Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

DOI
10.1016/j.physletb.2013.08.010

Publication date
2013

Document Version
Final published version

Published in
Physics Letters B

Citation for published version (APA):
https://doi.org/10.1016/j.physletb.2013.08.010

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

ATLAS Collaboration

1. Introduction

The discovery of a new particle of mass about 125 GeV in the search for the Standard Model (SM) Higgs boson at the CERN Large Hadron Collider (LHC) [1], reported in July 2012 by the ATLAS [2] and CMS [3] Collaborations, is a milestone in the quest to understand the origin of electroweak symmetry breaking [4–9].

This Letter presents measurements of several properties of the recently discovered Higgs boson using the decays into boson pairs, $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$, and $H \rightarrow WW^* \rightarrow \ell\ell\ell\ell$. Spin studies are reported elsewhere [10]. Due to the outstanding performance of the LHC accelerator throughout 2012, the present data sample is a factor of \sim2.5 larger than that used in Ref. [2]. With these additional data, many aspects of the ATLAS studies have been improved: several experimental uncertainties have been reduced and new exclusive analyses have been included. In particular, event categories targeting specific production modes have been introduced, providing enhanced sensitivity to different Higgs boson couplings.

The results reported here are based on the data samples recorded with the ATLAS detector at the LHC [11] in 2011 (at $\sqrt{s} = 7$ TeV) and 2012 (at $\sqrt{s} = 8$ TeV), corresponding to integrated luminosities of about 4.7 fb$^{-1}$ and 20.7 fb$^{-1}$, respectively. Similar studies, including also fermionic decays, have been reported recently by the CMS Collaboration using a smaller dataset [12].

This Letter is organised as follows. Section 2 describes the data sample and the event reconstruction. Section 3 summarises the Monte Carlo (MC) samples used to model signal and background processes. The analyses of the three decay channels are presented in Sections 4–6. Measurements of the Higgs boson mass, production properties and couplings are discussed in Section 7. Section 8 is devoted to the conclusions.

2. Data sample and event reconstruction

After data quality requirements, the integrated luminosities of the samples used for the studies reported here are about 4.7 fb$^{-1}$ in 2011 and 20.7 fb$^{-1}$ in 2012, with uncertainties given in Table 1 (determined as described in Ref. [13]). Because of the high LHC peak luminosity (up to 7.7×10^{33} cm$^{-2}$ s$^{-1}$ in 2012) and the 50 ns bunch spacing, the number of proton–proton interactions occurring in the same bunch crossing is large (on average 20.7, up to about 40). This “pile-up” of events requires the use of dedicated algorithms and corrections to mitigate its impact on the reconstruction of e.g., leptons, photons and jets.

For the $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow WW^* \rightarrow \ell\ell\ell\ell$ channels, the primary vertex of the event is defined as the reconstructed vertex with the highest $\sum p_T^2$, where p_T is the magnitude of the transverse momentum2 of each associated track; it is required to have at least three associated tracks with $p_T > 0.4$ GeV. For the

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector, and the z-axis along the beam line. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam line. Observables labelled “transverse” are projected into the x–y plane. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln\tan(\theta/2)$.

0370-2693/ © 2013 CERN. Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physletb.2013.08.010
H → γγ analysis a different primary vertex definition is used, as described in Section 4.

Muon candidates [17] are formed by matching reconstructed tracks in the inner detector (ID) with either complete tracks or track segments reconstructed in the muon spectrometer (MS). The muon acceptance is extended to the region 2.5 < |η| < 2.7, which is outside the ID coverage, using tracks reconstructed in the forward part of the MS.

Electron candidates [18] must have a well-reconstructed ID track pointing to a cluster of cells with energy depositions in the electromagnetic calorimeter. The cluster should satisfy a set of identification criteria requiring the longitudinal and transverse shower profiles to be consistent with those expected for electromagnetic showers. Tracks associated with electromagnetic clusters are fitted using a Gaussian Sum Filter [19], which allows bremsstrahlung energy losses to be taken into account. The identification criteria described in Ref. [18] have been modified with time to maintain optimal performance as a function of pile-up, in particular for low-PT electrons.

The reconstruction, identification and trigger efficiencies for electrons and muons, as well as their energy and momentum scales and resolutions, are determined using large samples of Z → ℓℓ, W → ℓν and J/ψ → ℓℓ events [18,20]. The resulting uncertainties are smaller than ±1% in most cases, one exception being the uncertainty on the electron selection efficiency which varies between ±2% and ±5% as a function of PT and η.

Photon candidates [21] are reconstructed and identified using shower shapes in the electromagnetic calorimeter, with or without associated conversion tracks, as described in Section 4.

Jets [22,23] are built from topological clusters [24] using the anti-kt algorithm [25] with a distance parameter R = 0.4. They are typically required to have transverse energies greater than 25 GeV (30 GeV) for |η| < 2.4 (2.4 < |η| < 4.5), where the higher threshold in the forward region reduces the contribution from jet candidates produced by pile-up. To reduce this contribution further, jets within the ID acceptance (|η| < 2.47) are required to have more than 25–75% (depending on the pile-up conditions and Higgs boson decay mode) of the summed scalar PT of their associated tracks coming from tracks originating from the event primary vertex. Pile-up corrections based on the average event transverse energy density in the jet area [26] and the number of reconstructed vertices in the data are also applied.

Jets originating from b-quarks [27–29] are identified ("b-tagged") by combining information from algorithms exploiting the impact parameter of tracks (defined as the distance of closest approach to the primary vertex in the transverse plane), the presence of a displaced vertex, and the reconstruction of D- and B-hadron decays.

The missing transverse momentum, Emiss T, is the magnitude of the negative vector sum of the PT of muons, electrons, photons, jets and clusters of calorimeter cells with |η| < 4.9 not associated with these objects. The uncertainty on the Emiss T energy scale is obtained from the propagation of the uncertainties on the contributing components and thus depends on the considered final state. A track-based missing transverse momentum, pmiss T, is calculated as the negative vector sum of the transverse momenta of tracks associated with the primary vertex.

The main sources of experimental uncertainty common to all the channels considered in this study are summarised in the top part of Table 1.

3. Signal and background simulation

The SM Higgs boson production processes considered in these studies are gluon fusion (gg → H, denoted ggF), vector-boson fusion (qq → qH, denoted VBF), and Higgs-strahlung (qg → WH, denoted WH/ZH/jointly VH). The small contribution from the associated production with a tt pair (gg/qq → tthH, denoted tH) is taken into account in the H → γγ and H → ZZ analyses. Samples of MC-simulated events are employed to model Higgs boson production and compute signal selection efficiencies. The event generators are listed in Table 2. Cross-section normalisations and other corrections (e.g. Higgs boson PT spectrum) are obtained from up-to-date calculations as described in Refs. [2, 14–16,49–77]. Table 3 shows the production cross sections and the branching ratios for the final states considered in this study for a SM Higgs boson with mass mH = 125 GeV, while Table 1 summarises the theoretical uncertainties on the expected signal common to all channels.

Backgrounds are determined using data alone or a combination of data and MC simulation, as discussed in Sections 4–6. The generators employed in most cases are also listed in Table 2. To generate parton showers and their hadronisation, and to simulate the underlying event [78–80], PYTHIA6 (for 7 TeV samples as well as for 8 TeV samples produced with MadGraph or AcerMC) or PYTHIA8 (for other 8 TeV samples) is used. Alternatively, HERWIG is employed, combined with the underlying event simulation provided by JIMMY [81]. When PYTHIA6 or HERWIG is used, PHOTOS [82,83] is employed to describe additional photon radiation from charged leptons. The small contributions from Z → l+νl− and W → l+ν decays to electrons and muons through intermediate τ-leptons are included in the signal and background generation.

The following parton distribution function (PDF) sets are used in most cases: CT10 [84] for the POWHEG, MC@NLO, gg2WW and
around the photon candidates, excluding the core of the showers. It is required to be smaller than 4 GeV and 6 GeV for the 7 TeV and 8 TeV data, respectively. The pile-up contribution is corrected on an event-by-event basis [92]. The track isolation, applied to the 8 TeV data only, is defined as the scalar sum of the transverse momenta of all tracks with $p_T > 1$ GeV associated with the diphoton production vertex (defined below) and lying within a cone of size $\Delta R = 0.2$ around the photon candidate; it is required to be smaller than 2.6 GeV. Conversion tracks associated with either photon candidate are excluded.

For the precise measurement of the diphoton invariant mass ($m_{\gamma\gamma}$), as well as for the computation of track-based quantities (e.g. track isolation, selection of jets associated with the hard interaction), the diphoton production vertex should be known precisely. The determination of the vertex position along the beam axis is based on so-called “photon pointing”, where the directions of the two photons, measured using the longitudinal and lateral segmentation of the electromagnetic calorimeter, are combined with a constraint from the average beam-spot position. For converted photons the position of the conversion vertex is also used. This technique alone is sufficient to ensure that the contribution of angular measurement uncertainties to the diphoton invariant mass resolution is negligible. For a more precise identification of the primary vertex, needed for the computation of track-based quantities, this pointing information is combined with tracking information from each reconstructed vertex: the Σp_T^2 for the tracks associated with a given vertex and, for the 8 TeV data, the Σp_T of the tracks and the azimuthal angle between the transverse momentum of the diphoton system and that of the vector sum of the track p_T. A Neural Network (likelihood) discriminant is used for the 8 TeV (7 TeV) data. The performance of this algorithm is studied using $Z \rightarrow ee$ decays, ignoring the tracks associated with the electrons and weighting the events so that the p_T and rapidity distributions of the Z boson match those expected from the Higgs boson signal. The probability of finding a vertex within 0.3 mm of the one computed from the electron tracks is larger than 75%.

The photon energy calibration is obtained from a detailed simulation of the detector geometry and response, independently for converted and unconverted photons. The calibration is refined by applying η-dependent correction factors determined from studies of $Z \rightarrow ee$ events in data [18]: they range from $\pm 0.5\%$ to $\pm 1.5\%$ depending on the pseudorapidity of the photon. Samples of radiative $Z \rightarrow \ell \ell \gamma$ decays are used to verify the photon energy scale. The energy response of the calorimeter shows a stability of better than $\pm 0.1\%$ with time and various pile-up conditions.

The signal efficiency of the above selections at 8 TeV is estimated to be 37.5% for a Higgs boson with $m_H = 125$ GeV.

The number of events in the diphoton mass region 100–160 GeV passing this inclusive selection is 23788 in the 7 TeV data and 118893 in the 8 TeV data. The fraction of genuine $\gamma\gamma$ events, as estimated from data [93], is $(75.2\pm1.5)\%$.

4.2. Event categorisation

To increase the sensitivity to the overall Higgs boson signal, as well as to the specific VBF and VH production modes, the selected events are separated into 14 mutually exclusive categories for further analysis, following the order of preference listed below.

Lepton category (8 TeV data only): This category targets mainly VII events where the W or Z bosons decay to charged leptons. An isolated electron ($E_T > 15$ GeV) or muon ($p_T > 10$ GeV) candidate is required. To remove contamination from $Z\nu\nu$ production with $Z \rightarrow ee$, electrons forming an invariant mass with either photon in the range 84 GeV < $m_{e\gamma}$ < 94 GeV are not considered.
plane3 require to satisfy momentum orthogonal to the diphoton thrust axis in the transverse dijet momenta. The BDT training is performed using a signal sample whose input quantities are: the pseudorapidities of the two jets on a multivariate technique using a Boosted Decision Tree (BDT), as described in Section 2. The selection for the 8 TeV data is based on events produced through the VBF process, which is characterised with invariant mass in the range 60 GeV.

E_{T}^{miss} category (8 TeV data only): This category targets mainly VH events with W → ℓν or Z → νν. An E_{T}^{miss} significance (defined as E_{T}^{miss}/σ_{Emiss}, where in this case σ_{Emiss} = 0.67 GeV/√ΣE_{T} with ΣE_{T} being the event total transverse energy) greater than five is required, corresponding to E_{T}^{miss} > 70–100 GeV depending on ΣE_{T}.

Low-mass two-jet category (8 TeV data only): To select VH events where the W or Z boson decays hadronically, a pair of jets with invariant mass in the range 60 GeV < m_{jj} < 110 GeV is required. To reduce the ggF contamination, the pseudorapidity difference between the dijet and diphoton systems is required to be |Δη_{γγ,jj}| < 1, and the component of the diphoton transverse momentum orthogonal to the diphoton thrust axis in the transverse plane3 [94,95] is required to satisfy p_{Tγ} > 70 GeV.

High-mass two-jet categories: These categories are designed to select events produced through the VBF process, which is characterised by the presence of two forward jets with little hadronic activity in the central part of the detector. Jets are reconstructed as described in Section 2. The selection for the 8 TeV data is based on a multivariate technique using a Boosted Decision Tree (BDT), whose input quantities are: the pseudorapidities of the two jets (η_{jj}, η_{j2}) and their separation in η; the invariant mass of the dijet system; the difference η^{*} = η_{γγ}^{*} = (η_{jj} + η_{j2})/2; where η_{γγ} is the pseudorapidity of the diphoton system; the minimal radial distance (ΔR = √Δφ^{2} + Δη^{2}) of any jet–photon pair; and the difference Δφ_{γγ,jj} between the azimuthal angles of the diphoton and dijet momenta. The BDT training is performed using a signal sample, as well as a background sample composed of simulated γγ events combined with γj and jj components obtained from data. The BDT response distributions for data and simulation are shown in Fig. 1. The BDT output is used to define two high-mass two-jet categories: a “tight” category corresponding to BDT ≥ 0.74, and a “loose” category for 0.44 ≤ BDT < 0.74. For the 7 TeV data, the same cut-based selection as described in Ref. [2] is applied, namely m_{jj} > 400 GeV, |Δη_{jj}| > 2.8 and |Δφ_{γγ,jj}| > 2.8.

Untagged categories: Events not selected in any of the above categories (corresponding to more than 90% of the expected signal, dominated by ggF production) are classified in nine additional categories according to the properties of their diphoton system. Events with both photons unconverted are classified into unconverted central if |η_{γ}| < 0.75 for both photons, and unconverted rest otherwise. Events with at least one converted photon are similarly separated into converted central if |η_{γ}| < 0.75 for both photons, converted transition if 1.3 < |η_{γ}| < 1.75 for either photon, and converted rest otherwise. Finally, all untagged categories except converted transition are split into low p_{Tγ} and high p_{Tγ} sub-categories by a cut at p_{Tγ} = 60 GeV. This classification is motivated by differences in mass resolution and signal-to-background ratio for the various categories.

The use of the 14 categories improves the sensitivity of the analysis by about 40% compared to the inclusive analysis.

4.3. Background estimation

The background is obtained from fits to the diphoton mass spectrum in the data over the range 100–160 GeV after the full selection. The procedure, the choice of the analytical forms for the background and the determination of the corresponding uncertainties follow the method described in Ref. [2]. Depending on the category, the analytical form is either a fourth-order Bernstein polynomial [96] (used also for the inclusive sample), an exponential of a second-order polynomial, or a single exponential. In these fits, the Higgs boson signal is described by the sum of a Crystal Ball function [97] for the core of the distribution and a Gaussian function for the tails.

4.4. Systematic uncertainties

Systematic uncertainties can affect the signal yield, the signal fractions in the various categories (with possible migrations between them), the signal mass resolution and the mass measurement. The main sources specific to the H → γγ channel are listed in Table 4, while sources in common with other decay channels are summarised in Section 2 and Table 1. The uncertainties described below are those affecting the 8 TeV analysis (see Ref. [2] for the 7 TeV analysis).

Signal yield: Relevant experimental uncertainties on the signal yield come from the knowledge of the luminosity (Table 1) and the photon identification efficiency. The latter is estimated by comparing the efficiencies obtained using MC simulations and several data-driven methods: Z → ee events with a simulation-based extrapolation from electrons to photons, an isolation sideband technique using an inclusive photon sample, and photons from Z → ℓℓγ radiative decays. Owing to several analysis improvements and the large size of the 8 TeV data sample, the resulting uncertainty is significantly reduced compared to that reported in Ref. [2] and amounts to ±2.4%. Smaller experimental uncertainties come from the knowledge of the trigger efficiency, the impact of the photon isolation requirement and the photon energy scale. In addition to the theoretical uncertainties on inclusive Higgs boson production listed in Table 1, the ggF contribution to the two-jet categories is subject to large uncertainties (Table 4) due to missing higher-order corrections; they are estimated using the method described in Ref. [98] and the MCFM [99] generator calculations. Finally, the background modelling contributes an uncertainty between ±2% and ±14% depending on the category.

Event migration: Mis-modelling of the detector material could cause event migration between the unconverted and converted photon categories in the simulation. The uncertainty is obtained from MC samples produced with variations of the material de-
arise from pile-up and the primary vertex selection. Smaller contributions from the electron to the photon response.
which separates Higgs boson candidate events into ggF-like, VBF-like and VH-like categories is introduced.

5.1. Event selection

The data are selected using single-lepton or dilepton triggers. The p_T threshold of the single-muon trigger is 24 GeV (18 GeV) in 2012 (2011) and the E_T threshold of the single-electron trigger is 24 GeV (20–22 GeV). The dielectron trigger threshold is $E_T = 12$ GeV and the dimuon trigger threshold is $p_T = 13$ GeV (10 GeV in 2011) for both leptons. In addition, an asymmetric dimuon trigger and electron–muon triggers are used as described in Ref. [100]. The efficiency for events passing the offline analysis cuts is to be selected by at least one of the above triggers is between 97% and 100%.

Muon and electron candidates are reconstructed as described in Section 2. In the region $|\eta| < 0.1$, which has limited MS coverage, ID tracks with $p_T > 15$ GeV are identified as muons if their calorimetric energy deposits are consistent with a minimum ionising particle. Only one muon per event is allowed to be reconstructed either in the MS alone or without MS information. For the 2012 data, the electron requirements are tightened in the transition region between the barrel and end-cap calorimeters ($1.37 < |\eta| < 1.52$), and the pixel-hit requirements are stricter to improve the rejection of photon conversions.

Each electron (muon) must satisfy $E_T > 7$ GeV ($p_T > 6$ GeV) and be measured in the pseudorapidity range $|\eta| < 2.47$ ($|\eta| < 2.7$). The highest-p_T lepton in the quadruplet must satisfy $p_T > 20$ GeV, and the second (third) lepton must satisfy $p_T > 15$ GeV ($p_T > 10$ GeV). To reject cosmic rays, muon tracks are required to have a transverse impact parameter of less than 1 mm.

Multiple quadruplets within a single event are possible. For each quadruplet, the same-flavour, opposite-charge lepton pair with invariant mass closest to the Z boson mass ($m_{Z\ell\ell}$) is referred to as the leading lepton pair. Its invariant mass, denoted by m_{12}, is required to be between 50 GeV and 106 GeV. The invariant mass of the other (sub-leading) lepton pair, m_{34}, is required to be in the range $m_{12} < m_{34} < 115$ GeV. The value of m_{12} is 12 GeV for a reconstructed four-lepton mass $m_{4\ell}$ < 140 GeV, rises linearly to 50 GeV at $m_{4\ell} = 190$ GeV, and remains constant for higher masses. If two or more quadruplets satisfy the above requirements, the one with m_{34} closest to the Z boson mass is selected. For further analysis, events are classified in four sub-channels, 4ℓ, $2e2\mu$, $2\mu2e$, 4μ.

The Z + jets and $t\bar{t}$ background contributions are reduced by applying requirements on the lepton transverse impact parameter divided by its uncertainty, $|d_0|/\sigma_d$. This ratio must be smaller than 3.5 for muons and smaller than 6.5 for electrons (the electron impact parameter is affected by bremsstrahlung and thus its distribution has longer tails). In addition, leptons must satisfy isolation requirements based on tracking and calorimetric information, similar to those described in Section 4.1, as discussed in Ref. [2].

The impact of FSR photon emission on the reconstructed invariant mass is modelled using the MC simulation (PHOTOS), which reproduces the rate of collinear photons with $E_T > 1.3$ GeV in $Z \rightarrow \mu\mu$ decays in data to ±5% [101]. Leading muon pairs with $66 \text{ GeV} < m_{12} < 89 \text{ GeV}$ are corrected for FSR by including any reconstructed photon with E_T above 1 GeV lying close (typically within $|\Delta R| < 0.15$) to the muon tracks, provided that the corrected m_{12} satisfies $m_{12} < 100 \text{ GeV}$. The MC simulation predicts that about 4% of all $H \rightarrow ZZ^* \rightarrow 4\mu$ candidate events should have this correction.

For the 8 TeV data, the signal reconstruction and selection efficiency for a SM Higgs boson with $m_H = 125 \text{ GeV}$ is 39% for the 4μ sub-channel, 26% for the $2e2\mu/2\mu2e$ sub-channels and 19% for the $4e$ sub-channel.

The final discriminating variable in this analysis is the 4ℓ invariant mass. Its resolution, which is improved by typically 15% by applying a Z-mass constrained kinematic fit to the leading lepton pair, is about 1.6 GeV, 1.9 GeV and 2.4 GeV for the 4μ, $2e2\mu/2\mu2e$ and $4e$ sub-channels, respectively, and for $m_{12} = 125$ GeV.

5.2. Event categorisation

To enhance the sensitivity to the individual production modes, events passing the above selection are assigned to one of three categories, named VBF-like, VH-like, and ggF-like. Events are VBF-like if the two highest p_T jets are separated by more than three units in pseudorapidity and have an invariant mass greater than 350 GeV. Events that do not qualify as VBF-like are considered for the VH-like category. They are accepted in this category if they contain an additional lepton (e or μ) with $p_T > 8$ GeV, satisfying the same requirements as the four leading leptons. The remaining events are assigned to the ggF-like category. For classification based on the 4ℓ flavour is made in the VBF-like and VH-like categories. Higgs boson production through VBF and VH is expected to account for about 60% and 70% of the total signal events in the VBF-like and VH-like categories, respectively. The signal-to-background ratio in the signal peak region is about five for the VBF-like category, about three for the VH-like category, and about 1.5 for the inclusive analysis.

5.3. Background estimation

The expected background yield and composition are estimated using the MC simulation for ZZ^* production, and methods based on control regions (CRs) from data for the Z + jets and $t\bar{t}$ processes [2]. The transfer factors used to extrapolate the background yields from the CRs to the signal region are obtained from the MC simulation and cross-checked with data. Since the background composition depends on the flavour of the sub-leading lepton pair, different approaches are followed for the $\ell\ell + \mu\mu$ and the $\ell\ell + ee$ final states.
Table 6
For $m_H = 125$ GeV and the 8 TeV data analysis, the impact of the main sources of systematic uncertainty specific to the $H \to ZZ^*$ channel on the signal yield, estimated reducible background, event migration between categories and mass measurement. Uncertainties common to all channels are listed in Table 1.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal yield</td>
<td>±4/2/2 2/0/2 0/0 4/2 2 2 4/2 2</td>
</tr>
<tr>
<td>Electron reconstruction and identification</td>
<td>±8.7/±2.4/±9.4</td>
</tr>
<tr>
<td>Reducible background (inclusive analysis)</td>
<td>±24/±10/±23/±13</td>
</tr>
<tr>
<td>Migration between categories</td>
<td>±32/11/11</td>
</tr>
<tr>
<td>ZZ^* contribution to VBF-like cat.</td>
<td>±6/5/6</td>
</tr>
<tr>
<td>ZZ^* contribution to VH-like cat.</td>
<td>±30</td>
</tr>
<tr>
<td>Mass measurement</td>
<td>±0.2/±0.2/±0.3/±0.4</td>
</tr>
<tr>
<td>Lepton energy and momentum scale</td>
<td>±0.2/±0.2/±0.3/±0.4</td>
</tr>
</tbody>
</table>

The reducible $\ell\ell + \mu\mu$ background is dominated by $t\bar{t}$ and $Z + \text{jets}$ (mostly $Z\nu\nu$) events. A CR is defined by removing the isolation requirement for the muons of the sub-leading pair, and by requiring that at least one of them fails the transverse impact parameter selection. This procedure allows the $t\bar{t}$ and $Z + \text{jets}$ backgrounds to be estimated simultaneously from a fit to the m_{12} distribution.

To determine the reducible $\ell\ell + ee$ background, a CR is formed by relaxing the selection criteria for the electrons of the sub-leading pair: each of these electrons is then classified as “electron-like” or “fake-like” based on requirements on appropriate discriminating variables [102]. The numbers of events with different combinations of “electron-like” or “fake-like” objects are then used to estimate the true composition of the CR (in terms of isolated electrons, non-prompt electrons from heavy-flavour decays, electrons from photon conversions and jets misidentified as electrons), from which the expected yields in the signal region can be obtained using transfer factors from the MC simulation.

Similar techniques are used to determine the backgrounds for the VBF-like and VH-like categories.

5.4. Systematic uncertainties

The dominant sources of systematic uncertainty affecting the $H \to ZZ^* \to 4\ell$ 8 TeV analysis are listed in Table 6 (see Ref. [2] for the 7 TeV analysis). Lepton reconstruction, identification and selection efficiencies, as well as energy and momentum resolutions and scales, are determined using large control samples from the data, as described in Section 2. Only the electron uncertainty contributes significantly to the uncertainty on the signal yield.

The background uncertainty is dominated by the uncertainty on the transfer factors from the CRs to the signal region and the available number of events in the control regions.

The uncertainty on the population of the various categories (migration) comes mainly from the knowledge of the theoretical cross sections for the various production processes, the modelling of the underlying event and the knowledge of the jet energy scale.

The $H \to ZZ^* \to 4\ell$ mass measurement is discussed in Section 7.2. The main sources contributing to the electron energy scale uncertainty are described in Section 4.4; the largest impact (±0.4%) is on the 4ℓ final state. Systematic uncertainties from the knowledge of the muon momentum scale (discussed in detail in Ref. [100]) are smaller. Mass scale uncertainties related to FSR and background contamination are below ±0.1%.

5.5. Results

The reconstructed four-lepton invariant mass spectrum after all selections of the inclusive analysis is shown in Fig. 3. The data are compared to the (scaled) expected Higgs boson signal for $m_H = 124.3$ GeV and to the estimated backgrounds. At the maximum deviation from the background-only expectation (occurring at $m_4\ell \sim 124.3$ GeV), the significance of the observed peak is 6.6$sigma$ for the combined 7 TeV and 8 TeV data, to be compared with 4.4$sigma$ expected from SM Higgs boson production at this mass. This result establishes a discovery-level signal in the 4ℓ channel alone.

Table 7 presents the numbers of observed and expected events in the peak region. Out of a total of 32 events selected in the data, one and zero candidates are found in the VBF-like and VH-like categories, respectively, compared with an expectation of 0.7 and 0.1 events from the signal and 0.14 and 0.04 events from the background.

Additional interpretation of these results is presented in Section 7.

6. The $H \to WW^* \to t\bar{t}v\bar{v}$ channel

This decay mode provides direct access to the Higgs boson couplings to W bosons. Its rate is large, but a narrow mass peak cannot be reconstructed due to the presence of two neutrinos in the
final state. The reconstructed topology consists of two opposite-charge leptons and a large momentum imbalance from the neutrinos. The dominant SM backgrounds are WW (which includes WW^*), $t\bar{t}$ and Wt, all of which produce two W bosons. The classification of events by jet multiplicity (N_{jet}) allows the control of the background from top quarks, which contains b-quark jets, as well as the extraction of the signal strengths for the ggF and VBF production processes. For the hypothesis of a SM Higgs boson, the spin-zero initial state and the $V-A$ structure of the W boson decays imply a correlation between the directions of the charged leptons, which can be exploited to reject the WW background. These correlations lead to the use of quantities such as the dilepton invariant mass $m_{\ell\ell}$ and angular separation $\Delta\phi_{\ell\ell}$ in the selection criteria described below. Drell–Yan (DY) events ($pp \to Z/\gamma^* \to \ell\ell$) may be reconstructed with significant missing transverse momentum because of leptonic τ decays or the degradation of the E_{miss} measurement in the high pile-up environment of the 2012 run. Finally, $W +$ jets production in which a jet is reconstructed as a lepton, and the diboson processes WY, WZ, and ZZ^*, are also significant backgrounds after all event selection.

The studies presented here are a significant update of those reported in Ref. [2]. The signal regions considered include ee, $e\mu$, and $\mu\mu$ final states with zero, one, or at least two reconstructed jets. The $N_{\text{jet}} > 2$ analysis has been re-optimised to increase the sensitivity to Higgs boson production through VBF for $m_H = 125$ GeV. Improved DY rejection and estimation techniques have allowed the inclusion of ee and $e\mu$ events from the 8 TeV data. The analysis of the 7 TeV data, most recently documented in Ref. [103], has been updated to apply improvements from the 8 TeV analysis, including more stringent lepton isolation requirements, which reduce the $W +$ jets background by 40%.

6.1. Event selection

Events are required to have two opposite-charge leptons (e or μ) and to pass the same single-lepton triggers as described in Section 2 for the $H \to ZZ^*$ channel. The leading lepton must satisfy $p_T > 25$ GeV and the sub-leading lepton $p_T > 15$ GeV. Electron and muon identification and isolation requirements (see Ref. [2]) are more restrictive than those used in the $H \to ZZ^*$ analysis in order to suppress the $W +$ jets background.

In the $ee/\mu\mu$ channels, $Z \to \ell\ell$ and low-mass $\gamma^* \to \ell\ell$ events, including J/ψ and Υ production, are rejected by requiring $|m_{\ell\ell} - mZ| > 15$ GeV and $m_{\ell\ell} > 12$ GeV, respectively. In the $e\mu$ channels, low-mass $\gamma^* \to \tau\tau \to e\nu\mu\nu\nu$ production is rejected by imposing $m_{\ell\ell} > 10$ GeV.

Drell–Yan and multi-jet backgrounds are suppressed by requiring large missing transverse momentum. For $N_{\text{jet}} \leq 1$, a requirement is made on $E_{\text{T,rel}}^{\text{miss}} = E_{\text{T}}^{\text{miss}} \cdot \sin |\Delta\phi_{\text{closest}}|$, where $\Delta\phi_{\text{closest}}$ is the smallest azimuthal angle between the $E_{\text{T}}^{\text{miss}}$ vector and any jet or high-p_T charged lepton in the event; if $|\Delta\phi_{\text{closest}}| > \pi/2$, then $E_{\text{T,rel}}^{\text{miss}} = E_{\text{T}}^{\text{miss}}$ is taken. For additional rejection of the DY background in the $e\mu/\mu\mu$ channels with $N_{\text{jet}} \leq 1$, the track-based p_T^{miss} described in Section 2 is used, modified to $E_{\text{T,rel}}^{\text{miss}}$ in a similar way as $E_{\text{T,rel}}^{\text{miss}}$. For these channels, requirements are also made on f_{recoll}, an estimate of the magnitude of the soft hadronic recoil opposite to the system consisting of the leptons and any accompanying jet, normalised to the momentum of the system itself. The f_{recoll} value in DY events is on average larger than that of non-DY events, where the high-p_T system is balanced at least in part by recoiling neutrinos.

The $N_{\text{jet}} \geq 2$ analysis uses $E_{\text{T,rel}}^{\text{miss}}$ instead of $E_{\text{T,rel}}^{\text{miss}}$ because the larger number of jets in the final states reduces the signal efficiency of the $E_{\text{T,rel}}^{\text{miss}}$ criterion. For the $ee/\mu\mu$ channels with $N_{\text{jet}} \geq 2$, an $E_{\text{T,rel}}^{\text{miss}}$ variant called $E_{\text{T,rel}}^{\text{miss}} + m_{\ell\ell}$ is also employed. In the calculation of $E_{\text{T,rel}}^{\text{miss}}$, the energies of (soft) calorimeter deposits unassociated with high-p_T leptons, photons, or jets are scaled by the ratio of the summed scalar p_T of tracks from the primary vertex unmatched with such objects to the summed scalar p_T of all tracks from any vertex in the event which are also unmatched with objects [104].

For all jet multiplicities, selections exploiting the kinematic features of $H \to WW^* \to \ell\ell\nu\nu$ events are applied. The dilepton invariant mass is required to be small, $m_{\ell\ell} < 50$ GeV for $N_{\text{jet}} \leq 1$ and $m_{\ell\ell} < 60$ GeV for $N_{\text{jet}} > 1$; the azimuthal separation of the leptons is also required to be small, $\Delta\phi_{\ell\ell} < 1.8$.

6.2. Event categorisation

The analysis is divided into categories with $N_{\text{jet}} = 0$, $N_{\text{jet}} = 1$, and $N_{\text{jet}} > 2$. In the $N_{\text{jet}} = 0$ analysis, $E_{\text{T,rel}}^{\text{miss}} > 25$ GeV ($E_{\text{T,rel}}^{\text{miss}} > 45$ GeV and $p_T^{\text{miss}} > 45$ GeV) is required for $ee/\mu\mu$ final states. The transverse momentum of the dilepton system is required to be large, $p_T^{\ell\ell} > 30$ GeV. For $e\mu/\mu\mu$ events, the hadronic recoil is required to be typical of events with neutrinos in the final state, $f_{\text{recoll}} < 0.05$. Finally, the azimuthal separation between the $p_T^{\ell\ell}$ and $E_{\text{T,rel}}^{\text{miss}}$ vectors must satisfy $|\Delta\phi_{\ell\ell,\text{rel}}| > \pi/2$, in order to remove potentially poorly reconstructed events.

In the $N_{\text{jet}} = 1$ analysis, the $E_{\text{T,rel}}^{\text{miss}}$ and p_T^{miss} requirements are the same as for $N_{\text{jet}} = 0$, but the hadronic recoil threshold is looser, $f_{\text{recoll}} < 0.2$. The top-quark background is suppressed by rejecting events with a b-tagged jet. The b-tagging algorithm described in Section 2 is used, at an operating point with 85% efficiency for b-quark jets and a mis-tag rate of 11% for light-quark and gluon jets, as measured in a sample of simulated $t\bar{t}$ events. The $Z \to \tau\tau$ background in $e\mu$ final states is suppressed using an invariant mass $m_{\tau\tau}$ computed assuming that the neutrinos from τ decays are collinear with the charged leptons [105] and that they are the only source of $E_{\text{T,rel}}^{\text{miss}}$. The requirement $|m_{\tau\tau} - mZ| > 25$ GeV is applied.

The $N_{\text{jet}} \geq 2$ analysis is optimised for the selection of the VBF production process. The two leading jets, referred to as "tagging jets", are required to have a large rapidity separation, $|\Delta y_{jj}| > 2.8$, and a high invariant mass, $m_{jj} > 500$ GeV. To reduce the contribution from ggF, events containing any jet with $p_T > 20$ GeV in the rapidity gap between the two tagging jets are rejected. Both leptons are required to be in the rapidity gap. The DY background is suppressed by imposing $E_{\text{T,rel}}^{\text{miss}} > 20$ GeV for $e\mu$, and $E_{\text{T,rel}}^{\text{miss}} > 45$ GeV and $E_{\text{T,rel}}^{\text{miss}} > 35$ GeV for $ee/\mu\mu$. The same $Z \to \tau\tau$ veto and b-jet veto are applied as in the $N_{\text{jet}} = 1$ analysis. The $t\bar{t}$ background is further reduced by requiring a small total transverse momentum, $|p_T^{\text{miss}}| < 45$ GeV, where $p_T^{\text{miss}} = p_T^{\ell\ell} + p_T^{\text{jets}} + E_{\text{T,rel}}^{\text{miss}}$, and p_T^{jets} is the vectorial sum of all jets in the event with $p_T > 25$ GeV.

The total signal selection efficiency for $H \to WW^* \to \ell\ell\nu\nu$ events produced with $\ell = e, \mu$, including all the final state topologies considered, is about 5.3% at 8 TeV for a Higgs boson mass of 125 GeV.

The dilepton transverse mass $m_{\ell\ell}$ is the discriminating variable used in the fit to the data to extract the signal strength. It is defined as $m_{\ell\ell} = \sqrt{(E_{\text{T,rel}}^{\text{miss}} + m_{\ell\ell})^2 - (p_T^{\ell\ell} + E_{\text{T,rel}}^{\text{miss}})^2/2}$ with $E_{\text{T,rel}}^{\text{miss}} = (p_T^{\ell\ell})^2 + m_{\ell\ell}^2/2$. For the $e\mu$ channels with $N_{\text{jet}} \leq 1$, the fit is performed separately for events with $10 \text{ GeV} < m_{\ell\ell} < 30$ GeV and events with $30 \text{ GeV} < m_{\ell\ell} < 50$ GeV, since the signal-to-background ratio varies across the $m_{\ell\ell}$ distribution, as shown in Fig. 4.
from MCFM [106], except for the $m_{t\ell}$ bound is modified: for $N_{\ell\ell} = 50$ GeV $\leq m_{t\ell} < 100$ GeV is required, while for $N_{\ell\ell} = 1$ $m_{t\ell} > 50$ GeV is used to define the CR. Fig. 4 shows the $m_{t\ell}$ distribution of $e\mu$ events with $N_{\ell\ell} = 0$ for the 8 TeV $H \rightarrow WW^* \rightarrow e\mu u\bar{u} + 0$ jets. The events with $m_{t\ell} > 50$ GeV correspond to the signal region except that the $\Delta m_{t\ell} < 1.8$ requirement is not applied here, and the events with 50 GeV $< m_{t\ell} < 100$ GeV correspond to the $N_{\ell\ell} = 0$ WW control region. The signal is stacked on top of the background. The hatched area represents the total uncertainty on the sum of the signal and background yields from statistical, experimental, and theoretical sources. The lower part of the figure shows the ratio of the data to the predicted background. For comparison, the expected ratio of the signal plus background to the background alone is also shown.

6.3. Background estimation

The leading SM processes producing two isolated high-p_T leptons and large values of E_T^{miss} are W/W and top-quark production, where the latter includes (here and in the following) both $t\bar{t}$ and single top-quark processes ($t\bar{W}$, $t\bar{b}$, and $t\bar{q}b$). These backgrounds, as well as $Z \rightarrow \tau \tau$, are normalised to the data in control regions defined by selections similar to those used for the signal region, but with some criteria reversed or modified to obtain signal-depleted samples enriched in particular backgrounds. The event yield in the CR (after subtracting contributions from processes other than the targeted one) is extrapolated to the signal region using transfer factors obtained from MC simulation.

Additional significant backgrounds arise from $W +$ jets and Z/γ^*, which are dissimilar to the signal but have large cross sections. A small fraction of these pass the event selection through rare final-state configurations and/or mis-measurements. This type of background is difficult to model reliably with the simulation and is therefore estimated mainly from data.

A third category of background consists of diboson processes with smaller cross sections, including $W\gamma^{(*)}$, WZ, and $ZZ^{(*)}$ (inclusive) indicated in the following as Other W', and the WW background in the $N_{\ell\ell} \geq 2$ analysis. These processes are estimated using the MC simulation normalised to the LLO cross sections from MCFM [106], except for the $N_{\ell\ell} \geq 2$ WW background, for which the cross section from the relevant MC generators (see Table 2) is used. The Other W' processes all produce same-charge and opposite-charge lepton pairs, as does $W +$ jets. The number and kinematic features of same-charge events which would otherwise pass the full event selection are compared to the above-mentioned predictions for these backgrounds, and good agreement is observed.

6.3.1. $W +$ jets

The $W +$ jets background is estimated using a CR in the data in which one of the two leptons satisfies the identification and isolation criteria, and the other lepton (denoted here as “anti-identified”) fails these criteria but satisfies looser requirements. All other analysis selections are applied. The contribution to the signal region is then obtained by scaling the number of events in the CR by transfer factors, defined as the ratio of the number of fully identified lepton candidates passing all selections to the number of anti-identified leptons. The transfer factors are obtained from a dijet sample as a function of the p_T and η of the anti-identified lepton.

6.3.2. Z/γ^*

The Z/γ^* yield in the $e\mu$ channels for $N_{\ell\ell} \leq 1$ is estimated using the E_T^{miss} requirement efficiency in data for DY and non-DY processes. The former is measured in $e\mu$ events in the Z boson peak region. The latter is measured in the $e\mu$ signal region, taking advantage of the fact that the E_T^{miss} distribution is nearly identical for all non-DY processes including the signal, as well as for $e\mu$ and $e\mu$ final states. The DY normalisation in the $e\mu$ signal region can then be extracted, given the two measured efficiencies and the total number of events in the $e\mu$ signal region before and after the E_T^{miss} requirement. For the $e\mu$ channels with $N_{\ell\ell} \geq 2$, the two-dimensional distribution $(E_T^{miss}, m_{t\ell})$ in the data is used to estimate the total Z/γ^* yield, as in Ref. [103].

The $Z \rightarrow \tau \tau$ background is normalised to the data using an $e\mu$ CR defined by the back-to-back configuration of the leptons, $\Delta \phi_{\ell\ell} > 2.8$. For the corresponding CR with $N_{\ell\ell} \geq 2$, no b-tagged jets are allowed, and $|p_T^{miss}| < 45$ GeV is required in addition, in order to reduce the contamination from top-quark production. A separate CR in the $Z \rightarrow \ell\ell$ peak region is used to correct the modelling of the VBF-related event selection.

6.3.3. $t\bar{t}$ and single top-quark

The top-quark background for the $N_{\ell\ell} = 0$ category is estimated using the procedure described in Ref. [2], namely from the number of events in data with any number of reconstructed jets passing the E_T^{miss} requirement (a sample dominated by top-quark production), multiplied by the fraction of top-quark events with no reconstructed jets obtained from simulation. This estimate is corrected using a CR containing b-tagged jets. The top-quark background in the $N_{\ell\ell} \geq 1$ channels is normalised to the data in a CR defined by requiring exactly one b-tagged jet and all other signal selections except for the requirements on $\Delta \phi_{\ell\ell}$ and $m_{t\ell}$.

6.3.4. WW

The WW background for $N_{\ell\ell} \leq 1$ is normalised using CRs in data defined with the same selection as the signal region except that the $\Delta \phi_{\ell\ell}$ requirement is removed and the $m_{t\ell}$ bound is modified: for $N_{\ell\ell} = 50$ GeV $\leq m_{t\ell} < 100$ GeV is required, while for $N_{\ell\ell} = 1$ $m_{t\ell} > 50$ GeV is used to define the CR. Fig. 4 shows the $m_{t\ell}$ distribution of $e\mu$ events with $N_{\ell\ell} = 0$ in the 8 TeV data. The level of agreement between the predicted background and the data for $m_{t\ell} > 100$ GeV, a region with negligible signal contribution, validates the WW background normalisation and the extrapolation procedure based on the simulation. The $N_{\ell\ell} \geq 2$ prediction is taken from simulation because of the difficulty of isolating a kinematic region with enough events and small contamination from the top-quark background.
and non-negligible contributions (parton shower and underlying event signal region. The leading reported in Table 8. They amount to order QCD corrections, PDF variations, and MC modelling choices. The only explicit parton shower and underlying event components. The only explicit μ[τ] shape uncertainty is applied to the WW background, and is determined by comparing several generators and showering algorithms.

The estimated background contributions with their uncertainties are listed in Table 9.

6.4. Systematic uncertainties

The systematic uncertainties affecting this analysis are summarized here and described in detail in Ref. [107]. The leading sources, i.e., those resulting in at least 4% uncertainty on the total signal or background yield in at least one N_jet category, are reported in Table 8.

Theoretical uncertainties on the inclusive signal production cross sections are given in Section 2. Additional, larger uncertainties from the QCD renormalisation and factorisation scales affect the predicted distribution of the ggF signal among the exclusive jet bins and can produce migration between categories. These uncertainties are estimated using the HNNLO program [108, 109] and the method reported in Ref. [110]. Their impact on the signal yield is summarised in Table 8, in addition to other non-negligible contributions (parton shower and underlying event modelling, as well as acceptance uncertainties due to QCD scale variations).

The experimental uncertainties affecting the expected signal and background yields are associated primarily with the reconstruction and identification efficiency, and with the energy and momentum scale and resolution, of the final-state objects (leptons, jets, and E_Tmiss), as described in Section 2. The largest impact on the signal expectation comes from the knowledge of the jet energy scale and resolution (up to 6% in the N_jet ≥ 2 channel).

For the backgrounds normalised using control regions, uncertainties come from the numbers of events in the CR and the contributions of other processes, as well as the transfer factors to the signal region.

For the WW background in the N_jet ≤ 1 final states, the theoretical uncertainties on the transfer factors (evaluated according to the prescription of Ref. [15]) include the impact of missing higher-order QCD corrections, PDF variations, and MC modelling choices. They amount to ±2% and ±4–6% relative to the predicted WW background in the N_jet = 0 and N_jet = 1 final states, respectively. For the WW yield in the N_jet ≥ 2 channel, which is obtained from simulation, the total uncertainty is 42% for QCD production with gluon emission, and 11% for the smaller but non-negligible contribution from purely electroweak processes; the latter includes the size of possible interference with Higgs boson production through VBF. The resulting uncertainties on the total background yield for all N_jet are quoted in Table 8.

The leading uncertainties on the top-quark background are experimental. The b-tagging efficiency is the most important of these, and it appears in Table 8 primarily through its effect on this background. Theoretical uncertainties on the top-quark background have the greatest relative importance, ±2% on the total background yield, for N_jet ≥ 2, and therefore do not appear in Table 8.

The W + jets transfer factor uncertainty (±(40–45)%) is dominated by differences in the jet composition between dijet and W + jets samples as observed in the MC simulation. The uncertainties on the muon and electron transfer factors are treated as correlated among the N_jet categories but uncorrelated with each other. The impact on the total background uncertainty is at most ±2.5%.

The main uncertainty on the DY contribution in the N_jet ≤ 1 channels comes from the use of the f_recoil efficiency evaluated at the peak of the Z boson mass distribution for the estimation of the DY contamination in the low-μ_T region.

The uncertainty on the m_T shape for the total background, which is used in the fit to extract the signal yield, is dominated by the uncertainties on the normalisations of the individual components. The only explicit μ[τ] shape uncertainty is applied to the WW background, and is determined by comparing several generators and showering algorithms.

The results from the individual channels described in the previous sections are combined here to extract information about the Higgs boson mass, production properties and couplings.

7. Higgs boson property measurements

The results from the individual channels described in the previous sections are combined here to extract information about the Higgs boson mass, production properties and couplings.

7.1. Statistical method

The statistical treatment of the data is described in Refs. [111–115]. Hypothesis testing and confidence intervals are based on the profile likelihood ratio L(α). The latter depends on one or more parameters of interest α, such as the Higgs boson production strength μ normalised to the SM expectation (so that μ = 1 corresponds to the SM Higgs boson hypothesis and μ = 0 to the background-only hypothesis), mass m_H, coupling strengths k, ratios of coupling strengths λ, as well as on nuisance parameters θ:
with ground probability density functions (pdfs) in the discriminating of the above equation are built using sums of signal and back-

\[\Lambda(\alpha) = \frac{L(\alpha, \hat{\theta}(\alpha))}{L(\hat{\theta}, \hat{\theta})}. \]

The likelihood functions in the numerator and denominator of the above equation are built using sums of signal and back-
ground probability density functions (pdfs) in the discriminating variables (chosen to be the $\gamma\gamma$ and 4ℓ mass spectra for $H \to \gamma\gamma$ and $H \to Z^* \to 4\ell$, respectively, and the m_T distribution for the

\[m_H = 125.5 \pm 0.2 \text{(stat)} \pm 0.5 \text{(sys)} \text{GeV}. \]

As discussed in Sections 4.4 and 5.4, the main sources of systematic uncertainty are the photon and lepton energy and momentum scales. In the combination, the consistency between the muon and electron final states in the $H \to ZZ^* \to 4\ell$ channel causes a $\sim 0.8\sigma$ adjustment of the overall e/γ energy scale, which translates into a ~ 350 MeV downward shift of the fitted $m_{H}^{\gamma\gamma}$ value with respect to the value measured from the $H \to \gamma\gamma$ channel alone.

To quantify the consistency between the fitted $m_{H}^{\gamma\gamma}$ and $m_{H}^{4\ell}$ masses, the data are fitted with the profile likelihood ratio $\Lambda(\Delta m_H)$, where the parameter of interest is the mass difference $\Delta m_H = m_{H}^{\gamma\gamma} - m_{H}^{4\ell}$. The average mass m_H and the signal strengths

<table>
<thead>
<tr>
<th>$N_{\mu\tau} = 0$</th>
<th>$N_{\mu\tau} = 1$</th>
<th>$N_{\mu\tau} \geq 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>831</td>
<td>390</td>
</tr>
<tr>
<td>Signal</td>
<td>100 ± 21</td>
<td>41 ± 14</td>
</tr>
<tr>
<td>Total background</td>
<td>739 ± 39</td>
<td>261 ± 28</td>
</tr>
<tr>
<td>WW</td>
<td>551 ± 41</td>
<td>108 ± 40</td>
</tr>
<tr>
<td>Other VV</td>
<td>58 ± 8</td>
<td>27 ± 6</td>
</tr>
<tr>
<td>Top-quark</td>
<td>39 ± 5</td>
<td>95 ± 28</td>
</tr>
<tr>
<td>Z+jets</td>
<td>30 ± 10</td>
<td>12 ± 6</td>
</tr>
<tr>
<td>W+jets</td>
<td>61 ± 21</td>
<td>20 ± 5</td>
</tr>
</tbody>
</table>
where the production strengths measured in the three channels and in their main analysis categories are presented. The signal production strength normalised to the SM expectation, obtained by combining the three channels, is:

$$\mu = 1.33 \pm 0.14(\text{stat}) \pm 0.15(\text{sys})$$ \hspace{1cm} (4)$$

where the systematic uncertainty receives similar contributions from the theoretical uncertainty on the signal cross section (ggF QCD scale and PDF, see Table 1) and all other, mainly experimental, sources. The uncertainty on the mass measurement reported in Eq. (2) produces a ±3% variation of \(\mu\). The consistency between this measurement and the SM Higgs boson expectation (\(\mu = 1\)) is about 7%; the use of a flat likelihood for the ggF QCD scale systematic uncertainty in the quoted ±1σ interval yields a similar level of consistency with the \(\mu = 1\) hypothesis. The overall compatibility between the signal strengths measured in the three final states and the SM predictions is about 14%, with the largest deviation (~1.9σ) observed in the \(H \to \gamma\gamma\) channel. Good consistency between the measured and expected signal strengths is also found for the various categories of the \(H \to \gamma\gamma\), \(H \to ZZ \to 4\ell\) and \(H \to WW^* \to \ell\nu\ell\nu\) analyses, which are the primary experimental inputs to the fit discussed in this section. If the preliminary \(H \to \tau\tau\) and \(H \to bb\) results, for which only part of the 8 TeV dataset is used (13 fb⁻¹), were included, the combined signal strength would be \(\mu = 1.23 \pm 0.18\).

7.3. Evidence for production via vector-boson fusion

The measurements of the signal strengths described in the previous section do not give direct information on the relative contributions of the different production mechanisms. Furthermore, fixing the ratios of the production cross sections for the various processes to the values predicted by the Standard Model may conceal tensions between the data and the theory. Therefore, in addition to the signal strengths for different decay modes, the signal strengths of different production processes contributing to the same decay mode
\(^4\) are determined, exploiting the sensitivity offered by the use of event categories in the analyses of the three channels.

The data are fitted separating vector-boson-mediated processes, VBF and VH, from gluon-mediated processes, ggF and tth, involving fermion (mainly top-quark) loops or legs.\(^5\) Two signal strength parameters, \(\mu_{ggF+VH} = \mu_{\text{ggF}} = \mu_{\text{VH}}\) and \(\mu_{VBF+VH} = \mu_{\text{VBF}} = \mu_{\text{VH}}\), which scale the SM-predicted rates to those observed, are introduced for each of the considered final states (\(f = H \to \gamma\gamma\), \(H \to ZZ \to 4\ell\), \(H \to WW^* \to \ell\nu\ell\nu\)). The results are shown in Fig. 7. The 95% CL contours of the measurements are consistent with the SM expectation. A combination of all channels would provide a higher-sensitivity test of the theory. This can be done in a model-independent way (i.e. without assumptions on the Higgs boson branching ratios) by measuring the ratios \(\mu_{VBF+VH}/\mu_{ggF+VH}\) for the individual final states and their combination. The results of the fit to the data with the likelihood \(L(\mu_{ggF+VH}/\mu_{ggF+VH})\) are shown in Fig. 8. Good agreement with the SM expectation is observed for the individual final states and their combination. To test the sensitivity to VBF production alone, the data are also fitted with the ratio \(\mu_{VBF}/\mu_{ggF+VH}\). A value

$$\mu_{VBF}/\mu_{ggF+VH} = 1.4^{+0.4}_{-0.3}(\text{stat})^{+0.6}_{-0.4}(\text{sys})$$ \hspace{1cm} (5)$$

\(^4\) Such an approach avoids model assumptions needed for a consistent parameterisation of production and decay modes in terms of Higgs boson couplings.

\(^5\) Such a separation is possible under the assumption that the kinematic properties of these production modes agree with the SM predictions within uncertainties.
Fig. 7. Likelihood contours in the $(\mu_{VBF, \gamma H}, \mu_{ggF, \gamma H})$ plane for the final states $f = H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^* \rightarrow 4l$, and a Higgs boson mass $m_H = 125.5$ GeV. The sharp lower edge of the $H \rightarrow ZZ^* \rightarrow 4l$ contours is due to the small number of events in this channel and the requirement of a positive pdf. The best fits to the data (×) and the 68% (full) and 95% (dashed) CL contours are indicated, as well as the SM expectation (+).

Fig. 8. Measurements of the $\mu_{VBF, \gamma H}/\mu_{ggF, \gamma H}$ ratios for the individual diboson final states and their combination, for a Higgs boson mass $m_H = 125.5$ GeV. The best-fit values are represented by the solid vertical lines, with the total ±1σ and ±2σ uncertainties indicated by the dark- and light-shaded band, respectively, and the statistical uncertainties by the superimposed horizontal error bars. The numbers in the second column specify the contributions of the statistical uncertainty (top), the total (experimental and theoretical) systematic uncertainty (middle), and the theoretical uncertainty (bottom) on the signal cross section (from QCD scale, PDF, and branching ratios) alone. For a more complete illustration, the distributions of the likelihood ratios from which the total uncertainties are extracted are overlaid.

Fig. 9. Likelihood curve for the ratio $\mu_{VBF}/\mu_{ggF, \gamma H}$ for the combination of the $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow WW^* \rightarrow llvv$ channels and a Higgs boson mass $m_H = 125.5$ GeV. The parameter $\mu_{VH}/\mu_{ggF, \gamma H}$ is profiled in the fit. The dashed curve shows the SM expectation. The horizontal dashed lines indicate the 68% and 95% CL.

7.4. Couplings measurements

Following the approach and benchmarks recommended in Ref. [119], measurements of couplings are implemented using a leading-order tree-level motivated framework. This framework is based on the following assumptions:

- The signals observed in the different search channels originate from a single resonance. A mass of 125.5 GeV is assumed here; the impact of the uncertainty reported in Eq. (2) on the results discussed in this section is negligible.

- Only modifications of coupling strengths are considered, while the tensor structure of the Lagrangian is assumed to be the same as in the Standard Model. This implies in particular that the observed state is a CP-even scalar.\(^6\)

The coupling scale factors κ_j are defined in such a way that the cross sections σ_j and the partial decay widths Γ_j associated

\[^6\] The spin-CP hypothesis is addressed in Ref. [10].
with the SM particle j scale with \tilde{k}_j^2 compared to the SM prediction [119]. With this notation, and with \tilde{k}_H^2 being the scale factor for the total Higgs boson width Γ_H, the cross section for the $gg \to H \to \gamma\gamma$ process, for example, can be expressed as:

$$\frac{\sigma \cdot B (gg \to H \to \gamma\gamma)}{\sigma_{SM}(gg \to H) \cdot B_{SM}(H \to \gamma\gamma)} = \frac{\tilde{k}_H^2 \cdot \tilde{k}_\gamma^2}{\tilde{k}_H^2}.$$ \hfill (7)

In some of the fits, Γ_H and the effective scale factors \tilde{k}_γ and \tilde{k}_H for the loop-induced $H \to \gamma\gamma$ and $gg \to H$ processes are expressed as a function of the more fundamental factors k_W, k_Z, k_t, k_b, and k_τ (only the dominant fermion contributions are indicated here for simplicity). The relevant relationships are:

$$\tilde{k}_H^2 (k_b, k_t) = \frac{k_t^2 \cdot \alpha_{tt}^{ggH} + k_b^2 \cdot \alpha_{bb}^{ggH} + k_t k_b \cdot \sigma_{ggH}}{\sigma_{ggH}^H + \sigma_{bb}^{ggH} + \sigma_{tt}^{ggH}},$$

$$\tilde{k}_\gamma^2 (k_b, k_t, k_\tau, k_W) = \sum_{i,j} k_i k_j \Gamma_{ij}^{ggH},$$

$$\Gamma_{ij}^{ggH} \equiv \Gamma_{ij}^{SM} \cdot \Gamma_{ij}^{ggH} = \sum_{jj=WW, ZZ, bb, t\bar{t}, t\tau} \frac{k_i^2 \cdot \Gamma_{SM}}{\Gamma_{SM}},$$

where α_{ij}^{ggH} and Γ_{ij}^{SM} are obtained from theory [14,119].

Results are extracted from fits to the data using the profile likelihood ratio $\Lambda(k)$, where the k_j couplings are treated either as parameters of interest or as nuisance parameters, depending on the measurement. The assumptions made for the various measurements are summarised in Table 10 and discussed in the next sections together with the results.

7.4.1. Couplings to fermions and bosons

The first benchmark considered here (indicated as model 1 in Table 10) assumes one coupling scale factor for fermions, k_F, and one for bosons, k_V; in this scenario, the $H \to \gamma\gamma$ and $gg \to H$ loops and the total Higgs boson width depend only on k_F and k_V, with no contributions from physics beyond the Standard Model (BSM). The strongest constraint on k_F comes indirectly from the $gg \to H$ production loop.

Fig. 10 shows the results of the fit to the data for the three channels and their combination. Since only the relative sign of k_F and k_V is physical, in the following $k_V > 0$ is assumed. Some sensitivity to this relative sign is provided by the negative interference between the W boson loop and t-quark loop in the $H \to \gamma\gamma$ decay. The data prefer the minimum with positive relative sign, which is consistent with the SM prediction, but the local minimum with negative sign is also compatible with the observation (at the $\sim 2\sigma$ level). The two-dimensional compatibility of the SM prediction with the best-fit value is 12%. The 68% CL intervals of k_F and k_V, obtained by profiling over the other parameter, are:

$$k_F \in [0.76, 1.18],$$

$$k_V \in [1.05, 1.22],$$

with similar contributions from the statistical and systematic uncertainties.

In this benchmark model, the assumption of no contributions from new particles to the Higgs boson width provides strong constraints on the fermion coupling k_F, as about 75% of the total SM width comes from decays to fermions or involving fermions. If this assumption is relaxed, only the ratio $\lambda_{FY} = k_F/k_V$ can be measured (benchmark model 2 in Table 10), which still provides useful information on the relationship between Yukawa and gauge couplings. Fits to the data give the following 68% CL intervals for λ_{FY} and k_{VH} [119]:

$$\lambda_{FY} \in [0.70, 1.01],$$

$$k_{VH} \in [1.13, 1.45].$$

The two-dimensional compatibility of the SM prediction with the best-fit value is 12%. These results also exclude vanishing couplings of the Higgs boson to fermions (indirectly, mainly through the $gg \to H$ production loop) by more than 5σ.

7.4.2. Ratio of couplings to the W and Z bosons

In the Standard Model, custodial symmetry imposes the constraint that the W and Z bosons have related couplings to the

<table>
<thead>
<tr>
<th>Model</th>
<th>Probed couplings</th>
<th>Parameters of interest</th>
<th>Functional assumptions</th>
<th>Example: $gg \to H \to \gamma\gamma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Couplings to fermions and bosons</td>
<td>k_F, k_V</td>
<td>$\sqrt{k_F}$</td>
<td>$\sqrt{k_V}$</td>
</tr>
<tr>
<td>2</td>
<td>Custodial symmetry</td>
<td>λ_{FY}, k_{VH}</td>
<td>$\sqrt{\lambda_{FY}}$</td>
<td>$\sqrt{k_{VH}}$</td>
</tr>
<tr>
<td>3</td>
<td>Vertex loops</td>
<td>k_τ, k_γ</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 10

Summary of the coupling benchmark models discussed in this Letter, where $\lambda_{ij} = k_i/k_j$, $k_{ii} = k_i k_i/k_{ii}$, and the functional dependence assumptions are: $k_V = k_W = k_Z$, $k_F = k_t = k_b = k_\tau$ (and similarly for the other fermions), $k_{ii} = k_i(k_i, k_i)$, $t_{ii} = k_i(k_i, k_i, k_i, k_i)$, and $k_{ii} = k_i(k_i)$. The tick marks indicate which assumptions are made in each case. The last column shows, as an example, the relative couplings involved in the $gg \to H \to \gamma\gamma$ process, see Eq. (7), and their functional dependence in the various benchmark models.
Higgs boson, $g_{VV} \sim m_V^2 v^2$ (where v is the vacuum expectation value of the Higgs field), and that $\rho \sim m_W^2 (m_Z^2 \cdot \cos^2 \theta_W)$ (where θ_W is the weak Weinberg angle) is equal to unity (as measured at LEP [120]). The former constraint is tested here by measuring the ratio λ_{WZ} with the best-fit value is 19%.

The simplest and most model-independent approach is to extract the ratio of branching ratios normalised to their SM expectations, $\lambda_{WZ} = B(H \rightarrow WW^*)/B(H \rightarrow ZZ^*) \cdot B_{SM}(H \rightarrow ZZ^*)/B_{SM}(H \rightarrow WW^*)$, from the measured inclusive rates of the $H \rightarrow WW^*$ and $H \rightarrow ZZ^*$ channels. A fit to the data with the likelihood $\mathcal{L} = \mathcal{L}_{B} \times \mathcal{L}_{WZ} \times \mathcal{L}_{B_{SM}}$, where $\mathcal{L}_{B} \propto (1 + \kappa_{gHVV} + \kappa_{gHVV})$, and $\mathcal{L}_{B_{SM}} \propto (1 + \kappa_{gHVV})$, is profiled, gives $\lambda_{WZ} = 0.81^{+0.16}_{-0.15}$.

A more sensitive measurement can be obtained by also using information from WH and ZH production, from the VBF process (which in the SM is roughly 75% W-fusion and 25% Z-fusion mediated) and from the $H \rightarrow \gamma\gamma$ decay mode. A fit to the data using benchmark model 3 in Table 10 gives the likelihood curve shown in Fig. 11, with $\lambda_{WZ} \in [0.61, 1.04]$ at the 68% CL, dominated by the statistical uncertainty; the other parameters, $\lambda_{\gamma Z}$ and κ_{ZZ}, are profiled. The three-dimensional compatibility of the SM prediction with the best-fit value is 19%.

Potential contributions from BSM physics affecting the $H \rightarrow \gamma\gamma$ channel could produce apparent deviations of the ratio λ_{WZ} from unity even if custodial symmetry is not broken. It is therefore desirable to decouple the observed $H \rightarrow \gamma\gamma$ event rate from the measurement of λ_{WZ}. This is done with an extended fit for the ratio λ_{WZ}, where one extra degree of freedom ($\lambda_{\gamma Z} = \kappa_\gamma / \kappa_Z$) absorbs possible BSM effects in the $H \rightarrow \gamma\gamma$ channel (benchmark model 4 in Table 10). This measurement yields:

$$\lambda_{WZ} = 0.82 \pm 0.15$$

and a four-dimensional compatibility of the SM prediction with the best-fit value of 20%.

7.4.3. Constraints on production and decay loops

Many BSM physics scenarios predict the existence of new heavy particles, which can contribute to loop-induced processes such as $gg \rightarrow H$ production and $H \rightarrow \gamma\gamma$ decay. In the approach used here (benchmark model 5 in Table 10), it is assumed that the new particles do not contribute to the Higgs boson width and that the couplings of the known particles to the Higgs boson have SM strength (i.e., $\kappa_1 = 1$). Effective scale factors κ_{g} and κ_{γ} are introduced to parameterise the $gg \rightarrow H$ and $H \rightarrow \gamma\gamma$ loops. The results of their measurements from a fit to the data are shown in Fig. 12. The best-fit values when profiling over the other parameters are:

$$\kappa_g = 1.04 \pm 0.14,$$

$$\kappa_\gamma = 1.20 \pm 0.15.$$

The two-dimensional compatibility of the SM prediction with the best-fit value is 14%.

7.4.4. Summary

The results of the measurements of the coupling scale factors discussed in the previous sections, obtained under the assumptions detailed in Section 7.4 and Table 10, are summarised in Fig. 13. The measurements in the various benchmark models are strongly correlated, as they are obtained from fits to the same experimental data. A simple χ^2-like compatibility test with the SM is therefore not meaningful.

The coupling of the new particle to gauge bosons κ_V is constrained by several channels, directly and indirectly, at the ±10% level. Couplings to fermions with a significance larger than 5σ are indirectly observed mainly through the gluon-fusion production process, assuming the loop is dominated by fermion exchange. The ratio of the relative couplings of the Higgs boson to the W and Z bosons, κ_W / κ_Z, is measured to be consistent with unity, as predicted by custodial symmetry. Under the hypothesis that all couplings of the Higgs bosons to the known particles are fixed to their SM values, and assuming no BSM contributions to the Higgs boson width, no significant anomalous contributions to the $gg \rightarrow H$ and $H \rightarrow \gamma\gamma$ loops are observed.

8. Conclusions

Data recorded by the ATLAS experiment at the CERN Large Hadron Collider in 2011 and 2012, corresponding to an integrated luminosity of up to 25 fb$^{-1}$, at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV, have been analysed to determine several properties of the recently discovered Higgs boson using the $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$, and $H \rightarrow WW^* \rightarrow 2\ell 2\nu$ decay modes. The reported results include measurements of the mass and signal strength, evidence for production through vector-boson fusion, and constraints on couplings to bosons and fermions as well as on anomalous contributions to loop-induced processes. The precision exceeds previously published results in several cases. All measurements are consistent with expectations for the Standard Model Higgs boson.
We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MIERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSY (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NIS, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at [sciencedirect.com](http://www.sciencedirect.com). It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

Fig. 13. Summary of the measurements of the coupling scale factors for a Higgs boson with mass $m_H = 125.5$ GeV. The best-fit values are represented by the solid vertical lines, with the $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties given by the dark- and light-shaded band, respectively. For a more complete illustration, the distributions of the likelihood ratios from which the total uncertainties are extracted are overlaid. The measurements in the various benchmark models, separated by double horizontal lines, are strongly correlated.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSY (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NIS, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF.

D. de Florian, M. Grazzini, Higgs production at the LHC: updated cross sections at $\sqrt{s}=7$ TeV, arXiv:1206.4133 [hep-ph].

C. Anastasiou, K. Melnikov, Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM, JHEP 1202 (2012) 88.

S. Dawson, L.H. Orr, L. Reina, D. Wackeroth, Next-to-leading order QCD corrections to $pp\to t\bar{t}$ at the CERN large hadron collider, Phys. Rev. D 67 (2003) 071503.

[97] M.J. Oreglia, A study of reactions \(\psi \rightarrow \gamma \gamma \), PhD thesis, SLAC-R-0236, 1980, Appendix D.

[108] ATLAS Collaboration, Measurements of the properties of the Higgs-like boson in the \(\gamma \gamma \rightarrow \ell\ell\nu\nu \) decay channel with the ATLAS detector using 25 fb\(^{-1}\) of proton-proton collision data, ATLAS-CONF-2013-030, 2013, http://cds.cern.ch/record/1527126.

[110] M. Grazzini, NNLO predictions for the Higgs boson signal in the \(H \rightarrow WW \rightarrow l\ell\nu l\ell\nu \) and \(H \rightarrow ZZ \rightarrow 4l \) decay channels, JHEP 0802 (2008) 043, arXiv:0801.3232 [hep-ph].

[122] ATLAS Collaboration, Measurements of the properties of the Higgs-like boson in the \(\gamma \gamma \rightarrow \ell\ell\nu\nu \) decay channel with the ATLAS detector using 25 fb\(^{-1}\) of proton-proton collision data, ATLAS-CONF-2013-030, 2013, http://cds.cern.ch/record/1527126.

1 School of Chemistry and Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany, NY, United States
3 Department of Physics, University of Alberta, Edmonton, AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Gazi University, Ankara; (c) Division of Physics, TOBB University of Economics and Technology, Ankara; (d) Turkish Atomic Energy Authority, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
Also at Department of Physics, Oxford University, Oxford, United Kingdom.

Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.

Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.

* Deceased.