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Deep Learning Matches Human Observers in Fetal

Ultrasound Biometric Measurements

BASED ON: Płotka, S., Klasa, A., Lisowska, A., Seliga-Siwecka, J., Lipa, M., Trz-
ciński, T., and Sitek, A. (2022). Deep Learning Fetal Ultrasound Video Model Match Human
Observers in Biometric Measurements. Physics in Medicine & Biology, 67(4), 045013.
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2. DEEP LEARNING FOR FETAL ULTRASOUND VIDEO ANALYSIS

This work investigates the use of deep convolutional neural networks (CNN)
to automatically perform measurements of fetal body parts, including head cir-
cumference, biparietal diameter, abdominal circumference, and femur length,
and to estimate gestational age and fetal weight using fetal ultrasound videos.
We developed a novel multi-task CNN-based spatio-temporal fetal US fea-
ture extraction and standard plane detection algorithm (called FUVAI) and
evaluated the method on 50 freehand fetal US video scans. We compared
FUVAI fetal biometric measurements with measurements made by five ex-
perienced sonographers at two time points separated by at least two weeks.
Intra- and inter-observer variabilities were estimated. We found that auto-
mated fetal biometric measurements obtained by FUVAI were comparable
to the measurements performed by experienced sonographers The observed
differences in measurement values were within the range of intra- and inter-
observer variability. Moreover, analysis has shown that these differences were
not statistically significant when comparing any individual medical expert to
our model. We argue that FUVAI has the potential to assist sonographers who
perform fetal biometric measurements in clinical settings by providing them
with suggestions regarding the best measuring frames, along with automated
measurements. Moreover, FUVAI is able to perform these tasks in just a few
seconds, which is a huge difference compared to the average of six minutes
taken by sonographers. This is significant, given the shortage of medical ex-
perts capable of interpreting fetal ultrasound images in numerous countries.
The source code and pre-trained weights of FUVAI are publicly available at
https://github.com/SanoScience/FUVAI.

2.1 Introduction

Fetal ultrasound (US) is an essential diagnostic tool used for assessing fetal
growth and to detect abnormalities during pregnancy. Clinically, accurate
fetal biometric measurements of head circumference (HC), biparietal diameter
(BPD), abdomen circumference (AC), and femur length (FL), used to estimate
gestational age (GA) and fetal weight (EFW), are crucial for proper delivery
management [4; 167]. Carrying out fetal body measurements is a task that
requires following strict procedures which standardize the examination.

The most important first step is the identification of standard planes during
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the examination, which is a prerequisite for performing measurements based
on standardized procedures. Standard planes are characterized by provid-
ing an optimal, standardized view of the examined structures based upon
the presence of desired anatomical structures and their appropriate expo-
sure [132]. Obtaining proper biometric measurements is subject to intra- and
inter-operator variabilities, and depends on both the correctness of standard
plane acquisition and utilization of proper measuring technique [170].

Both tasks require substantial knowledge and experience on the part of
the operator [176]. Given the limited availability of expert sonographers, es-
pecially in underdeveloped countries [174; 204], there is a need for an auto-
mated approach to standard plane identification in order to ensure correct
measurement of fetal structures in video recordings of ultrasound examina-
tions. Automated fetal US biometry may also help minimize variability for
less experienced sonographers. Automation of fetal biometric measurements
has been a field of interest for researchers and medical professionals since the
early 1990s [198; 232]. However, creating a computer program capable of mim-
icking the actions of an experienced sonographer requires solving two major
issues, namely being able to assess whether the given frame satisfies the con-
ditions of a standard plane, and creating accurate segmentations of fetal body
parts that are measured during the ultrasound procedure.

To automate fetal body part measurements researchers have applied
computer-aided diagnosis methods, including advanced deep learning-based
tools. Deep learning models gained popularity due to their high prediction
accuracy, attaining human-level performance across different medical imag-
ing applications, such as anatomical landmark detection in head CT [145],
pneumonia detection in chest X-ray [92], and head measurement in fetal
ultrasound [184] to name just a few. Deep learning approaches have also
been utilized in fetal standard plane classification [18; 19; 29; 31; 42; 117], of
head [28; 184; 233], of abdomen [93; 98; 115; 159] or both [223] to improve
computer-aided fetal biometric measurements.

There exists commercial software, embedded in ultrasound devices, e.g.
SonoBiometry (General Electric Healthcare) or BiometryAssist (Samsung
Healthcare) that assists the sonographer by measuring fetal structures on still
frames chosen by the operator. Such software helps reduce the number of
keystrokes by providing suggestions on caliper placement (in the case of bi-
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Figure 2.1: An overview of the proposed method. We use a fetal US video
scan as input data. We train a multi-task neural network to learn 2D + t
spatio-temporal features for simultaneous learning to classify, segment, and
measure fetal body parts. Next, based on automatic measurement of HC,
BPD, AC, and FL, we estimate gestational age and fetal weight.

parietal diameter and femur length measurements) or by drawing ellipses that
are used to measure head and abdominal circumference. This kind of propri-
etary software is a semi-automatic solution, as it still requires the operator to
select the correct frame, based upon their expertise.

To our knowledge, only [13; 121] directly tackle the problem of classification
and segmentation of all three body parts using a single neural network. Our
method presented in Figure 2.1 differs from [121] and [13] in a few key aspects.
Both of their models were trained on single-image frames which does not enable
temporal analysis of fetal ultrasound recordings. Moreover, datasets used
in both works contained only images of fetal body parts in their respective
standard planes. This is an important limitation because ultrasound video
recordings may contain numerous frames that are of no clinical use. This
includes frames that either contain no fetal body parts or those that are not
important in the examination, and also frames which depict the desired body
parts but in a flawed view which renders them useless for performing biometric
measurements. For this reason, it is uncertain whether the results of their
classifiers are useful for the purpose of choosing the best frames for clinical
use, rather than simply distinguishing between individual categories of images.

To overcome these limitations, we propose a multi-task deep learning-based
method for 2D + t spatio-temporal fetal US video scan analysis. Here, in ad-
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dition to 2D images we rely on time which serves a context. This is similar to
the analysis of 3D images where neighboring slices are used to assist in classifi-
cation tasks [53; 229]. The algorithm detects the best standard plane from the
whole US video scan to automatically perform fetal biometric measurements
on this plane. Estimations of gestational age and fetal weight are based on
those measurements.

Multi-task learning (MTL) aims to boost generalization and performance
by simultaneously learning multiple related tasks. MTL can not only improve
the performance of both tasks but also reduce overfitting through shared rep-
resentations and speed up learning by leveraging auxiliary information [239].
We also use a comprehensive fetal US video dataset acquired from 700 preg-
nant women between the 15th and 38th week of gestation to train the model.
The used data allows the proposed method to better generalize upon the eval-
uation test set of fetal US video scans, with examinations from the beginning
of the second trimester all the way to delivery.

We compare measurements made by FUVAI with manual measurements by
experienced sonographers. These experiments show that our proposed method
has the potential to become an auxiliary tool for fetal biometric measurement
in routine fetal ultrasound examinations in clinical settings. To the best of
our knowledge, this is the first paper which compares the performance of
human experts and deep learning-based methods in performing fetal biometric
measurements on fetal head, abdomen, and femur from US videos as opposed
to single frames. The main novel contributions of this work are as follows:

1. We propose a multi-task deep learning-based method called FUVAI for
2D + t spatio-temporal fetal US video analysis. FUVAI is designed for
automatic standard plane recognition and biometric measurement of the
fetal head, abdomen, and femur directly in video recordings,

2. We compare biometric measurements performed by the deep learning-
based method with manual measurements by experienced sonographers
using fetal US video recordings. Statistical analysis has proven FUVAI
to be equally as good as experienced sonographers in both the selection
of the best standard planes and carrying out the actual measurements.

The remaining Sections are organized as follows. Section 2.2 outlines our
approach, datasets, and a description of the proposed neural network. In Sec-
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Figure 2.2: Fetal biometry US standard planes: transventricular plane in the
head (left), transabdominal plane in the abdomen (middle), and femur plane
(right). Graphical definitions of HC, BPD, AC, and FL are shown.

tion 2.3 we describe the experiments and results, which are further discussed
in Section 2.4. Section 2.5 concludes the paper.

2.2 Methods

2.2.1 Fetal ultrasound datasets

Ethical approval was granted by the Ethics Committee of the Medical Uni-
versity of Warsaw. Prior to usage, both datasets were thoroughly anonymized
in accordance with the ethical standards listed in the Declaration of Helsinki.
We use two datasets supplied by the University Centre of Mother and Child’s
Health of the Medical University of Warsaw to develop and evaluate our meth-
ods. Both fetal datasets were acquired following a pre-defined protocol pur-
suant to international standards approved by the International Society of Ul-
trasound in Obstetrics and Gynecology (ISUOG) [167]. The data comes from
a single ultrasound device manufacturer (General Electric Healthcare) of sev-
eral models with corresponding transabdominal transducers: S6 - RAB2-6-RS,
S8 - RAB6-RS, P8 - RAB2-5-RS, E8 - RAB4-9-D, and E10 - RAB6-D.

Both datasets consist of video recordings stored in the Digital Imaging and
Communications in Medicine (DICOM) file format captured in two resolutions:
975 × 742 pixels and 1,100 × 960 pixels. To ensure no sensitive information is
present in the DICOM files, all metadata containing personal details is deleted.
Next, the DICOM video files are converted to a series of images in the PNG
(Portable Network Graphics) image file format, which is necessary for further
training and evaluating the performance of our neural network. During this
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conversion, we remove sections of images that contain personal details and
irrelevant information such as device settings, scale, etc., using a script that
masks out the unwanted sections with black pixels. All frames were resized to
224 × 224 pixels without preserving the aspect ratio and normalized to the
[0, 1] range. Examples of our annotations are presented in Figure 2.2.

2.2.1.1 FUVAI development dataset

The first dataset, which is used for the development of our neural network
consists of video recordings from 700 pregnancies ranging between the 15th
and 38th week of gestation, captured during routine fetal ultrasound exami-
nations. To create this dataset sonographers were instructed to record three
short US video clips per patient depicting the fetal head, abdomen, and femur,
respectively. Operators were instructed to include the standard plane in the
clips, but a specific location of the standard plane within the clip was not
required. Each of the clips consists of between 250 to 460 frames and includes
images that can be divided into three categories:

1. Images where the examined structures are visible in the standard plane,

2. Images that contain the examined structures but are less correct than
the above and do not meet the requirements necessary for classification
as standard plane,

3. Miscellaneous images that are of no clinical use due to technical issues
(e.g. being out of focus or blurry), and/or contain either no fetal body
parts, or such that are not relevant for the performed fetal ultrasound
examination.

All standard plane frames from the videos were labeled by experienced med-
ical professionals in the form of graphical annotations, and provided along with
numerical values of the measurements of head circumference, biparietal diam-
eter, abdomen circumference, and femur length taken during the examination.
Additionally, frames that did not meet the criteria of standard planes, con-
tained body parts other than the head, abdomen, or femur, or were technically
flawed e.g. out of focus or blurry were put together into a separate background
category. Figure 2.3 shows examples of the background class in the fetal US
video scans. The data was provided by six different expert sonographers with
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Figure 2.3: We show examples of the background class in fetal US video
scans. From the top left corner: two head sequences, two abdomen sequences,
two femur sequences, and two noise sequences.

40, 25, 20, 20, 15, and 8 years of experience, respectively. Importantly, these
individuals were not the same people as the readers whose measurements were
used in this study to compare the performance of medical experts versus our
neural network, FUVAI.

We split the dataset by using 80% of its contents for training and 20%
for testing. The training set is comprised of 32,215 images labeled as heads,
26,403 abdomens, 3,706 femurs, and 211,951 frames labeled as background,
respectively. The test set consists of the remaining 7,250 images labeled as
heads, 6,580 abdomens, 720 femurs, and 42,451 backgrounds.

2.2.1.2 Freehand video test set

In order to evaluate the performance of our FUVAI model against medical
professionals, we designed a second dataset, consisting of 50 videos recorded
during routine ultrasound examinations of women between the 19th and 38th
week of pregnancy. The recordings are of different patients from those used
to train our neural network. Sonographers who performed the examinations
were instructed to record 1-2 minute videos (depending on their preference)
during which fetal head, abdomen, and femur standard planes were captured.
Depending on the recording time and ultrasound machine, recordings consist
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Figure 2.4: An overview of the proposed neural network. We use a multi-task
neural network for 2D + t spatio-temporal feature analysis to simultaneously
localize, classify, and measure fetal body parts. The encoder part extracts
spatial US image features and forwards them to the ConvLSTM cell to learn
temporal features. We concatenate features from the encoder part via skip
connections and attention gate (AG) in the decoder part. The skip connections
carry only the spatial information (no temporal information) to the encoder
part of the network. We scale output from each decoder by 1 × 1 convolutional
layer (S) to the output size. Ultimately, we sum up features from each decoder
block. For classification (C), we use spatio-temporal features to classify each
fetal body part.

of between 500 and 1,900 frames. While recording, sonographers did not freeze
the video to perform any measurements. The videos were recorded for the sole
purpose of comparing the performance of our neural network against highly
trained professionals.

2.2.2 Automated measurements using multi-task neural network

The network is designed to perform two tasks: segmentation and classification
of fetal body parts which is subsequently used to perform measurements, and
standard plane classification. We detail the design of this network in the next
Section 2.2.2.1.

2.2.2.1 Network architecture and model training

Following [135; 210] we use an encoder-decoder U-Net-based multi-task convo-
lutional neural network architecture for joint segmentation and classification of
fetal body parts in fetal ultrasound video scans. We extend the original U-Net
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implementation where each block consists of the following order: Conv3x3-
BatchNorm-ReLU-Conv3x3-BatchNorm-ReLU-Dropout2D with p = 0.2. Af-
ter each block of the encoder part, we apply the Max Pooling layer with a
kernel size of 2 × 2 and stride = 2. The number of feature maps in the input
layer is equal to n = 64. The remainder of the eight convolutional blocks
consists of 2n-4n-8n-16n-8n-4n-2n-n feature maps. We use encoder blocks to
obtain high-level fetal US 2D spatial feature representations. The skip con-
nections carry only the spatial information (no temporal information) to the
encoder part of the network. The encoder’s output (2D spatial information)
is fed to the ConvLSTM-based [227] bottleneck.

The ConvLSTM cell is able to model 2D spatio-temporal image sequences by
encoding their 2D spatial feature representation as temporal feature represen-
tation. Modeling 2D+ t spatio-temporal image sequences by ConvLSTM cell
effectively improves performance in both segmentation and classification [234].
We employ the attention gate mechanism [171] to implicitly learn to suppress
irrelevant regions in an input video sequence while highlighting the salient
features of the target region of interest. The attention gate mechanism helps
exploit local information to efficiently localize objects (i.e. fetal body parts)
and improve prediction performance. Every encoder block forwards its output
feature maps to the decoder part while concatenating them with an attention
gate.

To improve the performance of binary prediction feature maps, we em-
ploy deep supervision to connect the lower and higher scale levels of each
decoder feature, creating what [45] call a stacked module. Multi-scale feature
maps help encode both global and local contexts. We use a set of 3 × 3 2D
convolutional layers to up-sample the feature maps after each convolutional
block. Thereafter, we combine the preceding high-level feature maps into an
aggregate binary segmentation map. For the classification branch, we apply
Adaptive Average Pooling 2D and Dropout2D with p = 0.4 as ConvLSTM
output before a Fully Connected layer with 14 × 14 × 16n feature maps on
the output to assign video frames to one of the following classes: fetal head,
abdomen, femur or background, at the frame level. Figure 2.4 shows the pro-
posed multi-task learning method called FUVAI for 2D + t spatio-temporal
fetal ultrasound scan video analysis. For more details about the model, please
refer to our GitHub repository.
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We resize the input size of training images to 224 × 224 pixels image size
and train our model until convergence over 100 epochs, with a batch size of
16, an initial learning rate of 1 × 10−4 and a weight decay factor of 1 ×
10−4. To minimize the loss function, we set ADAM as the optimizer. To
prevent overfitting, we apply various data augmentation techniques. During
training, we perform the following transformations: rotation between -15 and
15 degrees, contrast and brightness manipulation, as well as horizontal and
vertical flipping. Each augmentation has a 50% chance of being applied to
each image during each epoch. We also apply a shuffled sampler.

As the loss function, we use the sum of Dice LDice and Cross-entropy LCE

losses. The LDice is defined as:

LDice = 1−
2
∑N

i pigi + ϵ∑N
i p2i +

∑N
i g2i + ϵ

, (2.1)

where pi is the prediction pixel value and gi is the ground truth pixel value. ϵ
is a small number used to avoid calculating the log of 0.0. The LCE is defined
as:

LCE = −
n∑

i=1

ti log(pi), (2.2)

where ti is the true label and pi is the softmax probability for the ith class.
We train our neural network on a workstation equipped with an AMD FX-

8320@3.5Ghz CPU and NVIDIA Titan RTX 24GB GPU with CUDA 11.0.
We use the PyTorch [146] deep learning library for the implementation of our
model. The scripts and weights of the trained model are available on GitHub.

2.2.3 Extraction of biometric measurements from network output

The raw output of our neural network, FUVAI, consists of two components:
segmentation and classification score. The following two Sections (2.2.3.1 and
2.2.3.2) describe how they are used in order to obtain meaningful biometric
measurements from fetal US video recordings.
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Figure 2.5: An overview of the standard plane detection algorithm. As
input, we use a freehand fetal US video scan with various numbers of frames.
Spatio-temporal features are computed through a neural network. Standard
planes for each of the measured fetal body parts are obtained. In our work for
each video up to three standard planes were detected.

2.2.3.1 Biometric measurements

Since the segmentation output of our neural network takes the form of a 224
× 224 pixel binary mask, we first resize it to match the size of the input image
using bilinear interpolation. Next, we apply binary thresholding p = 0.6 and
perform erosion followed by dilation, using a 5 × 5 cross-shaped structuring
element. This ensures that the predicted masks are denoised. Finally, we use
a median blur filter with a 13 × 13 kernel size to smooth the edges of the
segmentation.

Depending on the body part, we use different methods to obtain adequate
measurements. For head and abdomen circumference measurement, we begin
by finding the contours of the segmentation output. Next, we use Ramer-
Douglas-Peucker approximation [55; 158] and fit the ellipse to the postpro-
cessed segmentation output using the direct least square method [67] We cal-
culate the circumference of the fitted ellipse and store it. Additionally, to
acquire the measurement of BPD, we store the length of the short axis of the
ellipse fitted to the head [221]. This implies that the values of BPD measure-
ments taken by FUVAI are obtained similarly to the outer-outer measuring
method.

To obtain FL, we fit a rectangular bounding box to the contours of the
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segmentation. Next, we store the length of the fitted rectangle. Finally, we
convert all measurements obtained in pixels to values in centimeters. We
do this by multiplying the number of pixels by pixel size, an attribute that
encodes the physical distance between centers of pixels, stored in the DICOM
metadata.

2.2.3.2 Selection of best frames from the video

The raw network output consists of two components: segmentation output
and classification score. Frames that have a high classification score (greater
than 90%) in one of the three categories – head, abdomen, or femur – are
marked as meeting the criteria of standard planes (Figure 2.5). Biometric
measurements are performed for every standard plane frame as described in
the above Section 2.2.3.1. The obtained values are stored together with the
frame indices.

Once the entire recording is analyzed, the best frames are selected. The best
frame containing the femur is chosen by calculating a weighted average of the
classification score and measurement value and selecting the frame for which
this score is highest. Best head and abdomen frames are chosen similarly,
but an additional computation is performed to compare the areas of the fitted
ellipse and the raw segmentation output of the neural network. The calculated
similarity score is used as the third component of the weighted average. Higher
congruence of the ellipse and segmentation areas enables us to promote frames
for which the segmentation is closest to the desired elliptical shape and reject
frames whose segmentations are irregular.

2.2.3.3 Gestational age and fetal weight estimation

Measurements of each of the body part for which adequate frames are present
in the recording are cross-checked with World Health Organization (WHO) fe-
tal growth charts, enabling assessment of fetal development against the back-
ground of population norms [102]. For cases when head, abdomen, and femur
standard planes are all detected, GA and EFW are estimated with the use of
formulae 2.3 and 2.4. If one or more body parts in standard plane views are
not found, estimations of weight and gestational age are not performed.
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We calculate gestational age and fetal weight based on measurements
of head circumference, abdomen circumference, biparietal diameter, and fe-
mur length obtained by automatic measurements, using the following equa-
tion [186]:

GA = 10.6− 0.168×BPD + 0.045×HC

+ 0.03×AC + 0.058× FL

+ 0.002×BPD2 + 0.002× FL2

+ 0.0005× (BPD ×AC)− 0.005× (BPD × FL)

− 0.0002× (HC ×AC) + 0.0008× (HC × FL)

+ 0.0005× (AC × FL)

(2.3)

Estimation of fetal weight relies on the Hadlock III formula [79] recommended
by the WHO:

log10EFW = (1.326− 0.00326×AC × FL

+ 0.0107×HC + 0.0438×AC

+ 0.158× FL),

(2.4)

where HC, AC, FL, and BPD are head circumference, abdomen circumfer-
ence, femur length, and biparietal diameter, respectively, as previously de-
fined. They are expressed in centimeters. If standard planes corresponding to
some of the measurements are not found and automated measurement is not
available, GA and/or EFW are not computed.

2.2.4 Evaluation metrics

2.2.4.1 Segmentation

To estimate segmentation performance, we use the following:

1. Jaccard Index, also known as Intersection-over-Union (IoU):

IoU =
TP

(TP + FP + FN)
, (2.5)
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2. Dice Score Coefficient (DSC), also known as Sorensen-Dice Coefficient:

DSC =
2TP

(2TP + FP + FN)
, (2.6)

where TP, FP, and FN stand for true positive, false positive, and false negative
cases, respectively.

2.2.4.2 Classification

To measure the performance of the classification case, we employ the following
metrics:

1. Accuracy:
Accuracy =

TP + TN

TP + FP + TN + FN
, (2.7)

2. Precision:
Precision =

TP

TP + FP
, (2.8)

3. Recall:
Recall =

TP

TP + FN
, (2.9)

4. F1 score:
F1 = 2× Precision×Recall

Precision+Recall
, (2.10)

where TP, TN, FP, and FN stand for true positive, true negative, false positive,
and false negative cases, respectively. For multi-class classification, the values
of TP, TN, FP, and FN are computed for binary classification tasks of one
class vs. others.

2.2.5 State-of-the-art CNN architectures

To compare the method developed in this work with other CNN networks, we
implemented four state-of-the-art convolutional neural network architectures
for both segmentation and classification of fetal body parts. For all deep
learning methods, we used the ADAM optimizer with an initial learning rate
and weight decay of 1 × 10−4. The learning rate was reduced by half every
50 epochs, once the validation loss stopped decreasing. In all experiments, we
used the sum of Dice loss and Cross-entropy loss as our loss function.
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Table 2.1: Comparison of segmentation and classification performance for
fetal body parts (head, abdomen, femur) and background using state-of-the-
art neural networks and FUVAI. IoU and DSC are provided with the mean
and standard deviation, while Accuracy, Precision, Recall, and F1 scores are
presented with their means, all expressed as percentages [%]. The best results
are bolded.

Method IoU [%] ↑ DSC [%] ↑ Accuracy [%] ↑ Precision [%] ↑ Recall [%] ↑ F1 [%] ↑

U-Net (base) 86.2 ± 4.0 92.1 ± 4.0 - - - -

DeepLabv3 85.1 ± 4.1 91.2 ± 4.0 92.2 91.0 89.0 90.0

FCN-8s 86.5 ± 3.9 92.4 ± 3.8 93.3 93.0 91.0 92.0

FCN-32s 87.2 ± 3.6 93.2 ± 3.5 93.5 93.0 91.0 92.0

FUVAI 90.5± 3.1 96.2± 3.0 97.5 96.0 97.0 96.0

To prevent overfitting, we applied early stops in the training phase if there
was no improvement in validation loss after 30 epochs. Additionally, we used
various training data augmentation methods (e.g. random rotation, contrast,
and brightness manipulation, as well as horizontal and vertical flipping) on
the fly during training. The input for all state-of-the-art models was identical
(image resolution, size, 2D image augmentations) as the input to FUVAI ex-
cept for the time domain as the state-of-the-art models can process only 2D
images.

All compared methods were implemented in Python 3.8 using the PyTorch
deep learning library. We used open-source code available on GitHub, includ-
ing the original U-Net implementation, Fully Convolutional Network (FCN),
and DeepLabV3. We adopted those implementations for our use case and
provided details in the GitHub repository.

2.2.6 Expert reader measurements

We compared fetal biometric measurements and resulting estimates of ges-
tational age and fetal weight between FUVAI and experienced sonographers
with a test set of 50 freehand fetal US videos. Five readers participated in
the study, including three senior gynecologists with 40, 25, and 15 years of
experience since completion of residency training, and two junior gynecologists
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Table 2.2: Comparison of the mean absolute measurement error, along with
the standard deviation, on the test set. The errors are provided in millimeters
[mm] for fetal body parts, including head (HC), abdomen (AC), and femur
(FL), using state-of-the-art neural networks and FUVAI. The best results are
bolded.

Method HC [mm] ↓ AC [mm] ↓ FL [mm] ↓

U-Net (base) 4.5 ± 3.2 5.4 ± 3.1 1.5 ± 1.4

DeepLabv3 4.8 ± 3.4 5.5 ± 3.4 1.5 ± 1.3

FCN-8s 4.7 ± 3.1 5.3 ± 3.3 1.6 ± 1.2

FCN-32s 3.9 ± 2.8 4.9 ± 3.2 1.2 ± 0.8

FUVAI 2.9± 1.2 3.8± 3.0 0.8± 1.2

with less than 5 years of experience since completion of residency training.
Readers had no access to any clinical information regarding patients. Intra-

and inter-observer variabilities were estimated. Each reader performed two
measurements on all 50 cases with at least two weeks in between. No infor-
mation about the first read was provided to observers prior to their second
read.

Fetal body part measurements were summarized separately for HC, BPD,
AC, FL, and estimated GA and EFW, and for the first and second read-
ings. Intra- and inter-observer agreement was calculated by using the mean
and standard deviation values for all measurements, along with the intraclass
correlation coefficient (ICC). ICC was calculated as an aggregate value (for
FUVAI and five experienced sonographers), for the first and the second read-
ing, respectively. We considered an ICC < 0.50 poor, 0.50 to 0.75 moderate,
0.75 to 0.90 good, and 0.91 to 1.00 excellent reliability [104].

2.3 Results

2.3.1 Comparison with other network architectures

We compare FUVAI with four state-of-the-art methods for multi-task learning.
In Table 2.1, we show results of the following neural networks, including U-
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Table 2.3: We provide the mean measurements and standard deviation of
each reader, including FUVAI, and five experienced sonographers for all fetal
biometry measurements. These measurements were conducted on an external
test set comprising 50 freehand fetal ultrasound video scans. Each reader
performed two measurements on all 50 cases with at least two weeks between
sessions. In the second reading, we present the mean absolute differences
between the first and second readings.

First reading Second reading
Reader HC [cm] BPD [cm] AC [cm] FL [cm] HC [cm] BPD [cm] AC [cm] FL [cm]
FUVAI 27.04 ± 5.27 7.36 ± 1.47 24.84 ± 5.38 5.25 ± 1.14 - - - -
ES1 26.40 ± 5.42 7.21 ± 1.53 24.23 ± 5.40 5.20 ± 1.13 0.17 ± 0.13 0.08 ± 0.04 0.25 ± 0.17 0.04 ± 0.03
ES2 26.58 ± 5.35 7.22 ± 1.53 24.40 ± 5.40 5.21 ± 1.14 0.23 ± 0.18 0.08 ± 0.04 0.23 ± 0.14 0.07 ± 0.08
ES3 26.94 ± 5.27 7.33 ± 1.55 24.61 ± 5.36 5.26 ± 1.13 0.25 ± 0.18 0.08 ± 0.07 0.29 ± 0.23 0.04 ± 0.04
ES4 26.69 ± 5.32 7.23 ± 1.52 24.49 ± 5.34 5.21 ± 1.13 0.29 ± 0.23 0.07 ± 0.05 0.27 ± 0.18 0.04 ± 0.04
ES5 27.09 ± 5.36 7.30 ± 1.54 24.85 ± 5.35 5.30 ± 1.11 0.20 ± 0.16 0.07 ± 0.05 0.24 ± 0.17 0.03 ± 0.03

Net, FCN-8s, FCN-32s [123] and DeepLabv3 [43]. We evaluate our model on
57,001 test images of the fetal head (7,250 images), abdomen (6,580 images),
femur (720 images), and background (42,451 images), and summarize those
results in Table 2.1.

With FUVAI we obtain average values of 90.5% and 96.2% for IoU and DSC,
respectively. Average precision, recall, and F1 scores are 96%, 97%, and 96%,
respectively. Based on Table 2.1 we find that the proposed system outperforms
the state-of-the-art neural networks. A one-way analysis of variance (ANOVA)
was performed to compare state-of-the-art neural networks with the FUVAI
method, revealing statistically significant differences in mean IoU and DSC.

Table 2.2 compares results of fetal head, abdomen, and femur error mea-
surement (in mm) against state-of-the-art neural networks, presenting mean
values and standard deviations. The mean errors are 2.9 mm, 3.8 mm, and 0.8
mm for fetal head circumference, abdomen circumference, and femur length,
respectively. Comparison of clinical tests with predicted measurements shows
that errors are lower than ±15%, which is considered acceptable in clinical
practice [170].

2.3.2 Comparison between FUVAI and expert readers

Table 2.3 shows descriptive statistics for the 50 freehand fetal ultrasound video
scans. We computed mean measurement and standard deviation values of fetal
body parts for FUVAI and five experienced sonographers (ES1-ES5). For the
second reading, we included the mean of absolute difference in measured values
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Table 2.4: Mean absolute errors in millimeters [mm] between FUVAI and
observers (ES1-ES5) are provided for both readings. Additionally, we include
the mean absolute error between the mean measurements provided by all ob-
servers and FUVAI.

FUVAI
Reader HC [cm] BPD [cm] AC [cm] FL [cm]
ES1 1.07 0.25 1.13 0.16
ES2 1.02 0.25 1.06 0.20
ES3 1.03 0.30 0.99 0.19
ES4 0.99 0.27 1.06 0.21
ES5 1.10 0.29 1.10 0.22
Mean 1.04 0.27 1.06 0.20

compared to the first reading. We note that FUVAI has similar performance
and operates within the range of human-level error. Note that for FUVAI, the
second reading is identical to the first reading due to the deterministic nature
of neural network inference, resulting in intra-observer variability equal to
zero, which is indicated in Table 2.3 by dashes.

In Table 2.4, we show the mean absolute error (MAE) between FUVAI and
each of the five experienced sonographers (ES1-ES5) for both readings. We
obtained MAE values of 1.04 cm, 0.27 cm, 1.06 cm, and 0.20 cm for HC, BPD,
AC, and FL, respectively. We estimated GA and EFW with MAE of 0.05 ±
0.01 week and 25 ± 5 g, respectively.

The overall intra- and inter-observer agreement is similar: for HC, BPD,
AC, and FL measurements, intra-observer agreement rates are 0.972, 0.979,
0.961, and 0.978 while inter-observer agreement rates are 0.974, 0.978, 0.963,
0.983. A one-way ANOVA was performed to compare the measurements per-
formed by the five readers (ES1-ES5) with the FUVAI method. ANOVA
results are: F(5, 294) = 0.133, p = 0.985 for HC, F(5, 294) = 0.091, p = 0.993

for BPD, F(5, 294) = 0.11, p = 0.991 for AC and F(5, 294) = 0.052, p = 0.998

for FL, respectively. A one-way ANOVA revealed that there was no statis-
tically significant difference in mean measurement values between annotators
(both human and automatic).

We performed further subanalysis based on reader experience and the spe-
cific trimester of pregnancy. Both intra- and inter-observer agreements differ
depending on the reader’s experience level and trimester. We obtained ICCs
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between FUVAI and juniors of 0.982, 0.989, 0.985, and 0.981 for HC, BPD, AC,
and FL, respectively, and ICCs between FUVAI and seniors of 0.987, 0.991,
0.987, and 0.986 for HC, BPD, AC, and FL, respectively. This shows that FU-
VAI results correlate better with seniors. For the second and third trimesters
of pregnancy, the corresponding values are 0.982, 0.994, 0.980, 0.981, and
0.982, 0.995, 0.982, and 0.983 for HC, BPD, AC, and FL, respectively. No
statistically significant differences were detected between the second and third
trimester of pregnancy.

2.4 Discussion

We propose a novel multi-task encoder-decoder deep learning-based frame-
work for fetal ultrasound video scan analysis and interpretation referred to as
FUVAI. The success of the proposed method rests upon two factors. Com-
pared with previous computer-aided methods, FUVAI is able to automatically
analyze 2D + t spatio-temporal fetal ultrasound video scans simultaneously
localizing standard planes, and classifying and measuring fetal body parts.
The ConvLSTM cell-based neural networks used here are efficient in encoding
2D + t spatio-temporal information and representation of features. Equally
importantly, FUVAI takes advantage of the attention mechanism followed by
multi-scale features in each decoder block and achieves better accuracy in both
segmentation and classification. The multi-scale feature information decoder
is vital in the fetal body part segmentation task, given their considerable
variations in terms of size, shape, and location. The approach of relating seg-
mentation performance to the amount of multi-scale feature representations
is also true for 2D convolutional neural network-based methods, which rely
solely on spatial features [185]. For more details please refer to a separate
ablation study which we published in a conference abstract [153].

We have shown that human measurements differed, on average, by 1.04 cm,
0.27 cm, 1.06 cm, and 0.20 cm for HC, BPD, AC, and FL, compared with
FUVAI (Table 2.4). These differences are consistent with inter-observer vari-
ability documented by Sarris et al. [170] where inter-observer variability was
reported as 0.99 cm, 1.35 cm, and 1.43 cm for HC, AC, and FL, respectively.
Moreover, Sinclair et al. [184] found inter-observer MAE of 2.16 cm for HC
and 0.59 cm for BPD and model-observer MAE of 1.99 cm and 0.61 cm for
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Figure 2.6: An example of femur length standard planes missed by two of
the readers, but correctly identified by FUVAI.

HC and BPD, respectively.
Obviously, FUVAI inference is deterministic and will always provide the

same answer given the same input. It is important to note that considerable
time is required for human experts to perform measurements – on average,
six minutes per movie, whereas FUVAI inference time is on the order of one
second. Interestingly, FUVAI found two standard planes which were missed
by two expert readers, and are shown in Figure 2.6. After the experiment,
upon presentation of standard planes found by FUVAI (Figure 2.6), expert
readers confirmed that they were indeed correct femur standard planes.

The prevalence of the femur is naturally low. However, because of the high
contrast of the femur we found that the model had no major difficulties in
finding femur structures and decided against using any method to mitigate
data imbalance, having in mind that such methods require additional hyper-
parameters which makes training more difficult and less robust.

In this work, we consider a situation when the US examination is performed,
stored in the Picture Archiving and Communication System (PACS), and read
from there. However, this automatic approach can also be used in real-time
during routine fetal ultrasound examinations in which case it can help the
operator identify standard planes and even automatically perform biometry
while performing the scan. This, however, would require the software to be
installed on the ultrasound device and integrated into the workflow. With
regard to future work, the proposed method seems an attractive add-on that
can be used on point-of-care portable devices, for example in underdeveloped
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Figure 2.7: Two examples of errors made by FUVAI. Oversized prediction
of the fetal head (+ 2.5 cm) and misclassified standard plane of the fetal
abdomen, respectively.

countries. This, however, requires further validation with data coming from
such devices – which is likely to be of poorer quality than the data used in
this work.

Our study contains limitations. The method was trained on data from
several models of a single ultrasound device manufacturer (General Electric
Healthcare) and was acquired at a single institution. Therefore, it is uncer-
tain if the findings are transferable to other manufacturers and institutions.
Although we used a large training dataset, to our knowledge the largest in
published literature, accuracy can likely be improved by using more train-
ing cases and more diverse training examples. The automatic method is not
error-free (see examples in Figure 2.7) and may be improved upon if a more
diverse training set with more examples of images with shadowing/movement
is used. Each image in the training set was annotated by a single annotator
and it is possible that, if more annotators are used, the quality of inference will
improve. We plan to add more annotators in the future. As for many other
tasks in radiology considered for AI, the ground truth was defined subjectively
by expert readers and no objective ground truth was available. A notable dif-
ference in the methodology of biparietal diameter measurement is present in
this work. While sonographers who gathered data for both datasets use the
inner-outer method of BPD measurement, FUVAI performs this measurement
by calculating the length of the ellipses’ short axes, which is more akin to the
alternative outer-outer method. Both of these methods are clinically valid.
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Moreover, the literature suggests that the differences between measurements
obtained with the use of these methods are negligible [221]. We aim to resolve
this issue by developing a more specific method of BPD measurement.

2.5 Conclusions

We propose a multi-task deep learning-based framework for fetal ultrasound
video scan analysis and interpretation referred to as FUVAI. The method is
designed to process fetal US video scans to simultaneously localize standard
planes in video sequences, classify and measure the fetal biometric parame-
ters, and estimate gestational age and fetal weight. We demonstrated that the
method achieves human-level performance, comparable to inter-rater agree-
ment involving experienced sonographers. The method has the potential for
use as a fetal biometry assistance tool that may be especially useful for less
experienced personnel and may save time when reading fetal ultrasounds.
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