Bias correcting adjustment coefficients in a cointegrated VAR with known cointegrating vectors
van Garderen, K.J.; Boswijk, H.P.

Published in:
Economics Letters

DOI:
10.1016/j.econlet.2013.12.003

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Bias correcting adjustment coefficients in a cointegrated VAR with known cointegrating vectors

Kees Jan van Garderen
A Amsterdam School of Economics, University of Amsterdam, Valckenierstraat 65–67, 1018 XE Amsterdam, The Netherlands

H. Peter Boswijk
b Tinbergen Institute and Amsterdam School of Economics, University of Amsterdam, Valckenierstraat 65–67, 1018 XE Amsterdam, The Netherlands.

July 9, 2013; Revised October 31, 2013

Abstract

The maximum likelihood estimator of the adjustment coefficient in a cointegrated vector autoregressive model (CVAR) is generally biased. For the case where the cointegrating vector is known in a first-order CVAR with no intercept, we derive a condition for the unbiasedness of the maximum likelihood estimator of the adjustment coefficients, and provide a simple characterization of the bias in case this condition is violated. A feasible bias correction method is shown to virtually eliminate the bias over a large part of the parameter space.

Keywords: Cointegration, Vector autoregression, Bias correction

1 Introduction

Consider an m-dimensional first-order vector autoregressive (VAR) model in error correction representation

$$\Delta Y_t = \Pi Y_{t-1} + \varepsilon_t, \quad t = 1, \ldots, T,$$

where \(\varepsilon_t\) are \((m \times 1)\) mean zero independently normally distributed disturbances with contemporaneous covariance matrix \(\Omega\), independent of the observed starting value \(Y_0\). The process is stable when the eigenvalues of the \(m \times m\) matrix \((I_m + \Pi)\) are inside the unit circle. If exactly \(m - r\) eigenvalues are unity, the matrix \(\Pi\) is of reduced rank \(r\) and we write \(\Pi = \alpha \beta'\), where \(\alpha\) and \(\beta\) are \((m \times r)\)-dimensional matrices. If all eigenvalues of \(I_r + \beta'\alpha\) are inside the unit circle.

*Corresponding author. Tel.: +31205254316.
E-mail addresses: k.j.vangarderen@uva.nl, h.p.boswijk@uva.nl.
(so that $\beta^\prime \alpha$ is non-singular), then Y_t is an $I(1)$ process and the model becomes a cointegrated VAR (CVAR). The column vectors of β are cointegrating vectors with the property that for each $j = 1, \ldots, r$, $\beta_j^\prime Y_t$ is a stable process which defines an equilibrium relationship between the variables in Y_t. The equilibrium space is an $(m - r)$-dimensional space orthogonal to β called the attractor set. The components α_{ij} of the adjustment matrix α describe the reaction of variable i to last period’s disequilibrium $\beta_j^\prime Y_{t-1}$.

We are interested in the bias when α is estimated by maximum likelihood. Even though the asymptotic distribution of $\hat{\alpha}$ is centered around α (e.g. Johansen (1996), Theorem 13.3), there can be considerable bias in $\hat{\alpha}$ in small samples, especially when $\beta^\prime \alpha$ is small. We consider the case where β is known, which occurs, e.g., under the Purchasing Power Parity or Forward Rate Unbiasedness hypotheses. In this case there is a simple connection between the bias of $\hat{\alpha}$ and the bias for the autoregressive parameter in the AR(1) model. This is obvious since pre-multiplication of (1) by β^\prime gives:

$$\beta^\prime Y_t = \rho \beta^\prime Y_{t-1} + \beta^\prime \varepsilon_t.$$ \hspace{1cm} (2)

where $\rho = I_r + \beta^\prime \alpha$ is a matrix which describes the memory of the disequilibrium process. If there is only one cointegrating vector then ρ is the scalar autoregressive parameter in an AR(1) of the univariate process $\beta^\prime Y_t$. We could estimate ρ as $\hat{\rho} = I_r + \beta^\prime \hat{\alpha}$ and the bias in both estimators is obviously related. The dimension of α is $m \times r$, however, and larger than the dimension of ρ which is $r \times r$, since $m > r$.

When $\rho = 0$ in the univariate AR(1) model without regressors, the OLS estimator for ρ is unbiased, which can be proved using an invariance argument. We can invoke the same argument here to prove the analogous result for the unbiasedness of $\hat{\alpha}$. In the present context, $\rho = 0$ means that any deviation from equilibrium has no persistence and the expected value of the process in the next period, given the current value, always lies in the equilibrium set for every period t. The process is therefore symmetrically distributed around the equilibrium set and as a consequence the estimator for the adjustment coefficient is unbiased as we shall prove in Section 2. When this condition for unbiasedness is violated, i.e., when $\rho \neq 0$, we show that the bias in $\hat{\alpha}$ can be expressed in terms of the bias in $\hat{\rho}$, which leads to a simple bias correction method, illustrated in Section 3.

2 Bias expressions

For known β, the maximum likelihood estimator of the adjustment parameter matrix α, based on the conditional likelihood (treating the starting value Y_0 as fixed) is given by the least-squares estimator

$$\hat{\alpha} = \sum_{t=1}^{T} \Delta Y_t Y_{t-1}^\prime \beta \left(\sum_{t=1}^{T} \beta^\prime Y_{t-1} Y_{t-1}^\prime \beta \right)^{-1} .$$ \hspace{1cm} (3)

Proposition 1 The maximum likelihood estimator $\hat{\alpha}$ is unbiased when $\beta^\prime \alpha = -I_r$.

2
Proof. We use a simple invariance argument as highlighted by Kakwani (1967), and used in a slightly different context by Abadir et al. (1999). First, substitution of $\Delta Y_t = \alpha \beta' Y_{t-1} + \varepsilon_t$ in (3) gives

$$\hat{\alpha} = \alpha + \sum_{t=1}^{T} \varepsilon_t Y'_{t-1} \beta \left(\sum_{t=1}^{T} \beta' Y'_{t-1} \right)^{-1}.$$

When $\beta' \alpha = -I_r$ so that $\rho = 0$, then $\beta' Y_t = \beta' \varepsilon_t$ for $t = 1, \ldots, T$. Therefore, defining $\varepsilon_0 = Y_0$,

$$\hat{\alpha}(\varepsilon) - \alpha = \sum_{t=1}^{T} \varepsilon_t \varepsilon'_{t-1} \beta \left(\beta' \sum_{t=1}^{T} \varepsilon_{t-1} \varepsilon'_{t-1} \beta \right)^{-1} = \varepsilon'A \varepsilon \beta \left(\beta' \beta \right)^{-1},$$

where $\varepsilon = (Y_0, \varepsilon_1, \ldots, \varepsilon_T)'$, a $(T+1) \times m$ matrix, and A and B are $(T+1) \times (T+1)$ matrices:

$$A = \begin{bmatrix} 0 & 0 & \cdots & \cdots & 0 \\ 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \cdots & 1 & 0 \\ 0 & \cdots & 0 & 0 \end{bmatrix}.$$

Next, define a $(T+1) \times (T+1)$ orthogonal matrix $H = \text{diag}(1, -1, 1, -1, \ldots)$ and let $\tilde{\varepsilon} = H \varepsilon$, such that $\tilde{\varepsilon}$ and ε will have the same distribution whenever the distribution of $\{\varepsilon_t\}_{t=1}^{T}$ is symmetric. (The first row of both ε and $\tilde{\varepsilon}$ is Y_0'.) It is easily checked that $H'AH = -A$ and $H'BH = B$, so

$$\hat{\alpha}(\tilde{\varepsilon}) - \alpha = \varepsilon' H'AH \varepsilon \beta \left(\beta' \beta' H'BH \varepsilon \beta \right)^{-1} = -\varepsilon'A \varepsilon \beta \left(\beta' \beta \right)^{-1} = - (\hat{\alpha}(\varepsilon) - \alpha).$$

Since ε and $\tilde{\varepsilon}$ have the same distribution, $\hat{\alpha}(\varepsilon) - \alpha$ and $-(\hat{\alpha}(\varepsilon) - \alpha)$ will also have identical distributions, symmetric around 0. This distribution has finite mean, as follows from the criteria derived by Magnus (1986) for the existence of moments of ratios of quadratic forms in normal vectors. Therefore, $E[\hat{\alpha}(\varepsilon) - \alpha] = -E[\hat{\alpha}(\varepsilon) - \alpha]$, which implies $E[\hat{\alpha} - \alpha] = 0$. \hfill \Box

When $\beta' \alpha \neq -I_r$, and hence $\rho \neq 0$, then $\hat{\alpha}$ is not unbiased. The bias in $\hat{\alpha}$ is naturally related to the bias in $\hat{\rho}$

$$\hat{\rho} = I_r + \beta' \hat{\alpha} = \sum_{t=1}^{T} Z_t Z'_{t-1} \left(\sum_{t=1}^{T} Z_{t-1} Z'_{t-1} \right)^{-1},$$

where $Z_t = \beta' Y_t$. The question now becomes how to exploit knowledge concerning the bias in $\hat{\rho}$ for obtaining bias expressions for $\hat{\alpha}$.

In the past many expressions have been derived for the bias in $\hat{\rho}$ in the autoregressive model. Early contributions include Marriott and Pope (1954), Kendall (1954) and White (1961) but
there are many others. In order to use these results we need the inverse of the bias relation
\[
\beta' E[\hat{\alpha} - \alpha] = E[\hat{\rho} - \rho].
\]
The dimension of \(\rho \) is smaller than \(\alpha \) and hence the equation \(\beta' E[\hat{\alpha} - \alpha] = E[\hat{\rho} - \rho] \) has general solution (see e.g. Magnus and Neudecker (1988), p. 37):
\[
E[\hat{\alpha} - \alpha] = \beta (\beta' \beta)^{-1} E[\hat{\rho} - \rho] + \beta \perp (\beta' \beta \perp)^{-1} \beta' q, \quad q \in \mathbb{R}^{m \times r},
\]
where \(q \) in general will depend on the unknown parameters \((\alpha, \Omega)\) and the fixed \(\beta \).

In order to resolve the indeterminacy in \(q \), we write the model with known \(\beta \) as
\[
Z_t = \rho Z_{t-1} + u_{1t},
W_t = \gamma Z_{t-1} + u_{2t},
\]
with \(\gamma = \beta' \alpha \), \(W_t = \beta' \perp \Delta Y_t \), \(u_{1t} = \beta' \varepsilon_t \) and \(u_{2t} = \beta' \perp \varepsilon_t \). Conditional on the initial values we can calculate the maximum likelihood estimates of \(\rho \) and \(\gamma \) by OLS since \(Z_{t-1} \) is common in both equations. Using the explicit expression for \(\hat{\alpha} \) we have the following relations
\[
\beta' \hat{\alpha} = \hat{\rho} - I_r,
\beta' \perp \hat{\alpha} = \hat{\gamma},
\]
where \(\hat{\gamma} = \sum_{t=1}^{T} W_t Z_{t-1}' \left(\sum_{t=1}^{T} Z_{t-1} Z_{t-1}' \right)^{-1} \). This relation can be inverted to obtain
\[
\hat{\alpha} = \beta (\beta' \beta)^{-1} (\hat{\rho} - I_r) + \beta \perp (\beta' \beta \perp)^{-1} \hat{\gamma}.
\]
This leads to the following proposition:

Proposition 2 \(E[\hat{\alpha} - \alpha] = \left(\beta (\beta' \beta)^{-1} + \beta \perp (\beta' \beta \perp)^{-1} \delta \right) E[\hat{\rho} - \rho] \) where \(\delta = \beta' \perp \Omega \beta (\beta' \Omega \beta)^{-1} \).

When the covariance matrix is scalar the second term vanishes since \(\beta' \perp \Omega \beta = 0 \) and we have:

Corollary 1 \(E[\hat{\alpha} - \alpha] = \beta (\beta' \beta)^{-1} E[\hat{\rho} - \rho] \) when \(\Omega = \sigma^2 I_m \).

Proof. Using \(\hat{\gamma} - \gamma = \sum_{t=1}^{T} u_{2t} Z_{t-1}' \left(\sum_{t=1}^{T} Z_{t-1} Z_{t-1}' \right)^{-1} \) and writing \(Z_t = \rho^t Z_0 + \sum_{j=0}^{t-1} \rho^j u_{1t-j} \) it follows that \(\{u_{2t}\}_{t=1}^{T} \) is independent of \(\{Z_{t-1}\}_{t=1}^{T} \), so that \(E[\hat{\gamma} - \gamma] = 0 \), if \(u_{1t} \) is independent of \(u_{2t} \). When \(\varepsilon_t \) is Gaussian with covariance matrix \(\Omega \), this happens if and only if \(\text{Cov}[u_{1t}, u_{2t}] = \beta' \Omega \beta \perp = 0 \). This proves the corollary when \(\Omega = \sigma^2 I_m \).

In other cases we have
\[
u_{2t} = \delta u_{1t} + \nu_{2t,1,t},
\]
where \(\nu_{2t,1,t} \) is independent of \(u_{1t} \). Using \((\hat{\rho} - \rho) = \sum_{t=1}^{T} u_{1t} Z_{t-1}' \left(\sum_{t=1}^{T} Z_{t-1} Z_{t-1}' \right)^{-1} \) we have
\[
\hat{\gamma} - \gamma = \delta (\hat{\rho} - \rho) + \sum_{t=1}^{T} \nu_{2t,1,t} Z_{t-1}' \left(\sum_{t=1}^{T} Z_{t-1} Z_{t-1}' \right)^{-1},
\]
where the last term has expectation 0 because \(\{u_{2t,1,t}\}_{t=1}^{T} \) is independent of \(\{Z_{t-1}\}_{t=1}^{T} \). This leads to the result of Proposition 2. \(\square \)

We see that the bias in \(\hat{\alpha} \) is proportional to the bias in \(\hat{\rho} \) in the direction of the cointegrating vector, orthogonal to the equilibrium set if the contemporaneous covariance matrix is scalar, and a second term that is governed by the non-orthogonality of \(\beta \) and \(\beta \perp \) in the fall metric defined by the contemporaneous covariance matrix \(\Omega \).
3 Bias correction

In order to illustrate the result and to show that we can successfully use bias expressions for autoregressive parameters to bias adjust the estimator $\hat{\alpha}$, we consider a bivariate CVAR with one cointegrating vector $\beta = (1, -1)'$, inspired by e.g. the Forward Rate Unbiasedness hypothesis and present value models. We choose as adjustment vector $\alpha = \frac{1}{2}(\rho - 1)(1, -1)'$, for various values of ρ. The disturbance covariance matrix is taken as $\Omega = \frac{1}{2}\text{diag}(1+\delta, 1-\delta)$ with $\delta \in (0, 1)$, such that $\beta'\Omega\beta = 1$ and $\beta'_\perp\Omega\beta = \delta$ (where we have taken $\beta'_\perp = (1, 1)'$). The initial condition satisfies $\beta'Y_0 = 0$.

There are various bias expressions for $\hat{\rho}$, but we use one based on the geometry of the AR(1) model, see van Garderen (1997, 1999) and calculated using the general second order bias expression given in, e.g., Amari (1985). For the case where $Z_0 = 0$, this results in the explicit bias formula

$$E[\hat{\rho} - \rho] = \frac{(1 - \rho^2) \left(4\rho^2 - 2T\rho^2 + 2T\rho^4 - 2T\rho^{2T} - 4\rho^{2+2T} + 2T\rho^{2+2T}\right)}{\rho(T - 1 - T\rho^2 + \rho^{2T})^2} + o(T^{-1}).$$ (4)

Figures 1–3 display the bias in $\hat{\alpha}_1$ and $\hat{\alpha}_2$ against $\rho \in (0, 1]$, with $T \in \{10, 20, 50, 100\}$ and $\delta \in \{0, 0.8\}$. When $\delta = 0$, then the distribution of $\hat{\alpha}_2$ is the same as that of $-\hat{\alpha}_1$, so this case is not displayed. For similar reasons of symmetry, we do not consider $\rho < 0$ or $\delta < 0$. In addition to the bias, we have calculated the remaining bias after correction using Proposition 2 in combination with (4), either using the true parameter values of ρ and δ, or their estimates, where we have imposed $\hat{\rho} \leq 1$ by taking $\hat{\rho} = \min\{1, 1 + \beta'_\perp\hat{\alpha}\}$.

The results are based on 1,000,000 replications. The same random numbers have been used for different values of ρ, and the result of Proposition 1 (zero bias at $\rho = 0$) has been enforced by taking “antithetic” variates in the spirit of the proof of Proposition 1.

In all three figures, we observe very similar features. The bias starts at 0 for $\rho = 0$, then increases or decreases almost linearly for the larger part of $\rho \in [0, 1]$, but the function is curved and non-monotonous as ρ approaches 1. The bias correction formula (4) has very similar properties: from its value 0 at $\rho = 0$ it decreases monotonously until it reaches its unique minimum in the interval $[0, 1]$, after which it increases to its limit as $\rho \to 1$, given by $-4(T-2)/(3T(T-1))$. This suggests that this second-order bias approximation could be more accurate than simpler bias approximations, in particular in the neighbourhood of $\rho = 1$. From the figures, we see that the (infeasible) bias correction based on the true parameters leads to an over-correction of the bias for smaller values of ρ and T, and an under-correction in the neighbourhood of $\rho = 1$. For a large part of the interval $\rho \in [0, 1]$, the correction based on estimated parameters leads to an almost unbiased estimator. This may be explained by the fact that the negative bias in $\hat{\rho}$ reduces the over-correction caused by the approximation (4). As ρ approaches 1, the feasible correction method based on estimated parameters does not fully eliminate the bias, but still leads to a substantial bias reduction.
4 Concluding remarks

We have shown that in the CVAR model with known β, the bias in $\hat{\alpha}$ can be related to the bias in $\hat{\rho}$ in pure (vector) autoregressive models. The bias can be very large relative to the true value of α, in particular for small values of α when return to the equilibrium set is slow and shocks are relatively persistent. Our feasible bias correction significantly reduces the bias of the adjustment estimator.

When the model is extended to include deterministics and lagged differences then the estimator $\hat{\rho}$ is not unbiased, even when $\rho = 0$, which is well known. This means that Proposition 1 no longer applies; however, we conjecture that Proposition 2 can be extended to the case of deterministic components in the first-order model.

Acknowledgement

Helpful comments from Noud van Giersbergen and an anonymous referee, and research assistance of Maurice Bun are gratefully acknowledged.

References

Figure 1: Bias and corrected bias in $\hat{\alpha}_1$ against ρ, with $\delta = 0$.

Note: All graphs have ρ on the horizontal axis, and bias on the vertical axis.

Figure 2: Bias and corrected bias in $\hat{\alpha}_1$ against ρ, with $\delta = 0.8$.

Note: All graphs have ρ on the horizontal axis, and bias on the vertical axis.
Figure 3: Bias and corrected bias in $\hat{\alpha}_2$ against ρ, with $\delta = 0.8$.

Note: All graphs have ρ on the horizontal axis, and bias on the vertical axis.