3.4.4 SOMPs in early stages of calcification affected by high CO$_2$
3.4.5 Homology comparison between *Acropora, Nematostella vectensis* and *Hydra magnipapillata*
3.5 Conclusions

Chapter 4 Biomineralization Toolkit: the Importance of Sample Cleaning Prior to the Characterization of Biomineral Proteomes

4.1 Concerning Coral Skeletal Proteomes
4.2 Concerning Proteomes Associated to Calcium Carbonate Structures in Other Metazoans

Chapter 5 The Skeleton of the Staghorn Coral *Acropora millepora*: Molecular and Structural Characterization

5.1 Introduction
5.2 Background
5.3 Materials and Methods
5.3.1 Sample collection and cleaning
5.3.2 Microstructural analysis
5.3.3 Skeletal organic matrix extraction