Search for resonant top quark plus jet production in tt+ jets events with the ATLAS detector in pp collisions at $\sqrt{s} = 7$ TeV

DOI
10.1103/PhysRevD.86.091103

Publication date
2012

Document Version
Final published version

Published in
Physical Review D. Particles, Fields, Gravitation, and Cosmology

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
This paper presents a search for a new heavy particle produced in association with a top or antitop quark. Two models in which the new heavy particle is a color singlet or a color triplet are considered, decaying, respectively, to tq or tq, leading to a resonance within the $t\bar{t} + \text{jets}$ signature. The full 2011 ATLAS pp collision data set from the LHC (4.7 fb$^{-1}$) is used to search for $t\bar{t}$ events produced in association with jets, in which one of the W bosons from the top quarks decays leptonically and the other decays hadronically. The data are consistent with the Standard Model expectation, and a new particle with mass below 430 GeV for both W boson and color triplet models is excluded at 95% confidence level, assuming unit right-handed coupling.

DOI: 10.1103/PhysRevD.86.091103

PACS numbers: 13.85.Rm, 12.60.Cn, 14.65.Ha, 14.70.Pw

In the past few decades, remarkable agreement has been shown between measurements in particle physics and the predictions of the Standard Model (SM). The top quark sector is one important place to look for deviations from the SM, as the large top quark mass suggests that it may play a special role in electroweak symmetry breaking. The recent top quark forward-backward asymmetry measurements from the Tevatron experiments [1,2] are in marginal agreement with SM expectations. A non-SM explanation could come from a possible top-flavor-violating process [3–5]. In these models, a new heavy particle R would be produced at the LHC in association with a top or antitop quark. Figure 1 shows representative production diagrams for these new particles, for the cases of $R = W^0$ or $R = \phi$ (see below). As shown in Ref. [6], the production mechanism in pp collisions mainly involves quarks rather than antiquarks at $\sqrt{s} = 7$ TeV, even for relatively low mass particles.

The larger number of quarks relative to antiquarks produced in the initial state at the LHC leads to a resonance R that decays predominantly to either the $t + \text{jet}$ or $\bar{t} + \text{jet}$ final state, where baryon number conservation restricts the models that are available. Two models that can give rise to these final states are a color singlet resonance (W^0) mostly in the $\bar{t}q$ system, and a di-quark color triplet model with a resonance (ϕ) in the tq system. In both cases a $t\bar{t} + \text{jet}$ final state is produced, but a peak will be present in only one of the $t + \text{jet}$ or $\bar{t} + \text{jet}$ invariant mass distributions. The new resonances are assumed not to be self-conjugate, which makes searches for same-sign top quarks insensitive to them [7–9], and to have only right-handed couplings.

The t or \bar{t} then decays to W^+b or $W^-\bar{b}$, respectively. This paper considers the decay signature of events in which one W boson decays leptonically (to an electron or muon, plus neutrino final state) and the other W boson decays hadronically. The first direct search for such particles was performed at CDF [10], which excluded color triplet resonances with masses below 200 GeV and W' resonances with masses below 300 GeV, for particles with unit right-handed coupling (g_R) to tq. As is done in this paper, CDF used the formalism in Ref. [3] to define g_R. CMS recently performed a search that excluded a new W' with a mass less than 840 GeV [11] for particles with $g_R = 2$ [12].

The analysis presented here uses the full ATLAS 7 TeV pp collision data set collected in 2011, corresponding to 4.7 ± 0.2 fb$^{-1}$ of integrated luminosity [13,14] delivered by the LHC. ATLAS [15] is a multipurpose particle physics detector with cylindrical geometry [16]. The inner detector (ID) system consists of a high-granularity silicon pixel detector and a silicon microstrip detector, as well as a transition radiation straw-tube tracker. The ID is immersed in a 2 T axial magnetic field and provides charged particle tracking in the range $|\eta| < 2.5$. Surrounding the ID, electromagnetic calorimetry is provided by barrel and endcap liquid-argon (LAr)/lead accordion calorimeters and LAr/copper sampling calorimeters in the forward region. Hadronic calorimetry is provided in the barrel by a steel/scintillator tile sampling calorimeter, and in the endcaps and forward region by LAr/copper and LAr/tungsten sampling calorimeters, respectively. The muon spectrometer comprises separate trigger and high-precision tracking chambers measuring the deflection of muons in a magnetic field with a bending power of 2–8 Tm, generated by three superconducting air-core toroid systems. A three-level trigger system is used to select interesting events. The level-1 trigger is implemented in hardware and uses a subset of detector information to reduce the event rate to a design value of at most 75 kHz. This is followed by two
software-based trigger levels, level-2 and the event filter, which together reduce the event rate to ~ 300 Hz.

Events with an electron (muon) are required to have passed an electron (muon) trigger with a threshold of transverse energy $E_T > 20$ GeV (transverse momentum $p_T > 18$ GeV), ensuring that the trigger is fully efficient for the offline selection discussed below. Electrons reconstructed offline are required to have a shower shape in the electromagnetic calorimeter consistent with expectation, as well as a good quality track pointing to the cluster in the calorimeter. Candidate electrons with $E_T > 25$ GeV are required to pass the “tight” electron quality criteria [17], to fall inside a well-instrumented region of the detector ($|\eta| < 2.47$, excluding $1.37 < |\eta| < 1.52$), and to be isolated from other objects in the event. Muons with transverse momentum $p_T > 20$ GeV are required to pass muon quality criteria [18], to be well measured in both the ID and the muon spectrometer, to fall within $|\eta| < 2.5$, and to be isolated from other objects in the event.

Jets are reconstructed in the calorimeter using the anti-k_T [19] algorithm with a radius parameter of 0.4. Jets are required to satisfy $p_T > 25$ GeV and $|\eta| < 2.5$. Events with jets arising from electronic noise bursts and beam backgrounds are rejected [20]. Jets are calibrated to the hadronic energy scale using p_T- and η-dependent corrections derived from simulation, as well as from test-beam and collision data [21]. Jets from the decay of heavy flavor hadrons are selected by a multivariate b-tagging algorithm [22] at an operating point with 70% efficiency for b jets and a mistag rate for light quark jets of less than 1% in simulated $t\bar{t}$ events. Neutrinos are inferred from the magnitude of the missing transverse momentum (E_T^{miss}) in the event [23].

The signal region for this analysis is defined by requiring exactly one charged lepton and five or more jets, including at least one b-tagged jet. To select events with a leptonically decaying W boson, events are required to have $E_T^{\text{miss}} > 30$ GeV ($E_T^{\text{miss}} > 20$ GeV) in the electron (muon) channel. Additionally, the event must have a transverse mass of the leptonically decaying W boson $m_{W}^{T} > 30$ GeV in the electron channel, or scalar sum $E_T^{\text{miss}} + m_{W}^{T} > 60$ GeV in the muon channel [24]. Here, $(m_{W}^{T})^2 = 2E_T^{\text{miss}}E_T^{l}(1 - \cos\phi)$, where E_T^{l} is the magnitude of the transverse momentum of the lepton, and ϕ is the angle between the lepton and the missing transverse momentum in the event.

A variety of Monte Carlo generators are used to study and estimate backgrounds. The generated events are processed through full detector simulation [25], based on GEANT4 [26], and include the effect of multiple pp interactions per bunch crossing. To predict the event yield, the simulation is given an event-by-event weight such that
the distribution of the number of pp collisions matches that in data.

The $t\bar{t}$ background is modeled with MC@NLO v4.01 [27] interfaced to HERWIG v6.520 [28] and JIMMY v4.31 [29]. An additional $t\bar{t}$ sample modeled with MC@NLO interfaced to PYTHIA v6.425 [30] is used to study potential systematic uncertainties. Other $t\bar{t}$ samples use POWHEG [31] interfaced either to PYTHIA or HERWIG, as well as AcerMC v3.8 [32]. The background from the production of single W bosons in association with extra jets is modeled by the ALPGEN v2.13 [33] generator interfaced to HERWIG. The MLM matching scheme [34] is used to form inclusive W boson + jets samples such that overlapping events produced in both the hard scatter and parton showering are removed. In addition, the heavy flavor contributions are reweighted using the data-driven procedures of Ref. [24] using the full 2011 LHC data set. Diboson events are generated using HERWIG. Single-top-quark events are modeled by MC@NLO, interfaced with HERWIG for the parton showering, in the s channel and Wt channel, and by AcerMC v3.8 in the t channel. The small background in which multijet processes are misidentified as prompt leptons is modeled from a data-driven matrix method [35]. In determining the expected event yields, the $t\bar{t}$ cross section is normalized to approximate next-to-next-to-leading-order QCD calculations of 167^{+17}_{-16} pb for a top quark mass of 172.5 GeV [36,37], and the total W + jets background is normalized to inclusive next-to-next-to-leading-order predictions [38]. Signal events are produced, for a range of W' and ϕ masses, with MadGraph v5.1.3.16 [39] and interfaced to PYTHIA v6.425. Next-to-leading-order (NLO) cross sections are used for the predicted W' boson signal normalization [6], and leading-order (LO) cross sections using MSTW2008 are used for the ϕ-resonance normalization [3].

Events are reconstructed with a kinematic fitting algorithm that utilizes knowledge of the overconstrained $t\bar{t}$ system to assign jets to partons. In the fit, the two top quark masses are each constrained at the particle level to

![FIG. 3 (color online). Expected and observed distribution of m_{tj} in the W + jets control region. The example signal-only distributions are overlaid for comparison, where unit coupling for the new physics process is assumed. The total uncertainty shown on the ratio includes both statistical and systematic effects. The other background category includes single top production, diboson production, and multijet events.](image1)

![FIG. 4 (color online). Expected and observed distributions of (a) m_{tj} and (b) $m_{j\ell}$ in the signal region. The example signal distributions assume unit coupling for the new physics process. The total uncertainty shown on the ratio includes both statistical and systematic effects. The other background category includes single top production, diboson production, and multijet events.](image2)
Signal/C27

Signal region yield

Total

W + jets

et al.

remaining jets not associated with the
tm

the total expected background, including

quark width of 1.5 GeV . The two
variations from this nominal value and the natural top
partons from the

likelihood computation. All assignments of any four jets to
full shapes of these transfer functions are used in the like-
momenta in the detector to true particle momenta. The

hypothesis is tested and the assignment
tj

selected. After the assignment is selected, the originally
extra jet can (but
does not necessarily have to) be used to form
mj

These two masses are used as observables for the search.

Several control regions are used to ensure good model-
and understanding of the backgrounds before the signal
region is examined. The preselection control region
requires at least four jets, but does not require a b tag.
The dominant
tt

background is tested in a control region
with exactly four jets (including at least one b-tagged jet).
The rejection of events with more than four jets reduces
signal contamination. A second
tt

control region is defined by events with exactly four jets with

one of which must be b tagged, and exactly one additional
jet with
pT

between 20 GeV and 25 GeV. Signal contami-
nation is further reduced by requiring that the

between the fifth jet and both the recon-

Figure 2 shows distributions in the two
tt

control regions, where good agreement is observed between data and the
prediction. The second major background, production of

bosons in association with extra jets, is tested in a

TABLE I. Expected and observed yields in the four control regions (CR). Total refers to the
total expected background, including
tt, W + jets, and the other smaller backgrounds: single top
production, diboson production, and multijet events. The last two lines show the expected
number of events for two benchmark signal samples in each of these control regions. The errors
include all systematic uncertainties.

| | Preselection CR | W + jets CR | Four-jet
tt CR | Five-jet
tt CR |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
tt | 50000 ± 4700 | 2000 ± 400 | 19000 ± 600 | 2100 ± 200 |
| W + jets | 46000 ± 14000 | 7000 ± 2900 | 3800 ± 800 | 360 ± 170 |
| Total | 116000 ± 21000 | 12000 ± 3600 | 26000 ± 1300 | 2900 ± 440 |
| Observed | 110933 | 11858 | 26197 | 2736 |
| 300 GeV W' | 13900 ± 670 | 930 ± 110 | 3000 ± 400 | 400 ± 80 |
| 400 GeV φ | 6100 ± 200 | 430 ± 60 | 1100 ± 100 | 200 ± 20 |

172.5 GeV by a penalty in the likelihood, computed from

variations from this nominal value and the natural top

quark width of 1.5 GeV. The two W boson masses are
similarly constrained to 80.4 GeV within a width of

2.1 GeV. This allows the z component of the momentum
of the neutrino from the leptonically decaying W boson to
be computed. Both solutions from the quadratic ambiguity
of this computation are tested when computing the like-

likelihood. Charged lepton, neutrino, and jet four-momenta are

constrained in the fit by resolution transfer functions
derived from simulated
tt

events that relate the measured

momenta in the detector to true particle momenta. The
full shapes of these transfer functions are used in the like-
kelihood computation. All assignments of any four jets to
partons from the
tt

decay are tested and the assignment
with the largest likelihood output for the
tt

hypothesis is selected. After the assignment is selected, the originally

measured jet and lepton momenta and

are used. The

remaining jets not associated with the
tt

partons are included to form
mij

and
mij

masses, where the charge of the lepton is used to infer which is the top candidate

and which is the antitop candidate. All combinations of

jets with the top and antitop quark candidates are

considered, and the pairings that give the largest
mij

and
mij

masses are used. In this way, the same extra jet can (but
does not necessarily have to) be used to form
mij

and
mij

. These two masses are used as observables for the search.

Several control regions are used to ensure good model-
and understanding of the backgrounds before the signal
region is examined. The preselection control region
requires at least four jets, but does not require a b tag.
The dominant
tt

background is tested in a control region
with exactly four jets (including at least one b-tagged jet).
The rejection of events with more than four jets reduces
signal contamination. A second
tt

control region is defined by events with exactly four jets with

one of which must be b tagged, and exactly one additional
jet with
pT

between 20 GeV and 25 GeV. Signal contami-
nation is further reduced by requiring that the

between the fifth jet and both the recon-

Figure 2 shows distributions in the two
tt

control regions, where good agreement is observed between data and the
prediction. The second major background, production of

bosons in association with extra jets, is tested in a

TABLE II. Expected and observed yields in different signal regions. The errors include all systematic uncertainties. Total refers to the
total expected background, including
tt, W + jets, and the other smaller backgrounds: single top production, diboson production,
and multijet events, which are not tabulated separately here. Signal window eff. refers to the efficiency for the signal to fall inside the
optimized two-dimensional mass window. The signal region yield is calculated in the mass window at each benchmark signal point.
Signal σ refers to the total expected signal cross section, not taking into account the t or t̄ plus jet branching fraction.

<table>
<thead>
<tr>
<th></th>
<th>Entire signal region</th>
<th>300 GeV W'</th>
<th>600 GeV W'</th>
<th>400 GeV φ</th>
<th>800 GeV φ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
mij window [GeV] | | | | | |
| 300 GeV W' | 344 <
mij < 494 | 566 <
mij < 904 | 401 <
mij < 455 | 766 <
mij < 819 |
| 600 GeV W' | 292 <
mij < 339 | 549 <
mij < 650 | 371 <
mij < 608 | 628 <
mij < 973 |
| Signal window eff.| 7.5% | 9.9% | 11.9% | 5.7% |
|
tt | 18000 ± 3000 | 740 ± 160 | 270 ± 60 | 660 ± 150 | 60 ± 10 |
| W + jets | 1700 ± 560 | 60 ± 30 | 30 ± 20 | 80 ± 40 | 8 ± 5 |
| Total | 22000 ± 3700 | 820 ± 190 | 320 ± 80 | 780 ± 180 | 70 ± 20 |
| Observed | 22731 | 970 | 343 | 923 | 77 |
| Signal region yield | 560 ± 120 | 98 ± 24 | 410 ± 100 | 20 ± 6 |
| Signal σ | 19.0 pb | 1.55 pb | 7.9 pb | 0.67 pb |
control region with five or more jets, vetoing events with
\(b\)-tagged jets. The requirement of zero \(b\)-tagged jets
reduces both signal and \(t\)/\(C22\) contamination. The distribution
in Fig. 3 shows good agreement between data and the
prediction within uncertainties. Table I summarizes the
expected and observed yields in the control regions.

Figure 4 shows the expected and observed \(m_{jj}\) and \(m_{ij}\)
distributions in the signal region. The data are found to be
consistent with the SM expectation. A variety of potential
systematic effects are evaluated for the predicted signal
and the background rates and shapes. The dominant sys-
tematic effects of the jet energy scale [21] and resolution

\[
W' \text{ mass [GeV]} \quad 500 \quad 1000 \quad 1500 \quad 2000 \quad 2500
\]

\[
\text{Cross-section [pb]} \quad 10^0 \quad 10^1 \quad 10^2 \quad 10^3 \quad 10^4 \quad 10^5 \quad 10^6 \quad 10^7 \quad 10^8 \quad 10^9 \quad 10^{10}
\]

\[
\int L \, dt = 4.7 \, \text{fb}^{-1} \quad \sqrt{s} = 7 \, \text{TeV}
\]

\[g_{R_0} = 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5\]

\(\text{Expected exclusion}\)

\(95\% \text{ C.L. exclusion}\)

\(\text{CDF exclusion}\)

\(\text{(M. Gresham et al.)}_{tt}\)

\(\text{Favored by Tevatron A}_{FB}\) and \(\sigma_{ij}\)

\(\text{ATLAS}\)

\[\int L \, dt = 4.7 \, \text{fb}^{-1} \quad \sqrt{s} = 7 \, \text{TeV}\]

\(\phi\) mass [GeV]

\(\text{Expected exclusion}\)

\(95\% \text{ C.L. exclusion}\)

\(\text{CDF exclusion}\)

\(\text{Favored by Tevatron A}_{FB}\) and \(\sigma_{ij}\)

\(\text{(M. Gresham et al.)}_{tt}\)

\(\text{Favored by Tevatron A}_{FB}\) and \(\sigma_{ij}\)

\(\text{ATLAS}\)

\[\int L \, dt = 4.7 \, \text{fb}^{-1} \quad \sqrt{s} = 7 \, \text{TeV}\]

\(\phi\) mass [GeV]

\(\text{Expected exclusion}\)

\(95\% \text{ C.L. exclusion}\)

\(\text{CDF exclusion}\)

\(\text{Favored by Tevatron A}_{FB}\) and \(\sigma_{ij}\)

\(\text{(M. Gresham et al.)}_{tt}\)

\(\text{Favored by Tevatron A}_{FB}\) and \(\sigma_{ij}\)

\(\text{ATLAS}\)

\[\int L \, dt = 4.7 \, \text{fb}^{-1} \quad \sqrt{s} = 7 \, \text{TeV}\]

\(\phi\) mass [GeV]

\(\text{Expected exclusion}\)

\(95\% \text{ C.L. exclusion}\)

\(\text{CDF exclusion}\)

\(\text{Favored by Tevatron A}_{FB}\) and \(\sigma_{ij}\)

\(\text{(M. Gresham et al.)}_{tt}\)

\(\text{Favored by Tevatron A}_{FB}\) and \(\sigma_{ij}\)

\(\text{ATLAS}\)

\[\int L \, dt = 4.7 \, \text{fb}^{-1} \quad \sqrt{s} = 7 \, \text{TeV}\]

\(\phi\) mass [GeV]

\(\text{Expected exclusion}\)

\(95\% \text{ C.L. exclusion}\)

\(\text{CDF exclusion}\)

\(\text{Favored by Tevatron A}_{FB}\) and \(\sigma_{ij}\)

\(\text{(M. Gresham et al.)}_{tt}\)

\(\text{Favored by Tevatron A}_{FB}\) and \(\sigma_{ij}\)

\(\text{ATLAS}\)

\[\int L \, dt = 4.7 \, \text{fb}^{-1} \quad \sqrt{s} = 7 \, \text{TeV}\]

\(\phi\) mass [GeV]

\(\text{Expected exclusion}\)

\(95\% \text{ C.L. exclusion}\)

\(\text{CDF exclusion}\)

\(\text{Favored by Tevatron A}_{FB}\) and \(\sigma_{ij}\)

\(\text{(M. Gresham et al.)}_{tt}\)

\(\text{Favored by Tevatron A}_{FB}\) and \(\sigma_{ij}\)
assessed using $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ data, which lead to systematic uncertainties of a few percent. Other potential systematic effects considered are the size of the small multijet background (assigned 100% uncertainty); $t\bar{t}$ generator uncertainties (evaluated by comparing different results using the MC@NLO and POWHEG generators, 1–10%); $t\bar{t}$ showering and fragmentation uncertainties (evaluated by comparing samples using both PYTHIA and HERWIG, 1%–6%); an uncertainty on the total integrated luminosity (3.9%) \cite{13,14}; and the amount of QCD radiation for the signal and the $t\bar{t}$ background (approximately 10%, evaluated using AcerMC). Total cross section uncertainties of 10% (55%) are used for the $t\bar{t}$ (W + jets) backgrounds.

Expected and observed upper limits on the signal cross section are computed at discrete mass points as follows. For each benchmark signal mass point under consideration, a signal region is defined in the m_{tj}-m_{ij} plane. When setting limits for the W' (ϕ) model, the m_{tj} (m_{ij}) window is significantly wider than the m_{tj} (m_{ij}) window to account for the fact that the resonance is predominantly in the m_{tj} (m_{ij}) system. The windows are optimized to maximize sensitivity, accounting for the full effect of systematic uncertainties. Typical mass windows are shown in Table II. For each mass window, 95% confidence level (C.L.) upper limits on the signal cross section (times the branching ratio to $t\tau$ or $t\bar{t}$) are computed using a single bin frequentist CLs method \cite{41}. No shape information is used within the mass windows. Table II shows the expected and observed event yields in several of the signal region windows. Expected and observed 95% C.L. lower limits on the signal mass are derived, assuming a coupling of $g_R = 1$ and $g_R = 2$, and are shown in Fig. 5. Assuming that the cross section scales as g_R^2, the exclusion in the mass-coupling plane is shown in Fig. 6. As shown, most of the parameter space in this model, which was favored by the Tevatron forward-backward asymmetry and cross section measurements \cite{42}, has been excluded.

In conclusion, this paper presents a search for a new heavy particle R in the $t\bar{t}$ or $t\bar{t}$ system of $t\bar{t}$ plus extra jet events with the ATLAS detector. Such new particles have been proposed as a potential explanation of the difference from the SM values of the forward-backward asymmetries measured in top quark pair production at the Tevatron. The full 2011 ATLAS $p\bar{p}$ data set (4.7 fb^{-1}) is used in the search. Assuming unit coupling, the expected 95% C.L. lower limit on the mass of the new particle is 500 (700) GeV in the W' (ϕ) model. No significant excess of data above SM expectation is observed, and 95% C.L. lower limits of 430 GeV for both the W' and ϕ models are set. At $g_R = 2$, the limits are 1.10 (1.45) TeV for the W' (ϕ) model, with expected limits of 0.93 (1.30) TeV. These are the most stringent limits to date on such models. Most of the regions of parameter space for these models that are more consistent with the Tevatron forward-backward asymmetry and $t\bar{t}$ cross section measurements than the SM are excluded at 95% C.L. by these results.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA) and in the Tier-2 facilities worldwide.

[12] There are several differences between the models in Refs. [3,4]. The Lagrangian in the former (used in this paper) includes a factor of $1/\sqrt{2}$, and the one in the latter (used by CMS) does not. In addition, Ref. [4] includes additional nonresonant diagrams with cross section that scale as g_s^5. Such diagrams are not included in Ref. [3].

[16] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector and the z axis along the beam pipe. The x axis points from the interaction point to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse (x-y) plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

[42] This region simultaneously satisfies the observed high-$mt\ell\tau$ and low-$mt\ell\tau$ observed at the Tevatron. Mathematically it is defined as the region with $\chi^2 < 2.8$, where χ^2 is defined in Eq. (22) in M. Gresham, I.-W. Kim, and K. Zurek, Phys. Rev. D 85, 014022 (2012). The χ^2 for the Standard Model is 2.8.
RAPID COMMUNICATIONS

G. AAD et al.

V. V. Ammosov,128,a S. P. Amor Dos Santos,124a A. Amorim,124a,c N. Amram,153 C. Anastopoulos,30 L. S. Ancu,17
X. S. Anduaga,70 P. Anger,34 A. Angerami,35 F. Anghinolfi,30 A. Anisenkov,107 N. Anjos,124a A. Annoyi,47
A. Antonaki,9 M. Antonelli,47 A. Antonov,96 J. Antos,144b F. Anulli,132a M. Aoki,101 S. Aoun,83 L. Aperio Bella,5
M. Arik,19a A. J. Armbruster,87 O. Arnaze,51 V. Arnal,80 C. Arnault,415 A. Artamonov,45 G. Artomi,132a,132b
D. Arutinov,21 S. Asai,155 R. Asfandiyarov,173 S. Ask,28 B. Asman,146a,146b L. Asquith,6 K. Assamagan,25
R. Avramidou,10 D. Axen,168 G. Azuelos,93a Y. Azuma,155 M. A. Baak,30 G. Baccaglioni,89a C. Bacci,134a,134b
A. M. Bach,168 H. Bachacou,136 K. Bachas,30 M. Backes,58 M. Backhaus,21 E. Badesco,132a,132b
S. P. Baranov,94 A. Barbagli,151 T. Barley,15 E. L. Barroso,86 D. Barros,66 V. V. Ammosov,128,a S. P. Amor Dos Santos,124a A. Amorim,124a,c N. Amram,153 C. Anastopoulos,30 L. S. Ancu,17
X. S. Anduaga,70 P. Anger,34 A. Angerami,35 F. Anghinolfi,30 A. Anisenkov,107 N. Anjos,124a A. Annoyi,47
A. Antonaki,9 M. Antonelli,47 A. Antonov,96 J. Antos,144b F. Anulli,132a M. Aoki,101 S. Aoun,83 L. Aperio Bella,5
M. Arik,19a A. J. Armbruster,87 O. Arnaze,51 V. Arnal,80 C. Arnault,415 A. Artamonov,45 G. Artomi,132a,132b
D. Arutinov,21 S. Asai,155 R. Asfandiyarov,173 S. Ask,28 B. Asman,146a,146b L. Asquith,6 K. Assamagan,25
R. Avramidou,10 D. Axen,168 G. Azuelos,93a Y. Azuma,155 M. A. Baak,30 G. Baccaglioni,89a C. Bacci,134a,134b
A. M. Bach,168 H. Bachacou,136 K. Bachas,30 M. Backes,58 M. Backhaus,21 E. Badesco,132a,132b
S. P. Baranov,94 A. Barbagli,151 T. Barley,15 E. L. Barroso,86 D. Barros,66
SEARCH FOR RESONANT TOP QUARK PLUS JET...
95 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
96 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
97 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
98 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
99 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
100 Nagasaki Institute of Applied Science, Nagasaki, Japan
101 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
102 INFN Sezione di Napoli, Italy
103 Department of Physics, Brock University, St. Catharines, Ontario, Canada
104 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
105 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
106 Department of Particle Physics, University of Alabama, Tuscaloosa, Alabama, USA
107 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
108 Department of Physics, University of Arizona, Tucson, Arizona, USA
109 Ohio State University, Columbus, Ohio, USA
110 Faculty of Science, Okayama University, Okayama, Japan
111 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
112 Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
113 Palacký University, RCPTM, Olomouc, Czech Republic
114 Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA
115 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
116 Graduate School of Science, Osaka University, Osaka, Japan
117 Department of Physics, University of Oslo, Oslo, Norway
118 Department of Physics, Oxford University, Oxford, United Kingdom
119 INFN Sezione di Pavia, Italy
120 Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
121 Petersburg Nuclear Physics Institute, Gatchina, Russia
122 INFN Sezione di Pisa, Italy
123 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
124 Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisboa, Portugal
125 Departamento de Fisic Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
126 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
127 Czech Technical University in Prague, Praha, Czech Republic
128 State Research Center Institute for High Energy Physics, Protvino, Russia
129 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
130 Physics Department, University of Regina, Regina, Saskatchewan, Canada
131 Ritsumeikan University, Kusatsu, Shiga, Japan
132 INFN Sezione di Roma I, Italy
133 INFN Sezione di Roma Tor Vergata, Italy
134 INFN Sezione di Roma Tre, Italy
135 Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco
136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
138 Department of Physics, University of Washington, Seattle, Washington, USA
139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140 Department of Physics, Shinshu University, Nagano, Japan
141 Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
Also at Department of Physics and Astronomy, University of Michigan, Ann Arbor, MI, USA.

Also at Institute of Physics, The University of Michigan, Ann Arbor, MI, USA.

Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.

Also at Department of Physics, Oxford University, Oxford, United Kingdom.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at Department of Physics, The University of KwaZulu-Natal, Durban, South Africa.

Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.

Also at Department of Physics, The University of South Carolina, Columbia, SC, USA.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

Also at California Institute of Technology, Pasadena, CA, USA.

Also at Institute of Physics, Jagiellonian University, Krakow, Poland.

Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.

Also at Nevis Laboratory, Columbia University, Irvington, NY, USA.

Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.

Also at Department of Physics, Oxford University, Oxford, United Kingdom.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA.

Also at Institute of Physics, The University of Michigan, Ann Arbor, MI, USA.

Also at Department of Physics, The University of Sheffield, Sheffield, United Kingdom.

Also at Department of Physics, Oxford University, Oxford, United Kingdom.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA.

Also at Institute of Physics, The University of Michigan, Ann Arbor, MI, USA.

Also at Department of Physics, The University of Sheffield, Sheffield, United Kingdom.

Also at Department of Physics, Oxford University, Oxford, United Kingdom.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.