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3
Fetal Birth Weight Prediction on Fetal Ultrasound Video

Scans

BASED ON: Płotka, S., Grzeszczyk, M. K., Brawura-Biskupski-Samaha, R., Gutaj,
P., Lipa, M., Trzciński, T., and Sitek, A. (2022). BabyNet: Residual Transformer Module for
Birth Weight Prediction on Fetal Ultrasound Video. In International Conference on Medical
Image Computing and Computer-Assisted Intervention (pp. 350-359). Springer, Cham.
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3. FETAL BIRTH WEIGHT PREDICTION ON FETAL US VIDEO SCANS

Predicting fetal weight at birth is an important aspect of perinatal care, par-
ticularly in the context of antenatal management, which includes the planned
timing and the mode of delivery. Accurate prediction of weight using prena-
tal ultrasound is challenging as it requires images of specific fetal body parts
during advanced pregnancy which is difficult to capture due to poor quality
of images caused by the lack of amniotic fluid. As a consequence, predic-
tions which rely on standard methods often suffer from significant errors. In
this paper, we propose the Residual Transformer Module which extends a 3D
ResNet-based network for analysis of 2D+ t spatio-temporal ultrasound video
scans. Our end-to-end method, called BabyNet, automatically predicts fetal
birth weight based on fetal ultrasound video scans. We evaluate BabyNet
using a dedicated clinical set comprising 225 2D fetal ultrasound videos of
pregnancies from 75 patients performed one day prior to delivery. Experi-
mental results show that BabyNet outperforms several state-of-the-art meth-
ods and estimates the weight at birth with accuracy comparable to human
experts. Furthermore, combining estimates provided by human experts with
those computed by BabyNet yields the best results, outperforming either of
the other methods by a significant margin. The source code of BabyNet is
available at https://github.com/SanoScience/BabyNet.

3.1 Introduction

Fetal birth weight (FBW) is a significant indicator of perinatal health prog-
nosis. Accurate prediction of FBW, as well as gestational age, complications
in pregnancy, and maternal physical parameters, are critical in determining
the best method of delivery (vaginal or Cesarean). These factors are widely
used as a part of the hospital admission procedure in the world [155]. How-
ever, FBW prediction is a challenging task, requiring highly visible fetal body
standard planes, which can only be identified by experienced sonographers.
Unfortunately, weight predictions provided by experienced sonographers are
often imprecise, with up to 10% mean absolute percentage errors. Currently,
FBW is estimated on the basis of fetal biometric measurements of body organs
– head circumference (HC), biparietal diameter (BPD), abdominal circumfer-
ence (AC), and femur length (FL), which are used as the input to heuristic
formulae [79; 137].
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3.1. INTRODUCTION

In recent years, machine learning-based methods have been proposed as a
possible means of automating FBW prediction. Lu et al. [128; 129] presents
a solution based on an ensemble model consisting of Random Forest, XG-
Boost, and LightGBM algorithms. Tao et al. [196] use a hybrid-LSTM net-
work model [227] for temporal data analysis. Convolutional neural network
(CNN)-based models are also proposed to estimate fetal weight based on ul-
trasound images [13; 65] or videos [152; 153]. However, such methods do not
rely on the true FBW as the ground truth, but instead predict it through
heuristic formulae using estimated fetal body-part biometrics, which is prone
to errors.

Recently, Transformers [208] have been proposed as an alternative archi-
tecture to CNNs, and have achieved competitive performance for many com-
puter vision tasks e.g. Vision Transformer (ViT) for image classification [54]
or Video Vision Transformer (ViViT) for video recognition [7]. Transformers
utilize the Multi-Head Self-Attention (MHSA) mechanism to learn the global
context between input sequence elements. Unfortunately, due to their high
computational complexity, Transformers require a large amount of training
data and long training times. Many methods have been developed to bridge
the gap between sample-efficient learning with a high inductive bias of CNNs
and performance but data-inefficient Transformers. Hybrid models utilizing
CNN layers and Transformer blocks have also been introduced [60; 122; 161].

In this paper, we utilize Transformers for direct estimations of fetal weights
from US videos. We implement this solution as an extension of a 3D ResNet-
based network [200] with a Residual Transformer Module (RTM) called
BabyNet. The RTM allows local and global feature representation through
residual connections and utilization of convolutional layers. This represen-
tation is refined through the global self-attention mechanism included inside
RTM. BabyNet is a hybrid neural network that efficiently bridges CNNs and
Transformers for 2D + t spatio-temporal ultrasound video scan analysis to
directly predict fetal birth weight.

The main contribution of our work is as follows: (1) We provide an end-
to-end method for birth weight estimation based directly on fetal ultrasound
video scans, (2) We introduce a novel Residual Transformer Module by adding
temporal position encoding to 3D MHSA in 3D ResNet-based neural network,
(3) To the best of our knowledge, BabyNet is the first framework to auto-
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Figure 3.1: An overview of proposed BabyNet for FBW estimation from fetal
US video scans. In BabyNet, we replace two Residual Modules of 3D ResNet-
18 with two Residual Transformer Modules (RTM) containing 3D Multi-Head
Self-Attention (MHSA) with Relative Positional Encoding (RPE). RPE is cal-
culated as the sum of height (Rh), width (Rw), and temporal (Rt) position
encodings. For clarity, only one attention head is presented. The model takes
16 frames as the input to make a single-segment prediction. All frames for
a given patient are divided into non-overlapping 16-frame segments and a
patient-level prediction is obtained by averaging all segment predictions.

mate fetal birth weight prediction on fetal ultrasound video scans trained and
validated with data acquired one day prior to delivery.

3.2 Method

An overview of our method for end-to-end FBW prediction is presented in
Figure 3.1. We use 3D ResNet-18 for high-level US feature extraction. The
RTM is designed to learn local and global feature representation with a 3D
MHSA mechanism and convolutional layers. We replace the last two residual
modules of ResNet with RTMs.
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3.2. METHOD

3.2.1 Feature extraction

We employ 3D ResNet-18 [200] as the base network to extract high-level 2D+t

spatio-temporal US feature representations. The initial input to the network
is US video sequence SUS ∈ RT0×1×H0×W0 of height H0, width W0 and frame
number T0. It is transformed via convolutional residual modules to a low-
resolution feature map sequence S

′
US ∈ RT1×D1×H1×W1 , where T1 = T0/4,

D1 = 512, H1 = H0/8, and W1 = W0/8. Multi-channel, low-resolution feature
map sequences are fed to the RTM.

3.2.2 Residual Transformer Module

Residual modules are constructed from a layer followed by a rectified linear
unit (ReLU) and Batch Normalization. This structure is repeated two or three
times with a skip connection of the input added to the output of the previous
layers [87].

To include global low-resolution feature map context processing via a self-
attention mechanism we design RTM in a similar manner to Bottleneck Trans-
formers (BoT) [191]. Our RTM extends BoT to 3D space by adding temporal
position encoding [177] to 3D MHSA. BoT utilizes MHSA instead of 3 × 3
convolutions in the residual bottleneck module, created to decrease the com-
putational complexity in deeper ResNet architectures. 3D ResNets are often
shallower and do not contain Bottleneck blocks. Thus, to utilize the self-
attention mechanism in shallower ResNets we replace the last convolutional
layer in the residual module with MHSA and define RTM as:

y = BN (MHSA(σ(BN(Conv(x)) + x (3.1)

where x and y are input and output of the RTM, respectively, Conv denotes
the convolutional layer, BN is Batch Normalization and σ stands for ReLU.

3.2.3 3D Multi-Head Self-Attention

To learn multiple attention representations at different positions, instead of
performing single attention, many self-attention heads (MHSA) are jointly
trained with their outputs concatenated [208]. Since such operation is
permutation-invariant, positional encoding r needs to be added to include
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Figure 3.2: Sample US frames extracted from fetal US videos. The frames
show the fetal body part standard planes of the head, abdomen, and femur,
respectively, going from left to right. Images obtained several hours before
delivery are of lower quality than at earlier stages of pregnancy due to the
lack of amniotic fluid.

positional information. Depending on the application, absolute (e.g. sinu-
soidal) or relative positional encodings (RPE) [177], recently identified as a
better fit for vision tasks [222], can be used.

To process 2D + t US videos with MHSA we add temporal positional en-
coding to the 2D RPE and compute positional encoding r as the sum of
Rh ∈ R1×D×H×1, Rw ∈ R1×D×1×W and Rt ∈ RT×D×1×1, the height, width
and temporal positional encodings, respectively. Finally, we compute the 3D
MHSA output of S′′

US ∈ RT×D×H×W input as:

MHSA
(
S

′′
US

)
= concat

[
softmax

(
Qi(Ki + r)T√

d

)
Vi

]
, (3.2)

where T = T1
2 , D = D1, H = H1

2 , W = W1
2 , Qi, Ki, Vi are queries, keys and

values for the ith attention head calculated from WQ(S
′′
US), WK(S

′′
US) and

WV (S
′′
US) 1 × 1 × 1 3D convolutions performed over input S

′′
US and d is D

divided by the number of heads.

3.3 Experiments

In this section, we describe our dataset and present the architectural details
of BabyNet. We compare BabyNet’s performance with other 2D + t spatio-
temporal video analysis methods and with results obtained from clinicians.
We show, through an ablation study, the importance of BabyNet components
that have been added or replaced in 3D ResNet-18.
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3.3. EXPERIMENTS

3.3.1 Dataset and pre-processing

Ethical Committee approval was obtained for all subjects enrolled in the study.
The dataset consists of 225 2D fetal ultrasound video scans in standard plane
view of the fetal head, abdomen, and femur (see Figure 3.2). The multi-center
dataset was obtained from 75 pregnant women aged 21 to 42 and acquired
through routine US examinations less than 24 hours prior to delivery. The
data was acquired by three experienced sonographers using GE Voluson E6
and S10 devices.

Each US video scan is stored in the DICOM file format, captured in two
resolutions: 960 × 720 and 852 × 1,136 pixels. The number of frames is
between 463 and 1,448, with a mean of 852. The US videos were obtained in
sector scan sweep mode with frame per second (FPS) between 24 and 37. For
each video, we resample pixel spacing to 0.2 mm × 0.2 mm.

As the ground truth, we use the true fetal weight measured at birth. The
ground truth values were between 2,085 and 4,995, with a mean of 3,454
grams [g].

3.3.2 Implementation details

We adopt 3D ResNet-18 [200] as our base neural network. Table 4.2 presents
the architectural details of BabyNet, as compared to 3D ResNet-18. BabyNet
comprises a 3D convolutional stem followed by conv stages: three with two
residual modules each, and one final stage implemented with two RTMs.

The output of the final RTM is global average pooled (GAP) and fed to
the fully connected (FC) layer with one neuron (512 input weights) for fetal
birth weight prediction. We implement our model with PyTorch and train it
using an NVIDIA RTX 2080 Ti 24GB GPU with a mini-batch size of 2 and
an initial learning rate of 1 × 10−4 with a step decay by a factor of g = 0.1

every 160th epochs until convergence over 200 epochs. To minimize the Mean
Squared Error (MSE) loss function, we employ an ADAM [101] optimizer with
1 × 10−4 weight decay.

During training, we apply data augmentation including rotation (±25◦),
random brightness and contrast, horizontal flip, image compression, and blur
for each mini-batch. We retain the height and width ratio and resize video
frames to 64 × 64 (H0 ×W0) with padding. The number of attention heads
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Table 3.1: Comparison of ResNet3D-18 and BabyNet architectures. We
replace the last two residual modules of 3D ResNet-18 with two Residual
Transformer Modules containing a 3D MHSA instead of the second 3 × 3 3D
convolution.

Stage name Output size 3D ResNet-18 BabyNet

conv1 T0 × H0
2 × W0

2 3× 7× 7, 64, stride 1× 2× 2

conv2 T0 × H0
2 × W0

2

[
3× 3× 3, 64

3× 3× 3, 64

]
×2

[
3× 3× 3, 64

3× 3× 3, 64

]
×2

conv3 T0
2 × H0

4 × W0
4

[
3× 3× 3, 128

3× 3× 3, 128

]
×2

[
3× 3× 3, 128

3× 3× 3, 128

]
×2

conv4 T0
4 × H0

8 × W0
8

[
3× 3× 3, 256

3× 3× 3, 256

]
×2

[
3× 3× 3, 256

3× 3× 3, 256

]
×2

conv5 T0
8 × H0

16 × W0
16

[
3× 3× 3, 512

3× 3× 3, 512

]
×2

[ RTM︷ ︸︸ ︷
3× 3× 3, 512

MHSA

]
×2

1× 1× 1 Global Avg Pooling, FC layer

is empirically set to 4, while the temporal sequence length T0 is 16. Thus,
BabyNet transforms US input sequence SUS ∈ R16×1×64×64 to the output
OSUS

∈ R1 of predicted fetal birth weights.
We perform five-fold cross-validation (CV) to compare and verify the ro-

bustness of the regression algorithm. We ensure that data from a single pa-
tient appears only in a single fold. As measurement metrics, we use Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Abso-
lute Percentage Error (MAPE) to evaluate the regression performance.

3.3.3 Comparison with clinicians and state-of-the-art algorithms

We compare BabyNet with several 2D+t spatio-temporal video analysis meth-
ods. In particular, we compare it with results obtained by clinicians in [180]
as well as results obtained by clinicians for the dataset used in this work. We
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Table 3.2: Five-fold cross-validation results and comparison of state-of-the-
art methods. The mean of Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), and Mean Absolute Percentage Error (MAPE) across all folds
are reported. The best results are bolded.

Method mMAE [g] ↓ mRMSE [g] ↓ mMAPE [%] ↓

Clinicians (from [180]) - - 7.9 ± 6.8

Clinicians (this work) 213 ± 155 264 ± 158 6.3 ± 4.8

ViViT [7] 361 ± 244 444 ± 230 10.6 ± 7.3

2D ResNet + ViViT 344 ± 241 426 ± 226 10.3 ± 7.2

3D ResNet-18 [200] 328 ± 234 421 ± 225 10.1 ± 7.1

BabyNet 254 ± 230 341 ± 215 7.5 ± 6.6

Clinicians (this work) & BabyNet 180± 156 237± 145 5.2± 4.6

also present results for Video Vision Transformer (ViViT) [7] and test the hy-
brid approach of 2D ResNet-50 as a convolutional feature extractor (without
GAP and FC layers) to the ViViT network. Finally, we utilize a vanilla 3D
ResNet-18 [200]. We train all models in the same fashion as BabyNet.

Table 3.2 presents a comparison of five-fold CV results for all tested meth-
ods. Results for machine learning methods are out-of-fold predictions. A
combination of estimations performed by clinicians with estimations provided
by BabyNet is the most accurate, with MAE of 180 ± 156 g (max p-value
< 0.001), RMSE of 237 ± 145 g (max p-value < 0.001), and MAPE of 5.2
± 4.6% (max p-value < 0.001). Max p-value is the maximum paired dual-
sided p-value computed for results of the ”Clinicians (this work) & BabyNet”
method and other methods listed in Table 3.2.

We did not detect a statistically significant difference between the per-
formance of clinicians measured in [180] and our algorithm (p-value = 0.6).
Estimations provided by clinicians in our study seem to be better than those
provided by clinicians in [180] (p-value = 0.04) and BabyNet (p-value = 0.07).
Out of all neural networks investigated in this work, the hybrid approach of
utilizing 3D convolutions and 3D MHSA within RTM as a part of 3D ResNet-
18 outperforms other methods based on plain CNNs, plain Transformer, or
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Table 3.3: Experimental results of ablation study with different configura-
tions of key components of BabyNet. The results of five-fold cross-validation
are presented. The best results are bolded.

Method mMAE [g] ↓ mRMSE [g] ↓ mMAPE [%] ↓

3D ResNet-18 (base) 328 ± 234 421 ± 225 10.1 ± 7.1

+ RTM 277 ± 228 374 ± 221 8.1 ± 7.0

+ RTM + TPE (ours) 254± 230 341± 215 7.5± 6.6

CNN+Transformer networks.
We noted that the best results were obtained by averaging estimations pro-

vided by clinicians and by BabyNet. The performance of the ensemble of
clinicians & BabyNet was better by 18% compared to clinicians alone in terms
of mMAPE, which is a clear indication of added value and potential clinical
benefits of BabyNet.

3.3.4 Ablation study

We conducted an ablation study to show the effectiveness of novel components
within BabyNet. In this experiment, we employ 3D ResNet-18 as the base
neural network for 2D + t spatio-temporal US video scan analysis. To learn
multiple relationships and enable the capture of richer interpretations of the
US video sequence, we integrate CNN and Transformer by swapping the last
convolutional layer in the residual module for MHSA. To further enhance 2D+t

spatio-temporal feature representation in space and time, we add temporal
position encoding (TPE).

Table 4.6 demonstrates that the combination of CNN with a Transformer-
based module, MHSA, and temporal position encoding improves the perfor-
mance of the weight-estimation task directly from the US video scan.

3.4 Discussion

In this work we were not able to match the performance of the clinicians in
estimating fetal weight (mMAPE 7.5% vs. 6.3%); however, clinicians who
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worked with us and provided measurements are top experts from tertiary hos-
pitals, renowned for their proficiency in performing biometric measurements.
On the other hand, we were able to match the performance of clinicians re-
ported in [180] (7.5% vs. 7.9% p-value = 0.6). The training data set was
relatively small and we expect to significantly improve the performance of
BabyNet by using more data in future work.

The method presented here can be characterized as end-to-end. Due to
2D + t spatio-temporal feature processing, it does not require standard plane
detection which substantially reduces the workload involved in performing the
estimation of FBW. In clinical practice, BabyNet can be used as an aid for
clinicians in their decision-making process regarding the type of delivery. Ac-
cording to literature [172; 180] the heavier the child, the greater the likelihood
of Cesarean delivery. Serious complications may arise when a heavy child’s
FBW is misjudged. Under these circumstances, if vaginal delivery is decided
upon severe complications for both mother and child may arise.

This work has certain limitations. A relatively small number of patients
was used in the study, which can affect the accuracy and generalization of
results. A related issue is that the patient population is limited and we do not
know if BabyNet would work on a different population (e.g. different race).
The algorithm is trained and evaluated on short clips of US videos recorded
by clinicians. To operate in a clinical setting, further effort would be needed
to create a system that extracts appropriate clips for BabyNet analysis.

3.5 Conclusions

In this paper, we presented an extension of the 3D ResNet-based network with
a Residual Transformer Module, named BabyNet, for 2D + t spatio-temporal
fetal ultrasound video scan analysis. The proposed framework is an end-to-
end method that automatically performs fetal birth weight prediction. This is
done without the need for finding standard planes in ultrasound video scans,
which are required in the classical method of estimating fetal weight.

Combining classical and BabyNet estimations provides the best results, sig-
nificantly outperforming top expert clinicians who use available commercial
tools. Our method has the potential to help clinicians select – based on US
examination – the type of delivery which is safest for the mother and the child.
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Future work includes testing BabyNet on external datasets which are prefer-
ably acquired using different devices and by operators with different levels of
experience. Moreover, we plan to use multimodal data – combine the fetal
US video and clinical data to improve the performance and robustness of the
model.
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