The biocalcification of mollusk shells and coral skeletons: Integrating molecular, proteomics and bioinformatics methods

Sequeira dos Ramos Silva, P.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
TABLE OF CONTENTS

Chapter 1 Introduction

1.1 General Concepts of Biomineralization .. 1
1.2 Biocalcification in Scleractinian Corals and Mollusks 2
1.3 Why to Study Biomineralization Proteins of Aquatic Calciifiers 5
1.4 Outline of the Thesis .. 12

Chapter 2 Novel Molluskan Biomineralization Proteins Retrieved from Proteomics: a Case Study with Upsalin

2.1 Introduction ... 19
2.2 Background ... 21
2.3 Materials and Methods ... 22
2.4 Sample collection and characterization .. 25
2.5 General strategy for the identification of Upsalin 26
2.6 Identification of a cDNA fragment ... 27
2.7 Rapid amplification of cDNA ends (5’ and 3’-RACE) 28
2.8 Purification, amplification and sequencing .. 29
2.9 Amplification of the full nucleotide sequence and quantitative real-time PCR ... 30
2.10 In silico analysis of the deduced amino acid sequence 31
2.11 Extraction of the shell organic matrix .. 31
2.12 Protein purification and characterization on mono-dimensional gel and on Western blots ... 32
2.13 Proteomic analysis of the purified fraction ... 33
2.14 Antibody production and ELISA testing ... 34
2.15 Glycosylation studies .. 34
2.16 In vitro interaction of the purified protein with calcium carbonate 35
2.17 Immunogold localization of the purified protein on shell fragments 36
2.18 Results .. 36
2.19 Characterization of *Unio pictorum* shell ... 36
2.20 Identification of a nucleotide sequence coding for a 12 kDa protein 37
2.21 Primary structure and molecular features of Upsalin 39
2.22 Tissue specific gene expression of Upsalin 41
2.23 Homology search .. 42
5.3.4 Organic matrix characterization on mono-dimensional gels and Ca-overlay test ... 119
5.3.5 Analysis of the protein content of the SOM by proteomics 120
5.3.6 Analysis by Fourier Transform Infrared Spectroscopy (FTIR-ATR) and by Raman spectroscopy 120
5.3.7 Sugar analysis ... 121
5.3.8 In vitro crystallization tests in the presence of ASM 122
5.4 Results .. 123
5.4.1 Skeletal morphology and microstructure 123
5.4.2 Skeletal organic matrix on gel ... 126
5.4.3 Fourier transform IR of the ASM and AIM 126
5.4.4 Monosaccharide composition of the ASM and AIM 129
5.4.5 Characterization of skeletal organic matrix proteins (SOMPs) .. 130
5.4.6 In vitro interaction of the acid soluble matrix with CaCO₃ 134
5.5 Discussion .. 139

Chapter 6 Conclusions and Perspectives 147
Appendix A .. 154
Appendix B .. 158
Appendix C .. 183
References .. 187
Samenvatting ... 207
Publications ... 211
Submitted Publications ... 212
Acknowledgements .. 213