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Introduction 

Replication is one of the central aspects of the scientific process (Aarts, 2015). In sci-

ence, we replicate research findings in order to test their reliability. Most simply, re-

plications may answer the question: If we perform this experiment again, will we get 

the same result? 

In cognitive neuroscience as well, replication is a powerful tool aimed at filtering out 

individual and other biases (e.g., bias might occur when researchers have conflicts of 

interests), through mutual agreement between results of similar experiments per-

formed by independent scientists. In order to discover the generalized principles that 

govern the workings of the human nervous system, experiments must be repeated 

over and over again so that their outcome may be tested in different samples and un-

der different conditions (Jasny et al., 2011). If empirical science does not replicate, 

erroneous findings (such as false positives; finding a statistically significant result 

when there is none) remain uncorrected. In the fields of experimental psychology and 

cognitive neuroscience, the suggestion has been made that replication attempts are 

scarce, and erroneous findings may indeed exist. Moreover, these erroneous findings 

would remain uncorrected as long as replication is absent (Ioannidis, 2005). Recent 

unsuccessful replication efforts (Galak et al., 2012; Boekel et al., 2015) have substan-

tiated this idea, and have lead the associated fields to self-evaluate their scientific 

practices. This self-evaluation has occurred not only in terms of replication (Wagen-

makers and Forstmann, 2014; Boekel et al., 2016), but also in terms of openness of 

research materials and methods and data-sharing (Wicherts 2006; 2011), statistical 

methodology (e.g., Cohen, 1994; Wagenmakers, 2007), and conventional but ques-

tionable research practices (John et al., 2012, Simmons et al., 2011). The general 

concerns arising from these investigations center around an unexpected low reliability 

of research findings, which have lead some researchers to suggest that the field is ex-

periencing a ‘crisis of confidence’ (Pashler and Wagenmakers, 2012). 

Some aspects of conventional scientific practice might have contributed to this crisis 

of confidence. Below I discuss three of these aspects in terms of their influence on 

reliability; Questionable research practices (QRP), the file drawer problem, and low 
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sample sizes. Because this thesis mainly centers around replication, I will also discuss 

each of these harmful aspects of conventional research in terms of their relation to 

replication, firstly in terms of how replication can be hampered by these aspects, and 

secondly in terms of how replication can aid in the cessation of these aspects. 

Questionable research practices 

Simmons et al., (2011) suggested that false positives might be more prevalent in the 

literature than the generally accepted 5% false positive rate. This false positive rate 

stems from the traditional frequentist alpha=0.05, denoting a 5% chance of finding an 

effect when the null-hypothesis is true (thus, one would expect only one in twenty 

findings/papers to constitute a false-positive). Simmons et al., (2011) argued that the 

large variety of choices and options available to the researcher - researcher degrees 

of freedom - combined with the general tendency of researchers to over-explore their 

data, followed by the application of certain conventional yet harmful practices (QRPs; 

John et al., 2012), could lead to an increase in false positives. QRPs are conventional 

research practices which (1) may increase the chance of finding a significant effect, 

or which (2) may lead researchers to unfairly report their findings, overstating their 

reliability. QRPs commonly obscure the truth about the acquisition and analysis of 

data, sometimes by omission, sometimes by misinformation, or even deceit. One ex-

ample of this is failing to report all of a study’s dependent measures. This is problem-

atic for the false-positive rate because it leads to an overstating of the reliability of a 

research finding. Normally, when one single significant result is reported, the assump-

tion is made that the false-positive rate of the associated statistical test is 5%. If mul-

tiple tests were run, the overall false positive rate is no longer 5% if each of these 

tests is taken as evidence for the researcher's hypothesis. In these instances re-

searchers often correct their statistical result for multiple comparisons (Bennett et al, 

2009). However, if instead the researchers ignore one non-significant test and include 

the other significant one without applying a correction for multiple comparisons, an 

unfair view of the results is presented. Another example of a QRP is “rounding off” a p 

value (e.g., reporting a p value of 0.054 as less than 0.05). This QRP inflates the 5% 

positive rate because it presents non-significant (i.e. p > 0.5) findings as significant (p 
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< 0.05). John et al. (2012) found that over half of all researchers reported using at 

least one QRP. Since QRPs lead to the misinformed idea that the presented findings 

are statistically significant at the p<0.05 level, it stands to reason that the actual 

false positive rate in the literature could be higher than previously expected. For a 

list of common QRPs, see John et al., (2012).  

The reliability of replication efforts may be negatively affected by QRPs, depending 

on the researchers’ lack of expertise or bias. If researchers who perform a replication 

are biased towards the confirmation of a previous finding, they are at risk of employ-

ing QRPs. Indeed, it has been shown that replications by independent researchers 

were less likely to be successful than replications performed by the researchers who 

discovered the original effect (Makel et al., 2012). While this certainly implies an ef-

fect of bias on replication succes, the direction of this bias is uncertain (i.e., both the 

original study and the replication might be biased, i.e., the independent researchers 

might be biased towards a non-existence of the effect). Because of this it is important 

to perform many subsequent replications while trying to avoid the use of QRPs. In ad-

dition, adversarial collaborations (Matzke et al., 2015) may help in this regard be-

cause opposing biases may be mutually regulated (e.g., a replication in which half of 

the data are supplied by the original authors, and half of the data are supplied by new 

authors who are skeptical about the original effect, may be more reliable because re-

searchers collaborate in terms of analyses and their interpretations). 

Replication may be a powerful tool with which to prevent QRPs, especially when com-

bined with a pre-registration protocol (such as in Boekel et al., 2015; Chapter 2). The 

method of pre-registration prevents QRPs because it entails determining and publicly 

pre-registering methods and analyses plans of an experiment, prior to performing the 

experiment (Chambers, 2013). Any results from the pre-planned analyses are then 

taken as is and will not influence the acceptance or rejection of a resulting paper 

(thereby aiding in the cessation of the file-drawer problem). Instead, the study is 

judged based on its adherence to the pre-registration protocol and the sensible inter-

pretation of the research findings. This method may be used to prevent QRPs in repli-
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cations, and to strengthen the ability of replications to retroactively correct erro-

neous findings in the literature.  

The file drawer problem  

Rosenthal (1979) suggested that many non-significant findings might not be published, 

thereby metaphorically disappearing into the file drawer. This file drawer problem 

could range from near-absence to the extreme in which journals are filled with the 5% 

of false positive findings implied by the conventional significance cutoff, with the re-

maining 95% nonsignificant findings tucked away in file drawers. Under some condi-

tions, the funnel plots of meta-analyses can be used to make inferences regarding the 

magnitude of the file drawer effect in a certain field. Funnel plots are scatter plots of 

effect size against sample size. In the absence of selective publication, one would ex-

pect stronger variability in the effect sizes for lower then for higher powered studies, 

resulting in the characteristic "funnel" shape of the plot. The file drawer problem can 

be detected in funnel plots by an asymmetry of the scatter plot arising out of the ab-

sence of high-powered low-effect size experiments (Sterne et al., 2011). However, 

the estimation of the true severity of the problem remains as of yet elusive. 

Failed replications may in some situations be at risk of being placed into the file 

drawer: Bias in researchers might lead to the unfair disposal of failed replications into 

the file drawer. As before, the combination of replication with pre-registration can 

remedy this problem. In this format a pre-registration protocol is made publicly ac-

cessible, and reviewed prior to data acquisition (Chambers et al., 2013). Should no 

result ever be published (for instance due to technical errors), this increased trans-

parency will at least facilitate the realization that results are missing.  

Low sample sizes 

Low sample sizes are problematic especially in neuroimaging (Button et al. 2013), as 

they decrease statistical power. With MRI scan costs up to $500 an hour (Poldrack and 

Gorgolewski, 2014), scanning any more than 20 participants for one hour each may 

not be an option for many scientists. Button et al. (2013) argue that researchers must 
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publish to succeed, and that in order to increase their chances of publishing many pa-

pers, they divide their research money over several underpowered experiments. 

In terms of replication, an ambiguous result due to insufficient statistical power is one 

of the worst outcomes, because it precludes any kind of substantial conclusion either 

for the presence or the absence of the effect.. These situations may be avoided by 

performing a power analysis which determines the preferred number of participants 

before running the experiment (Mumford, 2012), and/or setting a Bayesian stopping 

rule (e.g., BF > 10) prior to the start of the experiment, which means that as data 

come in, the Bayesian evidence for a set of hypotheses is tracked until it reaches a 

pre-determined threshold, after which data acquisition is halted. 

Replications such as the one described in chapter 2 (Boekel et al., 2015) reveal a gen-

eral effect of attenuation of effect sizes relative to the original studies. This attenua-

tion suggests that the original, usually underpowered studies might result in inflated 

effect sizes, because only the over-estimated effect sizes are high enough to cross the 

high statistical thresholds prescribed to low-power data. As such, replications may 

contribute to reliability in research findings, by increasing the sample sizes of future 

neuroimaging studies. 

These three aspects of conventional research; QRPs, the file-drawer, and low sample 

sizes, may in combination damage the reliability of research findings. Journals could 

be filled with questionable research performed on insufficiently large sample sizes, 

whereas the file drawer contains the more methodologically sound, reliable null-find-

ings. Of course, this is an extreme view, and empirical studies will have to investigate 

to what extent these reliability-decreasing forces permeate the scientific literature. 

This thesis contains four chapters aimed at investigating issues of reliability in the 

cognitive neuroscience literature, specifically centered around the practice of repli-

cation. 

In chapter 1 we present a replication of a novel and exciting finding that training ac-

tion video games transfers to perceptual decision making, making it possible to in-
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crease a person’s performance on a random-dot motion task by training them on an 

action video game (Green and Bavelier, 2012). We could not find this effect in our 

replication data set and used Bayesian statistics to show that our data was more in 

favor of the absence of this transfer effect: Our participants showed no signs of trans-

fer effects from action video game training to perceptual decision making perfor-

mance (van Ravenzwaaij et al., 2014). 

Having questioned the reliability of research findings, we continue in chapter 2 with a 

pre-registered confirmatory replication study of recent findings in cognitive neuro-

science. Here we attempted to replicate a total of 17 effects from 5 studies which 

reported structural brain-behavior (SBB) correlations (Boekel et al., 2015). Our results 

were in favor of the null-hypothesis of the absence of an effect for 8 out of 17 ef-

fects. In total we found no reliable evidence for the presence of the hypothesized ef-

fects in any of our 17 tests. This study was the first of its kind in the sense that we 

replicated effects of multiple studies simultaneously, while preventing QRPs using a 

pre-registration protocol (Chambers, 2013).  

Chapter 3 presents a rejoinder to two commentaries we received on the replication 

study presented in chapter 2. Several points of critique that were raised by skeptics 

are discussed in this chapter. We add some nuance to the interpretation of our repli-

cation findings, but still argue that the field would benefit greatly from more confir-

matory replication attempts (Boekel et al., 2016). 

In chapter 4 we provide an example of an analysis which can be done to identify 

sources of variance which might decrease reliability. We perform a test-retest reliabil-

ity analysis of DWI measures in several tracts relevant for the field of cognitive con-

trol (Boekel et al., 2017). 

The work presented in these four chapters represent some initial steps made to in-

crease the reliability and replicability of research findings in the cognitive neuro-

sciences. Some ideas and suggestions for change have sprung from this work, which 

will be discussed further in the discussion. 
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Chapter 1 

Action Video Games Do Not Improve the Speed of Information Processing in Simple 

Perceptual Tasks 

Authors 

Don van Ravenzwaaij1, Wouter Boekel2, Birte U. Forstmann2, Roger 

Ratcliff3, and Eric-Jan Wagenmakers2 
1University of Newcastle 2University of Amsterdam 3Ohio State University 

Abstract 

Previous research suggests that playing action video games improves performance on 

sensory, perceptual, and attentional tasks. For instance, Green, Pouget, and Bavelier 

(2010) used the diffusion model to decompose data from a motion detection task and 

estimate the contribution of several underlying psychological processes. Their analysis 

indicated that playing action video games leads to faster information processing, re-

duced response caution, and no difference in motor responding. Because perceptual 

learning is generally thought to be highly context-specific, this transfer from gaming 

is surprising and warrants corroborative evidence from a large–scale training study. We 

conducted two experiments in which participants practiced either an action video 

game or a cognitive game in five separate, supervised sessions. Prior to each session 

and following the last session, participants performed a perceptual discrimination 

task. In the second experiment we included a third condition in which no video games 

were played at all. Behavioral data and diffusion model parameters showed similar 

practice effects for the action gamers, the cognitive gamers, and the non–gamers and 

suggest that, in contrast to earlier reports, playing action video games does not im-

prove the speed of information processing in simple perceptual tasks. 

Keywords: Action Games, Diffusion Model, Probabilistic Inference, Moving 

Dots Task. 

!10



Video games are immensely popular: they are played in 67% of US households and 

keep the average gamer occupied for an estimated eight hours a week.  One of the 1

most popular genres in video gaming is the so–called action video game. Typically, ac-

tion video games revolve around violent battles in war–like situations. Although this 

type of video game has been developed for entertainment purposes only, a growing 

body of research suggests that playing these games improves performance on a wide 

range of perceptual and cognitive tasks (e.g., Green & Bavelier, 2012). This suggestion 

is surprising — the effects of perceptual learning tend to be highly context–dependent 

and therefore fail to generalize broadly (Fahle, 2005; but see Liu & Weinshall, 2000; 

Jeter, Dosher, Petrov, & Lu, 2009). The presence of transfer effects from action video 

game playing may have profound societal, financial, and logistic ramifications; for in-

stance, action video game playing may moderate cognitive decline in the elderly, as-

sist the recovery of stroke patients, or be part of special needs educational programs. 

These real–life ramifications mean it is incumbent on the field to critically assess the 

existing evidence for the benefit of action video game playing. 

In a letter to Nature, Green and Bavelier (2003) discussed advantages of video game 

players (VGPs) over non–video game players (NVGPs) in a compatibility task, an enu-

meration task, a spatial attention task, and an attentional blink task. Furthermore, to 

rule out the possible confound of pre–existing differences between VGPs and NVGPs, 

Green and Bavelier (2003) conducted a training experiment in which NVGPs were re-

quired to play an action game, Medal of Honor, for one hour per day on ten consecu-

tive days. As a control condition, another group of NVGPs played Tetris, a game re-

quiring visuo–spatial skills instead. The authors concluded that compared to the con-

trol group, the NVGPs trained on the action game improved more on the enumeration 

task, the spatial attention task, and the attentional blink task.  

A number of subsequent studies have examined the effect of training on action video 

games. For example, in a study by Li, Polat, Makous, and Bavelier (2009), playing ac-

tion video games led to enhanced visual contrast sensitivity whereas playing a non–ac-

tion control video game (henceforth referred to as cognitive game) did not. In addi-

For these and other statistics on gaming see for instance http://www.esrb.org/about/video-1

game-industry-statistics.jsp.
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tion, Green and Bavelier (2006) showed how training on action video games, com-

pared to training on cognitive games, improves performance on multiple object track-

ing tasks. 

A further study by Feng, Spence, and Pratt (2007) reported that pre–existing gender 

differences in spatial attention disappear after as little as ten hours of action video 

game training. Specifically, women benefitted more from training in action video 

games than did men. Participants who were trained on a cognitive game showed no 

such improvements. 

Moreover, in a study by Schlickum, Hedman, Enochsson, Kjellin, and Fell¨ander-Tsai 

(2009), it was reported that training on action video games improved performance of 

medical students on a virtual reality surgery task. Note though that the authors also 

found some benefits for training on a cognitive game. 

Finally, video games also appear to benefit the elderly. For instance, a study by Drew 

and Waters (1986) showed that playing arcade video games improved manual dexteri-

ty, eye–hand coordination, RTs, and other perceptual–motor skills among residents of 

an apartment house for elderly citizens. Clark, Lanphear, and Riddick (1987) found 

that playing video games improved performance of elderly adults in a two–choice 

stimulus–response compatibility paradigm. 

In sum, video gaming seems to improve performance on a range of different tasks. In 

an attempt to pinpoint the locus of the improvement, Green et al. (2010) conducted a 

study in which they compared performance of VGPs and NVGPs with the help of two 

mathematical decision making models: the diffusion model (Ratcliff, 1978; Ratcliff & 

McKoon, 2008) and a neural decision maker model (Beck et al., 2008). The authors 

found that VGPs outperformed NVGPs on a visual motion discrimination task and an 

auditory discrimination task. Furthermore, the authors concluded that the advantage 

of VGPs over NVGPs is caused by a higher rate of information processing, whereas 

VGPs had a lower response caution than NVGPs, and motor processing was unaffected. 

At first glance, the evidence in favor of action gaming benefits seems compelling. 

However, Boot, Blakely, and Simons (2011) warn against confounds and pitfalls that 

most of the above studies fall prey to. Such pitfalls include overt recruiting (creating 

differing demand characteristics), unspecified recruiting methods, no tests of per-
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ceived similarity between tasks and games, and possible differential placebo effects. 

All studies without a training regimen furthermore suffer from the confound of possi-

ble pre–existing differences between VGPs and NVGPs in aptitude on perceptual learn-

ing tasks. The studies that did use a training paradigm often feature only two mea-

surement occasions (i.e., prior to training and after all training), a coarse design in 

which any impact of video game playing on performance cannot be traced over time 

as it develops. Finally, many training studies do not supervise game–play, making it 

near impossible to confirm the extent to which participants have fulfilled their train-

ing requirements. 

Aside from these issues, a number of studies fail to find any reliable benefit of playing 

video games (Boot, Kramer, Simons, Fabiani, & Gratton, 2008; Irons, Remington, & 

McLean, 2011; Murphy & Spencer, 2009). Perhaps most importantly, a recently pub-

lished meta–analysis by Powers, Brooks, Aldrich, Palladino, and Alfieri (in press) pro-

vides a summary of effect sizes by game type. They report Cohen’s ds for the benefit 

of a range of performance measures for the following game types: action/violent = 

0.22 [0.13 – 0.30], mimetic = 0.95 [0.66 – 1.23], non–action = 0.52 [0.31 – 0.73], and 

puzzle = 0.30 [0.16 – 0.45]. Thus, according to the meta–analysis, effect sizes for ac-

tion video games are smaller than for any other type of video game. It appears, there-

fore, that the final verdict on the benefit of action video game playing is still pend-

ing. 

If action video games are to be used as a training method to improve perceptual and 

cognitive abilities, we need to be certain that they result in a tangible benefit; after 

all, we do not want to force grandmothers, stroke patients, and children with autism 

to spend their time shooting up aliens for nothing. Thus, the purpose of this study is 

to investigate the two claims made by Green et al. (2010): Does action video game 

playing improve performance on perceptual tasks? And if so, does this benefit reside 

in a higher rate of information processing? 

In two experiments, we addressed these fundamental issues by administering a train-

ing design to two or three groups of randomly assigned participants. Two of the groups 

played video games under supervision; one group trained on an action video game and 

one group trained on a cognitive game. In the second experiment, an additional third 

!13



group served as a control. During training, we repeatedly measured performance on a 

perceptual discrimination task. We analyze the behavioral data of this task but also 

examine the data through the lens of the diffusion model (Ratcliff, 1978). In the next 

section, we first introduce the diffusion model. Then, we will discuss Experiments 1 

and 2 and conclude by discussing the general ramifications of our results. 

The Diffusion Model 

In the diffusion model for speeded two–choice tasks (Ratcliff, 1978; Wagenmakers, 

2009; van Ravenzwaaij & Oberauer, 2009), stimulus processing is conceptualized as 

the accumulation of noisy information over time. A response is initiated when the accu-

mulated evidence reaches a predefined threshold (Figure 1).!
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Figure 1. The diffusion model and its parameters as applied to the moving dots task. Ev-

idence accumulation begins at z, proceeds over time guided by drift rate v, and halts 

whenever the upper or the lower boundary is reached. Boundary separation a quantifies 

response caution. Observed RT is an additive combination of the time during which evi-

dence is accumulated and non–decision time Ter.

The diffusion model assumes that the decision process starts at z, after which informa-

tion is accumulated with a signal–to–noise ratio that is governed by drift rate !, normally 

distributed over trials with mean v and standard deviation ".  Values of ! near zero pro2 -

duce long RTs and high error rates. Boundary separation a determines the speed–accu-

racy tradeoff; lowering a leads to faster RTs at the cost of a higher error rate. Together, 

these parameters generate a distribution of decision times DT. The observed RT, how-

Mathematically, the change in evidence X is described by a stochastic differential equation 2

dX(t) =! · dt + s · dW(t), where s · dW(t) represents the Wiener noise process with mean 0 and 
variance s2 · dt. Parameter s is a scaling parameter and is usually set to 0.1.
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ever, also consists of stimulus–nonspecific components such as response preparation 

and motor execution, which together make up non–decision time Ter. The model as-

sumes that Ter simply shifts the distribution of DT, such that RT = DT + Ter (Luce, 1986). 

The model specification is completed by including parameters that specify across–trial 

range in starting point, sz, and non–decision time, st (Ratcliff & Tuerlinckx, 2002). 

Hence, the four key components of the diffusion model are (1) the speed of information 

processing, quantified by mean drift rate v; (2) response caution, quantified by boundary 

separation a; (3) a priori bias, quantified by starting point z; and (4) mean non–decision 

time, quantified by Ter.

The diffusion model has been applied to a wide range of experimental paradigms, in-

cluding perceptual discrimination, letter identification, lexical decision, recognition mem-

ory, and signal detection (e.g., Ratcliff, 1978; Ratcliff, Gomez, & McKoon, 2004; Ratcliff, 

Thapar, & McKoon, 2006; Klauer, Voss, Schmitz, & Teige-Mocigemba, 2007; Wagen-

makers, Ratcliff, Gomez, & McKoon, 2008; van Ravenzwaaij, van der Maas, & Wagen-

makers, 2011; Ratcliff, Thapar, & McKoon, 2010). Recently, the diffusion model has also 

been applied in clinical settings featuring sleep deprivation (Ratcliff & van Dongen, 

2009), anxiety (White, Ratcliff, Vasey, & McKoon, 2010), and hypoglycemia (Geddes et 

al., 2010). The model has also been extensively applied in the neurosciences (Ratcliff, 

Hasegawa, Hasegawa, Smith, & Segraves, 2007; Philiastides, Ratcliff, & Sajda, 2006; 

Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012). The advantages of a diffu-

sion model analysis are twofold. First, the model takes into account entire RT distribu-

tions, both for correct and incorrect responses. This contrasts with a traditional analysis 

that considers only the mean RT for correct responses, and perhaps error rate, but ig-

nores entirely the shape of the RT distributions and the speed of error responses. Sec-

ond, the model allows researchers to decompose observed RTs and error rates into la-

tent psychological processes such as processing speed and response caution. In the 

traditional analysis no attempt is made to explain the observed data by means of a psy-

chologically plausible process model.

In their study on the effects of action video game playing on RT tasks, Green et al. 

(2010) report an increase in drift rate and a decrease in boundary separation for partici-

pants who practiced action games relative to participants who practiced cognitive 
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games. Below we report two experiments that feature supervised video game play, re-

peated measurements of perceptual task performance, and a diffusion model decompo-

sition of the data.

Experiment 1

As a first test of the results of Green et al. (2010), we set out to compare NVGPs in an 

action game condition versus NVGPs in a cognitive game condition. Both groups were 

trained on video games for ten hours, divided equally over five separate sessions. Prior 

to every two hours of gaming and in a sixth and final behavioral session, participants 

performed a perceptual discrimination task. See Figure 2 for a graphical depiction of the 

events in all six sessions.

Participants

Twenty students from the University of Amsterdam (18 women, 2 men), aged 18 to

25 (mean = 20.6, SD = 2.4), participated on six separate days in exchange for course 

credit or a monetary reward of 112 euros. Participants were screened for gaming expe-

rience. In order to qualify for participation, students could not play video games for more 

than two hours per week on average at the present and for no more than five hours per 

week on average during any time in their life. Participants were randomly assigned to 

either the “action” or the “cognitive” condition, under the restriction that each condition 

contain ten participants.

Materials

Video Games. In the action condition, participants played Unreal Tournament 2004. This 

game is a so–called first–person shooter. The aim of the protagonist is to navigate a 

three–dimensional world using keyboard and mouse, shooting scores of enemies and 

avoiding to be shot himself. This game requires response speed, anticipation, and plan-

ning. In the cognitive condition, participants played The Sims 2. This game is a strategy 
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game. The aim of the protagonist is to live a virtual life and manage its basic “require-

ments” such as fulfilling social obligations, obtaining food, and keeping a job. This game 

does not rely on response speed, or at least not to the extent that Unreal Tournament 

2004 does.

Moving Dots Task. Each of the six sessions featured a moving dots task (Ball & Sekuler, 

1982; Newsome & Par´e, 1988; Britten, Shadlen, Newsome, & Movshon, 1992) with two 

blocks of 200 trials each. On every trial, the stimulus consisted of 120 dots, 40 of which 

moved coherently and 80 of which moved randomly. After each 50–ms frame, the 40 

coherently moving dots moved 1 pixel in the target direction. The other 80 dots were re-

located randomly. On the subsequent frame, each dot might switch roles, with the con-

straint that there were always 40 dots moving coherently between a given set of frames. 

The moving dots stimulus gives the impression that the cloud of dots is systematically 

moving or turning in one direction, even though the cloud remains centered on the 

screen. Each dot consisted of 3 by 3 pixels, and the entire cloud of dots had a diameter 

of 250 pixels. Dots were randomly distributed over this pixel range. Participants indicat-

ed their response by pressing one of two buttons on an external device with their left or 

right index finger.

Immediately prior to each stimulus, a fixation cross was displayed for a random interval 

of 500, 800, 1000 or 1200 ms. Participants had 1500 ms to view the stimulus and give a 

response. The stimulus disappeared as soon as a response was made. If, for a given 

trial, the participant’s response was slower than 1000 ms, participants saw the message 

“te langzaam” (too slow) at the end of the trial. In contrast to Experiment 2, coherence 

level was not calibrated on an individual basis.

Procedure

Upon entering, if it was the participant’s first session, he or she received a general in-

struction about the procedure and signed an informed consent form. The participant 
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then completed the moving dots task and a lexical decision task.  The moving dots task 3

and the lexical decision task each took approximately 20 minutes to complete. Then, in 

all but the sixth and final session, the participant played the video game (action or cog-

nitive, depending on the condition) for an hour. An experimenter was in the room while 

the participants played the action video games, had the computer screen in sight at all 

times, and was available for assistance in the unlikely event a participant got stuck (this 

rarely happened). Following the first hour of gaming, the participant had a break of 10 to 

15 minutes, after which he or she played the video game for a second hour, completing 

the session. The first, second, third, fourth, and fifth session all took approximately three 

hours each. For the sixth session, the participant first completed the moving dots task 

and the lexical decision task, and then filled out a payment form. The sixth session took 

approximately one hour. In total, all sessions took approximately 16 hours per partici-

pant, 10 hours of which were spent gaming.

 For consistency with Experiment 2, only the results for the moving dots task are reported. The 3

results for the lexical decision task may be found in the online appendix, available at http://
www.donvanravenzwaaij.com/Papers.html. Compared to the cognitive game, playing the action 
video game did not lead to improved performance on the lexical decision task.
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Figure 2. A flowchart of the design for Experiment 1. Dots = Moving Dots Task, LD = Lexical 

Decision Task. Supervised sessions took place on different days, spanning at most seven days. 

Results 

The next three subsections present the behavioral results (mean RT and accuracy), the diffu-

sion modeling decomposition, and the diffusion model fit.  For the remainder of the statisti4 -

cal analyses, we report not only conventional p–values but also Bayes factors (e.g., Jeffreys, 

1961; Kass & Raftery, 1995; Hoijtink, Klugkist, & Boelen, 2008). Bayes factors represent “the 

primary tool used in Bayesian inference for hypothesis testing and model selection” (Berger, 

2006, p. 378); in contrast to p–values, Bayes factors allow researchers to quantify evidence in 

favor of the null hypothesis vis–a–vis the alternative hypothesis. For instance, when the Bayes 

factor BF01 = 10 the observed data are 10 times more likely to have occurred under H0 than 

under H1. When BF01 = 1/5 = 0.20 the observed data are 5 times more likely to have occurred 

under H1 than under H0. In the following, Bayes factors for analysis of variance are based on 

the BIC approximation (e.g., Wagenmakers, 2007; Masson, 2011), and Bayes factors for t–tests 

are based on the default Bayesian t–test proposed by Rouder, Speckman, Sun, Morey, and Iver-

son (2009). 

Behavioral Results 

 Data from both experiments is available at http://www.donvanravenzwaaij.com/Papers.html.4
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One participant withdrew from the experiment after the first session and was replaced. For 

each participant, we excluded all RTs below 275 ms, as these were likely to be guesses. This 

led to the exclusion of 0.1% of all RTs and did not affect the results. 

Figure 3 shows the within–subject effects for mean RT and accuracy. Across conditions, partic-

ipants’ mean RTs shortened in subsequent sessions, as confirmed by the presence of a nega-

tive linear trend over sessions on mean RT (F(1, 96) = 53.0, p < .001, BF01 = 2.8 ! 10"9 ). Thus, 

practice on the moving dots task resulted in faster responding. Importantly, this session effect 

for mean RT did not interact with gaming condition (F(1, 96) = 0.26, p > .05, BF01 = 8.75). 

From the first to the last session, the overall speedup in mean RT was 51 milliseconds for the 

action condition and 59 milliseconds for the cognitive condition. 

In addition to speeding up, participants also made more mistakes in subsequent sessions 

across conditions (linear trend: F(1, 96) = 6.6, p < .05, BF01 = 0.37). There was no evidence for 

an interaction between session and gaming condition for accuracy (F(1, 96) = 1.8, p > .05, 

BF01 = 3.86). 

In sum, practice on the moving dots task decreased mean RT for both the action and the cog-

nitive condition. Playing the action video game did not result in better performance com-

pared to playing the cognitive video game. Response accuracy decreased slightly over ses-

sions, hinting at the possibility that participants became less cautious as they improved with 

practice (see also Dutilh, Wagenmakers, Vandekerckhove, & Tuerlinckx, 2009). In order to 

quantify the psychological factors that drive the observed effects we now turn to a diffusion 

model decomposition. 

Diffusion Model Decomposition 

The diffusion model was fit to the data using the DMAT software package (Vandekerckhove & 

Tuerlinckx, 2007), which minimizes a negative multinomial log– likelihood function. Each par-

ticipant was fit separately. We fixed starting point z to be half of boundary separation a, as 

there was no reason to expect a bias for either the left or right direction in the moving dots 

stimuli. We estimated a separate mean drift rate v, boundary separation a, and non–decision 

time Ter for each session. Furthermore, we constrained the standard deviation of drift rate !, 

range of starting point sz, and range of non–decision time st to be equal across sessions. 
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Figure 3. The within–subject effects of the action condition (top panels) and the cognitive 

condition (bottom panels) on mean RT (left panels) and response accuracy (right panels) for 

the moving dots task from Experiment 1. Error bars represent 95% confidence intervals. 

The diffusion model captured the error rates okay for the cognitive condition and somewhat 

poorly for the action condition. The RTs were captured well on average.  Figure 4 shows the 5

within–subject effects for drift rate v, boundary separation a, and non–decision time Ter. 

Across conditions, participants processed information faster in subsequent sessions, but the 

effect leveled off for later sessions; this visual impression is confirmed by the presence of a 

positive linear trend over sessions for drift rate v (F(1, 96) = 24.7, p < .001, BF01 = 1.1 ! 

10"4 ). From the first to the last session, the overall training effect on drift rate v was 0.13 

for the action condition and 0.23 for the cognitive condition. Importantly, there was no inter-

action between session and gaming condition for drift rate (F(1, 96) = 0.77, p > .05, BF01 = 

6.71).  

 For details, see Figure 3 of the online appendix5
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For boundary separation a, there was no evidence for a linear trend over sessions across con-

ditions (F(1, 96) = 3.5, p > .05, BF01 = 1.71) and there was no evidence for an interaction be-

tween session and gaming condition (F(1, 96) = 0.03, p > .05, BF01 = 9.82). For non–decision 

time Ter there was also no evidence for the presence of a linear trend over sessions across 

conditions (F(1, 96) = 0.64, p > .05, BF01 = 7.16) and no evidence for an interaction between 

session and gaming condition (F(1, 96) = 0.09, p > .05, BF01 = 9.59). !
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Figure 4. The within–subject effects of the action condition (top panels) and the cognitive 

condition (bottom panels) on drift rate v (left panels), boundary separation a (middle panels), 

and non– decision time Ter (right panels) for the moving dots task from Experiment 1. Error 

bars represent 95% confidence intervals. 

In sum, practice on the moving dots task increased the rate of information processing. Re-

sponse caution and non–decision time were unaffected. The practice–induced increase in the 

rate of information processing was unaffected by the type of game played. Hence, contrary to 
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the results by Green et al. (2010), playing action video games did not yield an increased ben-

efit on information processing.  6

Interim Conclusion 

Experiment 1 showed no benefit of action video game playing, neither in the behavioral data 

nor in the diffusion model parameters. Hence, the results from Experiment 1 are at odds with 

the findings from Green et al. (2010). However, one may argue that we failed to find the ef-

fect because ten hours of game–play training are insufficient to elicit a reliable effect. Of 

course, earlier training studies also used ten hours of game–play (e.g., Green & Bavelier, 

2003; Feng et al., 2007, see Powers et al., in press for a review). Moreover, Experiment 1 

showed not even a hint of an effect, making its hypothetical appearance after additional 

training hours somewhat implausible. Nevertheless, we decided to conduct a second experi-

ment in which we doubled the number of hours spent gaming, for both the action and the 

cognitive game condition. To verify that participants actually improved in the action video 

game, we monitored their skill level. As an additional safeguard, we also included a no–gam-

ing condition which served as a baseline for both the action and the cognitive game condition. 

We also calibrated the moving dots task to each individual to produce response accuracies 

that were not at ceiling. In addition, we tested 45 participants instead of 20 and we increased 

the number of moving dots trials in each session from 400 in Experiment 1 to 1000 in Experi-

ment 2. Finally, in an attempt to reduce the impact of potential confounds due to differential 

expectations (e.g., Boot et al., 2011), we told participants a believable cover story as to the 

goal of the experiment. 

Experiment 2 

As a second test of the results of Green et al. (2010), we set out to compare NVGPs in an ac-

tion game condition to NVGPs in a cognitive game condition and to NVGPs in a no– gaming 

condition. The action and cognitive groups were trained on video games for twenty hours, di-

vided equally over five separate sessions. Prior to every four hours of gaming and in a sixth 

 The conclusions from the diffusion model parameters can only be relied upon, however, when 6

the model provides a satisfactory fit to the data. In order to reassure the reader that the diffusion 
model gives a good description of the data, we present model predictives in the online ap-
pendix.
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and final behavioral session, participants performed a perceptual discrimination task. In the 

first session, we calibrated the coherence level of the moving dots task to obtain comparable 

and off-ceiling response accuracies for each participant. On two separate days, one prior to 

the first session and one after the final session, participants underwent a diffusion tensor 

imaging scan. Both of these scans were compared to examine improvements with practice on 

the moving dots task. The results of these scans are unrelated to the video gaming and will be 

reported elsewhere. See Figure 5 for a graphical depiction of the events in all six sessions. 

Participants 

Forty–five students from the University of Amsterdam (19 women, 24 men), aged 17 to 24 

(mean = 20, SD = 1.8), participated on six separate days in exchange for course credit and a 

monetary reward of 63 euros. Participants were screened for gaming experience. In order to 

qualify for participation, students could not play video games for more than one hour per 

week on average at the present and for no more than ten hours per week on average during 

any time in their life. Participants were randomly assigned to either the “action”, the “cogni-

tive”, or the “control” condition, under the restriction that each condition contained fifteen 

participants. As pointed out by Boot et al. (2011), participants in the action condition may 

expect to improve on the experimental tasks, whereas participants in the cognitive condition 

may not. This confound has the potential to create spurious benefits from action video–gam-

ing, and in order to attenuate its influence we (falsely) informed participants that they par-

ticipated in an experiment that examined the effect of a perceptual task on their perfor-

mance in video game playing. 
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Figure 5. A flowchart of the design for Experiment 2. Calibration = Practice and calibration 

block for the moving dots task, Dots = Moving dots task. Supervised sessions took place on dif-

ferent days, spanning exactly seven days. In the control condition, participants terminated 

their session upon completion of the moving dots task. 

Materials 

Video Games. See the section “Video Games” in Experiment 1 for details. 

Moving Dots Task. For Experiment 2 we modified the moving dots task used in Experiment 1. 

Specifically, we calibrated task difficulty (i.e., coherence level) and increased the number of 

trials. For calibration purposes, each participant performed a practice block of 400 trials with 

stimuli of varying difficulty (i.e., 0%, 10%, 20%, 40%, and 80% coherence, for 80 trials each in 

a randomly interleaved order). The mean RTs and accuracy data from this practice block were 

then fit with the Palmer diffusion model where drift rate is constrained to be proportional to 

the coherence level (Palmer, Huk, & Shadlen, 2005). The psychometric curve predicted by the 

Palmer diffusion model was then used to determine for each participant the coherence level 

that corresponds to 75% accuracy. This coherence level was then fixed throughout all of the 

experimental blocks. 

Participants had 2000 ms to view the stimulus and give a response. The stimulus disappeared 

as soon as a response was made. If, for a given trial, the participant’s response was slower 
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than 2000 ms, participants saw the message “No Response” at the end of the trial. If the par-

ticipant’s response was faster than 200 ms, participants saw the message “Too Fast”. The fix-

ation cross was present on screen at all times. The moving dots task took approximately 40 

minutes to complete. 

Procedure 

The procedure in Experiment 2 differed from that of Experiment 1 in a number of ways. First-

ly, the initial session commenced with a 400–trial moving dots practice block that was used 

for the individual calibration of task difficulty. After completing this practice block partici-

pants had a five minute break, during which the experimenter set up the main task. Secondly, 

the moving dots task used in sessions one through six consisted of 1000 trials during which 

participants had three self–paced breaks after 250, 500, and 750 trials. Thirdly, in sessions 

one through five, participants played the video game for four hours instead of two (except in 

the control condition in which each session ended as soon as the participant completed the 

moving dots task). Participants had three self–paced breaks after each hour of gaming. In the 

action condition, the difficulty level was adapted to the ability of the participant.  Finally, 7

Experiment 2 did not feature a lexical decision task. 

Results 

There were no significant gender main effects or interactions with condition for mean RT or 

accuracy. In what follows, we have collapsed across gender in our presentation of the results. 

Figure 6 shows the improvement in difficulty level over consecutive games, averaged over 

participants. Note that levels range from 1, “Novice”, to 8, “Godlike”. The figure shows sub-

stantial training effects for the first 10 hours (up to approximately game number 50, depend-

ing on the individual), and a substantially reduced training effect on the action video game in 

the second 10 hours of gaming. This law of diminished returns is characteristic of virtually all 

human learning (e.g., Newell & Rosenbloom, 1981). 

 Participants continuously played in “Deathmatch” mode. If the participant had more kills than 7

any of the AI opponents after 10 minutes of play, the experimenter increased the difficulty level 
by one, and if the participant did not, the experimenter decreased the difficulty level by one.
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Figure 6. Average skill level of participants over consecutive games (10 minutes per game). 

The dark line represents the best fitting linear model through the log–transformed skill level 

data, with the grey area representing the standard error of the mean data points. Most par-

ticipants were unable to play more than 97 games, given the time required for starting up 

new games, bathroom breaks, etc. 

The next three subsections present the behavioral results (mean RT and accuracy), the diffu-

sion modeling decomposition, and the diffusion model fit. 

Behavioral Results 

One participant from the action condition and one participant from the cognitive condition 

withdrew their participation. For each participant, we excluded all RTs below 275 ms, as 
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these were likely to be guesses. This led to the exclusion of 0.7% of all RTs and did not affect 

the results. 

Figure 7 shows the within–subject effects for mean RT and accuracy. Across conditions, partic-

ipants’ mean RTs shortened in subsequent sessions, as confirmed by the presence of a nega-

tive linear trend over sessions on mean RT (F(1, 209) = 60.5, p < .001, BF01 = 2.0 ! 10"11). 

Thus, practice on the moving dots task resulted in faster responding. Interestingly, this session 

effect for mean RT interacted with gaming condition (F(2, 209) = 6.8, p < .01, BF01 = 0.24), 

but not in the expected direction: as the number of sessions increases, participants speeded 

up both in the cognitive game condition (t(13) = 5.0, p < .001, 95% c.i. = [105.4 – 266.8], BF01 

= 0.01) and in the no–game condition (t(14)= 3.9, p < .01, 95% c.i. = [52.1 – 176.5], BF01 = 

0.04) whereas they did not speed up in the action game condition (t(13) = 1.4, p > .05, 95% 

c.i. = [-17.9 – 79.2], BF01 = 2.11). From the first to the last session, the overall session effect 

on mean RT was 31 milliseconds for the action condition, 186 milliseconds for the cognitive 

condition, and 114 milliseconds for the no–game condition. 

In contrast to Experiment 1, participants in Experiment 2 became more accurate in subse-

quent sessions across conditions; there was a significant positive linear trend over sessions for 

accuracy (F(1, 209) = 179.3, p < .001, BF01 = 1.8 ! 10"28). This discrepancy is most likely due 

to the individual calibration of task difficulty. There was no evidence for an interaction be-

tween session and gaming condition for accuracy (F(2, 209) = 0.97, p > .05, BF01 = 130.3) – in 

fact, the Bayes factor suggests that there is strong evidence in favor of the absence of such 

an interaction. 

In sum, practice on the moving dots task led to faster performance for the no–game condition 

and the cognitive game condition, but not for the action game condition. This result is at odds 

with that reported by Green et al. (2010). In order to quantify the psychological factors that 

drive the observed effects we now turn to a diffusion model decomposition. 
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Figure 7. The within–subject effects of the action condition (left panels), the cognitive condi-

tion (middle panels), and the no–game conditions (right panels) on mean RT (top panels) and 

response accuracy (bottom panels) for the moving dots task from Experiment 2. Error bars 

represent 95% confidence intervals. 

Diffusion Model Decomposition 

The diffusion model analyses followed the outline provided under Experiment 1 above. The 

diffusion model captured the data well.  Figure 8 shows the within–subject effects for drift 8

rate v, boundary separation a, and non–decision time Ter. Across conditions, participants pro-

cessed information faster in subsequent sessions; this visual impression is confirmed by the 

presence of a positive linear trend over sessions for drift rate v (F(1, 209) = 201.1, p < .001, 

 For the detailed model predictives, see Figure 4 of the online appendix.8
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BF01 = 5.0 ! 10"31).  For all conditions the increase in drift rate was about 0.1. Importantly, 9

there was no interaction between session and gaming condition for drift rate (F(2, 209) = 2.2, 

p > .05, BF01 = 23.5). For boundary separation a, there was no evidence for a linear trend over 

sessions across conditions (F(1, 209) = 2.3, p > .05, BF01 = 4.50). There was a significant inter-

action between session and game condition (F(2, 209) = 9.3, p < .001, BF01 = 0.02); boundary 

separation a was increasing over sessions in the action condition (t(13) = 2.4, p < .05, 95% c.i. 

= [0.002 – 0.028], BF01 = 0.51), whereas boundary separation did not change in the cognitive 

condition (t(13) = 2.0, p > .05, 95% c.i. = [-0.001 – 0.030], BF01 = 0.95) nor in the no–game 

condition (t(14) = -1.8, p > .05, 95% c.i. = [-0.039 – 0.003], BF01 = 1.21). In other words, par-

ticipants became more cautious in subsequent sessions for the action condition. Note that all 

Bayes factors for these specific comparisons suggest the evidence is ambiguous. 

For non–decision time Ter there was no linear trend over sessions across conditions (F(1, 209) 

= 0.28, p > .05, BF01 = 12.76) and no evidence for an interaction between session and gaming 

condition (F(2, 209) = 1.8, p > .05, BF01 = 33.95). 

In sum, practicing the moving dots task led to benefits in terms of mean RT for the no–game 

and cognitive game conditions, bot not for the action game conditions. In addition, practicing 

the moving dots task led to an increase in response accuracy for all three conditions. When 

viewed through the lens of the diffusion model, it became clear that these practice effects 

were caused by an increase in the speed of information processing. 

The benefits of practice were no greater for participants playing action video games than for 

participants playing cognitive games or for participants who did not play video games at all, a 

statement that holds true both for the behavioral measures and for the diffusion model drift 

rate parameters.!

 Note that the absolute size of the drift rates is lower than for Experiment 1, a phenomenon that 9

reflects that the moving dots paradigm for Experiment 2 was more difficult in order to prevent 
ceiling effects.
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Figure 8. The within–subject effects of the action condition (left panels), the cognitive condi-

tion (middle panels), and the no–game conditions (right panels) on drift rate v (top panels), 

boundary separation a (middle panels), and non–decision time Ter (bottom panels) for the 

moving dots task from Experiment 2. Error bars represent 95% confidence intervals. 

Conclusion 

Two training experiments showed that performance on a perceptual discrimination task im-

proves with practice. This is hardly surprising. More noteworthy is that we failed to find any 

performance benefit for participants who played an action video game compared to partici-

pants who played a cognitive game or no game at all. Neither the behavioral data nor a diffu-

sion model analysis revealed even a trace of a performance increment due to playing action 

video games. The Bayesian analyses supported the null hypothesis of equal performance for 

all gaming conditions. 

So why do we fail to find a gaming–specific benefit on the moving dots task? Was the amount 

of hours playing video games insufficient? Recall that our participants played for 10 hours in 
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Experiment 1 and for 20 hours in Experiment 2. The training study of Green et al. (2010), 

however, employed 50 hours of video game training; perhaps the difference is due to these 

last 30 hours? 

There are multiple reasons why this alternative explanation is unlikely. First and foremost, a 

recent meta–analysis by Powers et al. (in press) concluded: “In true experiments, effect sizes 

were comparable across studies utilizing varying amounts of training (under 10 h vs. over 10 

h), which suggests that learners quickly adapt cognitive processes to the design features of 

specific games, and may not need extensive practice to accrue training benefits.” Second, as 

underscored by Powers et al. (in press), the number of training hours in our two experiments 

is average and high, respectively. Third, the critique is valid only when the effect is of a 

rather special nature, namely: (1) it does not manifest itself at all during the first 20 hours, 

and then develops quite strongly over the next 30 hours; and (2) it is somehow different from 

other effects of gaming, because, in general, “length of training (…) failed to moderate the 

effects” (Powers et al., in press). 

It may be argued that the repeated testing on the moving dots task produced such a strong 

practice effect that it swamped any improvements due to the gaming itself. We believe this 

interpretation of our results to be implausible. There are no indications of a ceiling effect in 

the data from our second experiment. Testing six times instead of two greatly increases the 

power to detect a beneficial gaming effect, should it exist (see section “Power Analysis Exper-

iment 2” of the online appendix for a demonstration). On top of that, if the power of our de-

sign had been too low, the Bayesian analyses would have indicated ambivalent evidence. 

However, we found clear evidence in favor of the null hypothesis. 

Nevertheless, one could argue that the gaming transfer effects are so fragile and specific that 

they are only present when the target task has received little practice. For instance, assume 

that test–retest benefits are of two kinds, (a) improvement in visuo– perceptual processing 

(unfolding over a long time scale); and (b) improvement in pressing response buttons (unfold-

ing over a very short time scale). It could possibly be the case that the transfer effect from 

gaming influences only the peripheral process (b), and that process (b) is at ceiling relatively 

quickly 

Of course, this account is speculative, contradicts prior theorizing in which the benefit is 

thought to represent general facilitation of cognitive processing, and raises the question of 

the relevance of the transfer effect in practical application. So even if this alternative ac-

count is true, it would render the transfer effect of gaming rather uninteresting, as it may 

represent a temporary adjustment of a peripheral response process rather than a change in 

cognitive processing. 
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Our findings contradict the claim that action–video game playing selectively improves cogni-

tive processing as argued by Green et al. (2010). It is possible that overt recruiting, unspeci-

fied recruiting methods, or the lack of supervised game–play has caused the results of Green 

et al. (2010) to be different from ours see e.g., Boot et al. (2011). However, our findings are 

consistent with the outcome of the recent meta–analysis by Powers et al. (in press), who con-

cluded that “In true experiments, action/violent game training was no more effective than 

game training utilizing nonaction or puzzle games, but mimetic games showed large effects.” 

Powers et al. (in press) did conclude that there is a reliable transfer effect of gaming in gen-

eral, and this is inconsistent with our result from Experiment 2 – our control group improved 

just as much as the two groups of gamers. 

In order to resolve the contradictory findings it may be essential to engage in adversarial col-

laborations or at least state the analysis plan in advance of data collection (Chambers, 2013; 

Wagenmakers, Wetzels, Borsboom, van der Maas, & Kievit, 2012; Wolfe, 2013). Furthermore, 

we suggest that researchers who plan to study the effects of video game playing consider the 

following guidelines: 

1. Despite the considerable effort required, conduct a training study on non–gamers rather 

than compare gamers to non–gamers. Training studies eliminate confounds due to pre-existing 

differences between gamers and non–gamers. 

2. Design experiments with sufficient power. By testing many participants and including many 

trials for the psychological task at hand you increase the chances of confidently confirming or 

disconfirming the effects of interest. 

3. Calibrate your psychological task on an individual basis to ensure error rates that are siz-

able and similar across participants. Training effects on response accuracy are easier to de-

tect when accuracy is not near ceiling. A sufficient number of errors also benefits RT modeling 

with the diffusion model (e.g., compare the model predictives for Experiment 1 and Experi-

ment 2). 

4. Use Bayes factors to quantify evidence. Only by using Bayes factors can researchers quanti-

fy the evidence favoring the null hypothesis. 

5. Use the diffusion model to decompose the behavioral effects in their underlying 

psychological processes such as speed of information processing, response caution, and non– 

decision time. 

We find the claim enticing that people can boost their cognitive capacities by playing violent 

action video games. However, our result urge caution and suggest that before the video games 

find application, a series of purely confirmatory experiments is in order. We hope that our ex-

periments will encourage such confirmatory work. 
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Abstract 

A recent ‘crisis of confidence’ has emerged in the empirical sciences. Several studies 

have suggested that questionable research practices (QRPs) such as optional stopping 

and selective publication may be relatively widespread. These QRPs can result in a 

high proportion of false-positive findings, decreasing the reliability and replicability of 

research output. A potential solution is to register experiments prior to data acquisition 

and analysis. In this study we attempted to replicate studies that relate brain structure to 

behavior and cognition. These structural brain-behavior (SBB) correlations occasionally 

receive much attention in science and in the media. Given the impact of these studies, it 

is important to investigate their replicability. Here, we attempt to replicate five SBB 

correlation studies comprising a total of 17 effects. To prevent the impact of QRPs we 

employed a preregistered, purely confirmatory replication approach. For all but one of 

the 17 findings under scrutiny, confirmatory Bayesian hypothesis tests indicated 

evidence in favor of the null hypothesis ranging from anecdotal (Bayes factor < 3) to 

strong (Bayes factor > 10). In several studies, effect size estimates were substantially 

 This chapter includes the paper published in Cortex 2015 (Boekel, W, Wagenmakers, EJ, Be10 -
lay, L, Verhagen, J, Brown, S, Forstmann, BU, A purely confirmatory replication study of struc-
tural brain-behavior correlations, Cortex, 2015, 66, 115-133). Unfortunately, an error in part of 
the preprocessing for these data was found later, and a corrigendum is in press and will appear 
in Cortex (Keuken MC, Boekel WE, Wagenmakers E-J, Belay L, Verhagen J, Brown S, BU 
Forstmann BU, Corrigendum for: A purely confirmatory replication study of structural brain-be-
havior correlations). Specifically, the DWI preprocessing of replication 1: Forstmann et al. 
(2010), and replication 3: Xu et al. (2012) were performed incorrectly. Re-analyses showed mi-
nor adjustments of values but no changes in terms of interpretation of results.

!41



lower than in the original studies. To our knowledge, this is the first multi-study 

confirmatory replication of SBB correlations. With this study, we hope to encourage 

other researchers to undertake similar replication attempts.

Keywords: preregistration; confirmatory; replication; brain-behavior correlations

1. Introduction

In the last few years, the need for confirmatory replication studies has become 

increasingly evident. Recent studies have suggested that the empirical sciences are 

bedeviled by the use of questionable research practices (QRPs; Simmons, Nelson, & 

Simonsohn, 2011; John, Loewenstein, & Prelec, 2012). These practices include, for 

instance, optional stopping (i.e.,  continuing data collection until p<.05) and cherry-

picking (e.g., reporting only those variables, conditions, or analyses that yield the 

desired result). In combination with the ubiquitous file drawer problem (Rosenthal, 

1979), the use of these QPRs results in a high false-positive rate, such that many 

significant findings may in fact be false (Ioannidis, 2005). This realization has brought 

about a crisis of confidence in the replicability and reliability of published research 

findings (Ioannidis, 2012; MacArthur, 2012; Pashler & Wagenmakers, 2012). A recent 

study by Button, Ioannidis, Mokrysz, Nosek, Flint et al. (2013) showed that this crisis of 

confidence extends to the neurosciences. The crisis of confidence can be reduced in 

several ways. One powerful remedy is to eliminate QRPs by preregistering experiments 

prior to data acquisition and analysis, resembling the standard operating procedure 

mandated in the case of clinical trials (De Groot, 1969; Goldacre, 2009; Wagenmakers, 

Wetzels, Borsboom, van der Maas, & Kievit, 2012; Chambers, 2013; Wolfe, 2013). In 

this article we apply study preregistration to assess the replicability of a series of 

findings in cognitive neuroscience.

Research in cognitive neuroscience aims to investigate the link between brain and 

behavior. Recently, researchers have exploited significant advances in anatomical 

magnetic resonance imaging (MRI) to detect subtle differences in brain structure 
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associated with differences in behavioral measures (Kanai and Rees, 2011). For 

example, in a study that received much attention in science and the media, Kanai, 

Bahrami, Roylance, and Rees (2012) found that individuals with a relatively large grey 

matter volume in specific brain regions have more Facebook friends . Other studies 

have reported structural brain-behavior (SBB) correlations between properties of grey 

and/or white matter and behavioral measures such as choice reaction time (Tuch, Salat, 

Wisco, Zaleta, Hevelone et al., 2005), control over speed and accuracy in decision 

making (Forstmann, Anwander, Schäfer, Neumann, Brown et al., 2010), percept 

duration in perceptual rivalry (Kanai, Bahrami, & Rees, 2010; Kanai, Carmel, Bahrami, 

& Rees 2011a), components of attention (i.e., executive control and alerting; Westlye, 

Grydeland, Walhovd, & Fjell, 2011), response inhibition (King, Linke, Gass, Hennerici, 

Tost et al., 2012), metacognitive ability (i.e., the ability to evaluate one's perceptual 

decisions; Fleming, Weil, Nagy, Dolan, & Rees, 2010), aspects of social cognition (i.e., 

social network size; Bickart, Wright, Dautoff, Dickerson, & Barrett, 2011, and social 

influence; Campbell-Meiklejohn, Kanai, Bahrami, Bach, Dolan et al., 2012), distractibility 

(Kanai, Dong, Bahrami, & Rees, 2011b), political orientation (Kanai, Feilden, Firth, & 

Rees, 2011c), sensitivity to reward and approach motivation (Xu, Kober, Carroll, 

Rounsaville, Pearlson et al., 2012), moral values (Lewis, Kanai, Bates, & Rees, 2012), 

and empathy (Banissy, Kanai, Walsh, & Rees, 2012).

Motivated by the increase in number and prominence of SBB correlations, as well as 

the general uncertainty regarding the reliability of non-preregistered research findings, 

we attempted to replicate a subset of the above-mentioned studies in a purely 

confirmatory fashion. It should be noted that conceptual replications, wherein a 

hypothesis from the original study is tested in a different experimental paradigm, do not 

provide reliable evidence for or against the robustness of the respective finding. Instead, 

only direct replications, wherein all relevant aspects of the original study are repeated 

can support or oppose the original finding (Pashler and Harris, 2012). 

Here, we report a preregistered, purely confirmatory replication of a subset of five SBB 

correlation studies selected from recent literature based on the brevity of their 
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behavioral data acquisition. The transparency conveyed by a confirmatory design helps 

to avoid common pitfalls in neuroscience (and other sciences) such as the use of 

nonindependent analysis (Vul, Harris, Winkielman, & Pashler, 2009), double dipping 

(Kriegeskorte, Simmons, Bellgowan, & Baker, 2009), obscure data collection and 

analysis techniques which increase false-positive rates (Simmons et al., 2011), 

confirmation and hindsight bias on the part of the researcher (i.e., the tendency to 

confirm instead of disconfirm one's beliefs and the tendency to judge events more 

predictable after they have occurred, respectively; Wagenmakers et al., 2012). A strictly 

confirmatory framework was ensured by publishing a 'Methods and Analyses document' 

(M&A; http://confrepneurosci.blogspot.nl/2012/06/advanced-methods-and-

analyses_26.html) online before any data were inspected or analyzed (as 

recommended by several researchers, e.g., De Groot, 1969; Goldacre, 2009; 

Wagenmakers et al., 2012; Chambers, 2013; Wolfe, 2013). This M&A document was 

sent to the corresponding authors of the original studies. All authors agreed to the 

replication attempt and the processing pipeline as outlined in the M&A document. Any 

analysis not outlined in the M&A document will be labeled 'exploratory' (as 

recommended by Wagenmakers, Wetzels, Borsboom, & van der Maas, 2011). We 

confined our hypotheses to the direction and location of the SBB correlations reported in 

the original articles. For instance, Kanai et al. 2012 reported a positive SBB correlation 

between grey matter density in left amygdala and the number of friends on Facebook; 

consequently the to-be-replicated hypothesis postulates a positive SBB correlation 

between the same variables in our sample. This order-restriction of the hypotheses has 

two benefits. First, it allowed us to use one-sided as opposed to two-sided hypothesis 

tests, which are more specific and statistically more powerful. Second, it allowed us to 

focus our analyses on specific regions in the brain, i.e., regions of interest (ROI), 

instead of searching the whole brain for SBB correlations. This way we circumvent the 

need for multiple comparisons corrections that are required in whole-brain analyses.

In order to quantify the evidence that the data provide for and against the null-

hypothesis, we opted for a Bayesian hypothesis test for correlations and computed 

Bayes factors (BF; Jeffreys, 1961) instead of p-values (for a discussion of problems with 
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p-values, see  Edwards, Lindman, & Savage, 1963; Wagenmakers, 2007). Note that in 

contrast to Bayes factors, p-values are unable to quantify support in favor of the null 

hypothesis; a non-significant p-value indicates no more than a “failure to reject the null 

hypothesis”. The replication attempts will be considered successful if the corresponding 

Bayes factor supports the hypothesized relationship. Accordingly, a Bayes factor that 

supports the null hypothesis suggests a failed replication. In addition to this 

preregistered analysis, exploratory analyses examine estimates of effect size. It is 

possible that the Bayes factor supports the null hypothesis, but the estimated effect size 

is nevertheless close to the original effect size. To address this concern, an additional 

exploratory Bayes factor analysis compares the null hypothesis to an alternative 

hypothesis that incorporates the knowledge obtained from the original study (cf. 

Verhagen and Wagenmakers, 2014). These exploratory analyses occasionally provide a 

more nuanced perspective on the extent to which SBB correlations can be replicated.

2. Materials and Methods

2.1. General methods

Prior to inspection of the data, a preregistration protocol was published online (http://

confrepneurosci.blogspot.nl/2012/06/advanced-methods-and-analyses_26.html). This 

‘Methods and Analyses’ (M&A) document described all data acquisition and analysis 

steps. Below we summarize the subparts of this M&A document which are applicable to 

the results described in this article.

2.1.1. Participants

36 undergraduate psychology students (mean age = 20.12, SD = 1.73; 18 females) with 

normal or corrected-to-normal vision were recruited from the participant pool of a 

previous 43-participant MRI study. The MRI study was recently conducted by Forstmann 

and Wagenmakers’ research group at the University of Amsterdam and featured 

extensive Diffusion Weighted Imaging (DWI) and T1-weighted imaging. Hence, the 

additional effort involved in replicating the five studies consisted primarily in having 
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participants complete a battery of behavioral tests. The experiments were approved by 

the local ethics committee of the University of Amsterdam. Participants received a 

monetary compensation for their time and effort. 

2.1.2. Study selection

We aimed to perform replications of a series of recent studies reporting correlations 

between brain structure and behavior. A review by Kanai and Rees (2011) provided us 

with many topical SBB correlation findings. In addition, several other studies were 

selected from previous literature. Brevity of behavioral data acquisition was the main 

selection criterion, to ensure that we would be able to replicate many SBB correlations 

while minimizing total acquisition time.

2.1.3. Study exclusion

Several studies, although selected and described in the M&A document, were omitted 

from the final analyses based on several reasons: Kanai et al. (2011c) found an SBB 

correlation between political orientation and brain structure in young adults, using a 

simple 5-point self-report measure ranging from very liberal to very conservative. The 

data that we acquired to replicate this contained insufficient variability in this self-report 

measure, and thus we excluded this study (mean: 2.26, SD: 0.57, range: 1-3; 

Supplementary figure S1 shows scatterplots of these data). The other three studies 

(Kanai et al., 2010; Kanai et al., 2011a; Bickart et al., 2011) were excluded from final 

replication based on problems with the ROI masks sent by the authors of the original 

papers (e.g., missing masks, or masks which did not match coordinates reported in the 

original papers). Five studies remained for the final replication attempt.

2.1.4. General procedure

The time between MRI-scanning and behavioral testing ranged from 25 to 50 days. 

Prior to the behavioral test session, participants received an information brochure and 

signed an informed consent form. Participants were tested in individual computer 

booths. All instructions were shown on the computer screen or printed on top of the 

questionnaires. Participants began by filling out the following questionnaires: BIS/BAS 
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(Carver and White, 1994), social network index (Cohen, 1997) social network size 

questionnaire (Stileman & Bates, 2007), cognitive failures questionnaire (Broadbent, 

Cooper, Fitzgerald, & Parkes, 1982), political orientation questionnaire (Kanai et al., 

2011c), moral foundations questionnaire (Graham, Haidt, & Nosek, 2009), and the 

interpersonal reactivity index (Davis, 1980). After completing the questionnaires, 

participants continued with the computerized tasks: Bistable SFM task (Wallach & 

O’Connel, 1953), random dot motion task (Britten, Shadlen, Newsome, & Movshon, 

1992; Gold and Shadlen, 2007), and the attention network test (Fan, McCandliss, 

Sommer, Raz, & Posner, 2002). The order of both questionnaires and computer tasks 

was randomized across participants. The total duration of the test session was 1 hour 

and 30 minutes. A subset of these tasks and questionnaires (i.e., the ones connected to 

the five studies that were included in the final replication attempt) were analyzed.

2.1.5. MRI data acquisition

DWI and T1-weighted images were collected on a 3T Philips scanner using a 32- 

channel head coil. For each participant, four repetitions of a multi-slice spin echo (MS-

SE), single shot DWI scan were obtained using the following parameters: TR = 7545 

ms, TE = 86 ms, 60 transverse slices, 2 mm slice thickness, FOV: 224 x 224 mm2, 

voxel size 2 mm isotropic resolution. For each slice, 32 diffusion-weighted images (b = 

1000 s/mm2) along 32 directions were acquired, along with one image without diffusion 

weighting (b0 image, where b = 0). In addition, a T1-weighted anatomical scan was 

acquired (T1 turbo field echo, 220 transverse slices of 1 mm, with a resolution of 1 mm3, 

TR = 8.2 ms, TE = 3.7 ms).

2.1.6. ROI-based analysis

Our purely confirmatory approach allowed us to circumvent the multiple comparison 

problems present in whole-brain analyses. We extracted measures of brain structure 

from ROIs provided to us by the authors of the original papers. These measures were 

then correlated to the respective behavioral measure. This approach would not have 

been possible if the authors of the original authors had not provided us with the ROI 
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masks of their findings. We would like to thank these authors for their cooperation and 

openness.

2.1.7. Diffusion weighted imaging analyses

All DWI data (pre-)processing and analyses were carried out using FMRIB’s Software 

Library (FSL, version 4.0; www.fmrib.ox.ac.uk/fsl). Per participant, all four runs of DWI 

were concatenated and corrected for eddy currents. Affine registration was used to 

register each volume to a reference volume (Jenkinson and Smith, 2001). A single 

image without diffusion weighting (b0; b-value = 0 s/mm2) was extracted from the 

concatenated data and non-brain tissue was removed using FMRIB's Brain Extraction 

Tool (BET; Smith, 2002) to create a brain-mask which was used in subsequent 

analyses. 

DTIFIT (Behrens, Johansen-Berg, Woolrich, Smith, wheeler-Kingshott et al., 2003) was 

applied to fit a tensor model at each voxel of the data (Smith, Jenkinson, Woolrich, & 

Beckmann, 2004). Tract-Based Spatial Statistics (TBSS) were performed using FSL's 

default TBSS pipeline (Smith, Jenkinson, Johansen-Berg, Reuckert, Nichols et al., 

2006; http://www.fmrib.ox.ac.uk/fsl/tbss/index.html). First, fractional anisotropy (FA) 

images were slightly eroded and end slices were zeroed in order to remove likely 

outliers from the diffusion tensor fitting. Second, all FA images were aligned to 1 mm 

standard space using non-linear registration to the FMRIB58_FA standard-space image. 

Affine registration was then used to align images into 1 x 1 x 1 mm MNI152 space, and 

a skeletonization procedure was subsequently applied to a mean FA image resulting 

from averaging all individual MNI-aligned images. Subsequently, the mean skeletonized 

FA image was thresholded at FA > 0.2 in order to accurately represent white-matter 

tracts. Participants FA data were then projected onto the mean skeletonized FA image 

and concatenated. In addition to using FA images, we repeated this processing pipeline 

for mean diffusivity (MD) and parallel eigenvalue (!1) images using the tbss_non_FA 

function in order to generate skeletonized MD and !1 files.
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As opposed to using voxel-wise permutation tests for significance, our purely 

confirmatory approach allowed us to extract and average FA/MD/!1 from ROIs based 

on spatial maps provided by the original authors. For the TBSS procedure, the spatial 

maps provided by the original authors were registered to the mean FA template 

generated by our TBSS procedure. This was done to maximize the overlay between the 

spatial maps and our study-specific skeletonized FA template. In order to exclude the 

possibility that this registration step might impact the final hypothesis test, additional 

exploratory analyses were performed without registering the spatial maps to our FA 

template. These analyses are not reported here, as their results did not differ from our 

main analyses in terms of interpretation (i.e., Bayes factors were comparable).

After extracting FA/MD/!1 signal from the ROIs, we then used one-sided Bayesian 

correlation tests (described below) to quantify evidence in favor of either the null 

hypothesis (H0) or the alternative hypothesis (H1). In our analyses, H1 represents the 

presence of either a positive or a negative correlation (depending on the predicted 

direction of the correlation), and the H0 represents the absence of the predicted 

correlation.

2.1.8. Probabilistic tractography

Bayesian estimation of diffusion parameters obtained using sampling techniques 

(BedpostX) was applied to the pre-processed DWI data. BedpostX uses a dual fibre 

model which can account for crossing fibres. Estimation of tract strengths (for the 

replication attempt of Forstmann et al., 2010) was conducted using probabilistic 

tractography (Behrens et al., 2003). Five thousand tracts were sampled from each voxel 

in the seed mask (right pre-supplemetary motor area; Pre-SMA) at a curvature 

threshold of 0.2. Next, the number of samples that reach the classification target mask 

(e.g., right striatum) was measured. In addition, contralateral exclusion masks were 

used to discard pathways crossing over to the contralateral hemisphere before traveling 

to the classification target mask. The number of voxels for which a minimum of 10 

samples reached the classification mask was divided by the total number of voxels in 

the seed mask, resulting in a value that represents the proportion of the seed mask that 
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was probabilistically connected to the classification mask. A similar procedure was 

applied in the opposite direction (where the seed and classification masks were 

switched). Tract strength was defined as the average of the two proportions that 

resulted from the seed-to-classification and classification-to-seed analyses.

2.1.9. Voxel-Based Morphometry

Voxel-Based Morphometry (VBM) was performed using FSL's default VBM pipeline 

(Douaud, Smith, Jenkinson, Behrens, Johansen-Berg et al., 2007; http://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM). First, non-brain tissue was removed from T1 

images using BET. Second, brain-extracted images were segmented into grey matter 

(GM), white matter (WM), and cerebrospinal fluid (CSF). GM images were non-linearly 

registered to GM ICBM-152, and averaged to create a study-specific template at 2 mm 

resolution in standard space. All GM images were then non-linearly registered to the 

study-specific template. During this stage, each voxel of each registered grey matter 

image is divided by the Jacobian of the warp field (Good, Johnsrude, Ashburner, 

Henson, & Friston et al., 2001). Images were smoothed using a Gaussian kernel with a 

sigma of 3 mm.

As opposed to using voxel-wise permutation tests for significance, our purely 

confirmatory approach allowed us to extract and average GM volume from ROIs based 

on spatial maps provided by the original authors. We then used one-sided Bayesian 

correlation tests (described below) to quantify evidence in favor of either H0 or H1. 

2.1.10. Cortical thickness analysis

Cortical reconstruction and volumetric segmentation was performed with the FreeSurfer 

image analysis suite (http://surfer.nmr.mgh.harvard.edu/). The technical details of these 

procedures are described elsewhere (Dale and Sereno, 1993; Dale, Fischl, & Sereno, 

1999; Fischl and Dale, 2000; Fischl, Lio, & Dale, 2001; Fischl, Salat, Busa, Albert, 

Dieterich et al., 2002; Fischl, Salat, van der Kouwe, Makris, Ségonne, Dale, Busa, 

Glessner, Salat et al., 2004a; Fischl, Sereno, & Dale, 1999a; Fischl, Sereno, Tootell, & 

Dale, 1999b; Fischl, van der Kouwe, Destrieux, Halgren, Ségonne et al., 2004b; Han, 
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Jovicich, Salat, van der Kouwe, Quinn et al., 2006; Jovicich, Czanner, Greve, Haley, van 

der Kouwe et al., 2006; Reuter, Rosas, & Fischl, 2010; Reuter, Schmansky, Rosas, & 

Fischl, 2012; Ségonne, Dale, Busa, Glessner, Salat et al., 2004). FreeSurfer pre-

processing included motion correction (Reuter et al., 2010) of volumetric T1-weighted 

images, removal of non-brain tissue using a hybrid watershed/surface deformation 

procedure (Ségonne et al., 2004), automated Talairach transformation, segmentation of 

the subcortical white matter and deep gray matter volumetric structures (including 

hippocampus, amygdala, caudate, putamen, and ventricles; Fischl et al., 2002; 2004a) 

intensity normalization (Sled, Zijdenbos, & Evans, 1998), tessellation of the gray/ white 

matter boundary, automated topology correction (Fischl et al., 2001; Ségonne, Pacheco, 

& Fischl, 2007), and surface deformation following intensity gradients to optimally place 

the gray/white and gray/cerebrospinal fluid borders at the location where the greatest 

shift in intensity defines the transition to the other tissue class (Dale and Sereno, 1993; 

Dale et al., 1999; Fischl and Dale, 2000). Reconstruction of the GM/WM boundary and 

pail surface was manually checked for inaccuracies. Subsequently, ROI-labels were 

mapped onto individual brains and average cortical thickness (Fischl and Dale, 2000) 

was extracted per ROI, per participant.

2.1.11. General outlier rejection criterion

In the M&A document that we published online prior to inspection of the data, we 

specified a general outlier rejection criterion. Any deviation of more than 2.5 standard 

deviations (SDs) from the respective mean results in an exclusion of the participant from 

the replication in which it is classified as an outlier (as such, a participant can still be 

included in a different replication, for which he or she was not classified as an outlier).

2.1.12. ConÞrmatory Bayesian hypothesis test for correlations

Our main analysis goal was to grade the decisiveness of the evidence that the data 

provide for and against the presence of a correlation between the structural brain 

measures and the behavioral measures. This goal can be achieved by computing 

Bayes factors (Dienes, 2008; Jeffreys, 1961; Kass & Raftery, 1995; Lee & 
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Wagenmakers, 2013; Rouder et al. 2009; Rouder et al., 2012). The Bayes factor 

compares the adequacy of two models; in our case, the first model is the null hypothesis 

H0 that postulates the absence of a correlation between the structural brain measures 

and the behavioral measures. The second model is the alternative hypothesis H1 that 

postulates the presence of a positive (or negative) correlation between the two 

measures. 

The Bayes factor quantifies the odds that the observed data occurred under H0 versus 

H1. For example, a Bayes factor equal to 5.2 indicates that the observed data are 5.2 

times as likely to occur under H0 than under H1. In this way the Bayes factor provides a 

continuous measure of evidential support, and its interpretation does not require 

recourse to actions, decisions, or criteria of acceptance. 

To compute the Bayes factor for the Pearson correlation coefficient, we need to specify 

both H0 and H1. Jeffreys (1961) proposed a default test by assigning uninformative 

priors to the nuisance parameters (i.e., parameters common to H0 and H1) and a 

uniform prior distribution from -1 to 1 to the correlation coefficient " that is unique for H 1 

(Jeffreys, 1961, p. 291). Consequently, under Jeffreys' alternative hypothesis H1, each 

value of the correlation coefficient " is a priori equally likely. 

Inspired by Jeffreys' test we grade the decisiveness of the evidence by computing BF10, 

that is, the probability of the observed data under H1 versus H0:

 

 (1)  

The number of data pairs is denoted by n, and r is the sample Pearson correlation 

coefficient. As indicated by the range of integration in Equation 1, we have adjusted 

Jeffreys test such that the alternative hypothesis is one-sided. The one-sided nature of 

this test is appropriate, since we intend to replicate SBB correlations, thereby 

committing to specific directions (as reported in the original studies). 
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In Equation 1, the integration is from 0 to 1 implying a test for a positive correlation. In 

case of a test for a negative correlation we simply multiply one of the observed variables 

with -1. An R function to compute the BF in the above-mentioned way is freely available 

at http://www.josineverhagen.com/?page_id=76

The evidential support that the BF01 gives to the null hypothesis can be categorized 

based on a set of labels proposed by Jeffreys (1961). Table 1 shows this evidence 

categorization for the BF01, edited by and taken from Wetzels and Wagenmakers (2012; 

Table 1, p. 1060). In short, a BF01 greater than 1 indicates that the data are more likely 

to occur under H0 than under H1. Equivalently, a BF01 lower than 1 indicates that the 

data are more likely to occur under H1 than under H0. The evidence categories apply to 

the BF10 ( = 1/ BF01; reciprocal of the BF01) in a reversed manner; e.g., a BF10 with a 

value between 10 and 30 provides strong evidence for H1 and a BF10 with a value 

between 1/10 and 1/30 provides strong evidence for H0. Thus, when we analyze data 

and find that, for instance, BF01 = 6.5, this means that the data are 6.5 times more likely 

to have occurred under H0 than under H1; similarly, BF01 = 0.2 means that the data are 5 

times more likely to have occurred under H1 than under H0. The labels shown in Table 1 

are useful because they facilitate scientific communication; nevertheless, the labels 

should not be over-interpreted. Many researchers may find the meaning of BF01 = 6.5 

clear without the help of the labels from Table 1. 

Table 1. Categories for the BF01

Bayes factor BF 01 Interpretation

> 100 Extreme evidence for H0

30 - 100 Very Strong evidence for H0

10 - 30 Strong evidence for H0

3 - 10 Moderate evidence for H0

1 - 3 Anecdotal evidence for H0

1 No evidence

1/3 - 1 Anecdotal evidence for H1
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2.1.13. Posterior probability distributions

The posterior distribution is formed by combining the information or beliefs about the 

correlation available prior to the experiment (as expressed in the prior distribution), with 

the correlation observed in the data. 

In a situation where nothing is known about the correlation prior to the experiment, an 

uninformative uniform prior distribution can be used, in which every correlation between 

-1 and 1 has equal probability (Figure 1 black line). In this situation, once a correlation 

has been observed, the posterior distribution will have a higher probability around the 

observed correlation and less probability at values further away (Figure 1 red line).The 

posterior distribution represents the knowledge we have about the correlation of interest 

after observing the data. 

When we want to update this knowledge with a new experiment, the posterior from the 

previous experiment can be taken as the prior for the next experiment. This indicates 

that the correlation in the new study is expected to be similar to the correlation in the 

previous study, as the prior gives more probability to values closer to the previously 

observed correlation. When this informative prior distribution is updated by the 

correlation observed in a new experiment, the final posterior distribution will be identical 

to the posterior distribution had all data been analyzed together from the start (Figure 1 

blue line). 

1/10 - 1/3 Moderate evidence for H1

1/30 - 1/10 Strong evidence for H1

1/100 - 1/30 Very Strong evidence for H1

< 1/100 Extreme evidence for H1

Bayes factor BF 01 Interpretation
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Fig 1. Posteriors plot. 

Example of a posterior plot, showing uniform prior distribution (black line), the posterior 

after the original effect (red line), and the posterior after the replication effect (blue line), 

using the posterior as a prior distribution.

We will use the posterior distribution of the previous study in a different way, for model 

comparison. In this case, the posterior distribution from the original study is used to 

represent the hypothesis that the observed correlation is similar to the previous 

correlation.

2.1.14. Additional exploratory analyses 

In addition to the Bayesian test described above, we computed an additional Bayesian 

test in which H1 is specified not only to the direction of the effect found in the original 

study, but also to its effect size (Verhagen and Wagenmakers, 2014). In this way, this 

test answers the question ‘Is the effect from the replication attempt comparable to what 

was found before, or is it absent?’, whereas the original Bayesian test answers the 

question ‘Is the effect present or absent in the data from the replication attempt?’. We 
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label this additional analysis exploratory as it was not described and published in the 

M&A document prior to inspection of the data.

The replication Bayes factor compares evidence in favor of the null hypothesis of no 

effect, H0: # = 0, with the evidence in favor of the alternative hypothesis that the effect is 

equal to the effect found in the original study, Hr: # ~ posterior distribution from original 

study. The resulting Bayes factor is similar to the Bayes factor in equation (1), with the 

only difference that the replication Bayes factor is obtained by integrating over the 

posterior distribution from the first study instead of a uniform distribution. A more 

detailed description of the replication Bayes factor can be found in Appendix A. R code 

to perform this analysis can be found in this link http://www.josineverhagen.com/?

page_id=76

In addition to the Bayes factor tests, an intuitive assessment of the extent to which our 

results replicate the original studies can also be obtained by comparing the posterior 

distributions for the correlation coefficients in the original and replication studies. We 

facilitate such a comparison by plotting, for each of the five replication attempts, both 

the entire posterior distribution and a summary in terms of 95% credible intervals.

Finally, for frequentist readers we provide p-values. Once again, these are labeled as 

exploratory given that we did not preregister the use of frequentist statistics in our M&A 

document.

2.2. Study-speciÞc methods

Below we describe study-specific methods for the five experiments included in the final 

replication attempt remaining after study exclusion. For each experiment we describe 

the stimuli and procedure, behavioral analyses, structural brain analyses, and statistical 

tests based on hypotheses generated by the original papers. 

2.2.1. Replication 1: Forstmann et al. (2010)
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2.2.1.1. Random dot motion task and procedure

We used the same random dot motion (RDM) task (Gold and Shadlen, 2007) as 

Forstmann and colleagues (2010). The task contained 360 trials in total, with 180 speed 

and 180 accuracy trials. The RDM cloud consisted of 60 coherently moving white dots 

and 60 randomly moving white dots, presented against a black background (see http://

wouterboekel.com/CONFREP/dots_loop.gif). A single dot consisted of 3 pixels and the 

entire cloud spanned 250 pixels. At the start of each trial, either a speed cue or an 

accuracy cue was presented for 1000 ms. The speed cue instructed participants to 

respond as quickly as possible. The accuracy cue instructed participants to respond as 

accurate as possible. The cue was followed by a fixation cross presented at the center 

of the screen for 500 ms. Subsequently, the RDM stimulus was presented for 1500 ms 

or until a response was made. Responses outside of this time window were ignored. 

Participants responded on a keyboard by pressing ‘a’ with their left index finger when 

they perceived a leftward motion and ‘l’ with their right index finger when they perceived 

a rightward motion. Immediately after the response, participants received a feedback 

message for 400 ms. On speed trials, the feedback read either ‘te traag’ or ‘op tijd’ (i.e., 

Dutch for ’too slow’ and ‘in time’). On accuracy trials, the feedback read either ‘fout’ or 

‘goed’ (i.e., Dutch for ‘incorrect’ and ’correct’). 45-second breaks were inserted after 120 

and after 240 trials. The entire task lasted for approximately 20 minutes.

2.2.1.2. LBA model  #

The linear ballistic accumulator (LBA; Brown and Heathcote, 2008) model decomposes 

the response time and accuracy measures into latent psychological processes. It 

assumes that when given a choice between two alternatives, evidence accumulates 

from a start point (A), at a certain speed (drift rate v), for both alternatives separately. 

When one of these accumulators reaches its response threshold (b), a decision is made 

in favor of the associated alternative. Response time is determined by the time taken to 

reach the threshold, plus an offset time for stimulus encoding and motor processes 

(non-decision time t0) (Figure 2).
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Fig 2.  Schematic representation of the LBA model used in the replication of 

Forstmann et al (2010).

In the LBA model, the decision to respond either left or right is modeled as a race 

between 2 accumulators. Activation in each accumulator begins at a random point 

between zero and start point A and increases with time. The rate of increase is random 

from trial to trial, but is (on average) faster for the accumulator whose associated 

response matches the stimulus. A response is given by whichever accumulator first 

reaches the threshold b, and the predicted response time depends on the time taken to 

reach that threshold.

The element of central interest here is response caution, which can be quantified via the 

threshold height in the LBA. We applied the same parameter constraints as Forstmann 

and colleagues (2010). In this design only one parameter—response threshold  b—is 

free to vary with the speed vs. accuracy cue, while all other parameters (width of start 

point distribution A, drift rate v, variability of the drift rate s, and nondecision time t0) are 

fixed. Response caution is measured by subtracting start point A from response 

threshold b.

2.2.1.3. Behavioral data analysis  
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The behavioral measure of interest is the LBA flexibility parameter, assessing efficacy of 

changing response caution. It is assumed that “changes in response caution originate 

from adjustments of response thresholds (Forstmann et al., 2010; page 1516)”. 

Therefore, LBA flexibility was computed as the difference between the LBA caution 

estimates for the accuracy and the speed conditions. We fit the LBA model to each 

participants accuracy and reaction time (RT) distributions on speed and accuracy trials 

separately. The only parameter allowed to vary was the response threshold b. The 

resulting individual LBA flexibility estimates were imported into R software (R 

Foundation for Statistical Computing, http://www.R-project.org) for the Bayesian 

correlation test.

2.2.1.4. Probabilistic tractography 

We limited our tractography to delineate tracts that the authors found to correlate 

significantly with LBA flexibility. Hence, probabilistic tractography was performed only 

between right pre-SMA and right striatum. Here we used the same MNI-space masks 

for right pre-SMA and right striatum as were used in Forstmann et al. (2010). We 

performed the probabilistic tractography in accordance with the protocol stated in the 

general methods section (see above). Resulting tract strength values were corrected for 

age and gender using partial correlations, and were subsequently imported into R 

software for the Bayesian correlation test. Specifically, we tested for a positive 

correlation between right pre-SMA–right striatum tract strength and LBA flexibility.

2.2.2. Replication 2: Kanai et al. (2012)

2.2.2.1. Social Network Size Questionnaire and procedure

Participants completed a Dutch version of the Social Network Size questionnaire 

(Stileman & Bates, 2007). This questionnaire consists of 9 items. One of its items is: 

“How many friends do you have on ‘Facebook’?”. We asked participants to make a note 

of the number of friends they have on ‘Facebook’ or an alternative comparable social 

network site such as ‘myspace’ or the Dutch ‘Hyves’ and bring it to the test session. The 

administration time is approximately 10 minutes.
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2.2.2.2. Behavioral data analysis

The behavioral measures of interest are online social network size (i.e., FBN) and real-

world social network size. As was done in Kanai et al. (2012), answers to the 9 

subquestions contained in this questionnaire were square-root transformed to correct 

for skewness. We computed the FBN as the square root of participants answer to the 

question: “How many friends do you have on ‘Facebook’?”. A normalized real-world 

social network size score (SNS) was computed per participant by averaging the z-

scores for the questionnaire items 1, 2, 4, 5, 6, 8, and 9 after skewness correction. For 

each participant an online social network size score and a real-world social network size 

score was imported into R software for the Bayesian correlation test. 

2.2.2.3. ROI generation

Kanai et al. (2012) reported significant positive correlations between online social 

network size and GM volume within left middle temporal gyrus (MTG), right superior 

temporal sulcus (STS), right entorhinal cortex (EC), and bilateral amygdala. In addition, 

real-world social network size was positively correlated with GM volume only within right 

amygdala. We defined all these regions as our ROIs. Dr. Kanai kindly provided us with 

the spatial maps of these regions.

2.2.2.4. Correlational analysis

For every participant, we extracted GM volume values from all voxels contained in the 

ROIs and averaged them. These GM volume measures were then corrected for age, 

gender and total grey matter volume. The corrected mean GM volume measures were 

imported into R software for the Bayesian correlation test. Specifically, we tested for 

positive correlations between FBN and mean GM volume within left MTG, right STS, 

right EC, and bilateral amygdala. Furthermore, we tested for a positive correlation 

between SNS and mean GM volume within right amygdala.

2.2.3. Replication 3: Xu et al. (2012)
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2.2.3.1. BIS/BAS questionnaire and procedure

Participants completed a Dutch version of the Behavioral Inhibition System/Behavioral 

Activation System scale (BIS/BAS; Carver et al., 1994). The BIS/BAS is a 20-item 

questionnaire. Our interest was focused on the BAS scale, which comprises 13 items 

(BAS-Total) and has three sub-scales: Drive (BAS-Drive), Fun-Seeking (BAS-Fun), and 

Reward-Responsiveness (BAS-Reward).

2.2.3.2. Behavioral analysis

The behavioral measures of interest were BAS-Total scores and BAS-Fun scores. BAS-

Total scores assess the sensitivity to signals of reward and non-punishment. BAS-Fun 

scores assess the tendency to seek out new potentially rewarding experiences. For 

each participant these scores were imported into R software for the Bayesian 

correlation test. 

2.2.3.3. ROI generation

Xu et al. (2012) reported significant positive correlations between the BAS-Total scores 

and !1 within left corona radiata (CR) and left superior longitudinal fasciculus (SLF). 

Furthermore, they reported positive correlations between the BAS-Fun scores and !1 

as well as FA within left CR and left SLF. The authors also reported significant positive 

correlations between the BAS-Fun scores and MD within left inferior longitudinal 

fasciculus (ILF) and left inferior fronto-occipital fasciculus (IFOF). We defined all these 

WM tracts as our ROIs. Dr. Xu kindly provided us with the spatial maps of these areas.

2.2.3.4. Correlational analysis

For every participant, we extracted FA, MD, and !1 values from all voxels contained in 

the respective ROIs and averaged them. These values were then corrected for age and 

gender using partial correlations. Unlike Xu et al. (2012), we did not need to correct for 

differences in education because our participants were all first-year Psychology 

students. The corrected mean WM tract measures per ROI were imported into R 

software for the Bayesian correlation test. Specifically, we tested for positive correlations 

between BAS-Total scores and mean !1 within left CR and left SLF. Furthermore, we 
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tested for positive correlations between BAS-Fun scores and mean !1 as well as mean 

FA within left CR and left SLF. Finally, we tested for positive correlations between BAS-

Fun scores and mean MD within left ILF and left IFOF.

2.2.4. Replication 4: Kanai et al. (2011)

2.2.4.1. Cognitive Failures Questionnaire and procedure

Participants completed a Dutch version of the Cognitive Failures Questionnaire (CFQ, 

Broadbent et al., 1982).

 

2.2.4.2. Behavioral data analysis

The behavioral measure of interest is distractibility as assessed by the CFQ. As in Kanai 

et al. (2011), we quantified distractibility by computing the standard loadings derived 

from a previous factor analysis (Wallace, Kass, & Stanny, 2002). Specifically, we used 

the following 9 items: 1, 2, 3, 4, 15, 19, 21, 22, and 25. Scores on these items were 

imported into R software for the Bayesian correlation test.

2.2.4.3. ROI generation

Kanai et al. (2011b) reported a significant positive correlation between CFQ scores and 

GM volume within left superior parietal lobe (SPL). Furthermore, the authors reported a 

negative correlation between CFQ scores and GM volume within left middle prefrontal 

cortex (mPFC). We defined these regions as our ROIs. Dr. Kanai kindly provided us with 

the spatial maps of these regions.

2.2.4.4. Correlational analysis

For every participant, we extracted GM volume values from all voxels contained in the 

respective ROIs and averaged them. These GM volume values were then corrected for 

age, gender and total grey matter volume using partial correlations. The corrected mean 

GM volume values were imported into R software for the Bayesian correlation test. 

Specifically, we tested for a positive correlation between CFQ scores and mean GM 
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volumes within left SPL, and for a negative correlation between these measures within 

left mPFC.

2.2.5. Replication 5: Westlye et al. (2011)

2.2.5.1. Attention Network Test

We used the same Attention Network Test as Westlye and colleagues (2011; 

downloaded from Dr. Jin Fan’s website www.sacklerinstitute.org/users/jin.fan). The 

task included 2 runs of 96 trials and 20 practice trials. Each trial began with the 

presentation of a fixation cross in the centre of the screen for variable durations (400, 

800, 1200, or 1600 ms). Subsequently, one of three cues was presented for 100 ms: (1) 

no cue, (2) centre cue (*, replacing fixation cross), or (3) spatial cue (*, above or below 

fixation cross). This was followed by the presentation of the target for a maximum 

duration of 1700 ms, or until a response was made. The target was an arrow in the 

centre of a row of 5 arrows, presented either below or above the fixation cross. The 

flanking arrows consisted of either (1) two congruent arrows (pointing in the same 

direction as the target), (2) two incongruent arrows (pointing in the opposite direction of 

the target), or (3) two lines on each side of the target (neutral). Participants were 

instructed to report the direction (left or right) of the target arrow by pressing the 

spatially compatible key (‘left mouse button’ or ‘right mouse button’) with their left or 

right thumb. The entire experiment took approximately 15 minutes.

2.2.5.2. Behavioral data analysis

The behavioral measures of interest are executive control and alerting network scores, 

assessing the executive control and the alerting components of attention, respectively. 

We applied the same processing steps as described by Westlye et al. (2011) prior to 

computing these scores: “To remove outliers, all RTs > 1500 ms and < 200 ms were 

removed (...). Next, since error responses are assumed to originate from a different RT 

distribution than correct responses, we only analyzed correct responses. Also, because 

responses following erroneous responses typically are slower than responses following 

correct responses (posterror slowing), we also removed responses following erroneous 
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responses. Since RTs are not normally distributed, we used median RT per condition as 

raw scores for each subject. (...). (page 348).” However, we did not adjust the 

component scores with the baseline RT in order to control for an effect of age on RT, 

because our participants form a homogenous age group (Psychology freshmen). 

Based on median RT, the executive control and alerting scores will be computed as 

follows:

Executive control = [RTincongruent - RTcongruent] / RTcongruent

Alerting = [RTno cue – RTcenter cue] / RTcenter cue

For each participant, the resulting scores were imported into R software for the 

Bayesian correlation test.

2.2.5.3. ROI generation

For their subsample of young participants, Westlye et al. (2011) reported significant 

negative correlations between executive control scores and CT within left caudal 

anterior cingulate cortex (ACC), left superior temporal gyrus (STG), and right middle 

temporal gyrus (MTG). The alerting scores showed a significant negative correlation 

with CT within left superior parietal lobe (SPL). We defined all these regions as our 

ROIs. Dr. Westlye kindly provided us with the FreeSurfer labels of these areas.

2.2.5.4. Correlational analysis

For every participant, we extracted CT values from all voxels contained in the ROIs and 

averaged them. These CT measures were then corrected for age and gender using 

partial correlations. The corrected mean CT measures were imported into R software for 

the Bayesian correlation test. Specifically, we tested for negative correlations between 

executive control scores and mean CT within left caudal ACC, left STG and right MTG. 

Furthermore, we also tested for a negative correlation between alerting scores and 

mean CT within left SPL.
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3. Results

Below we describe study-specific results for the five experiments included in the final 

replication attempt remaining after study exclusion, comprising a total of 17 predicted 

effects. For each study, we briefly re-iterate the original findings, followed by our 

predictions based on these findings. We describe potential outlier exclusion and list the 

Bayes factors in favor of the null hypothesis (BF01). Furthermore, we describe the 

outcome of the additional exploratory Bayes factor analysis that uses an informative 

prior distribution (cf. Verhagen and Wagenmakers, 2014). 

3.1. Replication 1: Forstmann et al. (2010)

Forstmann et al. (2010) reported that individual differences in tract strength from right 

pre-SMA to right striatum predict individual differences in control over speed and 

accuracy in a perceptual decision making paradigm. The original authors replicated their 

effect in an independent data set. In line with the original authors' theorizing and results, 

we hypothesized the presence of a positive correlation between pre-SMA-striatum tract 

strength and LBA flexibility.

Three participants did not complete the behavioral task and were thus excluded from 

further analysis. Tract strengths of 2 out of 33 participants deviated more than 2.5 SDs 

from the group mean, and were thus excluded from this replication attempt. After outlier 

rejection, tract strength data ranged from 0.682 to 0.914, with a mean of 0.819 and a 

standard deviation of 0.061. LBA flexibility ranged from 0.020 to 1.554, with a mean of 

0.578 and a standard deviation of 0.410. A one-sided Bayesian hypothesis test for 

positive correlations was performed on these data. Its result is shown in Table 2 and 

Figure 3. The Bayes factor shows that there is moderate support for the null hypothesis 

of no correlation. In order to provide a complete report of the SBB correlation found here 

in comparison with the original finding, Figure S2 shows posterior probability plots of 

this effect. 
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Fig 3. Scatterplot of replication 1: Forstmann et al. (2010).

The relationship between LBA caution parameter (quantified by taking the difference in 

response caution between the accuracy and speed condition) and tract strength 

between right Pre-SMA and right Striatum, quantified by probabilistic tractography.

Table 2. Results of the one-sided Bayesian hypothesis test for a positive correlation

Data pair ConÞrmatory Exploratory

ROI
nori

g

nre

p rorig rrep BF01 Evidence cat. BF0r Evidence cat.
p-

value

Tract strength and 
LBA ßexibility
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The additional exploratory Bayes factor analysis with informative priors (Verhagen and 

Wagenmakers, 2014) shows that the data are extremely likely to have occurred under 

the null hypothesis compared to the proponent’s hypothesis. Figure S2 (bottom) shows 

posteriors for this exploratory Bayes factor analysis. The p-value indicated a failed 

replication.

3.2. Replication 2: Kanai et al. (2012)

Kanai et al. (2012) showed that individual differences in the number of Facebook friends 

(FBN) and real-world social network size (SNS) are positively correlated with GM 

volume in several brain areas. The original authors replicated their effects in an 

independent data set. In line with the original authors' theorizing and results, we 

hypothesized positive correlations between FBN and GM volume in left MTG, right STS, 

right EC, and bilateral amygdala. In addition, we hypothesized a positive correlation 

between SNS and GM volume in right amygdala.

One participant did not complete the FBN and two participants did not complete the 

SNS questionnaire, and were thus excluded from further analysis. One participant was 

excluded in 4 out of 6 Bayesian correlations, due to a GM volume measure deviating 

more than 2.5 SDs from the group mean. After outlier rejection, the following summary 

statistics describe our data: FBN: range: 10.0499 – 24.7386, mean: 17.096, sd: 3.788. 

SNS: range: -1.05 – -0.44, mean: -0.650, sd: 0.153. GM in left MTG: range: 0.411 – 

0.562, mean: 0.476, sd: 0.035. GM in right STS: range: 0.336 – 0.595, mean: 0.484, sd: 

Pre-SMA to 
striatum 9 31 0.9

3
0.0
3 3.90 Moderate 

(H0)
180.20 Extreme (H0) 0.431

Data pair ConÞrmatory Exploratory

ROI
nori

g

nre

p rorig rrep BF01 Evidence cat. BF0r Evidence cat.
p-

value
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0.062. GM in right EC: range: 0.521 – 0.785, mean: 0.628, sd: 0.063. GM in left 

Amygdala: range: 0.636 – 0.770, mean: 0.707, sd: 0.033. GM in right Amygdala: range 

0.603 – 0.772, mean: 0.670, sd: 0.035.  One-sided Bayesian hypothesis tests for 

positive correlations were performed on these data. Results are shown in Table 3 and 

Figure 4. In 5 out of 6 cases we find support for the null hypothesis. The Bayes factors 

show that there is moderate support for the null hypothesis in 3 out of 6 effects (i.e., no 

correlations between FBN and GM volume in right EC, and bilateral amygdala). Our 

data are ambiguous with regard to the correlations between FBN and GM volume in left 

MTG and right STS. In order to provide a complete report of the SBB correlations found 

here in comparison with the original findings, Figures S3-8 show posterior probability 

plots of these effects.

Table 3. Results of the one-sided Bayesian hypothesis tests for positive correlations

Data pair ConÞrmatory Exploratory

ROI norig nrep rorig rrep BF01 Evidence cat. BF0r Evidence cat.
p-

value

FBN and GM 
volume

left MTG 125 34 0.3
5 0.18 1.73 Anecdotal (H0) 1.06 Anecdotal (H0) 0.158

right STS 125 35 0.3
5 0.11 2.66 Anecdotal (H0) 2.06 Anecdotal (H0) 0.261

right EC 125 35 0.3
5 0.06 3.51 Moderate (H0) 3.32 Moderate (H0) 0.360

left amygdala 125 34 0.3
0 -0.14 7.76 Moderate (H0) 9.56 Moderate (H0) 0.779

right 
amygdala 125 34 0.3

2 0.02 4.35 Moderate (H0) 3.88 Moderate (H0) 0.462

SNS and GM 
volume

right 
amygdala 65 33 0.2

6 0.30 0.57 Anecdotal (H1) 0.27 Moderate (Hr) 0.041
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Fig 4. Scatterplots of replication 2: Kanai et al. (2012).

 (A-E) The relationship between the number of Facebook friends and GM in (A) left 

MTG, (B) right STS, (C) right EC, (D) left amygdala, (E) right amygdala. (F) the 

relationship between real world social network size and GM in the right amygdala.
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The additional exploratory Bayes factor analyses with informative priors (Verhagen and 

Wagenmakers, 2014) show that for two effects there is anecdotal evidence in favor of 

the null hypothesis compared to the proponent’s hypothesis. For three effects there is 

moderate evidence in favor of H0, and for one effect there is moderate evidence in favor 

of Hr, compared to H0. Figures S3-8 (bottom) show posteriors for these exploratory 

Bayes factor analyses. P-values indicate failed replications for 5 out of 6 effects. For the 

correlation between SNS and GM volume in right amygdala, the p-value indicates a 

successful replication.

3.3. Replication 3: Xu et al. (2012)

Xu et al. (2012) reported that individual differences in diffusion measures of several 

white matter pathways are positively correlated with individual differences in the 

tendency to seek out new potentially rewarding experiences (i.e., BAS-Fun) and the 

sensitivity to signals of reward and non-punishment (BAS-Total). In line with the original 

authors' theorizing and results, we hypothesized a positive correlation between the 

BAS-Total scores and !1 within left CR and left SLF, a positive correlation between  

BAS-Fun and FA in left CR and SLF, a positive correlation between BAS-FUN and !1 in 

left CR and SLF, and a positive correlation between BAS-Fun and MD in left ILF and 

IFOF. 

One participant was excluded from !1 analyses due to white matter structural measures 

deviating more than 2.5 SDs from the group mean. After outlier rejection, the following 

summary statistics describe our data: BAS-Total: range: 14 – 31, mean: 22.833, sd: 

3.783. BAS-FUN: range: 5 – 12, mean: 7.667, sd: 1.821. FA in left CR and SLF: range: 

0.649 – 0.810, mean: 0.736, sd: 0.039. !1 in left CR and SLF: range: 7.4E4 – 9.2E4, 

mean: 8.2E4, sd: 3.7E5. MD in left SLF and IFOF: range: 3.9E4 – 4.7E4, mean: 4.3E4, 

sd: 1.8E5. One-sided Bayesian hypothesis tests for positive correlations were 

performed on these data. Results are shown in Table 4 and Figure 5. In all cases we 

find support for the null hypothesis. The Bayes factors show that there is moderate or 

strong support for the null hypothesis in 3 out of 4 tests (i.e., no correlation between 

BAS-Total and !1 in left CR and SLF, no correlation between BAS-FUN and FA in left 
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CR and SLF, and no correlation between Bas-FUN and !1 in left CR and SLF). Our data 

are ambiguous with regard to the correlation between bas-FUN and MD in left ILF and 

IFOF. In order to provide a complete report of the SBB correlations found here in 

comparison with the original findings, Figures S9-12 show posterior probability plots of 

these effects.

Fig 5. Scatterplots of replication 3: Xu et al. (2012).

 (A) The relationship between Bas-total and !1 in left CR and left SLF. (B-D) The 

relationship between Bas-FUN and (B) FA in left CR and left SLF, (C) !1

 in left CR and left SLF, and (D) MD in left SLF and left IFOF.
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Table 4. Results of the one-sided Bayesian hypothesis tests for positive correlations

The additional exploratory Bayes factor analyses with informative priors (Verhagen and 

Wagenmakers, 2014) show that for three effects there is extreme evidence in favor of 

the null hypothesis compared to the proponent’s hypothesis, and for one effect there is 

moderate evidence in favor of H0. Figures S9-12 (bottom) show posteriors for these 

exploratory Bayes factor analyses. All p-values indicate failed replications.

3.4. Replication 4: Kanai et al. (2011)

Kanai et al. (2011) reported that individual differences in the degree of distractibility 

(CFQ) are correlated with GM volume in several brain areas. In line with the original 

authors' theorizing and results, we hypothesized a positive correlation between CFQ 

Data pair ConÞrmatory Exploratory

ROI norig nrep rorig rrep BF01

Evidence 
cat. BF0r Evidence cat.

p-
value

BAS-Total 
and !1

Left CR and 
SLF 51 35 0.5

1 -0.28 11.74 Strong (H0) 249.41 Extreme (H0) 0.948

BAS-FUN and 
FA

Left CR and 
SLF 51 36 0.5

2 -0.19 9.40 Moderate 
(H0)

170.51 Extreme (H0) 0.861

BAS-FUN and 
!1

Left CR and 
SLF 51 35 0.5

8 -0.24 10.57 Strong (H0) 848.06 Extreme (H0) 0.915

BAS-FUN and 
MD

Left SLF and 
IFOF 51 36 0.5

1 0.15 2.04 Anecdotal 
(H0)

4.13 Moderate 
(H0)

0.187
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scores and GM volume in left SPL, and a negative correlation between CFQ and GM 

volumes in left mPFC. 

The following summary statistics describe our data: CFQ: range: 5 – 29, mean: 16.472, 

sd: 5.443. GM in left SPL: range: 0.378 – 0.812, mean: 0.545, sd: 0.113. GM in left 

mPFC: range: 0.342 – 0.693, mean: 0.499, sd: 0.101. Results of the one-sided 

Bayesian hypothesis tests for correlations are shown in Table 5 and Figure 6. In both 

cases we find anecdotal support (“not worth more than a bare mention”, Jeffreys, 1961, 

Appendix B) for the null hypothesis. In order to provide a complete report of the SBB 

correlations found here in comparison with the original findings, Figures S13-14 show 

posterior probability plots of these effects.

Fig 6. Scatterplots of replication 4: Kanai et al. (2011).

The relationship between CFQ score and GM in (A) left lmPFC, and (B) left SPL.
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Table 5. Results of the one-sided Bayesian hypothesis tests for positive correlations. In 

line with the prediction of a negative correlation, the test was flipped in sign for the 

correlation between CFQ and GM in left mPFC.

The additional exploratory Bayes factor analyses with informative priors (Verhagen and 

Wagenmakers, 2014) show that for both effects there is anecdotal evidence in favor of 

the proponent’s hypothesis compared to the null hypothesis. Figures S13-14 (bottom) 

show posteriors for these exploratory Bayes factor analyses. All p-values indicate failed 

replications.

3.5. Replication 5: Westlye et al., 2011

Westlye et al. (2011) reported that individual differences in aspects of attention 

(executive control and alerting) are correlated with cortical thickness in several brain 

areas. In line with the original authors' theorizing and results, we hypothesized negative 

correlations between executive control scores and CT in left caudal anterior cingulate 

cortex, left superior temporal gyrus, and right middle temporal gyrus. In addition, we 

Data pair ConÞrmatory Exploratory

ROI norig

nre

p rorig rrep BF01 Evidence cat. BF0r Evidence cat. p-value

CFQ and 
GM volume

Left SPL 144 36 0.38 0.22 1.24 Anecdotal (H0) 0.73 Anecdotal 
(Hr)

0.102

Left mPFC 144 36 -0.2
8

-0.1
9 1.51 Anecdotal (H0) 0.67 Anecdotal 

(Hr)
0.129
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hypothesized a negative correlation between alerting scores and CT in left superior 

parietal lobe. 

One participant was excluded due to cortical thickness measures deviating more than 

2.5 SDs from the group mean. After outlier rejection, the following summary statistics 

describe our data: Alerting: range: -0.068 – 0.157, mean: 0.064, sd: 0.050. Executive 

control: range: 0.057 – 0.402, mean: -0.229, sd: 0.082. CT in left caudal ACC: range: 

2.464 – 2.979, mean: 2.671, sd: 0.121. CT in left STG: range: 2.692 – 3.075, mean: 

2.901, sd: 0.083. CT in right MTG: range: 2.361 – 2.570, mean: 2.478, sd: 0.050. CT in 

left SPL: range: 2.116 – 2.610, mean: 2.360, sd: 0.103. One-sided Bayesian hypothesis 

tests for negative correlations were performed on these data. Results are shown in 

Table 6 and Figure 7. In all cases we find support for the null hypothesis. The Bayes 

factors show that there is moderate support for the null hypothesis in one out of four 

tests (i.e., no correlation between alerting scores and CT in left SPL). Our data are 

ambiguous with regard to the correlations between executive control scores and CT in 

left caudal ACC, left STG, and right MTG. In order to provide a complete report of the 

SBB correlations found here in comparison with the original findings, Figures S15-18 

show posterior probability plots of these effects.

!77



Fig 7. Scatterplots of replication 5: Westlye et al. (2011).  

(A-C) The relationship between EC scores and CT in (A) left caudal ACC, (B) left STL, 

and (C) right MTL. (D) The relationship between A scores and CT in left SPL.
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Table 6. Results of the one-sided Bayesian hypothesis tests for positive correlations. In 

line with the prediction of negative correlations, the tests were flipped in sign.

The additional exploratory Bayes factor analyses with informative priors (Verhagen and 

Wagenmakers, 2014) show that for 2 effects there is anecdotal evidence in favor of the 

null hypothesis compared to the proponent’s hypothesis. For 1 effect there is strong 

evidence in favor of H0, and for 1 effect there is extreme evidence in favor of H0 

compared to Hr. Figures S15-18 (bottom) show posteriors for these exploratory Bayes 

factor analyses. All p-values indicate failed replications.

3.6 Summary of results

Our results show an attenuation in effect size for almost all effects. To illustrate this 

overall attenuation, Figure 8 shows the posterior probability distributions for all effects 

under scrutiny. Effect sizes seem to attenuate towards zero, or sometimes even shift to 

an opposite direction. However, for one effect from Kanai et al. (2012), the effect size is 

similar to the effect size found in the original study. For this effect our exploratory 

Data pair ConÞrmatory Exploratory

ROI norig nrep rorig rrep BF01 Evidence cat. BF0r

Evidence 
cat.

p-
value

Executive 
control and CT

left caudal ACC 132 35 -0.2
1

-0.1
8 1.71 Anecdotal 

(H0)
0.67 Anecdotal 

(Hr)
0.153

left STG 132 35 -0.1
5

-0.1
4 2.23 Anecdotal 

(H0)
0.81 Anecdotal 

(Hr)
0.211

right MTG 132 35 -0.1
3

-0.1
9 1.60 Anecdotal 

(H0)
0.65 Anecdotal 

(Hr)
0.141

Alerting and CT

left SPL 132 35 -0.2
6 0.16 8.58 Moderate 

(H0)
7.70 Moderate 

(H0)
0.824
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analyses indicate successful replications. In addition, three effects from the Westlye et 

al. (2011) study also show similar effect sizes to the ones found in the original 

investigation. For these effects, the addition of data could narrow the posterior 

probability distributions, potentially resulting in a successful replication.

Fig 8. Summary image of our replication results.
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95% confidence intervals of posterior probability distributions are shown for the original 

studies (red), replications within original studies (purple), and the current independent 

replication attempt (blue). individual effects: (1): LBA flexibility correlated to tract 

strength between pre-supplementary motor area and striatum. (2-6): FBN correlated to 

grey matter volume in (2) left middle temporal gyrus, (3) right superior temporal sulcus, 

(4) right entorhinal cortex, (5) left amygdala, and (6) right amygdala. (7) SNS correlated 

to grey matter volume in right amygdala. (8) BAS-total correlated to !1 in left CR and 

SLF. (9) BAS-FUN correlated to FA in left CR and SLF. (10) BAS-FUN correlated to !1 

in left CR and SLF. (11) BAS-FUN correlated to MD in left SLF and IFOF. (12-13) CFQ 

correlated to grey matter volume in (12) left superior parietal lobe and (13) left middle 

prefrontal cortex. (14-16) Executive control correlated to cortical thickness in (14) left 

caudal anterior cingulate cortex, (15) left superior temporal gyrus, and (16) right middle 

temporal gyrus. (17) Alerting correlated to cortical thickness in left superior parietal lobe.

4. Discussion

In this study we set out to replicate five experiments showing structural brain-behavior 

correlations. We adopted a preregistered, purely confirmatory approach so as to avoid 

common pitfalls in neuroscience such as the use of nonindependent analysis (Vul et al., 

2009), double dipping (Kriegeskorte et al., 2009), obscure data collection and analysis 

which increase false-positive rates (Simmons et al., 2011), and confirmation and 

hindsight bias on the part of the researcher (Wagenmakers et al., 2012). The five 

studies we attempted to replicate contained a total of 17 SBB correlations. The results 

from our confirmatory analyses show that we were unable to successfully replicate any 

of these 17 correlations. For all but one of the 17 findings under scrutiny, Bayesian 

hypothesis tests indicated evidence in favor of the null hypothesis. The extent of this 

support ranged from anecdotal (Bayes factor < 3) to strong (Bayes factor > 10).

Our additional exploratory analyses consisted of computing p-values, and a Bayes 

factor using an alternative method recently developed by Verhagen and Wagenmakers 

(2014). This method employs a more specific alternative hypothesis (termed the 
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proponent’s hypothesis), which predicts that the effect size is similar to the effect size of 

the original finding, rather than just predicting the direction of the effect. This analysis 

generally provided similar or greater support for the null hypothesis. In addition, 16 out 

of 17 p-values were higher than threshold (0.05), indicating unsuccessful replications. 

For one effect in the Kanai et al. (2012), the p-value indicated a successful replication.

In the current replication attempt we aimed to replicate the original experiments as 

closely as possible. In order to adhere to this plan we adopted a strictly confirmatory 

framework by publishing a ‘Methods and Analysis document’ online before any data 

were inspected or analyzed. This M&A document described all acquisition and analysis 

plans. After data analysis was complete it became clear that for some analyses, better 

alternative methods are available. However, the current replication attempt was strictly 

confirmatory, and thus we choose to (1) not perform these alternative analysis methods, 

and (2) make the data publicly available , so that other researchers might perform 11

these alternative analysis methods instead. It should be noted, however, that these 

alternative analysis methods can no longer be presented as strictly confirmatory.

Despite our best efforts to replicate the original experiments as closely as possible, this 

was partly not feasible and partly not desired. Thus, there are a number of deviations 

from the original study protocols. In the following section, deviations will be discussed 

with respect to the possibility that they contributed to spurious non-replication (i.e., a 

failure to detect a true correlation) of the investigated SBB correlations.

1. The sample characteristics of the present replication differed from the sample 

characteristics in the original studies (e.g., in terms of mean age). This might have led 

to systematic differences in the behavioral measures. We addressed this issue by 

correcting our data for age and gender, as was done in most original studies included 

in our replication attempt. Differences in sample characteristics might still have non-

linear effects on our measures, or aging might have differing effects on different brain 

The data set can be freely downloaded from the NITRC Neuroimaging data 11

repository: https://www.nitrc.org/projects/confrep2014/ 
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regions. Future replication studies could take into account the characteristics of the 

sample used in the original study, and attempt to match participants in the replication 

sample to participants in the original sample more closely. 

Despite the relevance of this concern, note that in cognitive neuroscience, one often 

makes claims with regard to a population of humans (i.e., generalizing towards an 

‘average person’). If the reported effects are indeed non-specific to the sample and its 

characteristics, there is no reason to assume a priori that a sample with different 

characteristics impairs our ability to detect the effect. For this reason we chose to 

acquire data from the current sample, and hypothesize effects as they were described 

in the original studies. In order to address the concern that (non-linear) effects of 

differences in sample characteristics might still impair our ability to find these effects, 

additional research is needed to investigate the specific sample characteristics for which 

these effects are present.

Similarly, our data differ from the data in the original studies, for instance in terms of the 

spread of some of the behavioral measures. However, these differences should have 

little impact on the correlational analyses, since these are not based on the values of 

the two measures of interest, but on their linear dependence. Only one behavioral 

measure (i.e., scores on the political orientation questionnaire) did not show enough 

variance in order to perform a replication attempt.

With respect to sample size, it should be noted that while our sample size was lower 

than most original studies, our results showed that in our data set, 8 out of a total of 17 

hypothesized effects were contradicted with moderate or strong levels of evidence. 

Thus, even though larger samples are always better than smaller samples from a pre-

experimental perspective, our Bayesian post-experimental perspective shows that even 
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with 36 participants it is possible to obtain informative results . Nevertheless, we 12

encourage additional replication attempts of SBB correlations using larger sample sizes 

in order to further decrease uncertainty about the replicability of these effects. 

2. The MRI data used in the present replication were acquired using a different scanner 

and with slightly different scanning parameter settings than the MRI data of the 

original studies. However, recent multi-site reliability studies have shown that these 

differences have only little impact in both VBM/CT (Jovicich, Marizzoni, Sala-Llonch, 

Bosch, Bartrés-Faz et al., 2013; Schnack, van Haren, Brouwer, van Baal, Picchioni et 

al., 2010) and DTI analyses (Fox, Sakaie, Lee, Debbins, Liu et al., 2012).

3. In our TBSS analysis pipeline, another addition to the original protocols is the 

registration of the ROI spatial maps to our mean FA skeleton. We used spatial maps 

that were provided by the original authors, and comprised those voxels that 

correlated with the behavioral measure in the original study. As opposed to using 

comparably large atlas-based ROI, this approach minimizes the probability that the 

contribution of a small subset of voxels that correlate with the behavioral measure is 

canceled out due to averaging across all voxels within the atlas-based ROI. However, 

in order to be able to use the spatial maps from the original studies we had to register 

them into the skeleton space common to all participants in our sample. Following the 

principle of parsimony, we used affine-only (linear) registration with 12 degrees-of-

freedom (DoF), which does not guarantee perfect alignment of even the major tracts 

(Smith et al., 2006). Residual misalignments would be reduced with the use of 

nonlinear registration. However, such high-DoF alternatives might warp the images so 

much that the overall structure is not preserved (Smith et al., 2006). It should be 

noted that, due to the residual misalignments from the linear registration, only a 

subset of the voxels contained in the registered spatial maps was used in the 

In general, it is possible for low-power experiments to yield diagnostic results, 12

and for high-power experiments to yield non-diagnostic results. By conditioning on the 
observed data, Bayes factors quantify the evidential impact of the information at hand, 
ignoring hypothetical outcomes that did not occur (Wagenmakers, Verhagen, Ly, Bakker, 
Lee et al., in press; http://ejwagenmakers.com/inpress/APowerFallacy.pdf).
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correlational analysis. Only voxels, overlapping with the mean FA skeleton were 

considered. The reduction in the size of ROI would be a concern if we had performed 

voxelwise statistics (Smith et al., 2006). However, since we aggregated only one 

value per ROI, it is unlikely that the smaller ROIs have led to spurious non-replication. 

On a more general note, software packages may differ slightly in the statistical methods 

that they employ. These differences can have a relevant impact on the results (e.g., 

Gronenschild, Habets, Jacobs, Mengelers, Rozendaal et al., 2012; Rajagopalan, Yue, & 

Pioro, 2014). Our data are publicly available, so that other researchers can carry out 

additional analyses to probe the robustness of our results. However, such analyses can 

only be partly confirmatory. Here we restrict ourselves to reporting pre-registered, purely 

confirmatory analyses performed in FSL (Douaud et al., 2007).

4. The use of Bayesian hypothesis tests for correlations instead of the common null 

hypothesis significance tests was motivated by two compelling advantages. First, 

unlike p values the Bayes factor can quantify evidence in favor of the null hypothesis. 

Second, unlike p-values, Bayes factors do not have the tendency to over-estimate the 

evidence against the null hypothesis (Edwards, et al., 1963; Sellke, Bayarri, & Berger, 

2001; Wetzels, Matzke, Lee, Rouder, Iverson et al., 2011). Note, however, that we 

have included p-values as exploratory tests. Another deviation concerning the 

correlational analyses is that we used one-sided instead of two-sided tests, 

incorporating our prior expectations about the direction of the SBB correlations based 

on the findings of the original studies. However, this approach provides more 

compelling evidence (e.g., Hoijtink, Klugkist, & Boelen, 2008; Wagenmakers, 

Lodewyckx, Kuriyal, & Grasman, 2010) and should facilitate replication of true SBB 

correlations and not contribute to spurious non-replication.

5. While our ROI approach is specific with regard to the location at which we predict the 

SBB correlation, it does not take anatomical variability between data sets into 

account. In addition, we extracted the mean signal from the ROIs instead of 

performing voxel-wise correlations within the ROIs. This process, in combination with 
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anatomical variability between data sets, introduces noise into the structural 

measures, potentially concealing the SBB correlation. Future replication work might 

employ different approaches, which take into account potential anatomical variability, 

while still making clear predictions with regard to spatial locations of SBB correlations. 

Note that this point emphasizes the importance of replications within the current field 

of work. Given that there is random variation in the location of the effect as well as the 

size of the effect, replication studies are necessary in order to identify the precise 

location of the effect in addition to the precise effect size.

From the above discussion, one might be tempted to conclude that most of the SBB 

correlations tested here simply may not exist. However, as previously mentioned, a 

single replication cannot be conclusive in terms of confirmation or refutation of a finding. 

We acknowledge the recent replication efforts within the social sciences in general and 

psychology and neuroscience in particular; an excellent example is the Reproducibility 

Project of the Open Science Framework (http://openscienceframework.org/) and the first 

Registered Replication Report (Alogna et al., 2014). Still, to our knowledge, the present 

replication is the first independent attempt to replicate SBB correlations, despite the 

considerable number of publications on the matter. We believe that in order to establish 

correlations between behavior and structural properties of the brain more firmly, it is 

desirable for the field to replicate SBB correlations, preferably using preregistration 

protocols and Bayesian inference methods.
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Chapter 3 

Challenges in replicating brain-behavior correlations: Rejoinder to Kanai (2015) and 

Muhlert & Ridgway (2015). 

Authors 

W. Boekel1, B.U. Forstmann1, E.-J. Wagenmakers1 
1University of Amsterdam, the Netherlands 

1. Introduction

In a recent study we attempted to replicate five studies that had previously reported a 

combined total of 17 significant structural brain behavior (SBB) correlations (Boekel et 

al., 2015). We preregistered our analysis plan and used confirmatory Bayesian 

hypothesis tests to quantify the evidence that our data provided for the presence or 

absence of the SBB correlations. For about half of the 17 SBB correlations that we set 

out to replicate the data suggested at least moderate evidence for their absence, and 

for 16 out of the 17 correlations the data produced no evidence for their presence. 

Subsequent exploratory analyses using Bayesian parameter estimation and a Bayesian 

replication test sketched a more nuanced perspective of the replication results. 

Nevertheless, our overall results suggest that confirmatory replication studies in the 

cognitive neurosciences deserve a more prominent role.

Our confirmatory replication has attracted two commentaries from researchers who are 

skeptical about our results. In “Failed replications, contributing factors and careful 

interpretations”, Muhlert and Ridgway (2015) critique our replication attempt for having 

low sample size and incomplete correction for nuisance variables. In addition, they note 

that there are differences in the VBM processing pipelines used by the original authors 

and those used in the replication attempt, and suggest that these differences may have 

contributed towards the discrepant results. 
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In “Open questions in conducting confirmatory replication studies”, Kanai (2015) also 

critiques our replication approach and points out that our confirmatory ROI approach 

may underestimate the SBB correlations. In addition, Kanai feels that the process of 

refereeing a preregistered study demands clearer guidelines.

We wish to thank the discussants for their interesting suggestions and constructive 

comments. At the moment little guidance exists with respect to the design and 

interpretation of purely confirmatory replication studies in the cognitive neurosciences, 

and we hope this discussion can help stimulate the development of common goals and 

guidelines.

Below, we discuss the key concerns raised in the commentaries. We also suggest ways 

in which future replication studies can take into account the issues raised by these 

commentaries.

2.1. Concern 1: Low sample size

Both Muhlert and Ridgway (2015), and Kanai (2015) point out that the sample size of 

our replication attempt was lower than the sample sizes of the original findings for 16 

out of 17 effects. For 9 out of these 17 effects, our data remained evidentially 

ambiguous (i.e., 1/3 < BF01 < 3). If we had gathered more data, these replication 

attempts might have provided us with more evidence, in favor of either hypotheses. 

Larger sample sizes generally provide a more accurate account of the size and location 

of the effect that is investigated. 

We acknowledged the sample size issue explicitly in our original article: “With respect to 

sample size, it should be noted that while our sample size was lower than most original 

studies, our results showed that in our data set, 8 out of a total of 17 hypothesized 

effects were contradicted with moderate or strong levels of evidence. Thus, even though 

larger samples are always better than smaller samples from a pre-experimental 

perspective, our Bayesian post-experimental perspective shows that even with 36 
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participants it is possible to obtain informative results. Nevertheless, we encourage 

additional replication attempts of SBB correlations using larger sample sizes in order to 

further decrease uncertainty about the replicability of these effects.” (p. 130)

Wagenmakers, Verhagen, Ly, Bakker, Lee et al. (in press) provide concrete illustrations 

of situations in which low-powered experiments yield diagnostic results, and situations 

in which high-powered experiments yield nondiagnostic results. In addition, 

Wagenmakers, Verhagen, and Ly (in press) show that some real, high-powered data 

sets can produce evidence that is only anecdotal. The Bayesian bottom line is that a 

power analysis is useful for planning a study, as it takes into account all possible 

outcomes that can be expected for an intended sample size. However, once a specific 

data set is observed the power analysis is inferentially irrelevant, as all that counts is the 

evidence for the data that have been observed.

In our data, for 8 out of 17 effects under scrutiny, our confirmatory Bayesian test yielded 

non-anecdotal evidence in favor of the null-hypothesis, despite our relatively modest 

sample size. Thus, after the data have been observed, all that matters is the evidence. 

Low samples sizes mean that one can expect the evidence to be inconclusive, but that 

need not always be the case, and our data demonstrate that something can be learned 

even when sample size is low.

To provide a different perspective on what our data reveal despite the relatively low 

sample size, Figure 1 plots effect sizes of the original studies against those of our 

replication attempt. The blue line represents effect size equality. In general the effects 

cluster in the area to the right of the line, representing an attenuation of effect sizes in 

the replication studies. Thus, our results suggest that overall, the effect sizes from our 

studies are lower than those reported in the original studies. 
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Fig. 1 - Original and replication effect sizes plotted against each other, in order to show 

the attenuation or amplification of effect sizes. Effects 13 through 17 were flipped in sign 

for illustration purposes. An effect plotted on the blue line indicates no change in effect 

size from the original finding to the replication attempt. Effects in green plotted to the left 

of the blue line indicate amplified effect sizes from the original finding to the replication 

attempt, whereas effects in red plotted to the right of the blue line indicate attenuation of 

effect sizes
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Muhlert and Ridgway (2015) are concerned that readers might interpret the term “failed 

replications” to mean that there is compelling evidence for the absence of these effects. 

When we used the term, we meant to convey the fact that there was no evidence in 

favor of the presence of the SBB correlations. We agree that the term may be easily 

misunderstood, and that the ultimate assessment of a replication attempt requires a 

combination of testing and estimation, coupled with good judgment. The absence of 

evidence is not the same as evidence of absence, and one of the main advantages of a 

Bayesian analysis is that it can discriminate between the two possibilities. In our data, 

for some SBB correlations we find evidence of absence, and for others we find that the 

evidence is absent. We hope and expect that readers will turn to the concrete results of 

the Bayes factors and credible intervals to form their own opinion about the extent to 

which our results constitute a failure to replicate the original findings.

In order to provide a more nuanced perspective on the results from our replication 

attempts, we reported exploratory replication Bayes factor analyses and plotted 

posterior distributions for the correlations under scrutiny. These exploratory results can 

be used to identify potential candidates for further investigation. For example, the 

exploratory replication Bayes factor analysis of the correlation between social network 

size (SNS) and grey matter volume (GM) shows moderate evidence in favor of an effect 

similar to the one found in the original study (Table 1; effect #7). This correlation could 

be further examined in a new data set, using the combined data of previous findings 

and replications as a prior distribution for an informed Bayesian hypothesis test. In a 

similar way, the correlation between executive control and cortical thickness in right 

MTG (Table 1; effect #16) was larger in our replication sample (-0.19) than in the 

original sample (-0.13). Despite this, our confirmatory Bayes factor analysis suggests 

that the data are ambiguous (BF01=1.60) for this SBB correlation. The reason for this is 

the large difference in sample size between the original sample (n=132) and the 

replication (n=35) sample. While the point estimate of the correlation might be larger in 

our replication sample, the posterior probability distribution is wider given the lower 

sample size, and has more surface area over r = zero (see Figure 8 and Figure S17 in 

Boekel et al., 2015). The replication Bayes factor for this effect tilts more toward the 
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alternative hypothesis (BF01=0.65), providing another example for which the addition of 

data could result in a successful replication. It should be noted that while our exploratory 

Bayes factor analyses add a layer of nuance to our replication attempt, the general 

results are similar to our confirmatory analyses. For 9 out of 17 effects, the replication 

Bayes factor provides non-anecdotal evidence in favor of the null-hypothesis (Table 1). 

Table 1. Summary of the results from 17 replication attempts from Boekel et al. (2015). 

The data show an overall attenuation of effect size. Both confirmatory (BF01) and 

exploratory (BF0r) Bayes factors suggest non-anecdotal evidence in favor of the null 

hypothesis for about half of the replication attempts.

Effect # rorig rrep BF01 BF0r

1 0.93 0.03 3.90 180.20

2 0.35 0.18 1.73 1.06

3 0.35 0.11 2.66 2.06

4 0.35 0.06 3.51 3.32

5 0.30 -0.14 7.76 9.56

6 0.32 0.02 4.35 3.88

7 0.26 0.30 0.57 0.27

8 0.51 -0.28 11.74 249.41

9 0.52 -0.19 9.40 170.51

10 0.58 -0.24 10.57 848.06

11 0.51 0.15 2.04 4.13

12 0.38 0.22 1.24 0.73

13 -0.28 -0.19 1.51 0.67

14 -0.21 -0.18 1.71 0.67

15 -0.15 -0.14 2.23 0.81

16 -0.13 -0.19 1.60 0.65

17 -0.26 0.16 8.58 7.70
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2.2. Concern 2: Attenuation of effect sizes due to the exploratory nature of 

discovery

As summarized by Figure 1, our replication attempts yielded a general attenuation of 

effect sizes. There are several possible explanations for this attenuation. Muhlert and 

Ridgway point out that given the exploratory nature of many of the original studies, the 

attenuation of effect sizes in a replication attempt is not surprising. Specifically, the 

methods used for detecting an effect in an exploratory study may result in an 

overestimation of the true effect size (Kriegeskorte et al., 2010). This is especially likely 

in experiments where the sample size is small, such that the effect sizes need to be 

relatively large in order to pass the classical .05 level of significance. Consequently 

these effect sizes will likely reduce with subsequent replication attempts. This 

attenuation, although often a disappointing feature of a confirmatory replication attempt, 

is a necessary step in identifying the true size of an effect.

2.3. Concern 3: Correction for nuisance variables

Muhlert and Ridgway (2015) suggest that our incomplete correction for nuisance 

variables is another potential contributor to the attenuation of effect size. Specifically, we 

corrected the structural brain measures for nuisance variables such as age and sex, but 

we did not do this for the behavioral measures. This means that if our behavioral 

measures are correlated with the nuisance variables, our effect sizes may be 

underestimated. In order to investigate this possibility, we re-computed our results, this 

time also correcting behavioral data for nuisance variables. Table 2 shows the results. 

As Muhlert and Ridgway suggested, there seems to be a small overall increase in effect 

sizes. However, as indicated by the Bayes factors, none of our interpretations were 

altered in any meaningful way. 
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Table 2. Partial vs. complete correction for nuisance variables. There is a small general 

increase in effect sizes after complete correction for nuisance variables. However, 

Bayes factors were not affected in any meaningful way.

Pearson’s r BF01

Effect # Partial nuisance 
correction

Complete nuisance 
correction

Partial nuisance 
correction

Complete nuisance 
correction

1 .0324 .0679 3.8962 3.2978

2 .1774 .1833 1.7300 1.6571

3 .1118 .1153 2.6645 2.6093

4 .0627 .0646 3.5142 3.4787

5 -.1365 -.1401 7.7605 7.8485

6 .0167 .0171 4.3511 4.3424

7 .3076 .3209 0.5659 0.4905

8 -.2798 -.3030 11.7388 12.3844

9 -.1855 -.1927 9.3958 9.5917

10 -.2374 -.2472 10.5733 10.8397

11 .1528 -.1588 2.0415 1.9576

12 .2169 .2212 1.2437 1.1977

13 -.1937 -.1976 1.5055 1.4591

14 -.1782 -.1783 1.7094 1.7076

15 -.1400 -.1401 2.2306 2.2290

16 -.1869 -.1870 1.6015 1.5997

17 .1621 .2017 8.5804 9.6141
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2.4. Concern 4: VBM processing pipeline differences

Muhlert and Ridgway (2015) provide an interesting example of the differences in VBM 

signal intensity between different preprocessing pipelines, using our replication data (for 

a recent investigation of pipeline differences in SBB research, see Martinez et al., 

2015). Their Figure 2 shows a collection of disconnected regions containing high 

between-method correlations (r > 0.8). This figure unfortunately does not show the 

entire distribution of correlations across the brain. However, it is safe to say that there 

are indeed differences between analysis methods, which may have impaired our ability 

to detect a true effect.  It should be noted that the same holds true for the original 

findings: The difference in analysis methods can potentially also result in an 

overestimation of an effect size. Because of this, replications are an essential tool to 

investigate the reliability of empirical findings. Furthermore, by specifying pipelines 

before data are collected, preregistration reduces analytical freedom, and consequently 

the rate of false-positives.

2.5. Concern 5: ROI approach potentially leads to underestimation of effect sizes

Figure 1 of Kanai (2015) illustrates the concern that our confirmatory ROI approach 

might have resulted in an underestimation of effect size. For the convenience of the 

reader, with permission we have inserted Kanai’s figure here (Figure 2). The mechanism 

underlying this underestimation is the spatial uncertainty that is introduced in the 

discovery of the effect (Figure 2A). When we define our confirmatory ROIs based on the 

original findings, there is a chance that due to the spatial uncertainty in the discovery, 

some voxels of the ROI are in fact not part of the true effect location. Because we 

extracted the average signal from the entire ROI, this could result in an underestimation 

of the effect size. 
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Fig. 2 - Taken from Kanai (2015) with permission, this figure illustrates the issues of 

over- and underestimation of effect sizes, and uncertainty in effect location. A) An 

example of a discovery sample. The exploratory nature of the discovery results in an 

overestimation of the effect size, and uncertainty in terms of the effect location. B) Due 

to the uncertainty in the effect location and our rigid use of ROIs, the effect size is 

attenuated.

Note that there are two types of uncertainty in both the discovery sample as well as the 

confirmatory sample. In the discovery sample, there is often an overestimation of the 
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effect size due to the exploratory nature of the analysis (Kriegeskorte et al., 2010). In 

addition, there is uncertainty regarding the exact location of the effect, again due to the 

exploratory nature of the analysis. In the confirmatory sample, the spatial uncertainty 

introduced by the discovery sample will often result in an attenuation of the effect size. 

Our ROI method cannot reduce this spatial uncertainty in the confirmatory sample, as 

we did not allow the effect to be present in any other area. Future replication attempts 

should find ways of taking into account the spatial uncertainty introduced by the 

discovery, while still remaining confirmatory in nature.

These issues certainly have the potential to impair the ability of a replication attempt to 

detect a true effect. However, they also point out problems of first discoveries: 

overestimation of effect sizes, and spatial uncertainty in effect locations. 

We feel that these problems further emphasize the need for more replication research 

and meta-analyses. If we were to combine the results from both the discovery sample 

(Figure 2A) and the confirmatory sample (Figure 2B) we would get a more accurate 

overall perspective on the true effect size and spatial location of the effect. The 

conclusion drawn from this figure should not be that our replication underestimates 

effect sizes, but that replication plays an important part in the scientific process of 

updating knowledge and determining true effect size and location.

2.6. Concern 6: Review process/alternative analyses

Finally, Kanai (2015) wonders whether reviewers of a preregistered manuscript should 

be allowed to suggest alternative analyses when reviewing the final manuscript 

including the results. We feel that while reviewers are certainly allowed to suggest 

alternative analyses, authors should also be allowed to reject them. In a manuscript that 

is the result of a preregistered study, this rejection should not impact the decision to 

accept the manuscript for publication. Instead, this decision should rely on the authors’ 

adherence to the preregistered protocol and the sensible interpretation of their findings. 

In order to facilitate further exploration of the data set, however, authors should make 
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their data publicly available. This way, the results of alternative analysis methods can 

still be published, albeit not in the original paper. Of course, we strongly recommend 

that a critical re-analysis of a replication data set is also conducted in a purely 

confirmatory fashion, including a preregistration document posted, for instance, on the 

Open Science Framework (https://osf.io/). Because the critical re-analysis is already 

informed by the data, the statistical results are already contaminated to some extent; 

preregistration prevents the (explicit or implicit) exploration of alternative methods of 

analysis until the desired result is found. 

An intelligent reader will not make up his mind after reading a single paper. Different 

experiments show different results, and ideally a scientist will conduct research based 

on the general notions of a field of research, rather than on the outcome of a single 

study. Because of this, it is not necessary to include all possible alternative analyses in 

a single paper. Instead, data should be made publicly available, so that other 

researchers can conduct their own alternative analyses, and potentially publish their 

results. These alternative analyses should be preregistered or else labeled as 

exploratory, after which they can be further investigated, possibly by preregistered 

replication attempts. In this way, we can begin to elucidate the vastly complex patterns 

of conditions under which particular effects of interest have certain effect sizes and 

locations.

3. Impact and future directions

Both the results from our confirmatory replication study and the subsequent 

commentaries suggest that confirmatory replication studies deserve a more prominent 

role in the cognitive neurosciences. Future replications should optimize their methods in 

order to increase the accuracy of their replication attempt. Specific to SBB correlations 

and other neuroimaging findings, spatial uncertainty should be taken into account when 

performing a replication attempt. In order to mitigate the intrusion of QRPs, alternative 

analyses which take into account spatial uncertainty should also be preregistered. In 

order to prevent us from fooling ourselves and having our desires and wishes guide our 
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statistical reporting we should consistently and clearly indicate the difference between 

exploratory and confirmatory analyses in our research, and take caution when 

interpreting exploratory findings, until preregistered replications have confirmed those 

initial findings.

One way of taking spatial uncertainty into account is presented in Kanai (2015), point 4. 

In this section, the correlation between CFQ and GM in left SPL is replicated in our data 

set using a different, less conservative method. This method relies less heavily on the 

complete ROI identified by the initial finding, as it conducts a voxel-wise test within a 

restricted ROI based on the peak voxel coordinates of the original finding. By allowing 

for more freedom in spatial localization of the effect of interest, this method could be 

used in subsequent replication attempts to take into account the spatial uncertainty that 

is often introduced when a discovery is made. Kanai points out that this approach has 

limitations, such as the arbitrary size of the ROI in which the voxelwise tests are 

conducted, and the inability of this approach to quantify evidence in favor of the null 

hypothesis. Another way to take into account spatial uncertainty might be to perform a 

new, explorative voxel-wise test on the combined data from the original study and the 

replication attempt to identify the region in which both data sets show a significant 

correlation. This procedure minimizes the potential for the next replication attempt to 

underestimate the effect size. 

Another promising endeavor is the adversarial collaboration (e.g., Matzke et al., 2015). 

In this approach, proponents and skeptics of a certain discovery decide to work together 

to design a confirmatory replication attempt of the discovery and agree on a common 

plan of analysis. Using Bayesian inference, the evidence may be monitored sequentially 

as the data accumulate, until the evidence is compelling in favor of either hypotheses. 

Adversarial collaborations can be multi-site endeavors, potentially resulting in much 

larger sample sizes than what can reasonably be obtained in single-lab studies. 

Adversarial collaborations, Bayesian inference, preregistration, and methods for 

reducing spatial uncertainty together provide a promising starting point for future 
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replication attempts in the cognitive neurosciences in general, and in structural brain-

behavior research in particular.

4. Conclusion

The findings from our replication attempts suggest that results in structural brain-

behavior research might not be as reliable as previously thought. The subsequent 

commentaries of both Kanai (2015) and Muhlert and Ridgway (2015) propose factors 

that may have contributed to our inability to replicate certain effects. Additional research 

is needed to investigate these factors in order to provide an accurate account of these 

(and other) effects in terms of their size, location, and the specific conditions under 

which they apply. Replication is pivotal in the search for scientific truth. Our confirmatory 

replication and the subsequent commentaries represent an initial step towards a more 

reliable and replicable field of research. With this work we hope to stimulate other 

researchers to undertake similar replication attempts.
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Abstract 

Recent efforts to replicate structural brain-behaviour (SBB) correlations have called into 

question the replicability of structural brain measures used in cognitive neuroscience. 

Here we report an evaluation of test-retest reliability of diffusion tensor imaging (DTI) 

measures including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity 

(AD), and radial diffusivity (RD), in several white matter tracts previously shown to be 

involved in cognitive control. In a data-set consisting of 34 healthy participants scanned 

twice on a single day, we observe overall stability of DTI measures. This stability re-

mained in a subset of participants who were also scanned a third time on the same day 

as well as in a 2-week follow-up session. We conclude that DTI measures in these 

tracts show relative stability, and that alternative explanations for the recent failures of 

replication must be considered.

Introduction

Many studies in the cognitive neurosciences aim to investigate the link between brain 

and behaviour. Recently, researchers have exploited significant advances in diffusion 

weighted imaging (DWI) to detect subtle differences in brain structure associated with 

differences in behavioural measures (e.g., Kanai and Rees, 2011) including the stop-

signal task (Aron et al., 2007; Forstmann et al. 2012; Rae et al. 2015), conflict tasks 

such as the Simon task (Forstmann et al., 2008), and strategic decision-making tasks 

(Coxon et al. 2012; Forstmann et al., 2010; Mulder et al., 2013). In a recent study from 
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our group using a pre-registered confirmatory framework (Boekel et al., 2015a), we at-

tempted to replicate studies which adopt this structural brain-behaviour (SBB) correla-

tional approach. Confirmatory Bayesian statistical tests suggested that 8 out of 17 SBB 

effects were reliably absent in our independent replication data-set. This apparent insta-

bility of effects calls into question the test-retest reliability of DWI derived measures (for 

a comprehensive discussion of our replication results, see Kanai, 2015, Muhlert and 

Ridgway, 2015; Boekel et al., 2015b).

Previous investigations into the test-retest reliability of diffusion weighted imaging (DWI) 

have generally suggested stability (Vollmar et al., 2010, Buchanan et al., 2014, Owen et 

al., 2013, Jovicich et al., 2014, Madhyastha et al., 2014, Heiervang et al., 2006, Jansen 

et al., 2007, Pfefferbaum 2003, Wang et al., 2012, Fox et al., 2012). These studies have 

mostly used whole-brain methods to calculate an overall estimate of the reliability of the 

DWI derived measures. Some have also specifically tested major white-matter tracts to 

investigate the possibility that areas of low reliability selectively impede robust mea-

surements of DWI measures in white matter tracts such as the corpus callosum (Heier-

vang et al., 2006) and the inferior fronto-occipital fasciculus (IFOF) (Wang et al., 2012). 

Yet another class of tracts is often investigated by researchers in the field of cognitive 

neuroscience, particularly those adopting the SBB approach. Informed by functional 

findings, researchers use probabilistic tractography to identify white-matter pathways 

between areas found to be involved in the performance of a task. After the delineation of 

such a tract, DTI measures can be extracted and correlated to individual differences in 

behaviour. 

For example, Mulder et al., (2012) found that providing participants with prior informa-

tion about the reward balance of a two-alternative forced choice perceptual decision 

making task elicits activation in the right ventromedial prefrontal cortex (vmPFC). Sub-

sequently, in Mulder et al., (2014), a white matter pathway between the vmPFC and the 

subthalamic nucleus (STN) was estimated using probabilistic tractography. The tract 

strength between the vmPFC and STN was then shown to be quantitatively predictive of 

individual differences in value-based choice bias. This SBB finding requires the assump-
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tion that diffusion tensor fitting on data from a single DWI scanning session provides ro-

bust diffusion measures. However, this assumption is challenged by a study from 

Jansen et al., (2007). In their study, an area of decreased reliability across sessions in 

the basal ganglia (BG) was found. The authors argued that this decrease in reliability 

was possibly due to increased iron content in the BG causing susceptibility artefacts in 

the DWI data (Drayer, 1986). It is possible that tracts originating from the BG are nega-

tively affected in terms of their test-retest reliability. This example suggests that it is not 

sufficient to investigate whole-brain DWI robustness; specific white matter pathways 

should be tested for test-retest reliability to exclude the influence of local islands of in-

creased variability.

Here we report an evaluation of test-retest reliability of diffusion measures in white mat-

ter tracts of the cognitive control network delineated by probabilistic tractography. We 

specifically inspect the DTI measures fractional anisotropy (FA), mean diffusivity (MD), 

axial diffusivity (AD), radial diffusivity (RD), tract strength, and tract volume. FA is a 

measure of the degree of anisotropic diffusion of molecules, where low FA values corre-

spond to equidirectional (un)restricted diffusion (i.e., Brownian motion), and high FA val-

ues reflect restricted linear diffusion. MD is a measure of the total diffusion. AD is de-

fined by the principle eigenvalue of the tensor model, which represents the degree of 

diffusion in the main diffusion direction. RD is defined by the average of the second and 

third eigenvalue of the tensor model, representing the degree of diffusion perpendicular 

to the main diffusion direction. Tract strength is derived from the tractography procedure 

(see methods section: “probabilistic tractography”), and tract volume is given in mm3.

We investigate these measures in four white matter pathways: (i) the tract between the 

subthalamic nucleus (STN) and the inferior frontal cortex (IFC) shown to be involved in 

stopping behaviour (Aron et al., 2007, Aron et al., 2014), (ii) the inferior fronto-occipital 

fasciculus (IFOF) involved in the Simon task (Forstmann et al., 2008), (iii) the tract be-

tween the striatum (in our analysis comprising putamen and caudate, excluding the nu-

cleus accumbens) and pre-supplementary motor area (pre-SMA), which has been impli-

cated in the speed-accuracy tradeoff (Forstmann et al., 2010), and (iv) the tract between 
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STN and ventromedial prefrontal cortex (vmPFC), involved in value-driven choice bias 

(Mulder et al., 2014). All but the IFOF were identified using probabilistic tractography in 

our dataset (the IFOF was extracted from the JHU white-matter tractography atlas im-

plemented in FSL (Hua et al. 2008), and registered to individual space). 

Here we investigate a structural DWI data-set including 34 participants who were 

scanned in two DWI sessions an hour apart. Out of these 34 participants, 15 were addi-

tionally scanned an hour after the second scan session, as well as in a two-week follow-

up scan session. In comparison to the majority of previous DWI reliability studies, this 

data-set provides i) a somewhat larger sample size, and ii) relatively more data per 

scan. We have relatively more data per scan because the scan sessions include four 

repetitions of a DWI sequence each which are merged within-session, prior to testing 

reliability between sessions. 

The reliability assessment of DWI measures in the above-mentioned four tracts is par-

ticularly interesting to researchers in the field of cognitive control. More generally, it al-

lows the investigation of potential sources of variance, which is important when investi-

gating relationships between brain structure and behaviour.

Methods

Participants

This data set is an extension of an unpublished pilot study set up as an exploration into 

the possibility that practice effects on a stop-signal task elicit short-term structural 

changes in a network previously labelled the cognitive control network (Aron et al., 

2007, Aron et al., 2014). This pilot study initially comprised data from 15 participants, 

who were divided into a stop group (9 participants performing the stop-signal task be-

tween scans), and a passive control group (6 participants who did not perform the stop-

signal task between scans). Later, this data set was expanded to include an active con-

trol group of 7 participants, who performed a go task (i.e., the stop-signal task without 

stop-signals) between DWI scans. Moreover, 9 and 3 additional participants were re-

spectively assigned to the stop and passive control group. As such, our final data set 
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consists of structural brain scans of 34 healthy young participants (18 females) with a 

mean age of 22.76 (s.d. 3.12, range 19.17-35.67). The study was approved by the local 

ethics committee at the University of Amsterdam. All participants gave their written con-

sent prior to scanning and received a monetary compensation.

Experimental design

Figure 1 displays the design. Participants in the stop-signal group and the active control 

group started with a go-task to familiarize them with the left/right decision component of 

our task. This practice session was followed by the first DWI scan. Subsequently, the 

stop-signal group performed on behavioural stop-signal tasks between scans, and the 

active control group performed on go-tasks between scans. The passive control group 

did not perform any task in between the scans. Participants in this group were asked to 

remain in the waiting room of the scanning centre while they waited for the next scan. 

Our stop task was a computerized perceptual two-alternative forced choice directional 
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discrimination task using arrows pointing left or right, with the inclusion of auditory tones 

prompting the participant to inhibit their response. Stop-signal delay started at 190ms 

and was updated after every stop-trial by an addition or subtraction of 50ms, depending 

on the subjects stop-respond rate so far, leading to an eventual average stop-respond 

rate of 50%. The go-task was a copy of the stop-task using only go-trials. The stop-sig-

nal reaction time (SSRT) was estimated per session using the BEEST (Bayesian Ex-

Gaussian Estimation of Stop-Signal RT distributions) software (version 2.0; Matzke et 

al., 2013). The MCMC sampling settings were number of chains: 3, number of samples: 

20000, number of burn-in: 5000, and amount of thinning: 5. All incorrect RT’s and RT 

shorter than 200ms were excluded for the estimation of the SSRT. 

The final data set consisted of a group of 34 participants scanned in session 1 and 2, of 

which a smaller subset of 15 participants were also scanned a third session on the 

same day, as well as in a two-week follow-up session.

Figure 1. Experimental design. Three groups underwent scanning interleaved with a 

stop task (Stop Signal group), a go task (Active Control group), or an equal amount of 

time to be spent in the waiting room of the scanning center (Passive Control group). The 

Stop Signal and Active Control groups performed on a go practice task prior to the first 

scanning session to familiarize them with the left/right discrimination aspect of the task.

DWI imaging acquisition

Imaging data were acquired% on a 3T Philips Achieva XT scanner (80 mT/m 

maximum%amplitude gradient strength and a maximum%slew rate of 200 mT/m/ms)%using 

a 32-channel head coil. For each participant, a T1 anatomical scan was acquired (T1 

turbo field echo, 220 coronal slices with an isotropic voxel resolution of 1 mm, field of 

view = 240 x 188 x 220 mm, flip angle = 8°, TR = 8.4 ms, TE = 3.9 ms, SENSE factor 

(RL) = 2.5, SENSE factor (FH) = 2, Bandwidth 191.4 Hz/Px, acquisition time 3.06 min-

utes). 
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In each DWI scanning session, four repetitions of a multi-slice spin echo (MS-SE), sin-

gle shot DWI scans were acquired on a 3T MRI (60 transverse slices with an isotropic 

voxel resolution of 2 mm, field of view = 224 x 224, TR = 7545 ms, TE = 86 ms, SENSE 

factor (AP) = 2, Bandwidth = 32.1 Hz/Px, acquisition time 5.30 minutes each). Diffusion 

weighting was isotropically distributed along 32 directions (b-value = 1000 s/mm2). For 

each repetition, six images with no diffusion weighting (b0; b-value = 0 s/mm2) were ac-

quired and averaged by the scanner before adding to the raw data. All DWI data are 

made freely available on http://www.nitrc.org/projects/dwi_test-retest/.

DWI preprocessing 

All DWI data (pre-)processing and analyses were carried out using FMRIB's Software 

Library (FSL, version 5.0.8; www.fmrib.ox.ac.uk/fsl; Smith et al., 2004). For each partici-

pant and session, all four DWI repetitions were concatenated and corrected for eddy 

currents. Affine registration was used to register each volume to a reference volume 

(Jenkinson & Smith, 2001). A single image without diffusion weighting (b0; b-value = 0 s/

mm2) was extracted from the concatenated data and non-brain tissue was removed us-

ing FMRIB's Brain Extraction Tool (BET; Smith, 2002) to create a brain-mask which was 

used in subsequent analyses. DTIFIT (Behrens et al., 2003) was applied to fit a tensor 

model at each voxel of the data (Smith, Jenkinson, Woolrich, & Beckmann, 2004) to de-

rive FA, MD, AD, and RD measures for further analyses.

ROI definition

We extracted the striatum (STR) and STN ROIs from the probabilistic atlas from Keuken 

et al. (2014). The pre-SMA ROI was drawn in MNI space by using the coordinates re-

ported by Johansen-Berg (2004). The IFC ROI was extracted from the Harvard/Oxford 

atlas included in FSL (Desikan et al. 2006). The vmPFC ROI was kindly provided by 

Mulder et al. (2014). Finally, the IFOF was extracted from the JHU white-matter tractog-

raphy atlas included in FSL (Hua et al. 2008). Bilateral ROIs were extracted and sepa-

rated by hemisphere. As the right vmPFC was functionally defined, we generated the 

left hemisphere version of this ROI based on its mirrored x-coordinate. All probabilistic 

ROIs were thresholded at 10%. In order to bring these ROIs into individual space, we 
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first registered the standard MNI-template to the participant’s whole-brain MPRAGE us-

ing FLIRT (12 degrees of freedom (dof), correlation ratio, tri-linear interpolation). The 

registered MNI template was then registered to individual b0 images. We subsequently 

nonlinearly optimised these transformations using the symmetric image normalization 

method, which is part of the Advance Normalization Tools (ANTs) (Avants et al. 2008). 

Using the resulting transformation matrices and warpfields, the ROIs were then trans-

formed into individual space. Figure 2 provides an overview of the resulting ROIs that 

were subsequently used in probabilistic tractography.

Figure 2. Masks used in probabilistic tractography. Cyan: ventromedial prefrontal cortex 

(vmPFC), green: inferior fronto-occipital fasciculus (IFOF), ochre: inferior frontal cortex 

(IFC), purple: pre-supplementary motor area (PreSMA), red: striatum (STR), blue: sub-

thalamic nucleus (STN).

Probabilistic tractography

BedpostX (Behrens et al., 2003) was applied to the preprocessed DWI data to estimate 

voxel-wise diffusion parameter distributions. Estimation of tract strengths was conduct-

ed using probabilistic tractography (Behrens et al., 2003). 50000 tracts were sampled 

from each voxel in the seed masks at a curvature threshold of 0.2. We used two sepa-

rate tractography analyses per tract; A seed-to-classification analysis which we used to 

extract tract strength measures, and a seed-to-termination analysis which we used to 
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generate the tract images for the assessment of tract-average FA/MD/AD/RD test-retest 

reliability.

First, in the seed-to-classification analysis, we used a seed mask from which to start 

tracking, an individually drawn midline mask to prevent fibers from crossing over to the 

other hemisphere, and a classification mask serving as target for the tractography. This 

analysis returns an image containing, for each voxel in the seed mask, the number of 

samples reaching the classification mask. To remove any spurious connections, this im-

age was thresholded at 10% of robust range using the fslmaths -thrP command. Sub-

sequently, the number of nonzero voxels was divided by the total number of voxels in 

the seed mask, resulting in a value that represents the proportion of the seed mask that 

was probabilistically connected to the classification mask. A similar procedure was ap-

plied in the opposite direction (where the seed and classification masks were switched). 

Tract strength was defined as the average of the two proportions that resulted from the 

seed-to-classification and classification-to-seed analyses.

Second, in the seed-to-termination analysis, we used a seed mask from which to start 

tracking, an individually drawn midline mask to prevent fibers from crossing over to the 

other hemisphere, a waypoint mask, the inclusion of which effectively discards any 

tracts not reaching it, and a termination mask which terminates but keeps the tracts 

reaching this mask. In these analyses, the waypoint mask and termination mask were 

always the same. The image resulting from this analysis has probabilistic information 

only in voxels where tracts passed through that i) originated from the seed-mask, ii) did 

not cross over to the contralateral hemisphere, and iii) reached the termination/waypoint 

mask. 

Tract-based spatial statistics

The tracts delineated by the previously described tractography procedure were used in 

a reliability assessment of DTI measures. After having visually inspected these tracts, 

the question emerged whether overlap between the tracts and non-white matter regions 

could have introduced noise in our average DTI measures (for a visual example see 
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Figure 3). To answer this question, we performed tract-based spatial statistics in FSL 

(TBSS; Smith et al., 2006). First, FA images were slightly eroded and end slices were 

zeroed in order to remove likely outliers from the diffusion tensor fitting. Second, all FA 

images were aligned to 1 mm standard space using non-linear registration to the FM-

RIB58_FA standard-space image. Affine registrations were then used to align images 

into 1x1x1 mm MNI152-space, and finally skeletonised. Subsequently, the mean skele-

tonised FA image was thresholded at FA of 0.2 (In supplementary tables S1-4 we in-

clude an additional analysis using an FA threshold of 0.4, which is an even more con-

servative threshold to only include voxels that have a relatively high FA value). Partici-

pants FA data were then projected onto the mean skeletonised FA image and concate-

nated. For each participant, tracts from session 1 were then additionally masked with 

corresponding tracts from the other sessions, resulting in tracts that only included vox-

els shared by all sessions, in addition to being skeletonised. This was done to further 

shrink and equalize our masks. We subsequently extracted average DWI measures 

from these tracts and performed an intra-class correlation (ICC) analysis augmented by 

Bayesian statistical tests to assess stability. We will henceforth refer to this multistep 

process as our shrinking operator. 

Intra-class correlation

The consistency between the different scan session was estimated using the ICC corre-

lation as implemented in the R Package irr (version 0.84, Garner et al. 2012). The ICC 

is a descriptive statistic that describes the similarity between measurements. We will 

adopt the labels provided by Cicchetti (1994) where values between 0.4 and 0.59 is fair, 

0.6 and 0.74 is good, and an ICC between 0.75 and 1.0 is excellent similarity between 

measurements. 

Bayesian statistics

We performed Bayesian repeated measure ANOVAs with subjects as a random factor 

and paired t-tests using the BayesFactor toolbox (version 0.9.12-2; Morey et al., 2015) 

in R (version 3.0.2; R Foundation for Statistical Computing, http://www.R-project.org). T-

tests were run between sessions 1 and 2, and 1 and 4. ANOVAs were run over all four 
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sessions. In all tests, the null-hypothesis represented stability (i.e., no difference/

change). These Bayesian t-tests and ANOVAs are arbitrarily similar to their frequentist 

counterparts. In terms of their interpretation, they differ mostly in their outcome mea-

sure. The outcome of these Bayesian hypothesis tests is a single number known as the 

Bayes factor (Dienes, 2008; Jeffreys, 1961; Kass & Raftery, 1995; Lee & Wagenmakers, 

2013; Rouder, Morey, Speckman, & Province, 2012; Rouder, Speckman, Sun, Morey, & 

Iverson, 2009). The Bayes factor (BF) quantifies the support that the data provide for 

the null hypothesis H0 (no change) vis-a-vis the composite alternative hypothesis H1 

(change). For instance, BF10 = 3 indicates that the observed data are 3 times as likely to 

have occurred under H1 than under H0, and BF10 = 0.2 (or BF01 = 1/0.2 = 5) indicates 

that the data are 5 times as likely to have occurred under H0 than under H1. The eviden-

tial support that the BF01 gives to the null hypothesis can be categorized based on a set 

of labels proposed by Jeffreys (1961). Table 1 shows this suggested evidence catego-

rization for the BF01, edited by and taken from Boekel et al. (2015a; Table 1, p. 119). We 

will adopt these labels to facilitate the interpretation of our Bayes factors. Nevertheless, 

the labels should not be zealously adhered to. 

Table 1. Suggested categories for interpreting Bayes factors.

B a y e s f a c t o r 
BF01 Interpretation

> 100 Extreme evidence for H0

30 - 100 Very Strong evidence for H0

10 - 30 Strong evidence for H0

3 - 10 Moderate evidence for H0

1 - 3 Anecdotal evidence for H0

1 No evidence

1/3 - 1 Anecdotal evidence for H1

1/10 - 1/3 Moderate evidence for H1

1/30 - 1/10 Strong evidence for H1

1/100 - 1/30 Very Strong evidence for H1
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Results

We start by presenting behavioural findings which suggest that we can merge the condi-

tions in our data to investigate test-retest reliability irrespective of which task partici-

pants performed between scans. We then report the results of the reliability assessment 

of four tracts derived from probabilistic tractography, after which we present results from 

an additional analysis in which we investigate the reliability of conservative versions of 

our tracts in an attempt to exclude non-white matter sources of noise using a shrinkage 

operator. An additional, more conservative shrinkage operator was also applied, the re-

sults of which can be found in supplementary tables S1-4. 

Behaviour

One participant did not complete the second stop-signal block and was omitted from 

behavioural analysis. See Table 2 for an overview of descriptive behavioural results. Be-

low we describe the behavioural results in detail.

Go-trial response times

To assess the between-group behavioural differences in go-trial response time, we per-

formed a Bayesian t-test on the go response times of the go-task practice session (ses-

sion 0), between the stop and go active control groups. We found anecdotal evidence in 

favor of the null hypothesis of no difference (BF01 = 2.52). 

To investigate behavioural changes over time, we performed several Bayesian ANOVAs 

testing for main effects of session. A Bayesian ANOVA of the go-trial response times of 

the GO active control group in session 0 (practice), 1, and 2 showed very strong evi-

< 1/100 Extreme evidence for H1

B a y e s f a c t o r 
BF01 Interpretation
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dence in favor of the presence of a main effect of session (BF01 = 0.03). A similar ANO-

VA on go-trial response times from session 1, 2, and 3 of the STOP group showed 

anecdotal evidence in favor of the absence of a main effect of session (BF01 = 2.64). 

Because the latter analysis only included the nine stop participants who completed the 

two-week follow-up session, we performed an additional Bayesian t-test (including all 18 

stop participants) on the difference in go response time between session 1 and 2. The 

resulting Bayes factor shows anecdotal evidence in favor of the absence of a difference 

in go response times between session 1 and 2 for the stop-group (BF01 = 1.40). This re-

sult reflects absence of evidence rather than evidence for absence, and as such pre-

cludes a definite conclusion in favor of either hypotheses. 

Table 2. Behavioural results split by groups and sessions. Session 0 is the go-practice 

session performed by participants to familiarize them with the directional decision com-

ponent of the task.

Accuracy

We performed comparable analyses to the Go-trial response times for the accuracy 

data, i.e., the proportion of responses directionally congruent with the stimulus. The di-

rectional discrimination in our stop-task was intentionally made trivial, and accordingly 

accuracy was generally high (see Table 2).

Group Session Go RT Accuracy SSRT P(StopFai)

Stop Signal Group 0 364.26 (19.16) 0.96 (0.04) - -

1 471.63 (65.06) 0.96 (0.04) 235.61(89.92) 0.51 (0.03)

2 437.42(66.32) 0.94 (0.07) 215.39(66.48) 0.50 (0.03)

3 432.90 (82.74) 0.97 (0.03) 225.11(123.89) 0.52 (0.04)

Active Control Group 0 364.72(30.56) 0.96 (0.04) - -

1 353.40 (30.77) 0.95 (0.03) - -

2 354.72 (31.95) 0.93 (0.04) - -
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A Bayesian t-test on the accuracy of the practice session (Go task) between the stop- 

and go-active control groups showed anecdotal evidence in favor of the null hypothesis 

of no difference between groups (BF01 = 2.52).

A Bayesian ANOVA of the accuracy of the go active control group in session 0, 1, and 2 

showed anecdotal evidence in favor of the null hypothesis (BF01 = 1.08). For the stop 

participants who completed the two-week follow-up session, a Bayesian ANOVA on ac-

curacy in session 1, 2 and 3 showed moderate evidence in favor of the absence of a 

main effect of session (BF01 = 3.61). An additional Bayesian t-test between the accuracy 

in session 1 and 2 for the complete Stop group provided anecdotal evidence in favor of 

the absence of a change in accuracy (BF01 = 1.20).

SSRT

Two tests were performed to investigate behavioural changes in SSRT over time and 

between groups. A Bayesian ANOVA of SSRT in session 1, 2, and 3 of the nine partici-

pants who completed all three stop sessions showed moderate evidence in favor of the 

absence of a main effect of session (BF01 = 3.37). An additional Bayesian t-test includ-

ing the entire stop group, on the difference in SSRT between session 1 and 2 showed 

anecdotal evidence in favor of the absence of a difference (BF01 = 1.66).

Beyond the simple go-RT session effect, there appear to be no practice effects in our 

data. As such, we continue with DTI test-retest reliability analyses.

DTI

Next we report test-retest reliability of the following DTI measures: Mean FA/MD/AD/RD, 

tract strength, and tract volume. We computed ICCs between the first two sessions for 

all 34 participants, between the first and last session of a subset of 15 subjects, as well 

as over all sessions for this subset. We augment this ICC analysis using Bayesian t-

tests and Bayesian ANOVAs to facilitate statistical inference.
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STN-IFC

We delineated a tract between STN and IFC and extracted average DTI measures for 

each session and participant. An overview of the results of this tract can be seen in Ta-

ble 3. For the consistency between the first and second session, in our bigger sample of 

34 subjects, we observe high ICCs for all DWI measures and tract strength (ICCs > 

0.86). For tract volume, we find slightly lower ICCs (left: 0.77; right: 0.61). However, all 

but two of the Bayes factors for the associated t-test are higher than 3 (only left FA and 

right tract strength show anecdotal evidence, albeit in favor of the null), suggesting that 

the evidence is moderately in favor for an absence of a difference between these ses-

sions. For the consistency between the first and last session, in our smaller sample of 

15 subjects, we observe reasonably high ICCs for all DTI measures and tract strength 

(ICCs > 0.72). For tract volume, we find a lower ICC of 0.44 in the left hemisphere (al-

though the ICC for the right hemisphere is 0.88). Our bayes factors for this test are gen-

erally in favor of the absence of a difference, although they suggest this only anecdotal-

ly. We suspect that this is due to the smaller sample size of this group (n=15). Finally, 

for the overall consistency we observe reasonably high ICC values for all measures in 

this tract (ICCs > 0.71). All but two (left FA: BF01=0.55; left RD: BF01=2.14) Bayes fac-

tors of the associated ANOVAs are higher than 3, suggesting that the evidence is mod-

erately in favor of the absence of a difference over the four sessions included in this 

test. These Bayes factors seem high in comparison to those coming from the compari-

son of session 1 and session 4. We suspect that this is due to the ANOVA taking more 

data into account, since it is run over all four sessions as opposed to only two. 

Table 3. Reliability of DTI measures in the STN-IFC tract thresholded at 10% of robust 

range. FA: fractional anisotropy; MD: mean diffusivity; AD: axial diffusivity; VOL: volume; 

TS: tract strength; RD: radial diffusivity; ICC: intra-class correlation coefficient; BF01: 

Bayes factors representing relative evidence in favor of the null-hypothesis.

Tract Measure Hemi T-test S1-2 T-test S1-4 ANOVA

STN - IFC BF0

1

ICC BF01 ICC BF01 ICC
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STN-vmPFC

We delineated a tract between STN and vmPFC and extracted average DTI measures 

for each session and participant. An overview of the results of this tract can be seen in 

Table 4. For the consistency between the first and second session, in our bigger sample 

of 34 subjects, we observe reasonably high ICCs for all but one measures (ICCs > 

0.69).  For AD in the right hemisphere version of this tract, we find a rather low ICC of 

0.33. However, all but two (left FA: BF01=1.33; left RD: BF01=2.70) Bayes factors for the 

associated t-test are higher than 3, suggesting that the evidence is moderately in favor 

for an absence of a difference between these sessions. For the consistency between 

the first and last session, in our smaller sample of 15 subjects, we observe reasonably 

high ICCs for all DTI measures and tract strength (ICCs > 0.77). For tract volume, we 

find slightly lower ICCs (left: 0.60; right: 0.57). Our Bayes factors for this test are in favor 

of the absence of a difference, although they suggest this only anecdotally. Finally, for 

FA L 2.40 0.90 0.68 0.84 0.55 0.95

R 3.92 0.89 3.46 0.90 9.80 0.93

MD L 4.98 0.87 1.85 0.72 4.47 0.90

R 4.78 0.95 1.87 0.91 6.72 0.96

AD L 4.26 0.87 3.68 0.84 9.77 0.89

R 5.44 0.94 2.08 0.87 5.92 0.95

RD L 3.97 0.89 1.31 0.77 2.14 0.93

R 4.67 0.94 2.15 0.92 7.89 0.95

VOL L 5.17 0.77 2.80 0.44 4.44 0.71

R 4.76 0.61 2.94 0.88 8.68 0.77

TS L 4.89 0.89 3.70 0.86 8.05 0.87

R 2.65 0.86 3.72 0.82 9.35 0.89

Tract Measure Hemi T-test S1-2 T-test S1-4 ANOVA
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the overall consistency we observe reasonably high ICC values for all measures in this 

tract (ICCs > 0.80), with only one exception of AD in the left hemisphere showing a 

slightly lowered ICC of 0.63. Bayes factors of the associated ANOVAs are all higher 

than 3, suggesting that the evidence is moderately (or in some cases strongly; BF01 > 

10) in favor of the absence of a difference over the four sessions included in this test. 

Table 4. Reliability of DTI measures in the STN-vmPFC tract thresholded at 10% of ro-

bust range. FA: fractional anisotropy; MD: mean diffusivity; AD: axial diffusivity; VOL: 

volume; TS: tract strength; RD: radial diffusivity; ICC: intra-class correlation coefficient; 

BF01: Bayes factors representing relative evidence in favor of the null-hypothesis.

Tract Measure Hemi T-test S1-2 T-test S1-4 ANOVA

STN - vmPFC BF01 ICC BF01 ICC BF01 ICC

FA L 1.33 0.88 0.79 0.87 0.87 0.95

R 3.42 0.85 2.86 0.90 6.07 0.88

MD L 3.89 0.91 1.86 0.78 3.69 0.91

R 5.01 0.69 2.05 0.86 8.24 0.86

AD L 4.72 0.92 3.52 0.78 8.43 0.90

R 5.43 0.33 0.81 0.77 6.55 0.63

RD L 2.70 0.90 1.38 0.82 2.32 0.93

R 4.49 0.80 2.97 0.88 8.84 0.90

VOL L 4.80 0.81 3.78 0.60 1.64 0.83

R 5.26 0.75 3.72 0.57 7.44 0.80

TS L 5.40 0.90 3.48 0.85 10.39 0.87

R 3.47 0.91 3.73 0.81 6.40 0.89
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STR-PreSMA

We delineated a tract between STR and PreSMA and extracted average DTI measures 

for each session and participant. An overview of the results of this tract can be seen in 

Table 5. For the consistency between the first and second session, in our bigger sample 

of 34 subjects, we observe reasonably high ICCs for all but one measures (ICCs > 

0.72), with a single slightly lower ICC of 0.65 in the AD of the left hemisphere version of 

this tract. All but one Bayes factor for the associated t-test are higher than 3, suggesting 

that the evidence is moderately in favor for an absence of a difference between these 

sessions. The Bayesian t-test for tract strength in the left hemisphere version of this 

tract resulted in a lower Bayes factor of 1.58, although this was still in favor of the ab-

sence of a difference. For the consistency between the first and last session, in our 

smaller sample of 15 subjects, we observe high ICCs for all DTI measures (ICCs > 

0.78). Lower ICCs were found in the tract strength measure (left: 0.55; right: 0.53), and 

in terms of volume (left: 0.64; right: 0.72). Our Bayes factors for this test are in favor of 

the absence of a difference, although they suggest this only anecdotally. Finally, for the 

overall consistency we observe reasonably high ICC values for all measures in this tract 

(ICCs > 0.78). All but three (right FA: BF01=2.83; right MD: BF01=2.70; right RD: 

BF01=1.19) Bayes factors of the associated ANOVAs are all higher than 3, suggesting 

that the evidence is moderately in favor of the absence of a difference over the four 

sessions included in this test.

Table 5. Reliability of DTI measures in the STR-PreSMA tract thresholded at 10% of ro-

bust range. FA: fractional anisotropy; MD: mean diffusivity; AD: axial diffusivity; VOL: 

volume; TS: tract strength; RD: radial diffusivity; ICC: intra-class correlation coefficient; 

BF01: Bayes factors representing relative evidence in favor of the null-hypothesis.

Tract Measure Hemi T-test S1-2 T-test S1-4 ANOVA

Str - PreSMA BF01 ICC BF01 ICC BF01 ICC

FA L 5.44 0.93 1.71 0.98 8.48 0.94

R 5.42 0.79 3.81 0.95 2.83 0.96

!129



IFOF

Finally, we investigated the reliability of DTI measures in the IFOF. We delineated the 

IFOF based on a registration method (see methods) to mimic the analyses of 

Forstmann et al., (2010). No tractography was run for this particular tract and therefore 

no tract strength measures or informative tract volumes were derived. Bayesian reliabili-

ty analyses were computed only including mean FA, MD, AD, and RD. An overview of 

the results of this tract can be seen in Table 6. For the consistency between the first and 

second session, in our bigger sample of 34 subjects, we observe high ICCs for all mea-

sures (ICCs > 0.85). All Bayes factors for the associated t-test are higher than 3, sug-

gesting that the evidence is moderately in favor for an absence of a difference between 

these sessions. For the consistency between the first and last session, in our smaller 

sample of 15 subjects, we observe high ICCs for all DTI measures (ICCs > 0.80). Our 

Bayes factors for this test are in favor of the absence of a difference, although they sug-

gest this only anecdotally. Finally, for the overall consistency we observe reasonably 

high ICC values for all measures in this tract (ICCs > 0.95). Bayes factors of the associ-

MD L 4.92 0.81 3.81 0.89 9.02 0.90

R 5.32 0.73 3.59 0.92 2.70 0.96

AD L 4.50 0.65 3.18 0.78 9.76 0.80

R 5.14 0.72 3.60 0.82 9.96 0.93

RD L 5.15 0.86 3.36 0.94 7.63 0.91

R 5.38 0.73 3.65 0.95 1.19 0.96

VOL L 5.44 0.88 3.69 0.64 7.16 0.81

R 4.37 0.83 3.5 0.72 4.61 0.87

TS L 1.58 0.75 2.52 0.55 3.88 0.78

R 5.02 0.77 3.72 0.53 8.18 0.82

Tract Measure Hemi T-test S1-2 T-test S1-4 ANOVA
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ated ANOVAs are all higher than 3, suggesting that the evidence is moderately (or in 

some cases strongly; BF01 > 10) in favor of the absence of a difference over the four 

sessions included in this test.

Table 6. Reliability of DTI measures in the IFOF thresholded at 10% of robust range. FA: 

fractional anisotropy; MD: mean diffusivity; AD: axial diffusivity; RD: radial diffusivity; 

ICC: intra-class correlation coefficient; BF01: Bayes factors representing relative evi-

dence in favor of the null-hypothesis.

We were uncertain about our construction of the IFOF, considering the deviation in its 

methods compared to our construction of the other tracts. Whereas other tracts were 

obtained using probabilistic tractography, individual IFOF ROIs were generated by reg-

istering the template IFOF from Hua et al., (2008) in MNI-space to each participant’s 

DWI data in individual space. We hypothesized that despite our initial 10% thresholding 

procedure, mis-registrations could have resulted in the IFOF ROI overlapping with non-

white matter tissue. To illustrate Figure 3 depicts the bilateral IFOF masks in standard 

Tract Measure Hemi T-test S1-2 T-test S1-4 ANOVA

IFOF BF0

1

ICC BF01 ICC BF01 ICC

FA L 5.01 0.85 3.81 0.84 4.06 0.95

R 2.75 0.89 2.67 0.95 6.89 0.96

MD L 4.47 0.97 3.78 0.81 10.18 0.96

R 4.73 0.95 0.58 0.98 2.73 0.98

AD L 2.71 0.98 3.74 0.87 3.20 0.96

R 5.32 0.95 1.60 0.98 2.03 0.98

RD L 5.28 0.96 3.79 0.80 9.37 0.96

R 3.78 0.94 0.63 0.97 3.96 0.97
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space showing, in some places, overlap with non-white matter. Visual inspection of indi-

vidual left IFOF ROIs confirmed that this overlap was also the case at an individual lev-

el. 

Figure 3. Bilateral IFOF in MNI space. The blue IFOF tract is wide and still shows over-

lap with non-white matter regions. The green mask represents the IFOF after applying 

the shrinkage operator.

We decided that more generally, additional shrinkage of all our tracts might mitigate the 

unwanted influence of non-white matter voxels, thereby further increasing reliability. We 

performed TBSS (see methods section “Tract-based spatial statistics”), which yields 

group-averaged white matter skeletons representing only the core white matter fibers.  

We transformed our individual tracts to the common TBSS space and skeletonised them 

(i.e., we masked individual tracts with the group white-matter skeleton; see Figure 3 for 

a visualization of a skeletonised IFOF in green). In addition, for each participant, tracts 

from session 1 were masked with corresponding tracts from the other sessions, result-

ing in tract-masks that only included voxels shared by all sessions. This latter step was 

done to further shrink our masks and ensure comparison between only spatially over-

lapping voxels. The skeletonisation procedure alongside the between-session masking, 

represents our shrinkage operator. We extracted average DTI measures from these 
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tracts and report on their test-retest reliability below. Furthermore, we include results 

from a more conservative shrinkage operator in supplementary tables S1-4. 

Reliability of DTI measures in tracts after shrinkage

Here we report the reliability assessment after applying our shrinkage operator to tracts 

used in our experiment. All results can be viewed in Tables 7 through 10.

Table 7. Reliability of DTI measures in the STN-IFC tract after the shrinking procedure. 

FA: fractional anisotropy; MD: mean diffusivity; AD: axial diffusivity; RD: radial diffusivity; 

ICC: intra-class correlation coefficient; BF01: Bayes factors representing relative evi-

dence in favor of the null-hypothesis.

Table 8. Reliability of DTI measures in the STN-vmPFC tract after the shrinking proce-

dure. FA: fractional anisotropy; MD: mean diffusivity; AD: axial diffusivity; RD: radial dif-

fusivity; ICC: intra-class correlation coefficient; BF01: Bayes factors representing rela-

tive evidence in favor of the null-hypothesis.

Tract M e a-
sure

H e
mi

T-test S1-2 T-test S1-4 ANOVA

STN - IFC BF01 ICC BF01 ICC BF01 ICC

FA L 3.52 0.96 1.95 0.91 2.59 0.97

R 5.26 0.95 2.66 0.92 6.97 0.96

MD L 3.62 0.94 1.47 0.91 1.25 0.97

R 5.35 0.94 3.33 0.93 9.45 0.94

AD L 4.87 0.96 1.46 0.97 1.77 0.98

R 5.19 0.95 1.49 0.95 4.90 0.94

RD L 3.53 0.95 1.78 0.89 1.94 0.97

R 5.43 0.94 3.81 0.92 11.06 0.95
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Table 9. Reliability of DTI measures in the STR-PreSMA tract after the shrinking proce-

dure. FA: fractional anisotropy; MD: mean diffusivity; AD: axial diffusivity; RD: radial dif-

fusivity; ICC: intra-class correlation coefficient; BF01: Bayes factors representing rela-

tive evidence in favor of the null-hypothesis.

Tract M e a-
sure

H e
mi

T-test S1-2 T-test S1-4 ANOVA

STN - vmPFC BF01 ICC BF01 ICC BF01 ICC

FA L 4.36 0.96 2.53 0.88 4.49 0.96

R 2.90 0.98 3.31 0.92 7.68 0.97

MD L 4.04 0.95 2.02 0.90 2.13 0.96

R 5.41 0.96 2.27 0.96 6.53 0.97

AD L 4.51 0.96 1.85 0.96 1.82 0.98

R 5.13 0.94 1.49 0.91 3.57 0.95

RD L 4.05 0.95 2.15 0.87 2.86 0.96

R 5.03 0.97 3.51 0.95 9.26 0.97

Tract M e a-
sure

H e
mi

T-test S1-2 T-test S1-4 ANOVA

STR - PreS-
MA

BF01 ICC BF01 ICC BF01 ICC

FA L 3.56 0.97 2.81 0.97 8.57 0.98

R 4.89 0.96 3.24 0.98 3.64 0.98

MD L 3.39 0.98 2.53 0.98 6.75 0.99

R 4.84 0.97 3.26 0.98 8.89 0.99

AD L 1.82 0.97 3.27 0.98 7.81 0.99

R 2.85 0.97 3.01 0.94 5.18 0.98

RD L 5.15 0.99 2.51 0.98 7.07 0.99
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Table 10. Reliability of DTI measures in the IFOF after the shrinking procedure. FA: frac-

tional anisotropy; MD: mean diffusivity; AD: axial diffusivity; RD: radial diffusivity; ICC: 

intra-class correlation coefficient; BF01: Bayes factors representing relative evidence in 

favor of the null-hypothesis.

We expected to see higher stability in our tracts because the shrinking procedure 

should solve the problem of overlap between our tracts and non-white matter tissue. It 

seems that overall the ICCs are indeed higher in these more conservative versions of 

our tracts (all ICCs > 0.87; but most even > 0.95). More notably, the low ICC of 0.33 in 

the AD measure of the right STN-vmPFC tracts has disappeared; after applying the 

R 5.33 0.97 3.69 0.99 7.63 0.99

Tract M e a-
sure

H e
mi

T-test S1-2 T-test S1-4 ANOVA

Tract M e a-
sure

H e
mi

S1-2 S1-4 ANOVA

IFOF BF01 ICC BF01 ICC BF01 ICC

FA L 5.29 0.94 2.88 0.95 8.52 0.98

R 1.06 0.97 1.49 0.97 3.31 0.98

MD L 3.96 0.98 3.41 0.93 6.80 0.98

R 4.80 0.98 3.49 0.96 9.66 0.98

AD L 2.64 0.98 3.81 0.94 4.41 0.98

R 5.07 0.97 2.47 0.92 5.89 0.97

RD L 5.0 0.98 3.09 0.93 7.49 0.98

R 3.62 0.98 3.81 0.97 10.28 0.99
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shrinkage operator this ICC was brought to 0.94. Bayes factors were not noticeably af-

fected.

In sum, our data revealed that using an initial thresholding procedure of 10%, we find 

convincing test-retest reliability in most measures in most tracts. Several measures, 

mostly tract strength and volume, showed decreased reliability, although Bayesian sta-

tistical tests still largely support the notion of stability. This stability was further enhanced 

by our shrinkage operator, which aimed to remove non-white matter voxels from our 

tracts. 

Discussion

We set out to assess the test-retest reliability of DTI measures in four tracts which have 

recently been the subject of structural brain-behaviour (SBB) investigations. We delin-

eated these tracts using standard probabilistic tractography and subsequently tested 

FA, MD, AD, RD, tract strength, and tract volumes for stability using ICC’s augmented 

by a Bayesian statistical framework.

Our analyses showed general stability in our initial tracts which were thresholded at 

10% of robust range. Tract strength and tract volume seemed overall to be the least 

stable, although Bayes factors were still largely in favor of stability. The tracts in our ini-

tial analysis were still rather large and showed overlap with grey-matter. In order to re-

strict our analyses to the main white-matter tracts, we applied a shrinking operator. The 

pattern of results in our more conservative tracts improved in the sense that stability (at 

least in terms of ICC) was generally greater after applying the shrinkage operator. We 

are left with an overall reliable data-set suggesting that the cognitive control tracts we 

tested here are stable over time, in a small (n=15) as well as larger (n=34) sample size, 

and thus can readily be correlated to (stable) behaviour measures.

With regard to our smaller subset of 15 subjects, we find a notable pattern of results 

when comparing the first and last sessions. While ICCs show general stability, Bayes 

factors associated to this comparison only provide anecdotal evidence in favor of stabili-
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ty. We believe this to be due to the smaller sample size. Contrary to this comparison be-

tween only the first and last sessions, a comparison taking into account all four sessions 

(also using N=15) resulted in higher Bayes factors, probably because of the increased 

number of sessions (and therefore data) used per subject. 

Continuing on sample sizes, previous studies have shown stability of DWI measures in 

as little as less than 10 participants (Fox et al., 2012, Heiervang et al., 2006, Vollmar et 

al., 2010). Previous studies have also shown this stability using, compared to the 

present analysis, overall fewer data per participant (Buchanan et al., 2014, Vollmar et 

al., 2010). With our comparatively larger (although still somewhat small; see Button et 

al., 2013) sample size, and our greater amount of data per participants through multiple 

repetitions of the same DWI sequence, we provide additional evidence for the stability 

of DTI measures.

We demonstrate this stability specifically in tracts of the cognitive control network. In 

light of the pre-existing body of literature, we are tempted to also make the generalized 

claim that DWI measures, obtained using a standard acquisition and analyses, show 

general stability. Further investigations into test-retest reliability of DWI measures could 

systematically vary parameters in the acquisition and analysis stages in order to investi-

gate the extent to which these parameters can influence DWI stability.

Some DWI reliability studies have already investigated the impact of specific acquisition 

parameters on test-retest reliability (Celik et al., 2015, Wang et al., 2012, Vollmar et al., 

2010, Buchanan et al., 2014). Parameters such as the amount of volumes acquired per 

diffusion direction and the amount of diffusion directions have been shown to impact 

test-retest reliability. Different parameters such as b-values and voxel resolution might 

also affect test-retest reliability. Comprehensive test-retest reliability studies which sys-

tematically vary these parameters may start to elucidate the conditions under which the 

most reliable DWI signal can be acquired and processed. 
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Such comprehensive studies can be found in the fMRI literature (Bennet and Miller, 

2010, Laumann et al., 2015) and could serve as templates for future DWI reliability stud-

ies and meta-analyses. At this time, extensive investigations of this kind for DWI data 

seem to be absent. Recent efforts in promoting transparency and data-sharing could 

also help to increase the availability of data and subsequently facilitate large-scale in-

vestigations into DWI reliability and its relationship to acquisition parameters (Poline et 

al., 2012). Some examples include openfMRI (https://openfmri.org/), Open Science 

Framework (https://osf.io/), and the human connectome project (http://www.humancon-

nectomeproject.org/data/). More efforts to increase public availability of data are sure to 

come, and will open the door to large-scale reliability analyses.
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General discussion 

This thesis aims to raise awareness of the importance of replication in the cognitive 

neurosciences. We identified some problems in the literature in terms of reliability of 

research findings in chapter 1 and 2. In chapter 2 and 3 we provided reflections and 

discussions regarding our findings. Finally, in chapter 4 we provided an example of the 

kind of study which can be done to try to identify factors which might lead to de-

creases in reliability. 

More specifically, in Chapter 1 we found that we could not replicate a promising fin-

ding of transfer between video-game practice and perceptual decision making. This 

failure to replicate was eventually made more notable in light of other non-replicati-

ons in experimental psychology which had recently caused a controversy regarding re-

plicability and reliability (Boekel et al., 2015; Klein et al., 2014; Aarts et al., 2016). In 

Chapter 2 we performed another replication of SBB findings and used a pre-registrati-

on protocol to prevent QRPs and facilitate transparency. The findings of this study 

sparked discussions in the literature presented in Chapter 3. Finally, Chapter 4 repre-

sents an example of how to address some of the issues raised by failed replications 

and discussions surrounding them.  
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Overall this thesis emphasises that replication and pre-registration are effective re-

medies for well-known issues of conventional academic culture; such as QRPs, the file 

drawer problem, and the lack of statistical power (e.g., low sample sizes). Below I 

provide examples of recent replication and pre-registration efforts.  

Replication 

A notable example of a large-scale replication effort is the reproducibility project in 

psychology, carried out by the open science framework (Aarts et al., 2015). This 

project started in 2011 and aimed to replicate 100 experimental and correlational 

studies published in the 2008 issues of three prominent journals in experimental psy-

chology: Journal of Experimental Psychology: Learning, Memory, and Cognition, Jour-

nal of Personality and Social Psychology, and Psychological Science. This replication 

effort focused on direct replication, in the sense that methods and conditions in the 

replication attempts were made as similar as possible to the methods and conditions 

of the original to-be-replicated experiments. This aim towards direct replication was 

facilitated by collaborations between original authors and replicators, the former pro-

viding study materials, as well as reviewing the preregistration protocol constructed 

by the replicators. In total, 270 authors contributed to the 100 replications performed 

in this project. The overall results of this project showed an attenuation of effect size 

in the replication compared to the original finding, which is in line with other replica-

tion efforts (Boekel et al., 2015; Klein et al., 2014, Wagenmakers et al., in press). 

However, there was also variation in the sense that some of the replication effect 

sizes confirmed the original findings, and some did not. The authors argued that no 

single replication attempt can confirm nor deny the existence of a previously shown 

effect, and encouraged additional replication efforts. In addition, a similar replication 

effort in the field of cancer biology is ongoing (Errington, 2014). Large-scale replica-

tion efforts, through their impact, raise awareness and appreciation of replication. 

This could lead not only to more large-scale replication projects, but might also in-

spire smaller groups to replicate their own work.  
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Pre-registration 

Pre-registration arrived in cognitive neuroscience in 2013 in Cortex as a new publish-

ing initiative: “Registered Reports” (Chambers, 2013). According to this format, au-

thors submit a pre-registration protocol containing an introduction, hypotheses, ex-

perimental procedures, analysis pipeline, and a statistical power analysis. Crucially, 

the pre-registration of hypotheses and (statistical) methods can prevent some QRPs. It 

is important to note that this does not mean that pre-registered methods can never 

be deviated from. In the case of deviation from pre-registered analyses, alternate 

analyses can be labeled ‘exploratory’, which facilitates further hypothesising and pro-

vides a basis for subsequent research. The pre-registered experiment is peer-reviewed 

prior to data acquisition. Upon acceptance, researchers conduct the experiment ac-

cording to the plan outlined in their pre-registration protocol. The resulting paper is 

peer-reviewed, and judged on its adherence to the preregistered protocol and the au-

thors’ sensible interpretation of their findings, regardless of the findings themselves. 

This also means that in this format, null-findings and significant findings are treated 

equally, creating another incentive for researchers to engage in this format.  

By preventing the influence of QRPs, pre-registration can play a promising role in the 

coming changes towards a more reliable cognitive neuroscience. In 2013, three jour-

nals offered the pre-registration format; Cortex, Attention, Perception & Psy-

chophysics, and Perspectives on Psychological Science. Three years later, more jour-

nals have joined, or are in the process of adopting the pre-registration format: Cogni-

tion and Emotion, Drug and Alcohol Dependence, European Journal of Neuroscience, 

AIMS Neuroscience, Cognitive Research, Experimental psychology, Human Movement 

Science, International Journal of Psychophysiology, Royal Society Open Science, and 

Stress & Health. A list of journals offering pre-registration formats can be viewed at 

https://osf.io/8mpji/wiki/home/. This list is kept up to date and includes editorials and 

guidelines for specific journals.  

By providing pre-registration formats, these journals are incentivising researchers to  

pre-register their experiments. In addition there is an increased incentive for replica-
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tions, because the pre-registration format combines well with replications, especially 

when done on a large scale (Aarts et al., 2015; Errington et al., 2014). These trends 

will serve to enhance transparency, reliability, and replicability of cognitive neuros-

cience research findings. 

Conclusion 

In this thesis I focused on the importance of replication and preregistration in cogniti-

ve neuroscience, and show how they can be used as tools to increase reliability of re-

search findings. I discussed how these tools are already being used, in efforts such as 

the recently finalised reproducibility project in psychology (Aarts et al., 2015) and the 

ongoing similar effort in cancer biology (Errington et al., 2014), as well as the increa-

sing number of journals adopting the pre-registration format. These efforts (and 

others sure to come) lead to a more realistic view of the current reliability of conven-

tional scientific practice, thereby facilitating the continued self-improvement process 

of the scientific endeavour. 

On a final note, it appears that the discussed efforts emerged because a large enough 

number of researchers were inspired to increase the reliability and reproducibility of 

scientific output. Their working together, and their combined resources allowed the 

large-scaleness of these projects. It is not unreasonable to argue that; if a larger 

number of researchers become similarly inspired to increase the reproducibility of 

scientific output and subsequently work together on large-scale collaborative 

projects, the scientific endeavour at large may gradually become more reliable. How 

might this process occur? What can an individual scientist do to remedy this ‘crisis of 

confidence’? More precisely, given the established academic culture, which measures 

can be taken by a single bachelor, master, PhD student, post-doc, or professor, to con-

tribute to this shift towards a more reliable science? In the widely popular science tv 

series “Cosmos: A Spacetime Odyssey”, astrophysicist Neil deGrasse Tyson argues that 

five simple rules have lead humanity to its scientific discoveries and technological 

achievements: 
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Only a few centuries ago, a mere second in cosmic time, we knew nothing of 

where or when we were. Oblivious to the rest of the cosmos, we inhabited a 

kind of prison, a tiny universe bounded by a nutshell.  

How did we escape from the prison? It was the work of generations of searchers 

who took five simple rules to heart. 

(1) Question authority.  No idea is true just because someone says so, including 

me.  

(2) Think for yourself. Question yourself. Don't believe anything just because 

you want to. Believing something doesn't make it so.  

(3) Test ideas by the evidence gained from observation and experiment. If a 

favorite idea fails a well-designed test, it's wrong. Get over it.  

(4) Follow the evidence wherever it leads.  If you have no evidence, reserve 

judgment.  

And perhaps the most important rule of all... 

(5) Remember: you could be wrong.  Even the best scientists have been wrong 

about some things. Newton, Einstein, and every other great scientist in history -

- they all made mistakes. Of course they did. They were human.  

Science is a way to keep from fooling ourselves, and each other. 

(Braga et al, 2014; Episode 13) 
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Summary English: “On the importance of replicating research findings” 

This thesis aims to raise awareness of the importance of replication in the cognitive 

neurosciences. We identified some problems in the literature in terms of reliability of 

research findings in chapter 1 and 2. In chapter 2 and 3 we provided reflections and 

discussions regarding our findings. Finally, in chapter 4 we provided an example of the 

kind of study which can be done to try to identify factors which might lead to de-

creases in reliability. This research has lead to some recommendations in terms of 

how future research might investigate and remedy the crisis of confidence currently 

experienced in cognitive neuroscience. Specifically, we propose that the pre-regis-

tered replication provides researchers with an excellent tool to simultaneously inves-

tigate reliability, while also preventing common Questionable Research Practices 

(QRPs) in a transparent way. This is done by making publicly available all methods and 

analysis plans of the replication prior to data acquisition. The subsequent execution 

of the replication project can be performed with very little opportunities for QRPs to 

interfere. Recently there have been some developments in terms of large-scale pre-

registered replication efforts (Aarts et al., 2015, Errington et al., 2014), which leads 

me to optimistically suggest that the field is gradually increasing its reliability.  

Samenvatting Nederlands: “On the importance of replicating research findings” 

Dit proefschrift heeft als doel om licht te schijnen op de cruciale rol van replicatie in 

onderzoek binnen de cognitieve neurowetenschappen. In hoofdstuk 1 en 2 beschrijven 

we problemen in de literatuur met betrekking tot betrouwbaarheid van onderzoeksre-

sultaten. In hoofdstuk 2 en 3 reflecteren en bediscussiëren we deze bevindingen. In 

hoofdstuk 4 beschrijven we ten slotte een voorbeeld van een onderzoek gericht op 

het uitzoeken van welke factoren invloed kunnen hebben op de eerder geobserveerde 

lage betrouwbaarheid van onderzoeksresultaten. Dit onderzoek heeft tot enkele aan-

bevelingen geleid voor toekomstig onderzoek. Om het aanzien van de betrouwbaar-
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heid van onderzoeksresultaten te herstellen kunnen onderzoekers replicatie-studies 

pre-registreren voordat ze uitgevoerd worden. Door dit te doen worden alle onder-

zoekshypothesen en geplande analyses publiek toegankelijk, en kunnen “Questionable 

Research Practices” (QRPs) voorkomen worden. Recentelijk zijn er grote ge-pre-regi-

streerde replicatie-onderzoeken uitgevoerd (Aarts et al, 2015, Errington et al., 2014) 

die als voorbeeld gezien kunnen worden voor toekomstige grootschalige onderzoeken. 

Door deze ontwikkelingen lijkt het er op dat het onderzoeksveld zichzelf aan het cor-

rigeren is, waardoor de betrouwbaarheid van onderzoeksresultaten uiteindelijk her-

steld kan worden. 
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