ADHD in treatment seeking patients with a substance use disorder

van de Glind, G.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
CHAPTER 5

THE INTERNATIONAL ADHD IN SUBSTANCE USE DISORDERS PREVALENCE (IASP) STUDY: BACKGROUND, METHODS AND STUDY POPULATION

In press

Abstract
Attention Deficit/Hyperactivity Disorder (ADHD) is an increasingly recognized comorbid condition in subjects with Substance use disorders (SUD). This paper describes the methods and study population of the International ADHD in Substance use disorders Prevalence study (IASP). Objectives of the IASP are to determine the prevalence of ADHD in adult treatment seeking patients with SUD in different countries and SUD populations, determine the reliability and validity of the Adult ADHD Self-report Scale V 1.1 (ASRS) as ADHD screening instrument in SUD populations, investigate the comorbidity profile of SUD patients with and without ADHD, compare age of onset of and severity of SUD in treatment seeking SUD patients with and without a comorbid diagnosis of ADHD.

In this cross-sectional, multi-center two stage study, subjects were screened for ADHD with the ASRS, diagnosed with the Conner’s Adult ADHD Diagnostic Interview for DSM-IV (CAADID), and evaluated for SUD, Major Depression, Bipolar Disorder, Anti Social Personality Disorder and Borderline Personality Disorder.

3,558 Subjects from 10 countries were included. 40.9% Screened positive for ADHD.

This is the largest international study on this population evaluating ADHD and comorbid disorders.

Key words
ADHD, Substance Use Disorders, Prevalence, Attention/deficit hyperactivity disorder
Introduction and research questions
Attention Deficit/Hyperactivity Disorder (ADHD) is a complex, multifactorially determined neurodevelopmental disorder, based on a genetic predisposition, which in interaction with negative environmental factors leads to neurobiological disregulations (Kiesling & Rohde, 2012) and serious behavioural problems. In children and adolescents the disorder is documented worldwide (Faraone et al., 2003) with an estimated prevalence of 5.3% (Polanczyk et al., 2007). Increasing evidence documents ADHD persistence into adulthood: Fayyad et al., (2007) reported a worldwide prevalence of adult ADHD in the general population of 3.4% with lower prevalence rates in lower-income countries (1.9%) compared with higher-income countries (4.2%). In a recent meta-analysis, Simon et al., (2009) calculated a slightly lower worldwide prevalence of adult ADHD of 2.5%. A lower prevalence of ADHD in adults compared with children is consistent with the age dependent decline of the disorder, which has been confirmed in a meta-analysis (Faraone et al., 2006).
ADHD frequently co-occurs in patients with Substance Use Disorders (SUD) (Lee et al., 20011; Charach et al., 2011; Wilens et al., 2011). In a recent meta-analysis, the prevalence of ADHD in substance abusing adults (N=2,635) was 21.0% (95% C.I. 15.9–27.2) (Van Emmerik-van Oortmerssen et al., 2012). The majority of studies in adults in this meta-analysis were from the USA (8 studies, N=1,574)(Clure et al., 1999; King et al., 1999; Levin et al., 1998; Rounsaville et al., 1991; Schubiner et al., 2000; Tang et al., 2007; Wood et al., 1983; Ziedonis et al., 1994).
The differences in prevalence rates between the studies could only partly be explained by differences in ADHD assessment instruments (with ADHD assessment with the Diagnostic Interview for Children and Adolescents (DICA) and the Schedule for Affective Disorders and Schizophrenia- lifetime version (SADS-L) resulting in higher rates of comorbid ADHD than other ADHD interviews) and differences in the primary substance of abuse (with lower rates of ADHD in patients with cocaine as their primary substance of abuse). These results raise several unresolved issues, and therefore the current study tries to answer the following research questions: 1) are there differences in the prevalence of ADHD in treatment seeking SUD populations between different countries; 2) are there differences in the prevalence of ADHD in treatment seeking SUD populations with different substances and severity of SUD; 3) are there still differences in the prevalence of ADHD in treatment seeking SUD populations when the same methods and the same outcome measures are used, and finally, 4) can the lower prevalence rate of ADHD in cocaine dependent patients be corroborated?
Another important issue is the fact that the American Psychiatric Association (APA) is currently in the process of evaluating and possibly revising the criteria for ADHD in both childhood and adulthood (DSM-5 website). The proposed revisions were still under review at the time of the submission of this paper. The first major change, and most likely to be implemented in DSM-5, is the Age of onset of the ADHD symptoms, which is likely to be changed from 'prior to the age of 7 years' to 'prior to the age of 12 years', for both ADHD in children and adults. The second proposed change, which at the time of conducting this paper was (according to the DSM-5 website) 'still under consideration', is that the diagnostic threshold will be lowered as the number of symptoms needed for a diagnosis of adult ADHD will drop from 6 symptoms to 4 symptoms (out of 9 symptoms for either inattention and/or hyperactivity/impulsivity). Note that for diagnosing adult ADHD both in DSM-IV and DSM-5 it is required that the adult must also meet criteria for onset of ADHD in childhood (www.dsm5.org). Questions have been raised about the consequences of the proposed criteria for mental disorders in general. It is hypothesized that the new criteria will inflate the prevalence of the disorder, with serious consequences for practice, policy and research (Batstra & Frances, 2012; Frances & Wideger, 2012). This results in the following research question for the current study: 5) to what extent will the new DSM-5 criteria for ADHD increase the prevalence rate of ADHD in subjects with SUD?

Furthermore, for many professionals working in addiction treatment centers, screening, diagnosing and treating ADHD in subjects with SUD is not part of their routine practice (Mc Aweeney et al., 2010; Fatseas et al., 2012). These professionals often lack the knowledge, skills and instruments required to detect ADHD in their patients. The ASRS includes questions for each of the 18 DSM-IV symptoms. The 6-item short version had a sensitivity of 69% and specificity of 99% in a population survey (Kessler, 2005). In a second study in a population of US managed care subscribers, sensitivity and specificity was less good (sensitivity 39% and specificity 65%), but these results could be drastically improved (sensitivity 88% and specificity 94%) by using an alternative scoring approach on the 6-item version (Kessler et al., 2007). The few studies available on the validity of the ASRS in SUD populations show mixed results with good sensitivity/specificity (Daigre et al., 2009; Perez et al., 2007; Adler et al., 2009) and low sensitivity/specificity (Chiasson et al., 2011). Given the conflicting results from previous small scale studies, the current study tries to answer the following research question: 6) what is the sensitivity and the specificity of the ASRS in a large sample of SUD patients from several countries, using the same diagnostic procedure for the external criterion in all countries; and 7) does the
alternative scoring method (Kessler et al., 2007) improve sensitivity and/or specificity of this instrument in a population of SUD subjects?

Finally, it should be noticed that when SUD occurs with ADHD, it is associated with a greater severity of SUD compared to other SUD patients (Wilens, 2004). This has also been shown in its earlier age at onset (Arias et al., 2008; Johann et al., 2003; Riggs et al., 1999), and more severe clinical features in several domains: suicidal ideation (Arias et al., 2008; Johann et al., 2003), antisocial behavior (Biederman et al., 1995; Johann et al., 2003), risk for depression (Ilomaki et al., 2008), chronicity of substance use (Biederman et al., 1995), need for hospitalization (Arias et al., 2008) and likelihood of a complicated course (Biederman et al., 1998). The effects of ADHD on SUD outcomes have been documented to be independent of other psychiatric comorbidities (Biederman et al., 1995). These findings are, however, based on a small number of studies mainly from the USA and therefore the current study tries to answer the following research question: 8) is the presence of a comorbid diagnosis of ADHD in treatment seeking SUD patients associated with more severe SUDs with an earlier age of onset of SUD and with more psychiatric comorbidity and are there differences in these characteristics between countries with different (addiction) treatment services?

Given the relatively low prevalence of adult ADHD in the general population (Simon et al., 2009) and the relatively high prevalence of ADHD in treatment seeking SUD patients (Van Emmerik-van Oortmerssen et al., 2012), it is expected that the above research questions can be investigated in a large, international sample of treatment seeking SUD patients.

Objectives of this paper

The frequent co-occurrence of adult ADHD and SUD is important because early detection and treatment of ADHD in patients with both ADHD and SUD may result in a better outcome of both ADHD and SUD symptoms; and because knowledge about the risk- and protective factors for the development of SUD in ADHD patients may result in the development of better strategies for the prevention of SUD in children and adolescents with ADHD. With these general objectives in mind, the International Collaboration on ADHD and Substance Abuse (ICASA) started its work in 2005 and became a formal foundation by Dutch law in September 2010 (ICASA, 2013). The ICASA Foundation is an international research group with participants from Europe, Australia, the United States (USA), Africa and South America. The first research priorities of ICASA were to determine the prevalence of ADHD in adult treatment seeking patients with SUD in different countries, to determine the reliability and
validity of an ADHD screening instrument in SUD populations, and to increase our knowledge about the relationship between ADHD and the onset and course of SUD by retrospectively comparing SUD patients with and without ADHD. In order to address these issues, the *International ADHD in Substance use disorders Prevalence (IASP) study* was developed.

This paper describes the design of the IASP-study, documents the methods that were used for data collection, informs the reader about the measures that were taken to guarantee the quality of the data, and describes recruitment, sample characteristics and the percentage of ADHD screen positive subjects. This paper therefore is the basis for subsequent papers in which the results related to the IASP objectives will be published.

Methods

Study design

It was decided to design a cross-sectional study in a population of treatment seeking SUD patients because (1) it was relatively easy for countries and addiction treatment organizations to collect cross-sectional data; (2) very few data are available on this topic yet and cross-sectional data can still add to our limited knowledge on this issue; (3) very little is known about the prevalence of ADHD in treatment seeking SUD patients outside the US; and (4) ADHD comorbidty data are very informative for treatment providers of treatment seeking SUD patients and for policy makers.

Data collection consisted of two stages: a screening stage and a diagnostic stage (see figure 1). During stage 1, the screening stage, all subjects with a substance use disorder (DSM-IV substance abuse or substance dependence) referred to an addiction treatment service were screened for the possible presence of adult ADHD. All subjects participating in stage 1 were asked to participate in stage 2 as well. However a number of patients dropped out mainly due to the following reasons: drop out of treatment, no show for the stage 2 interview and refusal for further participation. In stage 2, the full assessment or diagnostic stage, subjects were assessed with structured interviews to establish the presence of DSM-IV substance use disorders, DSM-IV and DSM-5 ADHD and other psychiatric disorders.

The screening instrument, the ASRS, was re-administered at stage 2. Comparing the results of these ASRS administrations provides an answer to the question whether the ASRS can be used as a screening instrument for ADHD at the front door of addiction treatment centers or whether the use of the ASRS should be...
postponed until subjects are in a more stable situation, i.e. not intoxicated, no withdrawal symptoms and/or sustained abstinence. A scheme of the design and instruments used in the study is presented in figure 1.
All patients referred to participating site

Selection: random sample, representing population of site. Procedures for randomization differed by site and were related to patients flow and availability of research staff.

Stage 1: Screening
Demographics
ADHD-screener: ASRS V 1.1
Substance use questionnaire

Selection: All subjects from stage 1 were asked to participate in Stage 2.

Stage 2: Full assessment - included group

2nd screening ADHD: ASRS V 1.1
SUD diagnosis: MINI-plus modules
ADHD diagnosis: CAADID/ MINI plus modules
MD/BD/APD/: MINI plus modules
BPD: SCID II module

Stage 2: Full assessment - drop out group

Control for biases
Study population, inclusion and exclusion criteria
All adult subjects (age 18-65 years) consecutively referred to the selected addiction treatment centers during the course of the study (July 2008 - November 2011; each site sampled subjects for one year) were invited to participate in the study. Norway, Sweden, the Netherlands, Belgium, France, Spain, Switzerland, Hungary, Australia and the USA participated, resulting in a total sample of 3,558 cases, from 10 countries and 47 sites. Table 1 summarizes the main characteristics of the participating sites. A wide range of different treatment settings was included: outpatient and inpatient settings dedicated to the treatment of only patients with alcohol use disorders, only patients with (certain) drug use disorders, and settings dedicated to the treatment of a mixed population of patients with alcohol and/or drug use disorders.

The only exclusion criteria used were related to practical problems interfering with participation such as the incapacity to fill out the screening questionnaire (e.g. due to limited literacy and/or cognitive impairment), the inability to participate due to substance intoxication, or the presence of acute psychiatric crisis (e.g. an acute psychotic or manic episode) and/or severe somatic problems (efforts were made to include these subjects at a later stage in their treatment), and unwillingness to sign informed consent.

Abstinence was not a prerequisite for the screening phase and subjects were to participate in the screening “as they came in”. However, the full assessment phase was preferably performed in conditions of abstinence at which time the screening for ADHD was to be repeated in order to document the influence of recent drug use and the possible consequences of withdrawal on the reliability and validity of the screening instrument (ASRS). Full and sustained abstinence as a mandatory rule for inclusion in the full assessment phase would probably lead to more reliable results in individual subjects, but at the cost of drop out of subjects who would not be able to obtain full and sustained abstinence.

Instruments
Stage 1: Screening
In the screening phase a short questionnaire about socio-demographic variables and substance use (age of onset, years of use, current use) was administered. For the screening of adult ADHD, the ASRS was used. The ASRS (Kessler et al., 2005, 2007) is an 18 item self-report questionnaire. The first 6 items are decisive for the presence of adult ADHD. If 4 or more of the 6 items are scored positive, further diagnostic assessment is indicated. The ASRS V 1.1 was estimated to have a sensitivity of 68.7% and specificity of 99.5% evaluated using population survey data (Kessler, 2005). The ASRS has demonstrated high...
internal consistency (Adler, 2006) and good test-retest reliability (Matza et al., 2011). Studies on validation of ASRS, or on any ADHD screening instrument in SUD populations are limited with conflicting results. Daigre reported a sensitivity of 87.5 % and a specificity of 68.6 % in a study on primarily drug dependent patients (Daigre et al., 2009). Good results also were reported in a Spanish study by Perez et al., (2007). A third study in similar studies found a positive predictive value of 57.6, comparable to that observed in the managed care sample described above (Adler, 2009). However, Chiasson et al., (2011) reported that in SUD patients scoring ADHD positive on the ASRS-V 1.1 the ADHD diagnosis could only be confirmed in 26% of the sample by an expert psychiatrist.
ADHD diagnosis could only be confirmed in 26% of the sample by an expert. However, Chiasson et al., (2011) reported that in SUD patients scoring ADHD positive on the ASRS - V 1.1 the care sample described above (Adler, 2009). A third study in similar studies found a SUD populations are limited with conflicting results. Daigre reported a 2011. Studies on validation of ASRS, or on any ADHD screening instrument in internal consistency (Adler, 2006) and good test-retest reliability (Matza et al.,

Table 1: Number of sites per country, sort of setting and respondents self reported most problematic substance of abuse/dependence

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of sites</th>
<th>Setting</th>
<th>Missing on Main Problem Substance (n)</th>
<th>Alcohol(%)</th>
<th>Opiods (%)</th>
<th>Stimulants(%)</th>
<th>Cannabis(%)</th>
<th>Other drugs(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>France (n=216)</td>
<td>1</td>
<td>Out pt.</td>
<td>0</td>
<td>46.3</td>
<td>12.0</td>
<td>7.9</td>
<td>22.2</td>
<td>11.6</td>
</tr>
<tr>
<td>Hungary (n=343)</td>
<td>2</td>
<td>In pt.</td>
<td>0</td>
<td>73.8</td>
<td>5.0</td>
<td>5.8</td>
<td>2.3</td>
<td>13.1</td>
</tr>
<tr>
<td>Netherlands (n=403)</td>
<td>1</td>
<td>Out pt.</td>
<td>0</td>
<td>59.3</td>
<td>2.0</td>
<td>14.1</td>
<td>19.9</td>
<td>4.7</td>
</tr>
<tr>
<td>Norway (n=487)</td>
<td>11</td>
<td>Mixed</td>
<td>273*</td>
<td>31.8</td>
<td>2.0</td>
<td>26.6</td>
<td>14.0</td>
<td>10.3</td>
</tr>
<tr>
<td>Spain (n=432)</td>
<td>10</td>
<td>Out pt.</td>
<td>4</td>
<td>22.4</td>
<td>2.0</td>
<td>24.6</td>
<td>14.0</td>
<td>5.6</td>
</tr>
<tr>
<td>Sweden (n=325)</td>
<td>3</td>
<td>Out pt.</td>
<td>6</td>
<td>50.2</td>
<td>1.3</td>
<td>10.0</td>
<td>13.6</td>
<td>5.6</td>
</tr>
<tr>
<td>Switzerland (n=389)</td>
<td>1</td>
<td>In pt.</td>
<td>4</td>
<td>96.1</td>
<td>1.3</td>
<td>0.5</td>
<td>7.2</td>
<td>8.2</td>
</tr>
<tr>
<td>USA (n=130)</td>
<td>3</td>
<td>Out pt.</td>
<td>0</td>
<td>29.2</td>
<td>1.3</td>
<td>0.5</td>
<td>0.5</td>
<td>1.6</td>
</tr>
<tr>
<td>Belgium (n=371)</td>
<td>3</td>
<td>Out pt.</td>
<td>2</td>
<td>68.0</td>
<td>1.3</td>
<td>6.2</td>
<td>6.9</td>
<td>4.0</td>
</tr>
<tr>
<td>Australia (n=462)</td>
<td>14</td>
<td>Mixed</td>
<td>0</td>
<td>39.0</td>
<td>1.3</td>
<td>11.9</td>
<td>6.5</td>
<td>5.7</td>
</tr>
<tr>
<td>Total (n=3558)</td>
<td>47</td>
<td>Mixed</td>
<td>2896</td>
<td>53.7</td>
<td>1.3</td>
<td>11.9</td>
<td>6.5</td>
<td>9.7</td>
</tr>
</tbody>
</table>

* More than half of the Norwegian sample was drawn from another local study using the same methods. However in this study they did not ask for the self reported main problem substance.
Stage 2: Repeating the ASRS
The full assessment phase started with a repeated administration of the ASRS in order to learn more about the influence of substance use and withdrawal on the reliability, stability and validity (sensitivity and specificity) of the instrument in the population of treatment seeking SUD patients.

Stage 2: ADHD diagnoses
During the full assessment phase, ADHD diagnoses were established with two instruments: the ADHD module of the 5th version of the Mini International Neuropsychiatric Interview (MINI-plus 5.0: Sheehan et al., 1998; Lecrubier et al., 1997) and the Conners’ Adult ADHD Diagnostic Interview for DSM-IV (CAADID; Epstein & Kollins, 2006). CAADID is one of the most frequently used semi-structured diagnostic interviews for the assessment of adult ADHD (Arcos-Burgos et al., 2010; Daigre et al., 2009; Epstein et al., 2001; Epstein & Kollins, 2006; Medori et al., 2008; Ribasés et al., 2009). Part 1 of CAADID consists of a questionnaire investigating a subjects history related to gestational, delivery, temperamental, developmental, environmental, medical history and family history risk factors. Furthermore, school and academic, psychiatric, occupational, social/interpersonal, health and adult psychological/psychiatric history is investigated. In this study, part 1 of CAADID was used as a self report questionnaire. Part II of CAADID is a semi structured interview, focused on determining the presence or absence of the five DSM-IV-TR criteria: 1) number of symptoms, 2) age of onset, 3) pervasiveness, 4) level of impairment and finally 5) whether or not the symptoms can be better explained by another psychiatric disorder. In a recent case control study among 691 patients referred to a specialized clinic for the treatment of ADHD, Ramos-Quiroga et al., (2012a) concluded that the CAADID is a valid and useful tool for the diagnosis of adult ADHD. More importantly, a case control study among patients with SUD also showed promising results for the validity of the CAADID. In a comparison between the CAADID and the Psychiatric Research Interview for Substance and Mental disorders (PRISM), the sensitivity was 78% and the specificity 88 (Ramos-Quiroga et al., 2012b).

Stage 2: SUD diagnoses
SUD diagnoses were obtained in the full assessment phase using the Alcohol Module and the Non-Alcohol Substance Modules of the MINI-plus 5.0 (Sheehan et al., 1998; Lecrubier et al., 1997). With this interview DSM-IV diagnoses were obtained for current (last 12 months) and lifetime abuse and dependence.
Stage 2: Diagnoses of comorbid disorders
In order to also establish the prevalence of mental disorders with ADHD-like symptoms and to determine prevalence rates of these disorders in subjects with and without ADHD the following DSM-IV disorders were assessed: Antisocial Personality Disorder (APD), Borderline Personality Disorder (BPD) and Bipolar Disorder (BD) and Major Depressive Disorder (MDD). APD, BD and MDD were evaluated using MINI-plus 5.0 modules. BPD was evaluated using the SCID II Borderline module (Williams et al., 1992; Masoubre et al., 2009). Psychometric features of MINI-plus and SCID II from prior research will be documented in subsequent publications reporting on the results of these instruments in the IASP study.

Translation of the instruments
Permission regarding the use of the CAADID was obtained from the license holding company, Multi Health System (MHS). If not yet available in the necessary languages, instruments were translated. The CAADID was used as the gold standard for diagnosing ADHD and therefore regarded as the key instrument for this study. For the CAADID we therefore applied the World Health Organization (WHO) standards for translation of research instruments (World Health Organization, 2012), including forward translation, expert panel, back-translation, pre-testing and cognitive interviewing and the construction of a final version based on the previous steps. In addition, two harmonizing meetings for the CAADID were organized following the WHO translating procedure. The participating countries were divided in two groups. The local project leaders and the first author (GVdG) were present during these meetings. The specific difficulties of diagnosing ADHD in adults were discussed, and the CAADID items were discussed in English. This procedure ensured that each question and each item of the CAADID was translated in the best possible way.

Training of interviewers
The first author (GVdG) visited all participating sites and provided a one day training course for interviewers. During the morning session, the ASRS, MINI plus and SCID modules were discussed and a training was provided for the MINI plus and the SCID modules. In the afternoon session, the CAADID was discussed, based on the CAADID Technical Manual (Epstein et al., 2001) and a training was provided for the administration of the CAADID. All interviewers were required to be knowledgeable and experienced in diagnosing patients with psychiatric disorders.
Part 3 – The International ADHD in SUD Prevalence (IASP) study

Ethics
All of the participating institutes received formal approval of their medical ethical committees for participating in the IASP, and for storage and analyses of the data via the central data base of the IASP at the University of Amsterdam. All of the participating subjects gave informed consent. The informed consent forms are stored according to the procedures for the local medical ethical committees.

Quality of the data
The system used for data collection and storage, Oracle Clinical ©, fits within the rules and regulations for Good Clinical Practice (GCP; European Medicines Agency, 2002). It features various automatic checks on data entry errors and an audit trail in which changes in the data are registered. In addition, all sites participating in the full assessment were asked to take a random sample of 40 subjects and control for data entry mistakes. The results from this exercise for the CAADID part II, the ASRS, MINI plus and SCID II (borderline module) indicate that data entry was performed very accurately. Mistakes occurred in less than 4% of the variables, which is expected and acceptable. For the CAADID part II, however, this level of accuracy is not good enough, because a diagnosis of ADHD requires all 5 DSM criteria (minimum of 6 symptoms; age of onset before 7 years; pervasiveness, impairment, not better accounted for by another disorder) to be present, resulting in many key variables that might be decisive on an ADHD diagnosis being present or absent. This means that any mistake on these key variables could potentially result in a wrong conclusion on the presence or absence of the ADHD diagnosis. We therefore decided to perform a 2nd data entry of all key variables of the CAADID part II. Apart from Norway, all sites participating in the full assessment performed this 2nd data entry and the results were compared with the original data using SPSS. Discrepancies were indicated and sent back to the institutes in order to correct the data.

Statistical analysis
The prevalence of ADHD in these treatment seeking SUD populations may differ for many reasons: (a) differences in ADHD prevalence in the general populations of participating countries (e.g. DuPaul et al., 2001; Fayyad et al., 2007); (b) differences in referral procedures of patients ADHD and patients with ADHD with SUD and comorbid psychiatric disorders: in some countries these patients might be referred to mental health institutes rather than to addiction treatment centers (e.g. Fayyad et al., 2007); (c) differences in the availability and legal status of specific substances in regions and/or countries; and (d) differences in the organizational structure of mental health and
addiction treatment within and between countries. Given these national and regional differences we do not expect to find similar prevalence rates of ADHD in the different countries and treatment centers in the current study. Therefore, this study is more likely to provide an estimate of the range of prevalence rates of ADHD in treatment seeking SUD patients in different countries and continents rather than a single overall prevalence estimate for ADHD in treatment seeking SUD patients. For the statistical analyses needed to answer the other research questions, we will always consider to perform analyses stratified by country and or site or to use multi-level analyses with country and/or site as separate levels.
Part 3 – The International ADHD in SUD Prevalence (IASP) study

Figure 2: Numbers of subjects in the IASP study

Total number of included subjects
3,575

Phase 1:
Demographics
Substance use and abuse
ADHD screening: ASRS

Phase 2:
ADHD-diagnosis: CAADID
Comorbid disorders: Mini-plus/SCID II

Valid score on the ASRS at either t1 or t2
3,558

Valid score on CAADID
1,276

Valid score on: ASRS t1 + ASRS t2 + CAADID
1,138

Valid score on: CAADID + MINI-plus + SCID-II
1,205
First results

In figure 2 the numbers of patients with valid scores on the instruments are listed.

A total of 3,558 subjects were screened and the number of participants per country varied from 130 (USA) to 487 (Norway). Three countries were not able to participate in the full assessment due to lack of funding. Together these countries contributed 963 screenings: USA (130), Belgium (371), and Australia (462). The other seven countries (France, Hungary, The Netherlands, Norway, Spain, Sweden, Switzerland) participated both in the screening (2,595) and in the full assessment phase (1,276: ranging from 129 in The Netherlands to 226 in Hungary), i.e. 1,319 (50.8% of 2,595) dropped out between phase 1 and phase 2. Table 2 shows the distribution of subjects over the participating institutes and the study.

All subjects participating in Stage 1 were also asked for Stage 2. Unfortunately, this procedure resulted in substantial drop-out. Possible selection bias was therefore investigated by comparing Stage 2 participants with Stage 2 drop outs on key demographic and clinical variables (see table 3). We tested, using t-test and chi-squared test, for significant differences on potential confounding variables like ASRS-screen results, age, gender, primary substance of abuse, and variables indicating severity of SUD and other issues such as employment, social status and housing. The data showed no significant (p<.001) differences between the cases included in the full assessment sample and the ones that dropped out. With two exceptions: 1) the mean age in Norway and Spain was significantly higher for phase 2 clients than for drop outs and 2) both the overall difference and the in-countries difference between phase 1 and phase 2 rate of ASRS positive/negative was significant. The latter differences are taken into account by the fact that in additional papers prevalence estimates will be weighted by the differential sampling fractions from the ASRS+ and ASRS – phase 1 samples. Table 3 also shows that in the full assessment sample the mean age was 40 years, 27% were females, 31% were employed, 26% was married/living together and only 4% was homeless. The primary substances of abuse in this population were alcohol (55%), stimulants (15%), opioids (11%), cannabis (11%), and others (9%). On average 40.9% of the subjects were screened positive for ADHD. This percentage ranged between 20.1% (Switzerland) and 60.0% (Norway) for different countries.
Table 2: respondent flow stratified by country

<table>
<thead>
<tr>
<th></th>
<th>France</th>
<th>Hungary</th>
<th>Netherlands</th>
<th>Norway</th>
<th>Spain</th>
<th>Sweden</th>
<th>Switzerland</th>
<th>USA</th>
<th>Belgium</th>
<th>Australia</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>screened</td>
<td>216</td>
<td>343</td>
<td>403</td>
<td>487</td>
<td>432</td>
<td>325</td>
<td>389</td>
<td>130</td>
<td>371</td>
<td>462</td>
<td>3,558</td>
</tr>
<tr>
<td>positive on ASRS t1*</td>
<td>38.9%</td>
<td>21.3%</td>
<td>38.7%</td>
<td>60.0%</td>
<td>38.4%</td>
<td>43.1%</td>
<td>20.1%</td>
<td>56.2%</td>
<td>32.9%</td>
<td>58.4%</td>
<td>40.9%</td>
</tr>
<tr>
<td>Drop out for stage 2</td>
<td>59</td>
<td>117</td>
<td>274</td>
<td>267</td>
<td>210</td>
<td>157</td>
<td>na(130)</td>
<td>na</td>
<td>na(371)</td>
<td>na(462)</td>
<td>2,282**</td>
</tr>
<tr>
<td>full assessment (n) ***</td>
<td>157</td>
<td>226</td>
<td>129</td>
<td>220</td>
<td>222</td>
<td>168</td>
<td>154</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>1,276</td>
</tr>
<tr>
<td>Full assessment (%)</td>
<td>72.7%</td>
<td>65.9%</td>
<td>32.0%</td>
<td>45.2%</td>
<td>51.4%</td>
<td>51.7%</td>
<td>39.6%</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>35.9%</td>
</tr>
</tbody>
</table>

*Cases who did not have a score on t1 (screening stage) on the ASRS, but did have a score on the ASRS at t2 (full assessment stage), the t2 score was imputed. This concerned 126 cases.

**Total number of drop outs (missed full assessment) and cases from countries that did not participate in the full assessment stage (not applicable-na) (USA, Belgium, Australia)

***Number of subjects that participated in the CAADID interview for diagnosing adult ADHD

na = not applicable: sites only participated in the screening phase of the project.
Part 3 – The International ADHD in SUD Prevalence (IASP) study

The presence of ADHD in these SUD patients leading to an under- or overestimation participated in many aspects (see table 3), it can not be excluded that dropouts limitations. The first is the lack of information about the initial number of subsequent papers. The scope of this methods paper and will be analyzed and discussed in be explained by the simultaneous presence of MDD, BD, BPD or APD is beyond (Norway, Spain). To what extent the differences in ADHD-screening results can differences in the percentage of screen positive cases between the several comparable to results in other studies that have used the ASRS in SUD (Norris et al., 2009; Daigre et al., 2009; Perez et al., 2007; Chiasson et al., 2011). The psychometric features of the ASRS and other ADHD screening instruments sample allows us to analyze the sensitivity and specificity of the ASRS. The picture of the prevalence of ADHD in the participating institutes. Information over a wide range of countries, institutes and cases. This provides a good

<table>
<thead>
<tr>
<th></th>
<th>France</th>
<th>Hungary</th>
<th>Netherlands</th>
<th>Norway</th>
<th>Spain</th>
<th>Sweden</th>
<th>Switzerland</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects (n)</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>59</td>
<td>157</td>
<td>117</td>
<td>226</td>
<td>274</td>
<td>129</td>
<td>267</td>
<td>220</td>
<td>210</td>
</tr>
<tr>
<td>Age (Mean)</td>
<td>34.0</td>
<td>36.8</td>
<td>40.6</td>
<td>43.1</td>
<td>39.3</td>
<td>40.4</td>
<td>33.9</td>
<td>38.1</td>
</tr>
<tr>
<td>Female (%)</td>
<td>30.5</td>
<td>28.0</td>
<td>30.8</td>
<td>24.3</td>
<td>26.3</td>
<td>17.3</td>
<td>34.5</td>
<td>31.4</td>
</tr>
<tr>
<td>Employed (%)</td>
<td>44.1</td>
<td>32.5</td>
<td>20.5</td>
<td>24.0</td>
<td>46.3</td>
<td>53.1</td>
<td>17.4</td>
<td>26.4</td>
</tr>
<tr>
<td>Homeless (%)</td>
<td>1.7</td>
<td>2.5</td>
<td>3.7</td>
<td>5.4</td>
<td>3.7</td>
<td>4.7</td>
<td>?</td>
<td>4.5</td>
</tr>
<tr>
<td>Married/living with partner</td>
<td>22.1</td>
<td>22.3</td>
<td>34.1</td>
<td>31.7</td>
<td>27.2</td>
<td>23.3</td>
<td>?</td>
<td>18.1</td>
</tr>
<tr>
<td>Main substance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing on main substance</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>267</td>
<td>6</td>
</tr>
<tr>
<td>Alcohol (%)</td>
<td>35.6</td>
<td>50.3</td>
<td>71.8</td>
<td>74.8</td>
<td>58.4</td>
<td>61.2</td>
<td>?</td>
<td>31.8</td>
</tr>
<tr>
<td>Opioids (%)</td>
<td>18.6</td>
<td>9.6</td>
<td>7.7</td>
<td>3.5</td>
<td>2.6</td>
<td>0.8</td>
<td>?</td>
<td>17.3</td>
</tr>
<tr>
<td>Stimulants (%)</td>
<td>11.9</td>
<td>6.4</td>
<td>6.0</td>
<td>5.8</td>
<td>16.4</td>
<td>9.3</td>
<td>?</td>
<td>26.6</td>
</tr>
<tr>
<td>Cannabis (%)</td>
<td>27.1</td>
<td>20.4</td>
<td>3.4</td>
<td>1.8</td>
<td>17.9</td>
<td>24.0</td>
<td>?</td>
<td>14.0</td>
</tr>
<tr>
<td>Other (%)</td>
<td>6.8</td>
<td>13.4</td>
<td>11.1</td>
<td>14.2</td>
<td>4.7</td>
<td>4.7</td>
<td>?</td>
<td>10.3</td>
</tr>
<tr>
<td>ASRS case (%)</td>
<td>35.6</td>
<td>40.1</td>
<td>22.2</td>
<td>20.8</td>
<td>31.8</td>
<td>53.5</td>
<td>55.1</td>
<td>65.9</td>
</tr>
</tbody>
</table>

A=Drop outs after screening
B=Full assessment stage
C=Number missing. More than half of the Norwegian sample was drawn from another local study using the same methods. However in this study they did not ask for housing, social status and self reported main problem substance. This explains the high numbers of missing cases in these categories.

*Main problem substance based on self report at the screening stage
Discussion

The main advantage of this study over previous research is the use of the same sample procedure and the use of the same instruments and analysis methods over a wide range of countries, institutes and cases. This provides a good picture of the prevalence of ADHD in the participating institutes. Information on the generalizability of the findings will be published in subsequent papers. The high numbers of both Alcohol Use Disorders (AUD) subjects and Drug Use Disorders (DUD) subjects will allow us to provide substance specific prevalence ADHD estimates.

The psychometric features of the ASRS and other ADHD screening instruments have been scarcely examined in SUD treatment seeking populations (Adler et al., 2009; Daigre et al., 2009; Perez et al., 2007; Chiasson et al., 2011). The inclusion of both ASRS positive and ASRS negative cases in the full assessment sample allows us to analyze the sensitivity and specificity of the ASRS. The overall rate of screen positive cases in this population was 40.9% and is comparable to results in other studies that have used the ASRS in SUD populations Adler et al., 2009; Daigre et al., 2009; Chiasson et al., 2011). The differences in the percentage of screen positive cases between the several countries, 20.1% (Switzerland) to 60.0% (Norway) need further analysis, but these preliminary data suggest that countries/centers with high rates of alcohol as the primary substance of abuse (Hungary, Switzerland) have lower rates of ASRS positives compared to countries with low rates of alcohol use disorders (Norway, Spain). To what extent the differences in ADHD-screening results can be explained by the simultaneous presence of MDD, BD, BPD or APD is beyond the scope of this methods paper and will be analyzed and discussed in subsequent papers.

Although the number of included subjects is impressive, this study has several limitations. The first is the lack of information about the initial number of referred patients and the drop out rates in some countries. Added to the number of subjects that refused to participate or left before they were asked to participate, it remains unclear to what extent the included subjects are a representative sample of the total group of referred patients. Although, the patients that dropped out from the study were very similar to those that participated in many aspects (see table 3), it can not be excluded that dropouts are different from participants in other important aspects related to the presence of ADHD in these SUD patients leading to an under- or overestimation of the prevalence. It is also unclear to what extent the participating institutes represent a balanced picture of addiction treatment services. Although we
speak of countries in our population sample, the level of generalizability of findings over the countries remains uncertain. The third limitation is the cross-sectional/retrospective design of the study. The diagnosis of adult ADHD requires a retrospectively drawn conclusion on presence of childhood ADHD, possibly leading to an underestimation of the prevalence (Barkley et al., 2008). Moreover, the cross-sectional nature of the study forces us to be very careful in the interpretation of our findings regarding the associations between the presence ADHD and the age of onset and the course of SUD in treatment seeking patients with SUD, because recall bias may bias these findings. Because requiring sustained abstinence as a criterion for inclusion may have resulted in the exclusion of the more severely dependent subjects and an underestimation of the prevalence of ADHD (Wilens, 2004), we dropped this inclusion criterion, resulting in the fourth limitation of this study. In order to compensate for the risk of invalid data, we decided to ask the interviewer to judge the reliability of the answers during the full assessment. If the answers were judged to be reliable, inclusion in the full assessment phase was allowed even in the presence of recent substance use.

Finally: for diagnosing ADHD it is recommended to use information from persons knowing the patient in childhood (parent, sibling, friend). It has been reported that adults with ADHD tend to underestimate the presence of their symptoms (Barkley et al., 2008). We hypothesized that in our sample many subjects, and most probably even more in those having ADHD, would not have informants willing to participate in the diagnostic procedure, mainly due to disturbed social relationships related to addiction and/or to ADHD-related behaviours. Hence, making the recommended use of informants mandatory would lead to high drop out rates with potentially unrepresentative results. The lack of informant participation in the diagnostic procedure may have led to an underestimation of the presence of ADHD in this population.

To our knowledge, this is the first time that a study of this scale has been undertaken without prior funding. It reflects the sense of urgency felt by the participating institutes related to the growing awareness of ADHD as an important factor in the onset and persistence of addiction (Elkins et al., 2007; Lee et al., 2011). The number of participating countries will balance the documented presence of American studies on this topic (Van Emmerik-van Oortmerssen et al., 2012). The size and quality of the study sample will provide a unique contribution to the body of knowledge on several aspects of the linkage between ADHD and SUD.