Search for resonant top quark plus jet production in $t\bar{t}+\text{jets}$ events with the ATLAS detector in pp collisions at $\sqrt{s} = 7$ TeV

Published in:
Physical Review D. Particles, Fields, Gravitation, and Cosmology

DOI:
10.1103/PhysRevD.86.091103

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
In the past few decades, remarkable agreement has been shown between measurements in particle physics and the predictions of the Standard Model (SM). The top quark sector is one important place to look for deviations from the SM, as the large top quark mass suggests that it may play a special role in electroweak symmetry breaking. The recent top quark forward-backward asymmetry measurements from the Tevatron experiments [1,2] are in marginal agreement with SM expectations. A non-SM explanation could come from a possible top-flavor-violating process [3–5]. In these models, a new heavy particle would be produced at the LHC in association with a top or antitop quark. Figure 1 shows representative production diagrams for these new particles, for the cases of $R = W$ or $R = \phi$ (see below). As shown in Ref. [6], the production mechanism in pp collisions mainly involves quarks rather than antiquarks at $\sqrt{s} = 7$ TeV, even for relatively low mass particles.

The larger number of quarks relative to antiquarks produced in the initial state at the LHC leads to a resonance R that decays predominantly to either the $t + j$ or $\bar{t} + j$ final state, where baryon number conservation restricts the models that are available. Two models that can give rise to these final states are a color singlet resonance (W^*) mostly in the tq system, and a di-quark color triplet model with a resonance (ϕ) in the tq system. In both cases a $t + j$ final state is produced, but a peak will be present in only one of the $t + j$ or $\bar{t} + j$ invariant mass distributions. The new resonances are assumed not to be self-conjugate, which makes searches for same-sign top quarks insensitive to them [7–9], and to have only right-handed couplings.

The t or \bar{t} then decays to $W^+ b$ or $W^- \bar{b}$, respectively. This paper considers the decay signature of events in which one W boson decays leptonically (to an electron or muon, plus neutrino final state) and the other W boson decays hadronically. The first direct search for such particles was performed at CDF [10], which excluded color triplet resonances with masses below 300 GeV, for particles with mass less than 840 GeV [11] for both W' boson and color triplet models is excluded at 95% confidence level, assuming unit right-handed coupling.

The analysis presented here uses the full ATLAS 7 TeV pp collision data set collected in 2011, corresponding to 4.7 ± 0.2 fb$^{-1}$ of integrated luminosity [13,14] delivered by the LHC. ATLAS [15] is a multipurpose particle physics detector with cylindrical geometry [16]. The inner detector (ID) system consists of a high-granularity silicon pixel detector and a silicon microstrip detector, as well as a transition radiation straw-tube tracker. The ID is immersed in a 2 T axial magnetic field and provides charged particle tracking in the range $|\eta| < 2.5$. Surrounding the ID, electromagnetic calorimetry is provided by barrel and endcap liquid-argon (LAr)/lead accordion calorimeters and LAr/copper sampling calorimeters in the forward region. Hadronic calorimetry is provided in the barrel by a steel/scintillator tile sampling calorimeter, and in the endcaps and forward region by LAr/copper and LAr/tungsten sampling calorimeters, respectively. The muon spectrometer comprises separate trigger and high-precision tracking chambers measuring the deflection of muons in a magnetic field with a bending power of 2–8 Tm, generated by three superconducting air-core toroid systems. A three-level trigger system is used to select interesting events. The level-1 trigger is implemented in hardware and uses a subset of detector information to reduce the event rate to a design value of at most 75 kHz. This is followed by two
software-based trigger levels, level-2 and the event filter, which together reduce the event rate to \(\approx 300\) Hz.

Events with an electron (muon) are required to have passed an electron (muon) trigger with a threshold of transverse energy \(E_T > 20\) GeV (transverse momentum \(p_T > 18\) GeV), ensuring that the trigger is fully efficient for the offline selection discussed below. Electrons reconstructed offline are required to have a shower shape in the electromagnetic calorimeter consistent with expectation, as well as a good quality track pointing to the cluster in the calorimeter. Candidate electrons with \(E_T > 25\) GeV are required to pass the “tight” electron quality criteria [17], to fall inside a well-instrumented region of the detector (\(|\eta| < 2.47\), excluding \(1.37 < |\eta| < 1.52\)), and to be isolated from other objects in the event. Muons with transverse momentum \(p_T > 20\) GeV are required to pass muon quality criteria [18], to be well measured in both the ID and the muon spectrometer, to fall within \(|\eta| < 2.5\), and to be isolated from other objects in the event.

Jets are reconstructed in the calorimeter using the anti-\(k_t\), [19] algorithm with a radius parameter of 0.4. Jets are required to satisfy \(p_T > 25\) GeV and \(|\eta| < 2.5\). Events with jets arising from electronic noise bursts and beam backgrounds are rejected [20]. Jets are calibrated to the hadronic energy scale using \(p_T\)- and \(\eta\)-dependent corrections derived from simulation, as well as from test-beam and collision data [21]. Jets from the decay of heavy flavor hadrons are selected by a multivariate \(b\)-tagging algorithm [22] at an operating point with 70% efficiency for \(b\) jets and a mistag rate for light quark jets of less than 1% in simulated \(t\bar{t}\) events. Neutrinos are inferred from the magnitude of the missing transverse momentum \((E_T^{\text{miss}})\) in the event [23].

The signal region for this analysis is defined by requiring exactly one charged lepton and five or more jets, including at least one \(b\)-tagged jet. To select events with a leptonically decaying \(W\) boson, events are required to have \(E_T^{\text{miss}} > 30\) GeV \((E_T^{\text{miss}} > 20\) GeV\) in the electron (muon) channel. Additionally, the event must have a transverse mass of the leptonically decaying \(W\) boson \(m_W > 30\) GeV in the electron channel, or scalar sum \(E_T^{\text{miss}} + m_W^2 > 60\) GeV in the muon channel [24]. Here, \((m_W^2)^2 = 2E_T^{\text{miss}}E_T^l(1 - \cos\phi)\), where \(E_T^l\) is the magnitude of the transverse momentum of the lepton, and \(\phi\) is the angle between the lepton and the missing transverse momentum in the event.

A variety of Monte Carlo generators are used to study and estimate backgrounds. The generated events are processed through full detector simulation [25], based on GEANT4 [26], and include the effect of multiple \(pp\) interactions per bunch crossing. To predict the event yield, the simulation is given an event-by-event weight such that

\[
\text{(data-SM)/SM} = \frac{\text{Events}}{40\text{ GeV}}
\]

The example signal-only distributions are overlaid for comparison, where unit coupling for the new physics process is assumed. The total uncertainty shown on the ratio includes both statistical and systematic effects. The “other” background category includes single top production, diboson production, and multijet events.
the distribution of the number of \(pp \) collisions matches that in data.

The \(\bar{t}t \) background is modeled with MC@NLO v.4.01 [27] interfaced to HERWIG v.6.520 [28] and JIMMY v.4.31 [29]. An additional \(\bar{t}t \) sample modeled with MC@NLO interfaced to PYTHIA v.6.425 [30] is used to study potential systematic uncertainties. Other \(\bar{t}t \) samples use POWHEG [31] interfaced either to PYTHIA or HERWIG, as well as AcerMC v.3.8 [32]. The background from the production of single \(W \) bosons in association with extra jets is modeled by the ALPGEN v.2.13 [33] generator interfaced to HERWIG. The MLM matching scheme [34] is used to form inclusive \(W \) boson + jets samples such that overlapping events produced in both the hard scatter and parton showering are removed. In addition, the heavy flavor contributions are reweighted using the data-driven procedures of Ref. [24] using the full 2011 LHC data set.

Diboson events are generated using HERWIG. Single-top-quark events are modeled by MC@NLO, interfaced to HERWIG for the parton showering, in the \(s \) channel and \(Wt \) channel, and by AcerMC v.3.8 in the \(t \) channel. The small background in which multijet processes are misidentified as prompt leptons is modeled from a data-driven matrix method [35]. In determining the expected event yields, the \(\bar{t}t \) cross section is normalized to approximate next-to-next-to-leading-order QCD calculations of 167\(^{+17}_{-18} \) pb for a top quark mass of 172.5 GeV [36,37], and the total \(W + \text{jets} \) background is normalized to inclusive next-to-next-to-leading-order predictions [38]. Signal events are produced, for a range of \(W' \) and \(\phi \) masses, with MadGraph v.5.1.3.16 [39] and interfaced to PYTHIA v.6.425. Next-to-leading-order (NLO) cross sections are used for the predicted \(W' \) boson signal normalization [6], and leading-order (LO) cross sections using MSTW2008 are used for the \(\phi \) resonance normalization [3].

Events are reconstructed with a kinematic fitting algorithm that utilizes knowledge of the overconstrained \(\bar{t}t \) system to assign jets to partons. In the fit, the two top quark masses are each constrained at the particle level to

![FIG. 3](image-url)

FIG. 3 (color online). Expected and observed distribution of \(m_{t\bar{t}} \) in the \(W + \text{jets} \) control region. The example signal-only distributions are overlaid for comparison, where unit coupling for the new physics process is assumed. The total uncertainty shown on the ratio includes both statistical and systematic effects. The other background category includes single top production, diboson production, and multijet events.

![FIG. 4](image-url)

FIG. 4 (color online). Expected and observed distributions of (a) \(m_{t\bar{t}} \) and (b) \(m_{t\bar{t}} \) in the signal region. The example signal distributions assume unit coupling for the new physics process. The total uncertainty shown on the ratio includes both statistical and systematic effects. The other background category includes single top production, diboson production, and multijet events.
172.5 GeV by a penalty in the likelihood, computed from variations from this nominal value and the natural top quark width of 1.5 GeV. The two \(W \) boson masses are similarly constrained to 80.4 GeV within a width of 2.1 GeV. This allows the \(z \) component of the momentum of the neutrino from the leptonically decaying \(W \) boson to be computed. Both solutions from the quadratic ambiguity of this computation are tested when computing the likelihood.

Signal contamination is further reduced by requiring that the \(\Delta R = \sqrt{\Delta \eta^2 + (\Delta \phi)^2} \) between the fifth jet and both the reconstructed top and antitop quarks is greater than \(\pi/2 \). Figure 2 shows distributions in the two \(t \bar{t} \) control regions, where good agreement is observed between data and the prediction. The second major background, production of single \(W \) bosons in association with extra jets, is tested in a

TABLE II. Expected and observed yields in different signal regions. The errors include all systematic uncertainties. Total refers to the total expected background, including \(t \bar{t}, W + \text{jets}, \) and the other smaller backgrounds: single top production, diboson production, and multijet events. The last two lines show the expected number of events for two benchmark signal samples in each of these control regions. The errors include all systematic uncertainties.

<table>
<thead>
<tr>
<th></th>
<th>Preselection CR</th>
<th>(W + \text{jets}) CR</th>
<th>Four-jet (t \bar{t}) CR</th>
<th>Five-jet (t \bar{t}) CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t \bar{t})</td>
<td>50000 \pm 4700</td>
<td>2000 \pm 400</td>
<td>19000 \pm 600</td>
<td>2100 \pm 200</td>
</tr>
<tr>
<td>(W + \text{jets})</td>
<td>46000 \pm 14000</td>
<td>7000 \pm 2900</td>
<td>3800 \pm 800</td>
<td>360 \pm 170</td>
</tr>
<tr>
<td>Total</td>
<td>116000 \pm 21000</td>
<td>12000 \pm 3600</td>
<td>26000 \pm 1300</td>
<td>2900 \pm 440</td>
</tr>
<tr>
<td>Observed</td>
<td>110933</td>
<td>11858</td>
<td>26197</td>
<td>2736</td>
</tr>
<tr>
<td>300 GeV (W^+)</td>
<td>13900 \pm 670</td>
<td>930 \pm 110</td>
<td>3000 \pm 400</td>
<td>400 \pm 80</td>
</tr>
<tr>
<td>400 GeV (\phi)</td>
<td>6100 \pm 200</td>
<td>430 \pm 60</td>
<td>1100 \pm 100</td>
<td>200 \pm 20</td>
</tr>
</tbody>
</table>

TABLE I. Expected and observed yields in the four control regions (CR). Total refers to the total expected background, including \(t \bar{t}, W + \text{jets}, \) and the other smaller backgrounds: single top production, diboson production, and multijet events. The last two lines show the expected number of events for two benchmark signal samples in each of these control regions. The errors include all systematic uncertainties. Total refers to the total expected background, including \(t \bar{t}, W + \text{jets}, \) and the other smaller backgrounds: single top production, diboson production, and multijet events. The last two lines show the expected number of events for two benchmark signal samples in each of these control regions. The errors include all systematic uncertainties.
control region with five or more jets, vetoing events with \(b \)-tagged jets. The requirement of zero \(b \)-tagged jets reduces both signal and \(t\bar{t} \) contamination. The distribution in Fig. 3 shows good agreement between data and the prediction within uncertainties. Table I summarizes the expected and observed yields in the control regions.

Figure 4 shows the expected and observed \(m_{ij} \) and \(m_{ij} \) distributions in the signal region. The data are found to be consistent with the SM expectation. A variety of potential systematic effects are evaluated for the predicted signal and the background rates and shapes. The dominant systematic effects of the jet energy scale \([21]\) and resolution \([40]\) lead to uncertainties of up to 10% on the total background rate and up to 21% on the total signal expectation, depending on the mass of the new particle. The other dominant systematic uncertainty from the difference in \(b \)-tagging efficiency between simulation and data leads to uncertainties of roughly 16% on both the signal and background rates. Effects due to lepton trigger uncertainties and ID efficiency as well as the energy scale and resolution are

FIG. 5 (color online). Expected and observed 95% C.L. upper limits on the (a) \(W^0 \) and (b) \(\phi \) model cross sections. The CDF result is documented in Ref. \([10]\). The \(W^0 \) cross sections are NLO calculations, and the \(\phi \) cross sections are LO calculations. The region favored by the Tevatron AFb and \(\sigma_{fj} \) measurements is shown as the dark band \([42]\).
assessed using $Z \to ee$ and $Z \to \mu\mu$ data, which lead to systematic uncertainties of a few percent. Other potential systematic effects considered are the size of the small multijet background (assigned 100% uncertainty); $t\bar{t}$ generator uncertainties (evaluated by comparing different results using the MC@NLO and POWHEG generators, 1–10%); $t\bar{t}$ showering and fragmentation uncertainties (evaluated by comparing samples using both PYTHIA and HERWIG, 1%–6%); an uncertainty on the total integrated luminosity (3.9%) \cite{13,14}; and the amount of QCD multijet background (assigned 100% uncertainty); and systematic uncertainties of 10% (55%) are used for the $t\bar{t}$ (W+jets) generator uncertainties (evaluated by comparing different results using the MC@NLO and POWHEG generators, 1–10%).

For each benchmark signal mass point under consideration, systematic uncertainties of 10% (55%) are used for the $t\bar{t}$ (W+jets) generator uncertainties (evaluated by comparing different results using the MC@NLO and POWHEG generators, 1–10%).

Expected and observed upper limits on the signal cross section are computed at discrete mass points as follows. For each benchmark signal mass point under consideration, a signal region is defined in the m_{ij}-m_{ij} plane. For each mass window, 95% confidence level (C.L.) upper limits on the signal cross section (times the branching ratio to W' (ϕ)) are computed using the MC@NLO and POWHEG generators, with expected limits of 0.93 (1.30) TeV . These are the most stringent limits to date on such models. Most of the regions of parameter space for these models that are more consistent with the Tevatron forward-backward asymmetry and $t\bar{t}$ cross section measurements than the SM are excluded at 95% C.L. by these results.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhi, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DFN, DNSRC, and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, U.S.A. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA) and in the Tier-2 facilities worldwide.

\begin{thebibliography}{99}
\end{thebibliography}
There are several differences between the models in Refs. [3,4]. The Lagrangian in the former (used in this paper) includes a factor of $1/\sqrt{2}$, and the one in the latter (used by CMS) does not. In addition, Ref. [4] includes additional nonresonant diagrams with cross section that scale as g_s^2. Such diagrams are not included in Ref. [3].

SEARCH FOR RESONANT TOP QUARK PLUS JET...
Also at Department of Physics and Astronomy, University College London, London, United Kingdom.

Also at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.

Also at Department of Physics, University of Cape Town, Cape Town, South Africa.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.

Also at Manhattan College, New York, NY, USA.

Also at School of Physics, Shandong University, Shandong, China.

Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy.

Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.

Also at Department de Physique, Université de Genève, Geneva, Switzerland.

Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.

Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

Also at California Institute of Technology, Pasadena, CA, USA.

Also at Institute of Physics, Jagiellonian University, Krakow, Poland.

Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.

Also at Nevis Laboratory, Columbia University, Irvington, NY, USA.

Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.

Also at Department of Physics, Oxford University, Oxford, United Kingdom.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA.

Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.