Search for resonant top quark plus jet production in \(tt+\) jets events with the ATLAS detector in pp collisions at \(\sqrt{s} = 7\) TeV

DOI
10.1103/PhysRevD.86.091103

Publication date
2012

Document Version
Final published version

Published in
Physical Review D. Particles, Fields, Gravitation, and Cosmology

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
This paper presents a search for a new heavy particle produced in association with a top or antitop quark. Two models in which the new heavy particle is a color singlet or a color triplet are considered, decaying, respectively, to $t\bar{q}$ or tq, leading to a resonance within the $t\bar{t}$ + jets signature. The full 2011 ATLAS pp collision data set from the LHC (4.7 fb$^{-1}$) is used to search for $t\bar{t}$ events produced in association with jets, in which one of the W bosons from the top quarks decays leptonically and the other decays hadronically. The data are consistent with the Standard Model expectation, and a new particle with mass below 430 GeV for both W' boson and color triplet models is excluded at 95% confidence level, assuming unit right-handed coupling.

DOI: 10.1103/PhysRevD.86.091103

PACS numbers: 13.85.Rm, 12.60.Cn, 14.65.Ha, 14.70.Pw

In the past few decades, remarkable agreement has been shown between measurements in particle physics and the predictions of the Standard Model (SM). The top quark sector is an important place to look for deviations from the SM, as the large top quark mass suggests that it may play a special role in electroweak symmetry breaking. The recent top quark forward-backward asymmetry measurements from the Tevatron experiments [1,2] are in marginal agreement with SM expectations. A non-SM explanation could come from a possible top-flavor-violating process [3–5]. In these models, a new heavy particle R would be produced at the LHC in association with a top or antitop quark. Figure 1 shows representative production diagrams for these new particles, for the cases of $R = W'$ or $R = \phi$ (see below). As shown in Ref. [6], the production mechanism in pp collisions mainly involves quarks rather than antiquarks at $\sqrt{s} = 7$ TeV, even for relatively low mass particles.

The larger number of quarks relative to antiquarks produced in the initial state at the LHC leads to a resonance R that decays predominantly to either the $t + \text{jet}$ or $\bar{t} + \text{jet}$ final state, where baryon number conservation restricts the models that are available. Two models that can give rise to these final states are a color singlet resonance (W') mostly in the $\bar{t}q$ system, and a di-quark color triplet model with a resonance (ϕ) in the tq system. In both cases a $t\bar{t}$ + jet final state is produced, but a peak will be present in only one of the $t + \text{jet}$ or $\bar{t} + \text{jet}$ invariant mass distributions. The new resonances are assumed not to be self-conjugate, which makes searches for same-sign top quarks insensitive to them [7–9], and to have only right-handed couplings. The t or \bar{t} then decays to W^+b or $W^-\bar{b}$, respectively. This paper considers the decay signature of events in which one W boson decays leptonically (to an electron or muon, plus neutrino final state) and the other W boson decays hadronically. The first direct search for such particles was performed at CDF [10], which excluded color triplet resonances with masses below 200 GeV and W' resonances with masses below 300 GeV, for particles with unit right-handed coupling (g_R) to tq. As is done in this paper, CDF used the formalism in Ref. [3] to define g_R. CMS recently performed a search that excluded a new W' with a mass less than 840 GeV [11] for particles with $g_R = 2$ [12].

The analysis presented here uses the full ATLAS 7 TeV pp collision data set collected in 2011, corresponding to 4.7 ± 0.2 fb$^{-1}$ of integrated luminosity [13,14] delivered by the LHC. ATLAS [15] is a multipurpose particle physics detector with cylindrical geometry [16]. The inner detector (ID) system consists of a high-granularity silicon pixel detector and a silicon microstrip detector, as well as a transition radiation straw-tube tracker. The ID is immersed in a 2 T axial magnetic field and provides charged particle tracking in the range $|\eta| < 2.5$. Surrounding the ID, electromagnetic calorimetry is provided by barrel and endcap liquid-argon (LAr)/lead accordion calorimeters and LAr/copper sampling calorimeters in the forward region. Hadronic calorimetry is provided in the barrel by a steel/scintillator tile sampling calorimeter, and in the endcaps and forward region by LAr/copper and LAr/tungsten sampling calorimeters, respectively. The muon spectrometer comprises separate trigger and high-precision tracking chambers measuring the deflection of muons in a magnetic field with a bending power of 2–8 Tm, generated by three superconducting air-core toroid systems. A three-level trigger system is used to select interesting events. The level-1 trigger is implemented in hardware and uses a subset of detector information to reduce the event rate to a design value of at most 75 kHz. This is followed by two
software-based trigger levels, level-2 and the event filter, which together reduce the event rate to \(\sim 300 \text{ Hz} \).

Events with an electron (muon) are required to have passed an electron (muon) trigger with a threshold of transverse energy \(E_T > 20 \text{ GeV} \) (transverse momentum \(p_T > 18 \text{ GeV} \)), ensuring that the trigger is fully efficient for the offline selection discussed below. Electrons reconstructed offline are required to have a shower shape in the electromagnetic calorimeter consistent with expectation, as well as a good quality track pointing to the cluster in the calorimeter. Candidate electrons with \(E_T > 25 \text{ GeV} \) are required to pass the “tight” electron quality criteria [17], to fall inside a well-instrumented region of the detector (\(|\eta| < 2.47 \)), excluding \(1.37 < |\eta| < 1.52 \), and to be isolated from other objects in the event. Muons with transverse momentum \(p_T > 20 \text{ GeV} \) are required to pass muon quality criteria [18], to be well measured in both the ID and the muon spectrometer, to fall within \(|\eta| < 2.5 \), and to be isolated from other objects in the event.

Jets are reconstructed in the calorimeter using the anti-\(k_t \) [19] algorithm with a radius parameter of 0.4. Jets are required to satisfy \(p_T > 25 \text{ GeV} \) and \(|\eta| < 2.5 \). Events with jets arising from electronic noise bursts and beam backgrounds are rejected [20]. Jets are calibrated to the hadronic energy scale using \(p_T \) - and \(\eta \)-dependent corrections derived from simulation, as well as from test-beam and collision data [21]. Jets from the decay of heavy flavor hadrons are selected by a multivariate \(b \)-tagging algorithm [22] at an operating point with 70% efficiency for \(b \) jets and a mistag rate for light quark jets of less than 1% in simulated \(t\bar{t} \) events. Neutrinos are inferred from the magnitude of the missing transverse momentum \(E_T^{\text{miss}} \) in the event [23].

The signal region for this analysis is defined by requiring exactly one charged lepton and five or more jets, including at least one \(b \)-tagged jet. To select events with a leptonically decaying \(W \) boson, events are required to have \(E_T^{\text{miss}} > 30 \text{ GeV} \) \((E_T^{\text{miss}} > 20 \text{ GeV}) \) in the electron (muon) channel. Additionally, the event must have a transverse mass of the leptonically decaying \(W \) boson \(m_W^{\text{miss}} > 30 \text{ GeV} \) in the electron channel, or scalar sum \(E_T^{\text{miss}} + m_W^{\text{miss}} > 60 \text{ GeV} \) in the muon channel [24]. Here, \((m_W^{\text{miss}})^2 = 2E_T^{\text{miss}}E_L^2(1 - \cos \phi) \), where \(E_L \) is the magnitude of the transverse momentum of the lepton, and \(\phi \) is the angle between the lepton and the missing transverse momentum in the event.

A variety of Monte Carlo generators are used to study and estimate backgrounds. The generated events are processed through full detector simulation [25], based on GEANT4 [26], and include the effect of multiple \(pp \) interactions per bunch crossing. To predict the event yield, the simulation is given an event-by-event weight such that

FIG. 1. Example production and decay Feynman diagrams for the (a) \(W \) and (b) \(\phi \) models.
the distribution of the number of pp collisions matches that in data.

The $t\bar{t}$ background is modeled with MC@NLO v4.01 [27] interfaced to HERWIG v6.520 [28] and JIMMY v4.31 [29]. An additional $t\bar{t}$ sample modeled with MC@NLO interfaced to PYTHIA v6.425 [30] is used to study potential systematic uncertainties. Other $t\bar{t}$ samples use POWHEG [31] interfaced either to PYTHIA or HERWIG, as well as AcerMC v3.8 [32]. The background from the production of single W bosons in association with extra jets is modeled by the ALPGEN v2.13 [33] generator interfaced to HERWIG. The MLM matching scheme [34] is used to form inclusive W boson + jets samples such that overlapping events produced in both the hard scatter and parton showering are removed. In addition, the heavy flavor contributions are reweighted using the data-driven procedures of Ref. [24] using the full 2011 LHC data set.

Diboson events are generated using HERWIG. Single-top-quark events are modeled by MC@NLO, interfaced with HERWIG for the parton showering, in the s channel and Wt channel, and by AcerMC v3.8 in the t channel. The small background in which multijet processes are misidentified as prompt leptons is modeled from a data-driven matrix method [35]. In determining the expected event yields, the $t\bar{t}$ cross section is normalized to approximate next-to-next-to-leading-order QCD calculations of 167^{+17}_{-18} pb for a top quark mass of 172.5 GeV [36,37], and the total W + jets background is normalized to inclusive next-to-next-to-leading-order predictions [38]. Signal events are produced, for a range of W' and ϕ masses, with MadGraph v5.1.3.16 [39] and interfaced to PYTHIA v6.425. Next-to-leading-order (NLO) cross sections are used for the predicted W' boson signal normalization [6], and leading-order (LO) cross sections using MSTW2008 are used for the ϕ-resonance normalization [3].

Events are reconstructed with a kinematic fitting algorithm that utilizes knowledge of the overconstrained $t\bar{t}$ system to assign jets to partons. In the fit, the two top quark masses are each constrained at the particle level to

![Graph](data-SM)/SM

FIG. 3 (color online). Expected and observed distribution of m_{tj} in the W + jets control region. The example signal-only distributions are overlaid for comparison, where unit coupling for the new physics process is assumed. The total uncertainty shown on the ratio includes both statistical and systematic effects. The other background category includes single top production, diboson production, and multijet events.

![Graph](data-SM)/SM

FIG. 4 (color online). Expected and observed distributions of (a) m_{tj} and (b) m_{tj} in the signal region. The example signal distributions assume unit coupling for the new physics process. The total uncertainty shown on the ratio includes both statistical and systematic effects. The other background category includes single top production, diboson production, and multijet events.
TABLE II. Expected and observed yields in different signal regions. The errors include all systematic uncertainties. Total refers to the total expected background, including $t\bar{t}$, $W +$ jets, and the other smaller backgrounds: single top production, diboson production, and multijet events. The last two lines show the expected number of events for two benchmark signal samples in each of these control regions. The errors include all systematic uncertainties.

<table>
<thead>
<tr>
<th>Preselection CR</th>
<th>$W +$ jets CR</th>
<th>Four-jet $t\bar{t}$ CR</th>
<th>Five-jet $t\bar{t}$ CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$</td>
<td>50000 ± 4700</td>
<td>2000 ± 400</td>
<td>19000 ± 600</td>
</tr>
<tr>
<td>$W +$ jets</td>
<td>46000 ± 14000</td>
<td>7000 ± 2900</td>
<td>3800 ± 800</td>
</tr>
<tr>
<td>Total</td>
<td>116000 ± 21000</td>
<td>12000 ± 3600</td>
<td>26000 ± 1300</td>
</tr>
<tr>
<td>Observed</td>
<td>110933</td>
<td>11858</td>
<td>26197</td>
</tr>
<tr>
<td>300 GeV W'</td>
<td>13900 ± 670</td>
<td>930 ± 110</td>
<td>3000 ± 400</td>
</tr>
<tr>
<td>400 GeV ϕ</td>
<td>6100 ± 200</td>
<td>430 ± 60</td>
<td>1100 ± 100</td>
</tr>
</tbody>
</table>

172.5 GeV by a penalty in the likelihood, computed from variations from this nominal value and the natural top quark width of 1.5 GeV. The two W boson masses are similarly constrained to 80.4 GeV within a width of 2.1 GeV. This allows the z component of the momentum of the neutrino from the leptonically decaying W boson to be computed. Both solutions from the quadratic ambiguity of this computation are tested when computing the likelihood. Charged lepton, neutrino, and jet four-momenta are constrained in the fit by resolution transfer functions derived from simulated $t\bar{t}$ events that relate the measured momenta in the detector to true particle momenta. The full shapes of these transfer functions are used in the likelihood computation. All assignments of any four jets to partons from the $t\bar{t}$ decay are tested and the assignment with the largest likelihood output for the $t\bar{t}$ hypothesis is selected. After the assignment is selected, the originally measured jet and lepton momenta and E_T^{miss} are used. The remaining jets not associated with the $t\bar{t}$ partons are included to form m_{ij} and m_{ij} masses, where the charge of the lepton is used to infer which is the top candidate and which is the antitop candidate. All combinations of extra jets with the top and antitop quark candidates are considered, and the pairings that give the largest m_{ij} and m_{ij} masses are used. In this way, the same extra jet can (but does not necessarily have to) be used to form m_{ij} and m_{ij}. These two masses are used as observables for the search.

Several control regions are used to ensure good modeling and understanding of the backgrounds before the signal region is examined. The preselection control region requires at least four jets, but does not require a b tag. The dominant $t\bar{t}$ background is tested in a control region with exactly four jets (including at least one b-tagged jet). The rejection of events with more than four jets reduces signal contamination. A second $t\bar{t}$ control region is defined by events with exactly four jets with p_T above 25 GeV, one of which must be b tagged, and exactly one additional jet with p_T between 20 GeV and 25 GeV. Signal contamination is further reduced by requiring that the $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ between the fifth jet and both the reconstructed top and antitop quarks is greater than $\pi/2$. Figure 2 shows distributions in the two $t\bar{t}$ control regions, where good agreement is observed between data and the prediction. The second major background, production of single W bosons in association with extra jets, is tested in a

TABLE II. Expected and observed yields in different signal regions. The errors include all systematic uncertainties. Total refers to the total expected background, including $t\bar{t}$, $W +$ jets, and the other smaller backgrounds: single top production, diboson production, and multijet events, which are not tabulated separately here. Signal window eff. refers to the efficiency for the signal to fall inside the optimized two-dimensional mass window. The signal region yield is calculated in the mass window at each benchmark signal point. Signal σ refers to the total expected signal cross section, not taking into account the t (or $t\bar{t}$) plus jet branching fraction.

<table>
<thead>
<tr>
<th>m_{ij} window [GeV]</th>
<th>Entire signal region</th>
<th>300 GeV W'</th>
<th>600 GeV W'</th>
<th>400 GeV ϕ</th>
<th>800 GeV ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_{ij} window [GeV]</td>
<td>344 < m_{ij} < 494</td>
<td>566 < m_{ij} < 904</td>
<td>401 < m_{ij} < 455</td>
<td>766 < m_{ij} < 819</td>
<td></td>
</tr>
<tr>
<td>Signal window eff.</td>
<td>7.5%</td>
<td>9.9%</td>
<td>11.9%</td>
<td>5.7%</td>
<td></td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>18000 ± 3000</td>
<td>740 ± 160</td>
<td>270 ± 60</td>
<td>660 ± 150</td>
<td>60 ± 10</td>
</tr>
<tr>
<td>$W +$ jets</td>
<td>1700 ± 560</td>
<td>60 ± 30</td>
<td>30 ± 20</td>
<td>80 ± 40</td>
<td>8 ± 5</td>
</tr>
<tr>
<td>Total</td>
<td>22000 ± 3700</td>
<td>820 ± 190</td>
<td>320 ± 80</td>
<td>780 ± 180</td>
<td>70 ± 20</td>
</tr>
<tr>
<td>Observed</td>
<td>22731</td>
<td>970</td>
<td>343</td>
<td>923</td>
<td>77</td>
</tr>
<tr>
<td>Signal region yield</td>
<td>560 ± 120</td>
<td>98 ± 24</td>
<td>410 ± 100</td>
<td>20 ± 6</td>
<td></td>
</tr>
<tr>
<td>Signal σ</td>
<td>19.0 pb</td>
<td>1.55 pb</td>
<td>7.9 pb</td>
<td>0.67 pb</td>
<td></td>
</tr>
</tbody>
</table>
control region with five or more jets, vetoing events with b-tagged jets. The requirement of zero b-tagged jets reduces both signal and $t\bar{t}$ contamination. The distribution in Fig. 3 shows good agreement between data and the prediction within uncertainties. Table I summarizes the expected and observed yields in the control regions.

Figure 4 shows the expected and observed m_{ij} and m_{ij} distributions in the signal region. The data are found to be consistent with the SM expectation. A variety of potential systematic effects are evaluated for the predicted signal and the background rates and shapes. The dominant systematic effects of the jet energy scale [21] and resolution lead to uncertainties of up to 10% on the total background rate and up to 21% on the total signal expectation, depending on the mass of the new particle. The other dominant systematic uncertainty from the difference in b-tagging efficiency between simulation and data leads to uncertainties of roughly 16% on both the signal and background rates. Effects due to lepton trigger uncertainties and ID efficiency as well as the energy scale and resolution are...
assessed using $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ data, which lead to systematic uncertainties of a few percent. Other potential systematic effects considered are the size of the small multijet background (assigned 100% uncertainty); $t\bar{t}$ generator uncertainties (evaluated by comparing different results using the MC@NLO and POWHEG generators, 1–10%); $t\bar{t}$ showering and fragmentation uncertainties (evaluated by comparing samples using both PYTHIA and HERWIG, 1%–6%); an uncertainty on the total integrated luminosity (3.9%) [13,14]; and the amount of QCD uncertainties of 10% (55%) are used for the m_{tj}-invariant-mass-to-m_{tj} plane model, with expected limits of 0.93 (1.30) TeV. These are the most stringent limits to date on such models. Most of the regions of parameter space for these models that are more consistent with the Tevatron forward-backward asymmetry and $t\bar{t}$ cross section measurements than the SM are excluded at 95% C.L. by these results.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, U.S.A. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA) and in the Tier-2 facilities worldwide.

[12] There are several differences between the models in Refs. [34]. The Lagrangian in the former (used in this paper) includes a factor of $1/\sqrt{2}$, and the one in the latter (used by CMS) does not. In addition, Ref. [4] includes additional nonresonant diagrams with cross section that scale as g_s^4. Such diagrams are not included in Ref. [3].

[16] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector and the z axis points from the interaction point to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (ρ, ϕ) are used in the transverse (x-y) plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

[42] This region simultaneously satisfies the observed high-mt low-Δt and low-mt low-Δt observed at the Tevatron. Mathematically it is defined as the region with $\chi^2 < 2.8$, where χ^2 is defined in Eq. (22) in M. Gresham, I.-W. Kim, and K. Zurek, Phys. Rev. D 85, 014022 (2012). The χ^2 for the Standard Model is 2.8.
SEARCH FOR RESONANT TOP QUARK PLUS JET...
G. AAD et al.

PHYSICAL REVIEW D 86, 091103(R) (2012)

1 School of Chemistry and Physics, University of Adelaide, Adelaide, Australia

2 Physics Department, SUNY Albany, Albany, New York, USA

3 Department of Physics, University of Alberta, Edmonton, Alberta, Canada

4 Department of Physics, Ankara University, Ankara, Turkey

4a Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey

4b Department of Physics, Dumlupinar University, Kütahya, Turkey

4c Turkish Atomic Energy Authority, Ankara, Turkey

5 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France

6 High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA

7 Department of Physics, University of Arizona, Tucson, Arizona, USA

8 Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA

9 Physics Department, University of Athens, Athens, Greece

10 Physics Department, National Technical University of Athens, Zografou, Greece

11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

12 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain

13 Institute of Physics, University of Belgrade, Belgrade, Serbia

13a Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia

14 Department for Physics and Technology, University of Bergen, Bergen, Norway

15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA

16 Department of Physics, Humboldt University, Berlin, Germany

17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland

18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

19a Department of Physics, Bogazici University, Istanbul, Turkey

19b Division of Physics, Dogus University, Istanbul, Turkey

19c Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey

19d Department of Physics, Istanbul Technical University, Istanbul, Turkey

19e INFN Sezione di Bologna, Italy

20a Dipartimento di Fisica, Università di Bologna, Bologna, Italy

20b Physikalisches Institut, University of Bonn, Bonn, Germany

21 Department of Physics, Boston University, Boston, Massachusetts, USA

22 Department of Physics, Brandeis University, Waltham, Massachusetts, USA

23 Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil

24 Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil

24a Institut de Física, Universidade de Sao Paulo, Sao Paulo, Brazil

25 Physics Department, Brookhaven National Laboratory, Upton, New York, USA

26 National Institute of Physics and Nuclear Engineering, Bucharest, Romania

26a University Politehnica Bucharest, Bucharest, Romania

26b West University in Timisoara, Timisoara, Romania

27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

29 Department of Physics, Carleton University, Ottawa, Ontario, Canada

30 CERN, Geneva, Switzerland

31 Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA

32a Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile

32b Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

33 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

33a Department of Modern Physics, University of Science and Technology of China, Anhui, China

33b Department of Physics, Nanjing University, Jiangsu, China

33c School of Physics, Shandong University, Shandong, China

34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France

35 Nevis Laboratory, Columbia University, Irvington, New York, USA

36 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

37 INFN Gruppo Collegato di Cosenza, Italy

37a Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy

38 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

40 Physics Department, Southern Methodist University, Dallas, Texas, USA