Learning robots to rescue
The RoboCup Rescue as training ground
Visser, A.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Learning robots to rescue
The RoboCup Rescue as training ground
Arnoud Visser

Challenge
- After a disaster a team of robots must explore the devastated city. Ambulances have to find as many victims as possible, dig them out and bring them to a hospital. Fire fighters have extinguish fires before the situation goes out of hand. Police can help to patrol and explore, but can also clear the road for the other agents.

Learning Coordination Policies
The coordination problem is described as a dec-POMDP, which is interpreted as a series of Bayesian games. In this Bayesian game each robot has some private information (not communicated with the team). This private information is clustered into a type of observation histories. This Bayesian game is used to find a joint policy is designed to maximize the average result achieved on all joint action-observation histories.

Results
To apply Bayesian games to realistic RoboCup Rescue scenario’s, the decision making is decomposed into a high-level Bayesian game and low-level MDP:

Bayesian Game – independent decisions based on a joint policy found for a type of histories. Courtesy Emery-Montemerlo

Based on the individual action a_i observation z_i, the actions of all the other agents are inferred, relying on a common knowledge assumption, by finding match to the type Θ.

Context
- After the Great Hanshin Earthquake of 1995 in Kobe, the Japanese government decided to promote research related to the problems encountered during large-scale urban disasters.
- A major outcome of this initiative was the RoboCup Rescue competitions. This lead to both versatile robots as control software for large teams of rescue agents.

Conclusion
Bayesian Game approximations make it possible to bridge the gap to coordination problems encountered in benchmarks as the RoboCup Rescue. Modeling that each robot has a certain amount of private information, next to a certain amount of common knowledge, is a natural assumption. Also online planning is natural in such dynamic situations.

References